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Introduction. Some well-known theorems on the representation of an ideal 
in a commutative ring as an intersection of ideals of a specified type remain 
valid when attention is restricted to certain subclasses of the ideals of the ring. 
For example, a homogeneous ideal in a graded Noetherian ring is the inter­
section of homogeneous primary ideals, and Seidenberg (16) has recently 
proved a similar result for differential rings. Other examples are provided by 
theorems on the representation of certain differential and difference ideals as 
intersections of prime differential or difference ideals. 

Kolchin (6) began the development of a general theory applicable to such 
phenomena. In this paper, I continue the development of that theory. 

In §§ 1 and 2, I have followed Kolchin's definition and discussion of divisible 
systems with minor modifications and additions. (The terminology is not that 
of (6) but of his more recent and still unpublished notes on differential algebra.) 
The strengthening of Theorem I to give information on minimal prime divisors 
generalizes a similar result of Andreian (1) for differential algebra. Section 4 
also draws on ideas due to Kolchin. In other sections, representation theorems 
not considered by him are discussed. My own method (2) of defining divisible 
conservative systems by means of "links" is also included since it is often 
convenient, and since it suggests a classification of divisible conservative 
systems. (See the conclusion of § 5.) The equivalence of the two methods is 
proved using a result (Lemma XV below) due to Kolchin. Some of the ideas 
go back to a paper by Seidenberg (15, p. 181). 

In a later paper, I plan to give the applications of the theory to basis 
theorems of difference-differential algebra which motivated my investigation. 
Kolchin (in the notes referred to above) has applied the theory to give an 
elegant account of the behaviour of polynomial and differential polynomial 
ideals under ground field extension, as well as, (6), to basis theorems for 
differential ideals. 

Notation. Inclusion is denoted by Q, proper inclusion by C- Throughout, 
SI will denote a commutative ring and S* the set of ideals of SI. Let 3£ Ç $f 
be closed under intersection, and let 21 Ç S£. Then for X £ SI, (%; 3T ) 
denotes the intersection of the members of 3£ which contain %. Hence, 
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( ï ; 9t ) (z St; and, indeed (X',St) is the minimal ideal of .̂ T containing ï . ï is 
called a set of S£-generator s of (£ ; «âT). A finite set of ^-generators of an ideal 
a Ç « f i s called an St-basis of a. «ST is called Noetherian if the ascending chain 
condition holds in St. S£ is additive if a G St, b Ç «^ implies (a, b) G 5T. 

Let a G «5 ,̂ and let ï b e a non-empty, multiplicatively closed subset of 21. 
Then a% is the ideal consisting of all b G 21 such that there exists t G X with 
bt G a. If x G 21, then ĉ  denotes ctg with Ï the set of positive integral powers 
of x. 

1. Conservative systems. A subset St of ff will be called conservative if it 
satisfies: 

C-l: If & Q St, the intersection of the members of & is in 5F; 
C-2: If ^ Ç St, and ^ is totally ordered by inclusion, then the union of 

the ideals of <3/ is in 3t\ 
C-3: 21 G ̂ . (This follows from C-l if a common convention is adopted 

when empty.) 
Conservative systems are frequent, but the desired representation theorems 

apply only to appropriate subsets of conservative systems. If S£ is conservative 
and a G ^ , then a is called divisible with respect to St if a G 9£ and, for each 
X G 21, Ct:x 6 <$£". W e denote by 9 ( St) the set of ideals divisible with respect 
to St. If St — 9 (St), then St is called a divisible conservative system. 
Evidently, 9 (St) is conservative and 9 {9 {ST)) = 9( St). Hence, 9( St) 
is a divisible conservative system, and, indeed, the maximal such system 
contained in St. Observe also that if Z Ç 21, a G 9 (ST), then a:£ G 9 (St). 

If St is conservative, then a is called perfect with respect to St if a G 9 {St) 
and a = Va. We denote by 0*{3£) the set of perfect ideals of St. If 
«SiT = SP (St), then <3T is called a perfect conservative system. It is evident that 
if St is conservative, then SP(9t) is a perfect conservative system and is 
the maximal such system contained in St. 

If Stis conservative, then a is called partially divisible with respect to St if 
a G St and for each x G 21, ax G 3T. We denote by SP9(3t) the set of ideals 
partially divisible with respect to St. If St = ^ 9 (St), then St is called 
a partially divisible conservative system. SP9 (St) is closed under finite inter­
section and satisfies C-2. If a G 0*9 (St), x G 21, then ax G 0 9 (St); 
since (a*)?/ = a^, y G 21. If a is radical, a* = a:x. Hence, every radical ideal 
of 09(St) \sm0(St). 

If St is conservative, then a is called complete with respect to St if a G St 
and Va G 0(3t). We denote by ^ ( ^ ) the set of complete ideals of St. 
^Û (St) is closed under finite intersection. 

Remark. In all the preceding definitions except the last, the requirement 
a G St is superfluous if 21 contains an identity. 

Some of the facts already stated and other obvious relations are summarized 
in the following lemma. 
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LEMMA I. If 3? is a conservative system of ideals of 21, then 9(3?) and £P(9?) 
are conservative, 9(9?) = 9(9(9?))] @(9?) =&(&{&)); ^9(9?) 
and *& (Stf) are closed under finite intersection; 

??(9?) ^9(31 Q^9(9?) Q9?; 

and ^(9?) C ^(9?) Q9?. 

Remark. I t will be shown later that 9(3??) Q ^(9f). However, neither 
inclusion holds in general between ^(9?) and &9(3t?)\ see Theorem I 
and § 6, examples (5) and (7). 

LEMMA II. If a G 9(3??) and X C 21 is not empty and is multiplicatifely 
closed, then ctg G 9(9?). 

Proof. Let x £ X. Then by Lemma I, ax G 9(3?), since it is the union of 
the ascending chain a:x, a:x2, . . . , whose members are in 9(3?). Consider 
the non-empty multiplicatively closed subsets U of X such that au G 9(9?). 
The preceding remark show ŝ the existence of such subsets. I t follows easily 
from Zorn's lemma that there is a maximal such subset X'. Let x G X, and 
let X* denote the multiplicatively closed set generated by x and the members 
of X'. Then ax* = (az>)z G 9(9?). Hence, x £ X'; X' = X. 

LEMMA III . If the radical of every ideal of SP9 (9?) is in 9?, then 

SP9(9?) ç ^(9?). 

