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Although the interaction between microswimmers and walls during near-wall swimming
has been extensively studied, the effect of microswimmer shapes and slip boundary
conditions on the dynamic characteristics of near-wall microswimmers has received less
attention. In this study, elliptical microswimmer models have been developed with various
aspect ratios based on circular microswimmers. The lattice Boltzmann method has been
used for the numerical simulation of the dynamic behaviour of microswimmers near walls.
Under slip boundary conditions, the escape or capture of microswimmers by the walls is
influenced by the swimming Reynolds number (Res), wall slip length (ls) and the aspect
ratio (Cab) of a microswimmer. Changes in the Cab value of a microswimmer considerably
affect its swimming state, especially for puller-type microswimmers. The tendency of
pullers to be captured by the wall increases with increasing Cab. Moreover, changes in
ls within the slip boundary condition of a puller can induce a transition in its movement
state from a wall oscillation state to a stable sliding state and eventually to a wall lock-up
state, a process influenced by the Cab value of the puller. Pusher-type microswimmers
show a considerably increased tendency to escape from walls with increasing Cab and no
wall lock-up state is observed, which is opposite to the case of pullers. Pushers and pullers
show an increased tendency to be captured by the wall with increasing initial swimming
angle of the microswimmer. The findings of this study enhance our understanding of the
swimming patterns of natural microswimmers near walls and are of substantial importance
for the design of artificial microswimmers and microfluidic devices.
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1. Introduction

The swimming of microorganisms in natural and biological environments is considerably
influenced by confined boundaries within enclosed spaces (Li 2023). These boundaries
guide microswimmer behaviour through surface–microorganism interaction. Bacteria are
stably captured, which accumulate on walls, facilitating the formation of biofilms (Li
et al. 2011; Dey, Saha & Chakraborty 2020). Walls also have a remarkable impact on
the movement of microswimmers near boundaries. The vaginal walls of mammals guide
sperms to the egg (Denissenko et al. 2012), and freely swimming male and female brown
algae have a probability of encountering each other near boundaries (Kinoshita et al. 2016).
Microswimmers exhibit a variety of behaviours near solid boundaries, such as various
wall responses of Chlamydomonas (Li & Ardekani 2014), the reverse movement of sperm
along walls (Miki & Clapham 2013), distinct motion patterns of Volvox (Drescher et al.
2011) and circular swimming in different directions by flagellated bacteria (Lauga et al.
2006; Di Leonardo et al. 2011). The advancement of microfluidic technology has aided
the application of artificial microswimmers in areas such as laboratory devices (Bechinger
et al. 2016), cell manipulation (Bunea & Taboryski 2020) and micromotor propulsion
(Poddar, Bandopadhyay & Chakraborty 2019; Chen et al. 2021). Furthermore, the design
of complex boundaries in microfluidic devices (protrusions and obstacles) has developed
various artificial microswimmers (Simmchen et al. 2016).

The squirmer is a typical propulsion model for microswimmers (Lighthill 1952;
Blake 1971a,b), where self-propulsion is achieved by applying a specific tangential slip
velocity on its surface. This propulsion is categorized into front-propelled pullers and
rear-propelled pushers and is used to describe the movement of various representative
microorganisms such as Bacillus subtilis, Chlamydomonas reinhardtii, Escherichia
coli and Volvox. It is extensively used to explore the hydrodynamic properties of
microswimmers, including the behaviour of squirmers in vertical pipes (Guan, Lin & Nie
2022; Ying et al. 2022; Nie et al. 2023), their movement in different background flow
fields (More & Ardekani 2021; Liu, Ouyang & Lin 2022; Guan & Lin 2023), swimming
in non-Newtonian fluids (De Corato, Greco & Maffettone 2015; Nganguia & Pak 2018;
Ouyang, Lin & Ku 2018) and their behaviour near walls (Kuron et al. 2019; Chaithanya &
Thampi 2021; Ishimoto, Gaffney & Smith 2023). The diffusion (Ishikawa & Pedley 2007),
nutrient absorption (Magar & Pedley 2005) and rheological properties (Uspal et al. 2015)
of squirmers have also been thoroughly studied.

Previous studies have primarily focused on spherical or circular squirmers. However,
∼80 % of bacteria and microorganisms are elongated, with an average aspect ratio of
∼3. The motility of squirmers increases with their aspect ratio (Dusenbery 2009). The
body shape of phytoplankton elongates as their volume increases (Gibson, Atkinson &
Gordon 2007) in organisms such as C. reinhardtii, Paramecium and E. coli. Zöttl & Stark
(2013) extended the model of spherical squirmers to elongated squirmers in Poiseuille
flow. They reported that the frequency of oscillation and tumbling depended on the
aspect ratio although their trajectories were similar. Kyoya et al. (2015) studied Stokes
flow around ellipsoidal squirmers, noting that the collective movement of squirmers is
primarily influenced by their aspect ratio. This highlights the role of the squirmer shape
in collective motion. Zantop & Stark (2020) introduced the squirmer rod model and
compared it with spherical squirmers to find the generation of complex fluid dynamic
multipole moments by squirmer rods. Ouyang & Lin (2021) established a squirmer rod
model comprising multiple spherical squirmers and studied their movement in fluid. They
found that the swimming speed and the energy consumption of pullers and pushers vary
with the number of spherical squirmers and their proximity. Zantop (2023) investigated
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Effect of the shape

the collective dynamical behaviour of neutral-, puller- and pusher-type squirmer rods and
reported various states ranging from disordered to clogged states. This study indicated the
role of flow field types and squirmer rod density in the transition of squirmer rod movement
states. Ashtari et al. (2022) used a no-slip condition and studied the movement of elliptical
squirmers in a planar channel made of flexible membranes. They found that the aspect
ratio of an elliptical squirmer has a significant impact on the movement and transport of
squirmers, and demonstrated how elliptical squirmers differ from the spherical squirmers
in a fluid dynamics environment. Compared with spherical squirmers, elliptical squirmers
move faster at specific Reynolds numbers, providing important insights for the design of
artificial microswimmers.

The above studies are based on no-slip boundary conditions on the wall. The slip
phenomenon at the solid–fluid interface is a complex behaviour resulting from the
interaction of various physicochemical parameters such as wettability, surface roughness,
impurities and dissolved gases, which is commonly observed on hydrophobic surfaces.
The slip length, defined as the hypothetical distance from the solid–fluid interface to the
point where the fluid velocity extrapolates to zero, is a key metric for measuring the slip
phenomenon. There have been some studies on slip boundary conditions. Choi, Westin &
Breuer (2003) discovered that the slip length (∼30 nm) of water on hydrophobic surfaces
is approximately linearly related to the shear rate. Cottin-Bizonne et al. (2005) confirmed
the existence of boundary slip and proposed that a slip length of 20 nm is consistent
with theories and simulations for non-wetting smooth surfaces. Joseph & Tabeling (2005)
increased experimental precision and found that slip lengths are generally <100 nm.
Huang et al. (2008) used molecular dynamics simulations to study the hydrodynamic slip
of water on hydrophobic surfaces, finding that slip lengths ranged from nanometres to
tens of nanometres, thereby resolving previous disputes regarding these measurements.
In addition to nanometre-scale slip lengths, micrometre-scale slip lengths can exist
under certain physical and chemical conditions. Zhu & Granick (2001) pointed out that
shear-induced bubble nucleation could form a gas film, which significantly increased
the slip length. Tretheway & Meinhart (2002) discovered that applying a hydrophobic
monolayer coating on microchannel surfaces produced a slip length of ∼1 mm. Thus, the
slip at the solid–fluid interface can be modelled as a uniform partial slip at the microscale
level. Currently, wall slip conditions are widely applied in research on autonomous
underwater vehicles (Guo & Hou 2023) and in exploring the stability of liquid flow
(Samanta 2017).