Proof. Let a G 0*9(3?). By hypothesis, a G 9?. If x G 21, then 

(Va):x = Va*. 
Since a* G &9(3?), it follows from the hypothesis that (\/a):x G 9?. 
Hence, Va G 9(3?). Then by the definitions, Va G SP ( 9?)\ a G ^ ( 3?). 

LEMMA IV. If ?¥ Q 3? is a conservative system, then <^~(?¥) C ?F(3?), 
where & is 9, 09, 0, or <g. 

The proof is obvious. 

LEMMA V. Let J be an index set and let <3/ u i G */, be conservative systems 
of ideals in 21. Let *2/ = C\iç.jS/V Then & is conservative, and 

&@m = nte,&®(!&i), and <€($/) = n , e , w o . 
The proof is obvious. 

2. Representation theorems. Let J ç y b e a conservative system. We 
can verify at once that every prime ideal, and hence every intersection of 
prime ideals, of 9? is in 0(3?), and that every primary ideal, and hence 
every finite intersection of primary ideals, of 9? is in 09(3?). 

Theorem I, which is essentially due to Kolchin (see 6), shows conversely 
that every ideal of 0(3?) is an intersection of prime ideals of 0( 3?), thus 

https://doi.org/10.4153/CJM-1969-089-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-089-0


786 RICHARD M. COHN 

generalizing a well-known observation of Krull (8, p. 9) that every radical 
ideal is an intersection of prime ideals. Cases in which every ideal of &3){S£) 
is an intersection of primary ideals of £P2iï{S£) will be investigated below. 

THEOREM I. Let 3£ be a conservative system of ideals of a commutative ring 21. 
If a G 3ï{3^)i then \Z& is an intersection of prime ideals of 3C. Indeed, every 
prime ideal minimal among those containing a is in ST, and \/a is the intersection 
of these prime ideals. It follows that 2{S£) C ^(«^JT), and that an ideal b is 
an intersection of prime ideals of 3C if and only if b G &(3£), 

Proof. Let X be a multiplicatively closed subset of SI not intersecting a. 
The set of ideals of @(3?) which contain a and do not intersect X contains 
maximal elements by Lemma I. Let p be one of these. I t will be shown that 
p is prime. 

Let b, c G 21, be G p, b G p. I t will be shown first that there exists t G X 
such that et G p. Since b G p:c, p C p:c. Also, p:c G 3ï(3£). Hence, by the 
maximality of p, there exists t ^ ^\c C\ X. Then et G p. Now let g, h G 21, 
gh G p, g G p. A first application of the result just obtained yields hh G p, 
h G X. If h G p, a second application yields ht2 G p, a contradiction. Hence 
p is prime. 

Now let q be a prime ideal minimal among those containing a, and let 
X = 21 — q. The result of the preceding paragraph yields a prime ideal of 
&(£%") not intersecting X. This ideal can only be q. Hence, q G &(3T). 
This proves the statement concerning minimal prime ideals. To complete the 
proof one may appeal directly to the result of Krull of which Theorem I is a 
generalization; namely, that every radical ideal is the intersection of the mini­
mal members of the set of prime ideals containing it. Alternatively, one may 
proceed as in the proof of Krull's result (5, p. 13) applying the result of the 
preceding paragraph to each set { G 21 - Va. 

LEMMA VI. Let 3 and t be subsets of 21. Then ( * ; ^ ( # " ) ) H (t;&(3T)) = 
(§t; ^(«ST)) . Here et denotes the set of all products ab, a G 3, b G t. 

Proof. Let q = ( 3 ; ^ ( < T ) ) H ( t ; ^ ( ^ ) ) . Of course, ( $ t ; ^ ( # " ) ) C q. 
By Theorem I, ($t;«^(«3T)) = Dte^u where J is a suitable index set and 
the p^ are prime ideals of 9f. Let i € */. If S C p<, then ($ ;P (^T) ) C p^, 
and hence q Ç pi( If $ is not contained in p^, then t CI p ,̂ and therefore 
C| Q pi by a similar argument. Hence, q Ç Pu^P* = (3t;^(<3T)). 

THEOREM II . Let & be a conservative system of ideals of the commutative ring 21. 
LetéP(3ts~)be Noetherian. Then every ideal of &(&) can be represented uniquely 
as the irredundant intersection of finitely many prime ideals of S£. 

Proof. I t is only necessary to prove that every ideal of & ( 3C) is the inter­
section of finitely many prime ideals of 9£. Then well-known elementary 
considerations independent of the fact that the prime ideals involved are in 
9£ permit the determination of a subset of these ideals furnishing the unique 
irredundant representation. 

https://doi.org/10.4153/CJM-1969-089-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-089-0


SYSTEMS OF IDEALS 787 

Suppose, to the contrary, that there are ideals in 0(2?) which are not 
intersections of finitely many prime ideals of 2?. Then the ascending chain 
condition shows the existence of an ideal a maximal among those with this 
property. Of course, a is not prime. Let /g G a , / G a, g G a. Lemma VI shows 
that ft3(a,/;^(f))ri(a^;^(f)). Since the opposite inclusion is 
obvious, this yields a = (a,f',0(2?))C\ (a, g\0(2?)). However, by the 
maximality of a, the ideals on the right-hand side of the last equation are each 
intersections of finitely many prime ideals of 2?. Hence, we obtain the con­
tradiction that a itself is such an intersection. 

THEOREM III . Let 2?be a conservative system in a commutative ring 2t and 
let a G 2? be the intersection of'finitely many primary ideals of St. 

(1) If a £ 0*0(3?) and 6 is an isolated ideal component of a, then there 
exist finitely many xt G St such that b = C\axv Hence, all the isolated ideal 
components of a are in 0 0 (3?). 

(2) If a G 0(2?), then the isolated ideal components of a are in 0(2?). 
(3) If a G ^ (2?), then the minimal associated prime ideals of a are in 0(2?). 
(4) If a G 0(2?) and p is an associated prime ideal of a, then there exists 

y G 2t such that p = \/(a:y). Hence, all the associated prime ideals of a are in 
0(2?). 

Proof. Let a = (\i C\ . . . C\ qr be an irredundant representation of a as an 
intersection of primary ideals. Let pt = Vqit i = 1, . . . , r. Let ajf j = 
1, . . . , r, denote the intersection of those qt such that p t C pjt Then the isolated 
ideal components of a are intersections of the cty. 

(1) Let a G 0 0 (SC). For x G 21, ax = (qO* H . . . H (qr)*. Since (q,)* is 
q* if x G Pz, and ( q ^ is 21 if x Ç pz-, we see that ax is the intersection of those 
C\t such that x G pi. For each j , l S j ^ r, there exists Xj such that x^ G pj, 
however xy G pi for each p* not contained in pj. Then ct̂  = axj G 00(2?). 

(2) This follows from (1) and Lemma I. 
(3) Let a f ^ ( f ) . Then Va e 0(3?), therefore Va G ^ ^ ( < T ) . 

However, the isolated ideal components of \/a include the minimal associ­
ated prime ideals of a. Hence, these are in 00(2?). I t has already been 
noted that every prime ideal in 2? is in 0( St?). Hence, the minimal associated 
prime ideals of a are in 0( 3?). 

(4) Let a G 0(2?). For each j , l ^ j ^ r , there exists yj such that 
y j & <\J> J J € q*, 1 ^ i 9^j ^ r. Then a:yj = <\f.yj C p - thus, 

Pi 2 V ( a : ^ ) . 

However, q;- C q^:^ = a :^ also. Therefore, pj = Vq -̂ Q V(a'.yf). Thus, 
pj = \S(a:yj). Since a:yj G ^(«$T)> it follows from Theorem I that 

COROLLARY I. If a G 0(2?), and a £s the irredundant intersection of finitely 
many prime ideals pi, . . . , pr, then the pt are in 0(2?). 
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Proof. SP{St) Ç # ( # " ) . Apply (3) of Theorem III . 

COROLLARY II. If 21 is Noetherian, then the isolated ideal components of every 
ideal of &&(&) are in 0 9 (St). 

The proof is obvious from (1). 

Although the case of homogeneous ideals might lead one to expect that not 
only are the isolated ideal components partially divisible in the situation of (1) 
of Theorem III, but that also the primary ideals themselves may be selected 
to be partially divisible, this is not so in general. (Some circumstances under 
which such a selection is possible will be examined later.) 

Counterexample. Let SI be a Noetherian ring containing primary ideals 
(\i and q2 such that qi does not contain q2 but pi = Vqi D P2 = Vq-i- Let 3C 
consist of all ideals of 21 contained in p2, and of 21 itself. Then 3C is a conserva­
tive system. Let a = qi H q2. Then for x £ 21, a* is either a, q2 or 31. Hence 
a Ç 09\2f). However, in every representation of a as an irredundant 
intersection of primary ideals, one of the components will have the associated 
prime ideal pi, and therefore not be in 3C. 

3. Comaximal represen ta t ions . Throughout this section, 21 is assumed to 
have an identity element 1. If a and b are ideals of 21, then they are said to be 
comaximal if 1 £ (a, b). If, in particular, 21 is Noetherian, then every ideal 
of 21 is the intersection of a uniquely determined finite set of pairwise co-
maximal ideals, no one of which is itself the intersection of two pairwise 
comaximal ideals different from (1). Ritt (11, p. 14; 10, p. 687) has obtained 
comparable theorems for differential and difference ideals. These results will 
be generalized for the ideals of 9 (St) and of ^ (St) C\09(3C), where 
St is any conservative system of ideals in 21. A more direct generalization of 
Ritt 's results will be given later for certain conservative systems. 

The following results are well known (17, p. 177). 

LEMMA VII. If a, b\, . . . , bk are ideals of 21 and a is comaximal with each bu 

then a is comaximal with n*=i&*. 

LEMMA VIII. If cti, . . . , ak are pairwise comaximal, then 
k k 

n at = n <**. 
1=1 i=l 

Lemma VIII permits the replacement of intersections by products in the 
theorems which follow. 

The proof of the next result is a simplified version of a proof by Ritt 
(10, p. 687) of a theorem about difference ideals. 

LEMMA IX. Let a be an ideal of 21, b = Vet. If b = n*=i&i, where the bt are 
pairwise comaximal, then the bt are radical ideals, and there exist uniquely 
determined ideals ai, . . . , ak in 21 such that a = n<=iCt*, b* = Vet*, i = 1, . . . , &. 
The at are pairwise comaximal. 
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Proof. We suppose that k = 2. The general case then follows easily by 
induction using Lemma VII. By comaximality, there exist x G bi, y G b2 such 
that x + y — 1. Then xy G b, and there is a positive integer / such that 
(xy)1 G a. In the binomial expansion of (x + y)2t, let c be the sum of those 
terms of degree in x not less than /, and let d be the sum of the remaining 
terms. Then c G bi, d G b2, c + d = 1, cd G a. Let cti = (a, c), a2 = (a, d). 
Clearly, cti and a2 are comaximal. 

It will be shown first that a = cti H a2. I t is sufficient to show that 
a 2 cti H a2. Let g G ai H ct2. Then g = w + z>c, w f a , z> G 21. Hence, 
gd = ud + vcd G a. Furthermore, g = u' + fl'd, w' 6 a, v' G 21, and therefore 
gc G a. However, g = gd + gc; thus g G a. 

Let mT G 6i. Then mTy G b. Hence my G b C bi. Since my — m — mx, 
and x G bi, it follows that m G bi. Thus, bi is a radical ideal. To show that 
bi = Vûi it suffices, since cti £ bi by construction, to show, given n G bi, 
that n G Vcti. Now nd = n — ne £ 6 Ç ->/cti. Since c G ai, this implies that 
n G Vcti. 

To prove uniqueness, let a = <Xi C\ a2', bi = \Ati', b2 = VW. Let g G a/. 
With c and d as above, we have dp G a2, for some positive integer p. Then 
g^p = g(l - c)p Ç a Ç cti. Expanding the second factor and using c G cti, we 
find that g G ai. Hence a/ £ ai. Now let h G ai. Then hd = & (1 — c) G a C a/ . 
Then A(l - cw) G a/, » = 1, 2, . . . . For » large, cn G a/. Hence h G a/. 
It follows that ai = a/. 

LEMMA X. Let 3C be a conservative system in the commutative ring 2t with 
identity. Let a be an ideal of 21 and suppose that a = n1=iCt*, where the a* are 
pairwise comaximal ideals of 21. Then if a G 3P9{3C), each a* G SP9{3£). 
If a G ̂ ( # " ) f *w*a, G ^ ( < T ) . 