Slip boundaries do influence the swimming behaviour of microswimmers near walls.
The swimming pattern of E. coli near walls forms circular trajectories, which is related
to the counter-rotation of its body and flagellar bundle. Lemelle et al. (2013) explained
the relation between the circular motion of E. coli and slip at the solid–fluid interface,
suggesting that biopolymers and surfactants controlling bacterial motility could be a novel
therapeutic strategy. Hu et al. (2015) reported that the motion of E. coli shifted from
clockwise circular trajectories to linear or counterclockwise circular trajectories with an
increase in the slip length. Lopez & Lauga (2014) used far-field hydrodynamic methods
to simulate the swimming of helical flagellated bacteria near walls and found that the slip
boundary reoriented the cells parallel to the surface and attracted them to the surface.
Their research has potential applications in the separation of individual cells. Ketzetzi
et al. (2020) noted that the propulsion speed of microswimmers near walls was affected by
the slip length of the wall. Poddar, Bandopadhyay & Chakraborty (2020) further explored
the mechanism affecting the swimming speed of microswimmers near walls by the slip
length, demonstrating changes in the trajectories of puller- and pusher-type swimmers.
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Ghosh & Poddar (2023) studied the coupling between wall slip and external flow velocity
gradients, indicating that the slip length significantly affects the rheological properties of
microswimmers.

However, the aforementioned studies on the motion of microswimmers near walls under
slip boundary conditions have primarily focused on circular or spherical microswimmers.
The geometric shape of microswimmers affects their stable swimming states in general
flow fields. Hence, it can be inferred that the geometric shape of microswimmers also
influences their swimming states near walls. This paper aimed to study the motion
characteristics of elliptical microswimmers near walls under slip boundary conditions.
(i) Elliptical microswimmer models with different aspect ratios were constructed based on
circular microswimmers. (ii) The surface wettability of walls was simulated by combining
modified reflection and mirror reflection conditions, thereby reflecting slip boundary
conditions. (iii) The lattice Boltzmann method (LBM) was used to numerically simulate
the dynamic behaviour of microswimmers near walls. Based on this foundation, the
study analysed the swimming characteristics of puller- and pusher-type microswimmers
near walls with different geometric configurations. It explored the impact of key factors
such as the slip length, swimming Reynolds number, aspect ratio and swimming type
parameters on swimming characteristics. Additionally, the study presents the dependency
of microswimmer swimming modes on the initial swimming angle.

2. Numerical method

2.1. The lattice Boltzmann method (LBM)
The LBM with a single relaxation time mode (Qian, d’Humières & Lallemand 1992)
is used to simulate the swimming characteristics of microswimmers near a slip wall.
The discrete lattice Boltzmann relation is shown in (2.1)

fi(x + ei�t, t + �t) − fi(x, t) = −1
τ

[ fi(x, t) − f (0)
i (x, t)], (2.1)

where fi(x, t) is the distribution function for the microscopic velocity, ei is the ith direction,
�t is the time step of the simulation, τ is the relaxation time related to the fluid viscosity,
f (0)
i (x, t) is the equilibrium distribution function expressed as (2.2)

f (0)
i (x, t) = wiρ

[
1 + 3ei · u

c2 + 9(ei · u)2

2c4 − 3u2

2c2

]
, (2.2)

where c =�x/�t represents the lattice speed, �x is the lattice spacing, the speed of sound
has the relation cs = c/(3)1/2, lattice spacing �x and the time step �t are fixed at 1,
weights are w0 = 4/9, w1–4 = 1/9 and w5–8 = 1/36, the density and velocity of the fluid are
expressed as (2.3)

ρ =
∑

i

fi, ρu =
∑

i

fiei. (2.3a,b)

The popular D2Q9 (i.e. nine discrete velocities in two dimensions) lattice model with nine
velocities is used. The discrete velocity vectors are shown in (2.4)

ei =

⎧⎪⎨
⎪⎩

(0, 0), for i = 0,

(±1, 0)c, (0, ±1)c, for i = 1 to 4,

(±1, ±1)c, for i = 5 to 8.

(2.4)
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The macroscopic mass and momentum, expressed as (2.5) and (2.6), respectively, in the
low Mach number limit, can be recovered by applying the Chapman–Enskog expansion

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.5)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ρν∇2u. (2.6)

2.2. Boundary conditions
The proper treatment of a moving boundary in the LBM is a critical factor in
ensuring accurate simulations. Lallemand & Luo (2003) proposed an improved version
of the bounce-back scheme including interpolation, which is stable, robust and easy to
implement. Figure 1 shows a square and circle representing a solid and fluid node within
and outside the squirmer boundary, respectively, and a triangle representing a boundary
node that rebounds on the squirmer boundary. All fluid and solid nodes might change after
the collision. Hence, the equilibrium distribution function from the solid node to the fluid
node needs to be recalculated based on the accurate position of the boundary node (triangle
presented in figure 1). The distribution function ( f 5) of the fluid node (A) was originally
calculated using the solid node (B), which was inside the curved boundary. Thus, f 5 was
not determined. A rebound scheme can be used to satisfy the no-slip boundary condition
by setting the f 5 = f 7 condition. However, this method assumes that the boundary node
(F) is exactly located at the midpoint of the line connecting two lattice nodes and is
not universal. Therefore, f 5 needs to be recalculated, and a parameter q = |AF|/|AB| is
introduced to determine the position of the boundary node. Finally, f 5 is recalculated based
on nearby nodes (B, C and D) using an interpolation method using (2.7)

f5(A) =

⎧⎪⎪⎨
⎪⎪⎩

q(1 + 2q)f7(B) + (1 − 4q2)f7(A) − q(1 − 2q)f7(C) − 2w5ρ
e5 · uF

c2
s

q <
1
2
,

1
q(2q + 1)

f7(B) + 2q − 1
q

f5(C) − 2q − 1
2q + 1

f5(D) − 2w5

q(2q + 1)

e5 · uF

c2
s

q ≥ 1
2
.

(2.7)

The forces and torques applied to the body of microswimmers are calculated using
momentum exchange methods via scanning every fluid–solid boundary link (Lallemand &
Luo 2003). We used the method proposed by Aidun, Lu & Ding (1998) during the motion
of the microswimmer involving the coverage and creation of fluid nodes to calculate these
additional forces and torques (including the repulsive force in (2.11)). The total force and
torque are obtained by integrating the obtained force and torque on the squirmer surface.
Therefore, the motion trajectory of the microswimmer is determined by solving Newton’s
equations of motion based on the resultant forces and torques.

2.3. Squirmer model

2.3.1. Circle squirmer
The squirmer model can be achieved by adding oscillatory fluctuations in the radial and
tangential directions to the boundaries of particles using (2.8) (Blake 1971a,b)

us(θ) =
∞∑

n=0

An cos(nθ)r̂ +
∞∑

n=1

Bn sin(nθ)θ̂ . (2.8)
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Curved boundary

Solid node

Boundary location

Fluid node
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B

Figure 1. Schematic of the bounce-back scheme in the LBM.
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Figure 2. Schematic diagram of squirmers moving to the right. (a) Circle squirmer and (b) ellipse squirmer.