Proof. By Lemma VII it suffices to consider k = 2. Let a G &2f(3C). 
Let x G ai, 3> G a2 be such that x + y = 1. Since a* = (ai)^ C\ (a2)x = (a2)s, 
we see that 

(tt2), £&&(&). 

If g G (a2)^, then for some positive integer r, gxr G a2. Putting x = 1 — y, 
expanding, and using y G a2, we find that g G a2. Hence a2 = (a2)z G SP9{3^). 
Similarly, ai G &&(&). 

The proof for a G 9 {3^) may be given similarly or by recalling that 
9{ !%") is conservative and 

9{3T) ^0>9(9{3£)) -D &(&(&)) = &(3T). 

THEOREM IV. Let 3£be a conservative system in the commutative ring 21 with 
identity. Let a G 3P3}(9£), and let b denote Vet. If b = n*=i&i, w&ere Jfee b* 
are radical, pairwise comaximal ideals, then there exist uniquely determined 
ideals cti, . . . , a* such that a = Hl=iaz-, b* = Vet*, i = 1, . . . , k. The a* are 
pairwise comaximal. Each a t G &3& (ST). If a G î " ( <ST ), Jftew each a * G 9(3f). 
If a G # ( # " ) , / t e n a u * a, G # ( # " ) . 
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Proof. The existence, uniqueness, and comaximality of the et* follow from 
Lemma IX. Each at G &&(&) and, if a € @(3T), each a, € 9{ST) by 
Lemma X. If a G ^(<3T), then b € ^ ( ^ ) , so that Lemma X shows that 
each bt Ç 2J{9£) and, hence, since the b{ are radical, each bt G &( «ST). 
Then each a< 6 ^ ( ^ " ) . 

Suppose that &(SC) is Noetherian. Then if b G &(&), b ^ (1), there 
is a uniquely determined set bi, . . . , b* of ideals of &{&) distinct from (1) 
such that: 

(a) The bi are pairwise comaximal; 
(jô) None of the b* is the intersection of two pairwise comaximal ideals 
distinct from (1); 
(7) b = O t i b , . 

T h e b i are uniquely determined except for order. 
To find the bi, apply Theorem II to express b as the irredundant intersection 

of prime ideals pi, . . . , pr of 2P(3£). Two of these prime ideals, p* and p ,̂ 
will be called equivalent if there exists a chain p^ = p*, . . . , piA = p^ of these 
ideals such that no two adjacent members of the chain are comaximal. Each 
bi is the intersection of the members of an equivalence class. Then (a) follows 
easily from Lemma VII and (7) is obvious. To prove (0) suppose, say, that 
bi = b' C\ b", where b' and b" are comaximal ideals distinct from (1). Then 
Vb ' and V b " are comaximal ideals distinct from (1) and b± = Vb ' P\ V b " . 
By Lemma X, V b ' and V b " are in &(ST). Then Vb' and V b " are irre­
dundant intersections of prime ideals of &(!%*), say of qx, . . . , qs and 
ri, . . . , r*, respectively. Since the q* and Xj satisfy no inclusion relations 
and their intersection is bi, they constitute one of the equivalence classes into 
which pi, . . . , pr have been divided. But then there must be a chain in which 
some q* is adjacent to some xjy which is impossible since each qt is comaximal 
with each Xj. 

To show the uniqueness of k and the bu suppose that a set bi*, . . . , bm* of 
ideals of ëP(3T) distinct from (1) with the properties corresponding to 
(a), (jô), and (7) is given. Representing the b* as irredundant intersections of 
prime ideals, one finds that these prime ideals have intersection b, and that 
no prime ideal obtained from a b* contains a prime ideal obtained from a 
& A * ?* h since that would contradict comaximality. Hence, these prime 
ideals are the ideals pi, . . . , pr of the preceding paragraph. It remains only to 
show that each b* is an intersection of all the ideals of one of the equivalence 
classes previously defined. Let bi*, say, be the irredundant intersection of the 
prime ideals Ci, . . . , C*. Then the tt all belong to the same equivalence class *$ 
of the p;-. For, if not, then on defining equivalence classes among the c* them­
selves, there would be at least two such classes. I t would follow that bi* is an 
intersection, in contradiction to (0). *$ can contain no ideals other than the 
d. Otherwise, there would be a chain leading from one of the c* to a p^ which 
is not one of the c*. Let cs be the last of the C* in this chain and p* the next ideal 
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of the chain. Then p̂  contains some bn*, w ^ l . Since cs and pt are not comaxi-
mal, bi* C cs and bw* C ^ are not comaximal, contradicting (a). 

Combining these remarks with Theorem IV we obtain a decomposition of 
a class of ideals into pairwise comaximal ideals. 

THEOREM V. Let X be a conservative system in the commutative ring % with 
identity, and let &($?) satisfy the ascending chain condition. If 

a £0>9{$r)r\(g(3r), a^ (1), 

then there is a uniquely determined set cti, . . . , ak. of ideals of &2iï {SF) C\ *& ( 9tf) 
distinct from (1) and such that: 

(a) The at are pairwise comaximal; 
(b) None of the at is the intersection of two pairwise comaximal ideals distinct 

from (1); 
(c) a = nki=iCLt. 

Ifae &(&), then each cti 6 9{&). 

Proof. Let b = Va. Then b G &(££) so that there exist ideals bi, . . . , bk 

in &(3£) satisfying (a), (/3), and (7), and distinct from (1). Applying 
Theorem IV, one obtains ideals cti, . . . , a* of ^^{SC) C\ ^\3C) satisfying 
(a) and (c). If a G 9 (St), each a, £ 9 (St). 

Suppose that cti = a/ Pi a/ ' , where a/ and a / ' are comaximal and distinct 
from (1). Let b / = V a / , b / ' = V a / ' . Then bi = b / C\ b / ' , and this contra­
dicts (j3). Hence, (b) is satisfied. 

To prove uniqueness, suppose that a set cti*, . . . , am* of ideals of 
&£iï(3C) C\ ^ (St) and distinct from (1) with properties corresponding to 
(a), (b), and (c) is given. Let 6<* = Va**, i = 1, . . . , w.Then b = fYLib,*. 
The bi* are in SP(3£) and pairwise comaximal. No b** is the intersection of 
two comaximal ideals distinct from (1). If it were, Theorem IV would show 
that a* is also such an intersection, contradicting the hypothesis. By the 
uniqueness of sets of ideals satisfying (a), (/3), and (7), the h* coincide with 
the bi except for order. By Theorem IV, the a* coincide with the a* except 
for order. 

Definition. Let §1 be a commutative ring, & a set of ideals of §1 closed under 
intersection and with §1 G &. Ideals a and b of 31 are said to be comaximal 
m&il « = (a, b;$0. 

In the terminology originally introduced by Ritt for the conservative 
system St of difference ideals, comaximal ideals are said to be strongly 
separated, while ideals comaximal in ^(St) are said to be separated. From 
the standpoint of studying manifolds of solutions related to a conservative 
system St, the concept of comaximality in £P ( St) is more relevant than that 
of comaximality (or comaximality in St)', cf. 3, p. 116. 

LEMMA XL Let %be a commutative ring a, bi, . . . , bk ideals of SI, and St a 
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conservative system of ideals of 21. If a and bt are comaximal in ^{3^) 
i = 1, . . . , k, then a and b = n*=ibi o,re comaximal in &{ 3T). 

Proof. I t is sufficient to consider k = 2. Using Lemma VI, one finds that 
§1 = (à,bi;0>(Sir))r\ (a, W^{3T)) ç (a, b i n b 2 ; ^ ( e T ) ) . 

THEOREM VI. Let 3£ be a conservative system in the commutative ring 21, and 
let &{9£) be Noetherian. If b G &(3C), b ^ 21, J&ew /feere w a uniquely 
determined set bi, . . . , bk of ideals of ^{SC) distinct from 21 such that: 

(a) The bi are pairwise comaximal in &(!%'); 
(b) None of the bt is the intersection of two ideals of ^(SF) pairwise co-

maximal in &(&) and distinct from 21; 
(c) b = nt-ib*. 

Proof. The proof is like that of the statements preceding Theorem V with 
comaximality in &(3f) replacing comaximality in the definition of the 
equivalence classes. Note that (b) is weaker than the precise analogue of (0) 
due to the absence of an analogue of Lemma X. 

4. Extension-contraction maps. Throughout this section we consider, in 
addition to the ring 21, a second ring 93 and the set 3f of ideals of 93. 

Maps e: y —•» Ĵ ~, and c: JT" —» S^ will be called a pair of extension-contraction 
maps from 21 to 93 if they satisfy: 

EC-1: c(DieAi) = Cli^cti, U G &~\ 
EC-2: c(\Jiçjti) = KJiçjcti, tt ÇL3T, if the tt are totally ordered by 

inclusion ; 
EC-3: e(\Jies&i) = Ui^eêi} $* G S^, if the $* are totally ordered by 

inclusion. 
EC-4: cec = c; ece = e. 
EC-5: c93 = 21. 

Remark. I t follows from EC-2 and EC-3 that c and e are inclusion-preserving. 
If e, c is a pair of extension-contraction maps from 21 to 93, then 0: 21 —> 93 

will be said to agree with e and c if it satisfies: 
(A): c\\a = c(t:0a), t 6 « f , a 6 ? [ . 

Remark. One can generalize the preceding definitions to the case of maps 
e': 9" -> ^ and c':&~' -> y , where ^ C ^ and ^ ' C ^~ are con­
servative (or, where needed, divisible conservative) systems. 

The following lemmas remain valid for sub-systems of Sfl andJ^ ' . 

Remark. Wherever the lemmas below call for the existence of $, one could 
replace this requirement by the following condition: For each a G 21, / G Ï , 
there exists ô G 93 such that ct:a = c(t: i) . The statement (c) of Lemma XII I 
must of course be modified accordingly. 

Remark. Given c satisfying EC-1, EC-2, and EC-5, there exists at least 
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one map e: y —» ^~, such that EC-3 and EC-4 hold. One may define e by 
eb = Pi {a € ^~; ca 2 b}. EC-3 and EC-4 do not in general determine e 
uniquely. 

If f ç y , then e9C will denote {*$: ^ f l j c ^ ^ Ç . f , is defined 
similarly. 

LEMMA XII . Le£ e, c be a pair of extension-contraction maps from 21 to 33. 
(a) If&Q ^~ is conservative and ed$/ C ^ , //^n c<^ w conservative. 
(b) If ^ ^ a5> in (a)> a w ^ ^ r ^ a i ^ 5 <j>: 21 —> 33, agreeing with e, c, then 

9(cf3/)-Q_ c(9 {&)); and if®/ is divisible, dW is divisible. 

Proof, (a) Let Si, 8 2 G ^ ; « i C g2. There exist t1} t2 G <3/ such that 3< = ctit 

i — 1, 2. Let ii = e%i = eciu i = 1, 2. Since e is inclusion-preserving, 
t / S t / . By EC-4, 3, = d / , i = 1, 2; and the t / G ̂  by hypothesis. Hence, 
an ascending chain in & is found by applying c to an ascending chain in *%/. 
It now follows by EC-2 that & satisfies C-2; and & satisfies C-l by EC-1, 
C-3 by EC-5. 

(b) The existence of 0 yields at once 2{0) ^c{9(@/)).ll<& = @(&), 
this yields c ^ = 2{0). 

LEMMA XII I . Let e, c be a pair of extension-contraction maps from 2f to 33, 
and let ec be the identity map. 

(a) If' & ç y is conservative and ce& C SC, then e9£ is conservative. 
(b) If 3£ is as in (a), and there exists <£: §1 —» 33, agreeing with e, c, then 

®(e&) Qe(9($T)). 
(c) Let 3tf, <t> be as above, and1 

Hence, e3£ satisfies C-l, and C 

suppose that 2f is divisible. If for each t G 3~ 
b G 33 there exists a G 2[ such that t:b — t:0a, then e$£ is divisible. 

Proof, (a) The proof that e3c\ satisfies C-2 is "dual" to the proof of C-2 in 
Lemma XII . Let tif i G J, bè ideals of e$f, and let t = DieAi- Defining 
%i = ctt, i £ J, we find that 3< G 3£, U = étè<, î G , / . Let 3 = f l i ^ j . 
Then 3 G <3T, and from the hypothesis and EC-1 we find that 

t = ekt = e( Pi ctt\ = e$. 

-3 results from ec33 = 33. 
(b) Let t G @{e2£). Define a = ct, so that ê Ç «f, t = ^ . We must prove 

that 3 € 2f(9f\. Let a G 21. Then 3:a = d:a = c{i:<)>a). Since t:0a G édT, 
there exists t) G <3T with t:0a = et). Hence ê:a = ceb G <$F. 