Here, r̂ and θ̂ are radial and tangential unit vectors at one point on the surface of the
squirmer, as shown in figure 2(a) and An and Bn are the corresponding time-dependent
amplitudes, respectively. The radial component is usually ignored in problems related to
the squirmer motion. Hence, a simplified squirmer model represented by a second-order
truncated tangential velocity (n ≤ 2) is expressed using (2.9)

us(θ) = B1 sin θ + B2 sin θ cos θ. (2.9)

The coefficient B1 determines the self-propulsion strength of the microswimmer, thus
determining its steady-state swimming velocity (Us) under Stokes flow conditions of
B1/2. The coefficient (B2) influences the vorticity strength around the microswimmer and
β = B2/B1 is typically introduced as a key parameter to characterize different types of
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microswimmers: (i) puller-type microswimmers (β > 0), such as E. coli and B. subtilis,
which obtain thrust from their rear end, (ii) pusher-type microswimmers (β < 0), such
as C. reinhardtii, which obtain thrust from their front end (Koch & Subramanian 2011)
and (iii) neutral-type microswimmers (β = 0), which are associated with vortex-free
symmetric flows (Fadda, Molina & Yamamoto 2020), such as Volvox.

2.3.2. Ellipse squirmer
Inspired by the work of Zantop & Stark (2020) who took a squirmer rod as a combination
of several circular squirmers with equal diameters, in our model of elliptical squirmer, the
velocity at each point (e.g. E in figure 2b) on the surface of elliptical squirmer is equal to
the velocity at the point on the surface of circular squirmer that is tangent to that point, as
shown in figure 2(b).

In the computation, we choose enough computed nodes (e.g. E in figure 2b) on the
surface of elliptical squirmer and sufficiently small spacing between adjacent squirmers to
ensure high accuracy and continuity of tangential velocity at the computed nodes on the
surface of the elliptical squirmer.

To demonstrate the effectiveness of the above model, we compare the swimming
speed computed using the model of elliptical squirmer with that given by analytical
solution, 2Us/{B1 ∗ [1 + (Cab − 1)/(Cab + 1)]}, as shown in figure 6(b), obtained from
the conformal theorem (mapping a circle to a ellipse) (Liu et al. 2022). The two results are
consistent.

For guaranteeing the continuity of surface velocities on the elliptical squirmer, before
officially starting the computation, we conducted a trial run and choose enough points on
the surface of the elliptical squirmer for computation. Besides, the specific implementation
method for the elliptical squirmer is as follows: according to the method outlined in § 2.3,
it is possible to determine the boundary nodes and the normal vectors of the elliptical
squirmer, as shown at point E and vector n in figure 1. Then, an inscribed circle, circle 1,
which shares the same node E and normal vector n, can be determined, and the tangential
velocity at point E on circle 1 is mapped onto the ellipse. This process is repeated until the
tangential velocities at all boundary points on the ellipse are derived from the circle.

2.4. Repulsive force model
Collisions might occur when swimmers approach a wall. Thus, we adopted the repulsive
force model proposed by Glowinski et al. (2001) to resolve collision issues. This model
has been widely applied in many studies (Ouyang et al. 2018; Ying et al. 2022; Nie et al.
2023) and has been proven to be effective and reliable for simulating interactions between
swimmers and the wall. In this model, the collision between swimmer and the wall is
assumed to be smooth, i.e. precaution will be taken to avoid overlapping of the regions
occupied by the swimmer and wall when a swimmer collides with the wall surface. To
achieve this goal, a short-range repulsive force is given

Fw
ij =

⎧⎪⎨
⎪⎩

0 if d′
ij > Ri + Rj + ξ

cij

εw

(
Ri + Rj + ξ − d′

ij

ξ

)2
(Gi − G′

j)

d′
ij

if d′
ij ≤ Ri + Rj + ξ

. (2.10)

Here, Ri represents the radius of a squirmer with the centroid located at Gi, and G′
j is the

centroid position of a hypothetical squirmer located inside the wall, as shown in figure 3.
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Fij
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w
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Gj

(a) (b)

Gk

Ns

Nw

|Ns – Nw|

dij
R j

Gi R i

Torque

Figure 3. Schematic diagram of the repulsive force model. (a) Circle and (b) ellipse.

Also, d′
ij = |Gi − G′

j| is the distance between two centroids, ξ is a cutoff distance below
which the repulsive force would come into effect, which is set to 1.5 �x. The reason for
setting 1.5�x as the cutoff distance instead of other values is that it can achieve the required
calculation accuracy (referring to 3.4) while avoiding the need for too much calculation
time. The parameter εw is a given positive stiffness coefficient set to 10−3 and cij is a force
scaling factor and is defined as the difference between the gravitational and buoyancy
forces of the squirmer in the simulations.

The original repulsive force in (2.10) was designed for circular particles. Therefore,
we modified this formula to accommodate collisions involving elliptical particles. The
modified expression of the repulsive force is given as (2.11). The label N s presented
in figure 3(b) represents the point on the elliptical particle closest to the wall, while
Nw (figure 3b) is the position on the wall corresponding to that point. Thus, |N s−Nw|
represents the minimum distance from the elliptical particle to the wall. Unlike circular
particles, the repulsive force from the wall to the elliptical particle might not necessarily
point toward its centroid. This repulsive force generates a torque on the elliptical particle.
Hence, this torque must be considered in calculations as expressed in (2.11)

Fwe
ij =

⎧⎨
⎩

0 if |N s − Nw| > ξ

cij

εw

( |N s − Nw| − ξ

ξ

)2
(N s − Nw)

|N s − Nw| if |N s − Nw| ≤ ξ
. (2.11)

2.5. Slip boundary conditions
For the slip boundary conditions of the wall we combined the methods of reflection and
mirror reflection conditions (Wang et al. 2018). Figure 4 illustrates the application of this
method using the D2Q9 model; j presented in figure 4 represents the jth layer of grids and
s (figure 4) is the force driving the fluid flow along the x-axis with the y-axis in the vertical
direction. The distribution functions f 0, f 1, f 3, f 4, f 7 and f 8 for nodes can be determined
during the flow process, but f 2, f 5 and f 6 remain unknown. These unknown distribution
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Boundary

j = 0

j = 1

j = 2

j = 3
S

f6 f2 f5

f8f3

f7 f4

f0

f8

y

x

Figure 4. Boundary grid for the slip boundary conditions using the D2Q9 model.

functions are defined as (2.12)–(2.14) (Succi 2002)

f2 = f4, (2.12)

f5 = r1 f7 + (1 − r1)f8 + 2r1ρωi · uw/2c2
s , (2.13)

f6 = r1 f8 + (1 − r1)f7 + 2r1ρωi · uw/2c2
s , (2.14)

where uw represents the velocity of the wall and r1 is the adjustment coefficient . The value
of r1 is calculated using (Wang et al. 2018)

r1 = 1

1 + ls
τ

, (2.15)

where ls is the slip length, τ is the is the relaxation time related to the fluid viscosity and r1
is a crucial parameter linking the slip length ls with the boundary slip effect. Using (2.15),
ls in the code can be adjusted to match the experimental result.