(c) Let t G df , & G 33. DefiJie 3 = et, so that § G 3T = 2{3C). Choose 
a G 21 such that t:b = t:<£a 
t:& = ec(t:&) G e#~. 

As an example, let <#>: 2Ï —> 53| 
expected way, that is, e$, % G Sf, 

from 21 to 33, and <t> agrees with 
p. 218).) I t follows from Lemma 

Then c(t:b) = c(t:0a) = ê:a Ç f . Then 

be a homomorphism; and define e, c in the 
is the ideal generated by #8 in 33 and et, t G ^~, 

is the complete pre-image of t. Then e, c is a pair of extension-contraction maps 
? and c. (These are the maps studied in (17, 
XII that if & C F is such that ^ C ^ f 
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then dW is conservative if $/ is conservative and divisible if *3/ is divisible. 
In two important cases, ec is the identity so that e&/ C <ty must be satisfied: 
namely, if 4> is an epimorphism, or if 33 is the quotient ring of 31 with respect 
to a multiplicatively closed system and <j> is the canonical map. Suppose, now, 
that <j> is an epimorphism and 3? C ^ an additive, conservative system with 
ker ^ J . Then ceSt C ^ , and for t € J7 ' , 6 G 33, there exists a G 31 such 
that $a = b, and hence t:6 = t:0a. I t follows from Lemma XIII that e<3T 
is an (additive) conservative system satisfying 2f{e9f) Q e(&($f)), and 
that e9f is divisible if 3C is divisible. 

5. Links. Several important conservative systems are defined by means of 
closure under certain operators. The following definitions generalize this 
notion. 

Definition. Let A be a, commutative ring. A link A in 31 consists of an index 
set J and mappings \ u i G J, \x of 21 into SI. The X* are called the antecedents, 
fi the consequent of A. We write A={X^, i Ç J ^ ; / x j . 

Definition. An ideal a in the commutative ring SI is said to admit the link 
{\u i G J \ M} if for x G 31 the relations \tx G a, i G </, imply jux G a. 

The set of ideals of 31 admitting links A;-, j G fî, satisfy C-l and C-3. To 
assure C-2, a further restriction is necessary. 

Definition. A link {X*, i G J \\i\ in the ring SI is called finitary if for each 
x G SI the set of disctinct \tx, i Ç «/, is finite. If */ is finite, then A is called 
finite. 

Remark. A (finitary) link A may also be described by a collection of (finite) 
subsets ©* CI SI and elements xt G SI. Then an ideal a admits A if and only if 
for each i, ©* CI a implies x* G a. 

The proof of the following result is straightforward. 

LEMMA XIV. Let %be a commutative ring, ^ an index set, 

Ay = {\ih i G JjinA, j€</, 

a set of finitary links in SI, and Stf the set of ideals of SI admitting the Aj. Then 
2f is conservative. If a G 3C, then a G £iï(3lf) if and only if for each j G ^ , 
x G SI, y G 31, the relations x\tjy G a, i G J pimply x\x{y G a; and a G &Q}(9?) 
if and only if for each j G ^ , x G 31, 3̂  G SI, 2Âe relations x\tjy G a, i G ^ , 
imply that there is a positive integer r such that xr/x^ G a. 

Remark. The conditions given in the lemma for a G £$(3?) may be regarded 
as the requirement that a admit a certain set of links; but the conditions for 
a G SP9{3C) are not of this form. 

Let Stf be the system of ideals admitting the links Ajt Let Wfl £ 31. I t is 
possible to describe in a more or less constructive fashion how (2ft; «yiT) is 
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generated from 2ft. The notation will be as in Lemma XIV. For 2Î C 21, 
define 2Î* to consist precisely of those elements whose presence in any ideal 
containing 2Ï is required if the ideal admits the Ay. That is, if for some 
j e / ^ G Ï , the \ijX eVl, i e Jj9 then M/* G W*. Now let 2fti = (2ft), 
2ft î + i = (2ft*, 2ft**), i = 1, 2, . . . . Then it is easily verified t ha t 

oo 

(2ft;<T) = U2ft*. 
i = i 

Since <£̂ ( ̂ T) is also determined by a system of links, as shown in the remark 
above, there is a description similar to the foregoing for (2ft; 2$(3?)). Since 
2P{9^) consists of the radical ideals of i^(5ir) one may also find such a 
description for (2ft; «^(«^T)) using the links for £&(!%') but redefining 
2Wi = V(2ft), 2K,+i = V(2ft*, 2)?.*), * = 1, 2, . . . . I t will be seen in the next 
section that the links determining 2$(ST) or 2P{3£) may sometimes be 
replaced by simpler ones than those resulting from Lemma XIV. With these 
replacements one obtains, for example, the standard descriptions of the 
generation of perfect differential and of perfect difference ideals from 
generators. 

LEMMA XV (Kolchin). Let SC be a conservative system of ideals in the ring 21, 
and let 2ft C 21. If x £ (2ft; 3C), then there exists a finite subset 3 ÎÇ3K such 
thatx e ($»;#"). 

Proof. The conclusion is immediate if 2ft is finite. We proceed by induction 
on the cardinality of 2ft and assume henceforth that 2ft is infinite. Then 
2ft = U2ft*, where the 2ft* are totally ordered by inclusion and each 2ft * is 
of cardinality less than that of 2ft. Now 1 Ç U (2ft*; #") , and 

U (2K,;#") G <T. 

Hence, (2ft;<âT) £ U(2f t* ;^ ) . Then for some i, x £ (2ft,;<^"), and by the 
induction hypothesis, x £ (21; «âT) for some finite 21 C 2ft*. 

THEOREM VII. Let 3T be a conservative system of ideals in the commutative 
ring 2Ï. There exists a set 2 of finite links in 21 such that the set of ideals admitting 
the links of 2 is S£. 

Proof. Let {xi, . . . , xn\ x) C 21. Using maps whose range is a single element 
one may express, by means of a finite link, the condition X\, . . . , xn Ç a 
implies x 6 a. Let 2 be the set of such links for all subsets {xi, . . . , xn; x}, 
n = 1, 2, . . . , of 2t such that x G ({#i, . . . , xn) ;<3T). Clearly, every ideal 
of SC admits the links of 2. Conversely, let a admit these links. If x Ç (CL',&~), 

then by Lemma XV there exists a finite set 2t C a such that x Ç (2î;<3T). 
Hence, there is a link in 2 which requires x 6 a. Then a = (a; «ST) Ç «âîT. 