3. Flow parameters and validation of method

3.1. Flow field parameters
Figure 5 presents a schematic of a microswimmer approaching a wall with slip boundary
conditions. The numerical simulations have the following fluid domains: length (L), width
(H), density (ρ) and viscosity (ν). The density of the microswimmer is denoted as ρs.
The diameter of the circular microswimmer is d, while the major and minor axes of
the elliptical microswimmer are 2a and 2b (2b = d), respectively, with an aspect ratio
Cab = a/b. The angle between the swimming direction of the microswimmer and the
x-axis is represented by θ . In order to simulate an infinitely long area in the x-direction,
a method of moving computational domain is used, i.e. both the flow and the position of
the microswimmer shift to the left by one lattice spacing when the microswimmer moves
beyond a distance of X0 +�x from its initial position. Using this method can ensure that
microswimmers do not escape the computational domain, while significantly reducing the
required number of computational grids and improving resolution. A boundary condition
of fully developed non-equilibrium extrapolation is applied to the upper boundary. Using
this boundary condition can ensure that the upper boundary does not affect the flow near
the wall surface.

The swimming Reynolds number (Res) is introduced to describe the self-propulsion
strength of the microswimmer, as defined in (2.15), where Us = B1/2. Variations in the
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Figure 6. Terminal swimming velocity for a freely swimming squirmer (Res = 0.01 and d = 40);
(a) Cab = 1.0 and (b) Cab = 2.0.

self-propulsion strength of the microswimmer can be achieved by changing the value of
Res. Unless specifically stated, the values of some parameters in numerical simulations are
as mentioned: L = 12d, H = 8d, ρ = 1, ρs = 1, Res ranges from 0.01 to 1 and d = 40. The
initial position of the microswimmer is set to X0 = 0.5L and Y0 = h = 0.4H with an initial
swimming angle of θ0 =−0.1π

Res = Usd
ν

, (3.1)

3.2. Squirmer model validation
The squirmer model presented in § 2.3 (2.9) was validated via numerical simulations of a
single squirmer freely swimming in a 25d × 25d square region with all the boundaries of
the region set as periodic boundary conditions. The simulated squirmers were both circular
and elliptical with an aspect ratio of Cab = 2.0. Their swimming speeds were normalized
using Us/(B1/2) for the circular squirmer and Us/[(B1/2) × (1 + (Cab−1)/(Cab + 1))] for
the elliptical squirmer. Figure 6 shows the results of the swimming speeds of neutral
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Figure 7. Swimming speed for a freely swimming squirmer under different mesh divisions.

(β = 0), puller (β = 5) and pusher (β = −5) squirmers tending toward their theoretical
speeds. It is evident that both circular and elliptical swimming speeds eventually converge
to the theoretical speeds. This indicates that the circular and elliptical squirmer models
used in this paper are credible. Terminal swimming velocity in figure 6 is based on
Res = 0.01 rather than a larger value, the reason is that we want to confirm whether the
terminal swimming velocity of microswimmers reaches the theoretical value B1/2 under
the Stokes flow condition (extremely low Reynolds numbers) when using the squirmer
model. Due to the fact that validation is carried out under specific conditions such as
Stokes flow, choosing Res = 0.01 is typical.

We also performed a grid independence verification. The results of the swimming
speeds at different mesh densities are shown in figure 7, where the diameter d of the
squirmer is 5, 10, 20, 40 and 80. When d ≥ 20, the stable swimming speed of the squirmer
reaches the theoretical speed, and the speed curve is smooth and stable. Considering
factors such as accuracy and computational time, we chose d = 40 in the simulation.

3.3. Slip boundary validation
This section validates the slip boundary conditions. Figure 8(a) shows the two-dimensional
shear flow field features of a top plate moving at a uniform speed of U0 = 0.04, while
the bottom plate remains stationary under slip boundary conditions. Periodic boundary
conditions are applied at the inlet and outlet; Nx and Ny represent the number of grids
along the X and Y directions, respectively. Figure 8(b) shows the computational results
for different grid numbers (Nx × Ny) under slip boundary conditions. The results from
different grid numbers are almost identical, providing a basis for the selection of grid
numbers in the simulations. Additionally, this demonstrates that the calculated ls closely
matches the theoretical result (ls0).
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Figure 9. Trajectories of the squirmer at different cutoff distances ξ (Res = 0.08, β = 3, ls = 3).

3.4. Cutoff distance validation
In § 2.4, we mentioned the cutoff distance, ξ . To determine ξ , we conducted more detailed
numerical simulations for ξ = 1.2�x, 1.5�x, 2.0�x and 2.5�x, and the trajectories of the
squirmer at different ξ are shown in figure 9, where the impact of ξ on the trajectories
of the squirmer is very small, so we chose ξ = 1.5�x because it can achieve the required
calculation accuracy while avoiding the need for too much calculation time.

4. Results and discussion

4.1. Movement of squirmers with different Cab values
Figure 10 displays the instantaneous streamlines around squirmers with different aspect
ratios. The puller (β = 1) propels by pulling the fluid from the front and experiences
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Figure 10. Instantaneous streamlines and the velocity field around a squirmer (Res = 0.08, θ0 =−0.1π,
h = 0.2H); (a) Cab = 0.8, (b) Cab = 1.0 and (c) Cab = 1.2.

restricted movement near the wall, thereby affecting the structure of streamlines. The
pusher (β = −1) propels by pushing the fluid from the rear and has a different streamline
distribution near the wall than that of the puller. Thus, different propulsion methods
result in distinct streamlined structures around pullers and pushers. The distribution of
streamlines around neutral (β = 0) squirmers resembles passive particles. A comparison
of figures 10(a)–10(c) shows that the surrounding streamlines and velocity distributions
vary for squirmers with different Cab values. A recirculation area at the head of the puller
increases with increasing aspect ratio Cab when β = 1. Conversely, the recirculation area
at the tail of the pusher gradually decreases when β =−1. This reflects the differences in
the self-propulsion methods of squirmers and the degree of interaction between squirmers
with different Cab values and the wall.

4.2. The interaction between a puller and the wall
Figure 11 presents the phase diagram of the final states of a puller, revealing four distinct
motion states: escape, oscillation, sliding along the wall and wall lock-up. The escape state
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Figure 11. Phase diagram of the final states of a puller with different Cab values, solid circle: wall escape,
solid square: oscillation near the wall, hollow square: sliding along the wall and solid triangle: wall lock-up
(the region from π/2 to 7π/6: Res = 0.08, the region from 7π/6 to 11π/6: Res = 0.8, the region from 11π/6 to
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respectively); (a) Cab = 0.8, (b) Cab = 1.0, (c) Cab = 1.2 and (d) Cab = 2.0.

occurs when the self-propulsion strength (β) is relatively low. The puller cannot escape
from the wall once β exceeds a certain critical value and is found in one of the other
three states. The puller exhibits a transitional change near the wall as the β value changes,
oscillating to sliding along the wall and finally locking up. Figure 12 shows the trajectories
of the puller in these four states, illustrating that, apart from escape, the other three states
occur near the wall.

4.2.1. Wall-escape state of the puller
Figure 13(a) shows the variation of the horizontal velocity (Vx) of a puller during
swimming as a function of the relative distance h/H from the wall under different ls. The
puller initially moves toward the wall from a distance of 0.4H, moves away from the wall
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Figure 12. Movement trajectories of a puller in the four different states.

under its influence and returns to a position of 0.4H away from the wall. The value of
Vx gradually increases during the approach toward the wall; Vx first decreases and then
increases on moving toward and away from the wall, respectively. The trend in the change
of Vx remains the same as ls increases, but the puller moves close to the wall (small h/H
values). There is a significant velocity gradient in the narrow gap between the puller and
the wall when the puller approaches the wall. A large ls weakens this velocity gradient.
This conclusion is confirmed by the instantaneous streamline and vorticity diagrams, as
shown in figure 14. Vorticity between the puller and wall with a ls of 10 is smaller than
that without a slip length (ls = 0). In addition, horizontal velocity of the puller increases
with increasing aspect ratio Cab. The reason is that, on the one hand, the shape of the
microswimmer transitions from circular to elliptical as Cab increases, becoming more
streamlined and thereby reducing the flow resistance and allowing for an increase in Vx.
On the other hand, the tangential velocity and its related Vx on the surface of an elliptical
squirmer increases as Cab increases. At ls = 10, there’s a noticeably distinct behaviour
around h/H = 0.1 compared with other ls values. On the one hand, the closer to the wall,
the greater the effect of ls, h/H = 0.1 is closest to the wall compared with other positions,
so there is a noticeably distinct behaviour around h/H = 0.1. On the other hand, the larger
the value of ls, the greater the effect of reducing the velocity gradient between the wall and
the microswimmer, which allows the microswimmer to swim closer to the wall at ls = 10,
thereby causing changes in speed and swimming angle and triggering different motion
behaviours.

Figure 13(b) shows that the torque experienced by the puller decreases with an increase
in ls at the same relative distance of h = 0.2H from the wall, inducing the puller to swim
close to the wall when ls values are high. This explains the variation in the swimming
angle of the puller at different ls values, as shown in figure 13(c). The larger the aspect
ratio Cab, the greater the torque variation during the interaction between the puller and the
wall.

The escape state of a puller occurs when the values of β and Res are relatively low, as
previously mentioned and illustrated in figure 11. Ishimoto & Gaffney (2013) reported that
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Figure 13. Variation in the horizontal velocity, torque experienced and swimming angle of a puller relative to
its distance from the wall under different ls values (θ0 =−0.1π, Res = 0.08 and β = 1). (a) Horizontal velocity
of pullers, (b) torque experienced of pullers and (c) swimming angle of pullers.
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Figure 14. Instantaneous streamline and vorticity diagrams around a puller at different ls values (θ0 =−0.1π,
Res = 0.08, β = 1, Cab = 0.8, h/H = 0.2); (a) ls = 0 and (b) ls = 10.
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Figure 15. Phase diagram of the final states of a puller. Grey area: escape state and yellow area: wall capture
state (Res = 0.08); (a) Cab = 0.8, (b) Cab = 1.0 and (c) Cab = 1.2.

the puller would not generate a hydrodynamic rotation toward the wall when the value
of β was not very high. However, the puller would produce additional rotation and form a
movement pattern near the wall when β exceeds a certain critical value. The phase diagram
presented in figure 15 elaborates on the influence of the ls and Cab values of the puller on
its movement patterns to investigate the mechanism behind this phenomenon (Res = 0.08
and β ≤ 2). The grey area (figure 15) represents the escape state of the puller, while the
yellow area (figure 15) indicates the state where the puller is captured by the wall. The
corresponding initial angle is θ0 = −0.1π, as the attraction of the wall on the puller can
be neglected for θ0 > 0 (Li & Ardekani 2014). Figure 15 shows that the puller is captured
(yellow area) only when both β and ls are relatively large for the three values of Cab
because an increased ls changes the characteristics of the interaction between the puller
and wall. The puller is in the escape state (grey area, figure 15) below the critical value
(βc) (β <βc). The value of βc increases with the increase of Cab, suggesting that the
pullers with a high Cab have a high probability of escaping from the wall at Res = 0.08
and β ≤ 2. The reason is that the swimming speed of the microswimmer increases with
increasing Cab, while the higher speed gives the microswimmer a greater repulsive force
after colliding with the wall, which makes it easier for the microswimmer to escape from
the wall.

4.2.2. Periodic oscillation state of the wall capture of pullers
An increase of ls value would prompt the puller to change from an escape state to a
periodic oscillating wall capture state. Figure 16(a) shows the puller transition from an
escape state to an oscillating state when ls exceeds a certain critical value. Figure 16(b)
shows the swimming angle (θ ) of the puller deflecting upward as it approaches and
collides with the wall, generating an upward velocity component that drives the puller
away from the wall. The deflection of θ is the result of the combined effect of factors
such as self-propulsion, wall effect, repulsive force and the pressure distribution around
the puller. As time progresses and the distance between the puller and wall increases, the
influence of the wall gradually diminishes. The propulsive force driving the puller toward
the wall is dominant, reversing θ and the direction of the puller to propel toward the wall
again. The limit cycle in figure 16(b) is a special pattern of system behaviour, in which
the state of the system (such as the position and angle of the microswimmer) periodically
returns to its initial state over time. In the pattern diagram, it appears as a closed loop.

Figure 16(a) shows that the periodic oscillatory trajectory of the puller changes with
an increase of ls. The trajectory of the puller undergoes small-scale and large-amplitude
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Figure 16. Transition of puller’s swimming state at different ls (Cab = 1.0, Res = 0.08 and β = 1.6).
(a) Trajectory and (b) angle height.

oscillations before being captured by the wall, reaching its maximum amplitude during the
first departure from the wall. This maximum amplitude decreases as ls increases. Figure 17
demonstrates that the amplitude (ha) and frequency ( f ) of the periodic oscillation of the
puller change with variations in ls. We can see that, as ls increases, ha decreases and f
increases. The reason is that there is a velocity gradient in the narrow gap between the
puller and the wall when the puller approaches the wall, the larger the value of ls, the
greater the effect of reducing the velocity gradient, which allows the puller to swim closer
to the wall, thereby causing the oscillation of puller to be suppressed by the wall, i.e.
decreased in amplitude ha. While ha decreases, the oscillation frequency f increases. The
curve fitting presented in figure 17 indicates that, when ls increases logarithmically, the
changes in ha and f are not in a straight line. From a mathematical perspective, this fitting
relationship can be used to relatively easily calculate ha and f when ls is known.

Figure 18(a) shows the change in the periodic oscillatory trajectory of the puller with its
Cab. The trajectory of the puller undergoes small-scale large-amplitude oscillations with
the maximum amplitude increasing as Cab increases. The maximum amplitude exceeds
the initial distance between the puller and wall at Cab = 1.2. The range of large-amplitude
oscillations also significantly increases as Cab increases, which is opposite to the case of
increasing ls, as shown in figure 16(a). In figure 18(b), we display the response of the ha
value and frequency f of the puller as Cab changes from 0.8 to 1.2. The results show that,
as Cab increases, the growth of ha is quite noticeable, particularly when Cab increases
from 0.8 to 1.0, where ha accelerates quickly, then the rate of increase slows down towards
Cab = 1.2. This indicates that the ha of the puller is sensitive to increases in Cab. In
contrast, the changes in f are relatively stable, overall demonstrating insensitivity to
changes in Cab.

4.2.3. Stable sliding state of pullers
The swimming state of the puller changes from a periodic oscillatory wall capture state
to a stable wall-sliding state as ls increases, where the puller slides parallel to the wall in
a fixed configuration. Figure 19(a) shows a periodic oscillation state of the puller when
ls ≤ 0.3, forming a limit cycle in the phase diagram. Oscillation dampens and eventually
becomes a stationary point in the phase diagram when ls surpasses a critical value.
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Figure 17. Periodic oscillation state of wall capture for a puller at different ls (Cab = 1.0, Res = 0.4, β = 1).
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Figure 18. Periodic oscillation state of wall capture for a puller at different Cab (Res = 0.4, β = 1, ls = 0.1).
(a) Trajectory and (b) ha, f vs. Cab.