A link will be called simple if its only antecedent is the identity map. 

Remark. A link (X;/*) with but one antecedent is equivalent to a set of 
simple links. For one can construct maps vu i £ */, of 21 into 21 such that the 
viX yield the distinct values of [ùrxx for any x Ç 21 for which /xX-1x exists, and 
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are 0 for all other x G 21. The vt furnish the consequents of a set of simple 
links equivalent to (X; /x). 

I t is not possible to obtain all conservative systems by means of sets of 
simple links. 

Counterexample. Let 21 be a unique factorization domain but not a principal 
ideal domain. Let 3C be the set of principal ideals of 21. Then SC is conservative 
(indeed, divisible). Let JJL be the consequent of a simple link A such that 9C 
admits A. For x G 21, (x) G 3C and, hence, \xx G (x). I t follows that 
every ideal of 2Ï admits A so that 9£ cannot be the set of ideals admitting a 
set of simple links. If 21 contains a radical ideal which is not principal, &(&) 
is not determined by any system of simple links. 9? is the set of ideals a admit­
ting the links which express the requirement that for each a, b G 21, a, b G a 
implies d(a, b) G a, where d(a, b) denotes the greatest common divisor of 
a and b. 

6. Examples. Throughout this section and hereafter, r? denotes the identity 
map of 21 onto 2Ï. 

(1) Homogeneous ideals. Let 21 be a graded commutative ring. If x G 2Ï, 
we write x — 2Z?=-cox

('), where x(i) is the homogeneous component of X of 
degree i, and all but a finite number of the x{i) are 0. If x ^ 0, we also write 
x = £ ^ ixu where the xt are the non-zero homogeneous components of x 
arranged in order of increasing degree. Let hu i = 0, ± 1, ± 2, . . . , be the 
map defined by JiiX = x{i). Let m be the map defined by mx = X\ for all 
x j£ 0, m(0) = 0. 

The set ffl of homogeneous ideals of 2Ï is a conservative system, ffl consists 
of all ideals admitting the link (rj;m). Alternatively, J^ consists of all ideals 
admitting the links (77; hi), i = 0, =bl, ± 2 , . . . . 

I t will be shown that J4? = &9($?). Let a Ç / , xy G a, x = £-=i*z, 
y = SUrJ*. Then Xi^i = m{xy) G a. Suppose that it has been shown that 
%iyij, • • • , tf^V G a, 1 ^ j < r. Let s be the homogeneous component of xy 
which is of the same degree as xj+iyi. Then z — xj+\yi is either 0 or a sum of 
terms xayb with a ^ j . Hence (z — xj+iyi)yij G a. Since s G a, xj+iyij+l G a. 
Hence, by induction, x ^ i r G a, i = 1, . . . , r. Then xyi G a. 

Let s G 21. It must be shown that az G ^ . That is, if v G ct2, say A = ^\=\VU 

and ZJS* G a, then it must be shown that each vt G dz. This amounts to showing 
that for some positive integer k each vtz

k G a. If z = 0, this is trivial. If s has 
but one homogeneous component, it is true with k = h, since the ^2* are then 
the homogeneous components of vzh. We proceed by induction on the number 
of homogeneous components of z. Since Z\ = (zh)i, it follows from the result 
of the preceding paragraph that there is a positive integer t such that vz\l G a. 
Then also each vtZil G a. Let w = z — Z\. Then vwt+h G a, since when wt+h is 
expanded in powers of z and z± each term has either Z\l or zh as a factor. Then 
v G ctw. Since w has fewer homogeneous components than z, it follows from the 
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induction hypothesis that there is a positive integer n such that each vxw
n G a. 

Then each vtz
n+t G a, completing the proof. 

I t follows from the preceding result that SP(ffl) consists precisely of the 
radical homogeneous ideals. Since the radical of a homogeneous ideal is 
homogeneous, we also have ffi — ^ ( J f ^ ) . It is not true in general that 
ffl = 2iï(3tif). An inductive argument from the criterion of Lemma XIV for 
membership in @(3tif) shows that an ideal a of SI is in @{3tif) if and only if, 
given vw G a, v = X^=i^, w = ^\=iWu then each vtWj G a. Let 21 be the 
polynomial ring $[x, y, u, v], $ a field. Use the usual grading. Let 

a = (x2u, yv, x2v + u2y). 

Then a G ^ . Since (x2 + y) (z/2 + v) G a, «2;y € a, the preceding criterion 
shows that a G 9(Jf). 

Theorems I and II yield the standard results on the representation of a 
radical homogeneous ideal as an intersection of homogeneous prime ideals. 
As has already been indicated, Theorem III is inadequate to give the standard 
representation of a homogeneous ideal in terms of homogeneous primary ideals. 
This is provided by Theorem IX below. 

(2) Extensions. Let §1 possess an identity element 1, and let 93 be a unitary 
over-ring. Let p be a prime ideal of 21, and consider the set *3/ consisting of 
those ideals of 93 whose intersection with 21 is p, and of 93 itself. Then & is 
a conservative system. Let q be a radical ideal of $/. Is q the intersection of 
prime ideals of 93 whose intersection with 21 is p? That is, is q G ^ ( $ 0 ? 
This will be so if q:x G & for all x G 93. We find at once the well-known 
criterion: st G q, s G 21, t G 93 implies either 5 G p or t G q. 

(3) Multiplicatively closed sets. Let 3 be a multiplicatively closed subset 
of 21. An ideal a G S^ is called a 3-ideal if xy G et, x G 3 , implies y G a. Let 
9C denote the set of 3-ideals. The implications defining & may be regarded 
as a set of links, and we see at once that 3C is conservative and 3C = &{$?). 
Hence, every radical 3-ideal is an intersection of prime ^-ideals. The definition 
and this result were stated by Robinson (13, p. 432). 