This transition can be attributed to the unique pressure distribution in the flow around the
puller. Figure 19(a) illustrates a large θ value of the puller as it approaches the wall with
an increase of ls, enhancing the interaction between the low-pressure area near the head of
the puller and wall. The ability of the puller to reorient diminishes with the strengthening
of this interaction, causing the swimming mode to change from periodic oscillation to wall
sliding.

Significant differences in the swimming behaviour of pullers with different Cab values
in the steady sliding state are observed. Figure 20(a) displays the steady sliding state
of a puller when Cab = 1.0. A series of magnified repeated line segments show clear
periodicity. The differences in the swimming behaviour of pullers with varying Cab values
are presented in figures 19(b) and 20(b), where the streamline and pressure distributions in
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Figure 19. Swimming angle, streamline and pressure distribution of the flow field around a puller when
Cab = 0.8(Res = 0.08 and β = 5). (a) Swimming angle and (b) streamline motion and pressure distribution
(ls = 0.5).
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Figure 20. Swimming angle, streamline flow and pressure distribution of the flow field around a puller when
Cab = 1.0 (Res = 0.08 and β = 5). (a) Swimming angle and (b) streamline and pressure distribution (ls = 0.8).

the steady sliding state are shown for Cab = 0.8 and Cab = 1.0, respectively. Although the
movement modes of the pullers are similar in both cases (sliding is parallel to the wall at a
fixed height), their configurations are different. The puller is inclined toward the wall with
asymmetric pressure and streamline distributions when Cab = 0.8, allowing a stable slide
near the wall. Alternately, the pressure and streamline distributions are almost symmetric
with slight asymmetry causing the puller to slide slowly near the wall when Cab = 1.0.

Figure 21(a) shows the trajectory of a puller in the steady sliding state when Cab = 0.8.
Thus, the puller gradually moves closer to the wall as ls increases. The inset in figure 21(a)
indicates that the tilt angle of the puller enlarges with increasing ls with a decreasing speed.
Figure 21(b) shows that the oscillation amplitude of the tilt angle of the puller decreases
as ls increases when Cab = 1.0. This is reflected in both the maximum and minimum
values of the swimming angle of the puller decreasing and eventually stabilizing within
a range of ∼−90° (perpendicular to the lower wall) ± 1.5°, with an amplitude of ∼3°.
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Figure 21. State of wall steady sliding of pullers with different Cab (Res = 0.4 and β = 5.0); (a) Cab = 0.8 and
(b) Cab = 1.0.

Thus, ls significantly influences the swimming angle of the puller near the wall, affecting
its swimming speed and subsequent movement patterns.

4.2.4. Wall lock-up state of pullers
The parameter Cab plays a crucial role in the formation of the wall lock-up state for pullers.
Figure 11 shows that the wall lock-up state occupies only a small area when Cab = 0.8 and
1.0, this state covers more than two thirds of the area when Cab = 1.2. The mode almost
spans the entire area when Cab = 2.0. Ishimoto (2017) indicated that the asymmetry of the
geometric shape of the puller causes an additional torque owing to spatial obstruction
interactions as Cab increases. In this study, a large Cab indicates a high torque of the
puller upon collision with the wall, as shown in figure 13(b). This increased torque rapidly
changes the swimming angle of the puller. The low-pressure area between the puller and
the wall intensifies when |θ | exceeds a certain critical value, leading to the capture of the
puller by the wall. Consequently, the puller loses its swimming speed in the X-direction
and becomes firmly locked at a specific location on the wall (figure 22a). Moreover,
increasing ls brings the puller close to the wall. The closer the puller is to the wall, the
greater the torque generated by the interaction with the wall, causing effects similar to
increasing Cab. Figure 22(b) shows that the maximum torque induced by the collision of
the puller with the wall increases with the increase of ls. This further confirms that ls
affects the swimming mode of the puller, especially when the torque is generated due to
the interaction with the wall.

4.2.5. Impact of the initial swimming angle of the pullers
This section examines the final swimming state of the puller at different initial swimming
angles (θ0). Figure 23 presents the phase diagrams of the final state of the puller for
four initial swimming angle (θ0) values, illustrating how Res, β and ls jointly affect the
final state. The puller exhibits relatively uniform swimming states at different parameter
settings. When β is large (β ≥ 3), the impact of θ0 on the final state of the puller is
the minimum. The puller primarily exhibits wall oscillation and wall-sliding states when
Cab = 0.8 and 1.0, whereas the puller is predominantly in the wall lock-up state when
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Figure 22. Characteristics of the wall lock-up state for a puller (Cab = 1.2, Res = 0.4 and β = 5).
(a) Streamline and pressure distribution (ls = 5.0) and (b) maximum torque.

Cab = 1.2, 1.5 and 2.0. The final state of the puller can shift from a wall-escape state to
the wall lock-up state as θ0 increases for small β values (β < 3). Particularly, pullers with
a high Cab and small β tend to escape from the wall at small θ0 values, indicating that
pullers are more likely to detach from the wall at small θ0.

4.3. Interaction between pushers and the walls
The swimming behaviour of pushers also exhibits characteristics of wall capture and
wall-escape states. Unlike pullers, pushers show a tendency to escape from the wall even
at a high swimming Res, and the likelihood of wall escape increases with the increase in
Res. However, increasing ls induces pushers to transform from a state of wall escape to that
of wall capture when Res and β are the same. Figure 24 illustrates that pushers primarily
exhibit three types of movement states: wall escape, oscillation and steady sliding states.
Pushers do not exhibit the wall lock-up state observed in pullers, which is related to the
differences in pressure and streamline distribution around the pusher and puller in the flow
field. Figures 27 and 28 will further illustrate this.

4.3.1. Wall-escape state of pushers
Figure 25(a) shows that the Vx value of the pusher gradually increases as it approaches the
wall; Vx increases with Cab, similar to the situation of the puller depicted in figure 13(a).
However, Vx first increases and then decreases when the pusher approaches the wall and
begins to escape, which is opposite to the puller. This difference is attributed to the distinct
torque experienced by the microswimmer near the wall and the swimming angle that
determines whether it can escape, and this can be explained through the surrounding
pressure distribution and streamline structure. Pullers first experience a negative torque
when they approach the wall because the head of a puller is typically in a low-pressure
state, thus the head is attracted by the wall, causing the swimming direction to gradually
turn towards the wall. The phenomenon can be found in figure 13(c), where the swimming
angle of the puller decreases initially. In contrast to pullers, pushers first experience a
positive torque as they approach the wall. As shown in figure 25(c), the swimming angle
of the pusher initially increases because the high-pressure region is located at the head and
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Figure 23. Phase diagrams of the final state of the puller at different θ0 values at Res = 0.08. Solid circles: wall
escape, solid squares: oscillation near the wall, hollow squares: sliding along the wall and solid triangles: wall
lock-up (the region from π/10 to π/2: Cab = 1.0, the region from π/2 to 9π/10: Cab = 0.8, the region from 9π/10
to 13π/10: Cab = 2.0, the region from 13π/10 to 17π/10: Cab = 1.5, the region from 17π/10 to π/10: Cab = 1.2,
the radii of the circle, from innermost to outermost, represent ls values of 0, 0.1, 0.5, 1, 5, 10, respectively); (a)
θ0 =−0.05π, (b) θ0 =−0.1π, (c) θ0 = −0.2π and (d) θ0 = −0.3π.

tail of the pusher, which leads to a tendency for the head to move away from the wall. In
addition, the horizontal velocity of the pusher increases with increasing aspect ratio Cab.
Figure 25(b) shows that the negative torque the pusher experiences while swimming is
significantly higher than the positive torque, a contrast to the situation of the puller shown
in figure 13(b). The larger the aspect ratio Cab, the greater the torque variation during the
interaction between the pusher and the wall. Furthermore, the trend in the change of the
swimming angle of the pusher shown in figure 25(c) also differs from that of the puller
(figure 13c).

The different physical mechanisms during the swimming of pullers and pushers
are shown in figure 26, which identifies four representative points in the process of
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Figure 24. Phase diagram of the final states of a pusher with different Cab (solid circle: wall escape;
solid square: oscillation near the wall; hollow square: sliding along the wall); (a) Cab = 0.8, (b) Cab = 1.0,
(c) Cab = 1.2 and (d) Cab = 2.0.

approaching and escaping the wall for pullers and pushers. Figures 27 and 28 display the
streamline and pressure distribution around the puller and pusher, respectively, at these
four points. It can be observed that two recirculation zones appear around the head of the
puller during the initial stage of approach to the wall with high pressure on the sides and
low pressure around the head and tail of the puller (figure 27a). This unique pressure
distribution causes the low-pressure area at the puller’s head to be easily captured by
the wall, resulting in what is called a ‘wall-locking state’. In contrast, the pressure and
streamline distribution around pushers is the exact opposite of pullers (figure 28a). The
pressure features around pushers are high pressure at the head and tail and low pressure at
the sides, a distribution that does not favour the formation of a stable captured state near
the wall. Therefore, pushers do not exhibit the wall-locking state observed in pullers. The
presence of a recirculation zone on the side close to the wall disrupts the force balance
on either side of pullers and pushers. Thus, the θ value of the front-driven pullers tends
to tilt toward the wall, while the rear-driven θ of the pusher deviates away from the wall.
The influence of the wall on the swimming intensifies as the puller and pusher approach
the wall, enhancing the tendency of the θ value of the pusher to deviate away from the
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Figure 25. Variation in horizontal velocity, torque experienced and swimming angle of a pusher relative to
its distance from the wall under different ls (θ0 =−0.1π, Res = 0.08, and β =−1). (a) Horizontal velocity of
pushers, (b) torque experienced by pushers and (c) swimming angle of pushers.

wall and altering the direction of the θ value of the puller toward the wall. When the
puller and pusher begin to move away from the wall, the influence of the wall on their
swimming diminishes, allowing them to leave the wall at a fixed θ (figures 27d and 28d).
Additionally, the pusher requires a large swimming angle |θ | to escape from the wall owing
to the presence of a low-pressure area between the side of the pusher and wall (figure 28c).

The θ value of the pusher continuously increases as it approaches the wall owing to the
difference in propulsion methods between pullers and pushers, ensuring an angle of the
pusher to move away from the wall near it. Figure 28(c) marks the forces on the pusher,
revealing a balance between the high and low pressure on the tail and side, respectively.
However, the angle at which the pusher moves away from the wall facilitates its escape
from the influence of the wall. The phase diagram presented in figure 24 suggests that
pushers have the probability of being in a wall-escape mode; ls significantly influences the
θ of the pusher as it approaches the wall.
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Figure 26. Four key points for pullers and pushers in the wall-escape state (points 1 and 4: h/H = 0.3, point 2:
maximum T, point 3: minimum T) (Cab = 1.0, Res = 0.08, β = 1.0, and ls = 5.0). (a) Puller and (b) pusher.

Figure 29 illustrates the variation of the swimming angle θ for pushers with different
Cab as a function of ls. The value of θ decreases with a decrease of ls, and the rate of
decrease of θ diminishes with increasing Cab. This behaviour occurs because an increase
in ls weakens the velocity gradient in the narrow gap between the pusher and wall by
bringing the pusher closer to the wall and altering interactions between the pusher and
wall.

The changing ls changes the swimming states of the pusher when |β| is large (β = |3|).
Figure 29(b) shows that a pusher with a Cab of 0.8 has a stable sliding state along the wall
and θ decreases as ls increases. Alternately, the θ value of pushers decreases to a certain
threshold value with Cab values of 1.0 and 1.2, owing to the increase of ls; the pusher
is captured by the wall and begins to oscillate near the wall. With further decrease in θ ,
the oscillatory motion of the pusher eventually transforms into a stable sliding state. The
critical ls value at which the pusher is captured by the wall is dependent on Cab during
this process; as shown in figure 29(c), the critical value of ls gradually decreases as Cab
increases.

4.3.2. Periodic oscillation state during the wall capture of the pusher
Figure 30 shows the distance from the wall and θ of pushers and pullers in the state
of periodic oscillation. There are differences between the pusher and puller. The initial
direction of the movement of the pusher is away from the wall, while that of the puller
is toward the wall. The distance of the pusher from the wall and the amplitude of its
directional oscillation are more than those of the puller with the same parameters. This
indicates that the dynamic behaviour of pushers and pullers in their interaction with the
wall is different, especially in terms of adjusting their swimming direction to cope with
the constraints of the wall.

The ha and f values of the trajectories of pushers and pullers with changing ls in
the periodic oscillation state are shown in figure 31. We can see that, as ls increases,
ha decreases and f increases. Under the same parameters, the ha value of pushers is
higher than that of pullers. A large ha allows a wide range of periodic oscillation states.
The slip boundary conditions on the wall significantly impact the swimming states of
microswimmers, and the extent of this impact varies between different propulsion types.
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Figure 27. Distribution of streamlines and pressure around the puller at four key points. (a) Point 1,
(b) point 2, (c) point 3 and (d) point 4.

Figure 32 presents the swimming behaviour of pushers with three different Cab values
near the wall, revealing that all pushers exhibit an oscillatory state. However, significant
differences are observed in the oscillation characteristics between the pushers with varying
Cab values. The oscillation amplitude of a pusher with Cab = 0.9 (figure 32a) remains
constant with an initial maximum amplitude (hima) of 31.09. Alternately, the oscillation
amplitudes of the pushers with Cab = 1.0 (figure 32b) and Cab = 1.2 (figure 32c) gradually
decay with hima values of 30.14 and 22.24, respectively. A comparison the f of pushers with
three different Cab values shows that f is inversely proportional to Cab. The trajectory of
the pusher with Cab = 1.2 reaches a stable oscillation state in the shortest time, indicating
that the Cab value of microswimmers significantly affects their oscillation amplitude and
frequency near walls, with a more pronounced effect in pushers.

4.3.3. Stable sliding state of pushers
Figure 33 presents the streamlines and pressure distribution of pushers sliding along
the wall with three Cab values. Pushers are captured by the wall owing to the
low-pressure areas between them and the wall, inducing their sliding movement along it.
The hydrodynamic impact on the flow field varies with the Cab value of pushers, resulting
in distinct flow line and pressure distributions. The arrows inside the pushers (figure 33)
indicate their direction of motion, showing an increased upward angle as Cab increases.
Figure 34 further illustrates the relation between the θ value of pushers and their Cab
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Figure 28. Distribution of streamlines and pressure around the pusher at four key points. (a) Point 1,
(b) point 2, (c) point 3 and (d) point 4.
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Figure 29. The variation of the θ of the pusher with ls for different Cab (h/H = 0.12); (a) Res = 0.08 and
β =−1, (b) Res = 0.4 and β =−3 and (c) critical ls.

during the wall-sliding state. The value of θ sharply increases from 4° to 30° when
Cab increases from 0.8 to 1.2. As Cab further increases from 1.2 to 1.5, θ slightly
decreases (from 30° to 27°). This increase in angle θ means that the ‘head’ or ‘front
end’ of the pusher is oriented more towards directions away from the wall. Therefore,
as Cab increases, the trajectory of the pusher tends to form a larger angle with the
wall, thereby increasing the likelihood of escaping from the wall. In other words, the
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Figure 30. Changes in the distance from the wall and the swimming angle of microswimmers over time in the
state of periodic oscillation (Cab = 1.0, Res = 0.08, and ls = 1.0). (a) Pusher (β =−3) and (b) puller (β = 3).
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Figure 31. Variation of trajectory amplitude (ha) and frequency ( f ) with slip length (ls) in the oscillatory
state of microswimmers (Cab = 1.0 and Res = 0.08). (a) Pusher (β =−3) and (b) puller (β = 3).

increased swimming angle helps the pusher to be less constrained by the wall when
near it, making it easier to deviate from its original path and ultimately escape from
the wall.

Figure 35 shows the relationship between θ and ls for pushers with different Cab during
wall-sliding state. It is evident that, as ls increases, pushers at different Cab exhibit distinct
trends in θ . When Cab = 0.8, the θ value of the pusher is smaller and less sensitive to
ls. When Cab = 1.2 and 1.5, the θ values are larger and decrease slightly with ls, When
Cab = 1.0, the θ value of the pusher significantly decreases as ls increases, indicating that
the θ value of spherical pushers is more significantly affected by ls. Since the θ of a pusher
influences its behaviour and state near the wall, controlling the shape of the microswimmer
can govern its behaviour and state near the wall. This provides guidance for the design of
synthetic active particles in practical applications.
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Figure 32. Periodic oscillations of pushers with different Cab (Res = 0.08, β =−3, and ls = 0.1);
(a) Cab = 0.9, (b) Cab = 1.0 and (c) Cab = 1.2.

4.3.4. Impact of the initial swimming angle of the pushers
Figure 36 shows the phase diagrams of the final states of the pusher with four initial
swimming angles (θ0), which are similar to the results of pullers presented in figure 23.
Pushers with a large Cab show noticeable differences in their final states with an increase
in θ0. Pushers are more inclined to escape from the wall when θ0 is small. However, they
gradually move toward a state of sliding along the wall instead of detaching from it as θ0
increases. This suggests that θ0 significantly impacts the final swimming states of pushers,
especially those with a large Cab.

5. Conclusion

We used the squirmer model to describe the locomotion of microswimmers in this study.
We developed elliptical squirmer models with varying aspect ratios based on the spherical
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Figure 33. Streamlines and pressure distribution of pushers with three different Cab in the wall-sliding state
(Res = 0.08, β =−5, and ls = 5.0); (a) Cab = 0.8, (b) Cab = 1.0 and (c) Cab = 1.2.
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Figure 34. Relation between θ and Cab of pushers in the wall-sliding state (Res = 0.08, β =−5, ls = 5.0).

squirmer and used the LBM for numerical simulations of the squirmer dynamics near
walls with hydrodynamic slip. We discussed the effects of the swimming Reynolds number
(Res), squirmer-type factor (β), wall slip length (ls) and the aspect ratio (Cab) of the
microswimmers on their near-wall locomotion behaviour and states with the following
conclusions.
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Figure 35. Relation between θ and ls of pushers in the wall-sliding state (Res = 0.4, β = −5).

(i) Microswimmers exhibited three fundamental locomotion states: escaping from the
wall, periodic oscillation near the wall and stable sliding near the wall. The stable
sliding state of pullers near the wall might change into a fourth state, wall locking.

(ii) The velocity gradient in the gap between the microswimmer and wall decreased
when the boundary condition of the wall included slip, increasing the probability of
the microswimmer being captured by the wall. This induced a possible transition of
the microswimmer from an escaping state to a wall-captured state. Pullers captured
by the wall exhibited a transition from a periodic oscillation state to a stable sliding
state and even to a wall-locking state depending on the values of ls and β. The
frequency ( f ) of the microswimmer increased with increasing ls, but both amplitude
(ha) and swimming direction (θ ) in the stable sliding state decreased with increasing
ls. Hence, the consideration of slip in the wall boundary condition and the extent of
slip directly affect the locomotion behaviour and the states of microswimmers near
the wall.

(iii) The Cab value of the microswimmer significantly impacted the swimming speed,
trajectory and final state of the microswimmer. The swimming speed of the
microswimmer increased with an increase in Cab. A large Cab easily disrupted
the symmetry of the pressure distribution in the flow field surrounding the
microswimmer, generating a high torque and influencing the dynamic characteristics
of the motion of the swimmer. Pullers and pushers exhibited distinct responses to
changes in their Cab. Pullers were more inclined to move away from the wall with an
increase in Cab. Conversely, an increase in the Cab of pushers reduced the critical ls
required for them to be captured by the wall. The value of Cab significantly affected
the f of pushers but with less impact on the f of pullers. The swimming angle of
pushers decreased with an increase in Cab as microswimmers entered a wall-sliding
state. Both pushers and pullers with an increased initial swimming angle were more
likely to be captured by the wall.

(iv) The research findings revealed the diversity of microswimmer behaviours under
various swimming parameter conditions. This increased our understanding of
the motion behaviours and the states of natural microswimmers near confined
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Figure 36. Phase diagrams of the final state of the pusher at different θ0 values. Solid circles: wall escape,
solid squares: oscillation near the wall, hollow squares: sliding along the wall (Res = 0.08); (a)θ0 =−0.05π,
(b) θ0 =−0.1π, (c) θ0 =−0.2π and (d) θ0 =−0.3π.

boundaries. They provide design guidance for the fabrication of artificial active
particles in practical applications.

(v) In the present study, we mainly focus on the effect of Res, ls and Cab on the dynamic
characteristics of squirmers. The geometric scales involved in Res, ls and Cab are
one-dimensional scales, and the impact of two- and three-dimensional properties on
Res, ls and Cab is not so significant, so the results can provide valuable physical
insights into the dynamic characteristics of squirmers. Real biological squirmers
exist and move in a three-dimensional environment after all, therefore, the study of
the dynamic characteristics of squirmers in a three-dimensional environment will be
conducted in the future.

Funding. This study was supported by the National Natural Science Foundation of China (nos 12132015 and
12332015).
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Definition of parameters Parameters Definition of parameters Parameters

The relaxation time τ An aspect ratio Cab
squirmer-type factor β The swimming Reynolds number Res
The adjustment coefficient r1 The initial position of the

microswimmer
X0, Y0

Wall slip length ls An initial swimming angle θ0
The length of the channel L The Y-direction position of the

microswimmer in the channel
h

The width of the channel H The X-direction position of the
microswimmer in the channel

x

Fluid density ρ The coefficient of (2.9) B1, B2
Viscosity ν Time step t
The diameter of the circular
microswimmer

d The swimming direction θ

The major axes of the elliptical
microswimmer

2a The minor axes of the elliptical
microswimmer

2b

Horizontal velocity of
microswimmer

Vx Torque experienced of
microswimmer

T

A certain critical value of β βc The frequency of the periodic
oscillatory trajectory

f

The amplitude of the periodic
oscillatory trajectory

ha

Table 1. Computational parameters table.

Author ORCIDs.
Geng Guan https://orcid.org/0009-0000-0345-9851;
Jianzhong Lin https://orcid.org/0000-0001-8418-1176.

Appendix. Summary of computational parameters required for simulation

To enable readers to clearly understand the computational parameters and values used in
this study, and to achieve better reproducibility in the future, we add the computational
parameters involved in this study in the table 1.
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