(4) M-rings. A set mui G «/, of maps of 21 into 21 is said to have a multi­
plication theorem if there exist elements cijk G 21, i,j, k G «/, such that for 
x,y G 21, i G J, 

ntifry) = Il cm(mjx)(mky), 
j,kes 

where only a finite number of the cijk are different from 0 for given i. 
An M-ring is a commutative ring together with a set mif i G */, of linear 

maps with a multiplication theorem. An ideal of the ring admitting the links 
(y, w>i), i G J, is called an M-ideal. The theory of ikf-rings has been developed 
by Kreimer (7). 
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If §1 is a graded ring in which the homogeneous components of negative 
degree are 0, then 21 is an M-ring with the set of maps M = hu i = 0, 1, . . . , 
as defined in (1) above, and the M-ideals of §1 are the homogeneous ideals. 
Other important examples of M-rings will now be considered. 

(5) Derivations. Let D = [du i Ç i ) b e a set of derivations of 31 into 21. 
Then 21 and D constitute a differential ring, and the ideals of 21 admitting the 
links (rj;di),i £ J, are called differential ideals. Let St denote the set of 
differential ideals. Then St = S?9{St). For if a 6 St, xy G a, and d is one 
of the du then x2dy = xd(xy) — xydx £ a. It follows from a remark following 
the definition of partially divisible that &{Sf) consists of all radical differen­
tial ideals. Then every radical differential ideal is an intersection of prime 
differential ideals. If 21 contains the rationals, then 21 is a Ritt algebra 
(5, p. 12). It is easily shown that if 21 is a Ritt algebra, then the radical of a 
differential ideal is a differential ideal, so that St = *%> ( St). On the other hand, 
let 21 be the polynomial ring &[x], where $ is a field of positive characteristic p, 
and let D consist of the derivation d of ®[x] over $ such that dx = 1. Then 
a = (xp) G St, but Vet = (x) (? St. Hence, in this case, 

<£(St) C^^(St) = St. 
(6) Higher derivations. Let D0 = y, D\, . . . , Dm be additive maps of 21 into 21 

such that Di(xy) = ^t
ljsso(Djx)(Di-.jy)'i x, y G 2t, i = 0, 1, . . . , m. Then the 

Di constitute a higher derivation of rank m of 21 into 21. A higher derivation of 
infinité rank is defined similarly. An ideal of 2Ï is said to admit the higher 
derivation if it admits all the links (rj, Dt). 

Let a set of higher derivations (not necessarily all of the same rank) be 
given in 2Ï. Let St denote the set of ideals of 21 admitting all these higher 
derivations. Then S£ is conservative, and an inductive proof with steps 
resembling the proof in (5) shows that St = SP9(3t). Hence, SP{St) 
consists of all the radical ideals of St, and every radical ideal of St is an 
intersection of prime ideals of St* I t has been shown by Hamara (4) that if 
the higher derivations are of infinite rank, then St = ^(St). 

(7) Difference rings. Let T = {tu i G J\ be a set of homomorphisms of 21 
into 21. Let J? ÇI J. Let St consist of those ideals admitting the links 
(v\ h), i G «^i a n d let W consist of those ideals of St which also admit the 
links (tj\ 7]),j € #f. We call the pair 2Ï, T a difference ring. The ideals of St are 
called difference ideals, and the ideals of <W are said to be reflexive in the 
tj>j £ cr - If <r ~ ^> then the ideals of W are called reflexive difference ideals. 
(The ideals of St, but not necessarily those of &, constitute a set of Af-ideals.) 

Remark. From the present, more general approach, a slight conflict with 
earlier terminology is natural. Ritt (10) (see also (3)) used the term perfect 
difference ideals to designate & ({3/) with J = J?, and the term complete 
difference ideals to designate ^ {St). 
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Let J = J . The following criterion is due essentially to Ritt and 
Raudenbush (12): A radical ideal et G *3/ is in &(!&) if and only if for each 
tu i G J*, xtfX G a implies x G et. 

Proof. Let a G £P($¥ ), t G T. Then xtx G a implies (tx)2 G a by Lemma XIV. 
Since a is radical and reflexive, x £ a. Now suppose that a satisfies the stated 
condition. We must show that xy G et implies xty G a, and that xty G a 
implies xy G a. Let xy G a. Let w = x/y. Then utu = ht(xy), where h = x/2y. 
Hence wta £ a, u £ a. On the other hand, let xty G a. By the preceding case, 
txty = t(xy) G et. Since a is reflexive, xy G a. From the preceding condition 
we obtain, at once, the following criterion: A difference ideal a is in &({$/) 
(with J = J< ) if and only if for each t G T\ x G 21, the presence in a of a 
product (x)k°(tx)kl . . . (tmx)km for some non-negative integers m, ko, . . . , km, 
implies x G a. This criterion reduces to the usual one for a difference ideal to 
be perfect in the special cases heretofore studied, and Theorem II yields the 
previously known decomposition theorem. 

Ritt has shown that in certain difference rings, in particular in polynomial 
difference rings over a field, *$(9ff) does not satisfy C-l; see (10, p. 689; 
3, p. 106). For such rings, one has at once that 3£ ~2> ̂ (3£) D @(&). 
Since a polynomial difference ring contains an ideal a such that a G <3T, a ^ (1), 
and (a\&(5r)) — (1), not all ideals of 3£ are even intersections of ideals 
of ^(«âT) in this case. I t is easy to see that one may substitute & for 3£ in 
all the above. Since the radical of an ideal of <& is in ^ , 0>@(<3/ ) C <é ($/ ). 
The following example shows that this inclusion may be proper. (Contrast 
with the differential case.) 

Let 21 be the ordinary polynomial difference ring $ {y, z), $ a field. T consists 
of a single isomorphism t, and we denote tmx by xm. Let *%/ be the set of reflexive 
difference ideals of $ . Let et be the ideal of 21 generated by the monomials 
{yiZjY and ytzu i, j = 0, 1, . . . . Then a G &. Let 

6 = (y,yu . • .) , c = (z,zu . . . ) . 

Then Vet = b Pi c, and b and c are prime ideals of &. Hence et G ^ i^/). 
Since y ^ ! g a, r = 0, 1, . . . , a G &9(&). 

(8) D-rings. Let T = {£*,*'€ J^} be a set of homomorphisms of 21 into 21, 
Qf = {dt, i G </ '}, a set of derivations of 2Ï into 21, and let J C </. This 
structure will be called a D-ring if: 

(a) J^ and J' are finite, 
(b) the ti are isomorphisms, 
(c) the dt and /y commute among themselves and with each other. 
The set «ST of J9-ideals of 21 consists of those ideals which are differential 

ideals for the derivations dt and difference ideals for the isomorphisms tt 

reflexive in the tjf j G <f . D-rings form a natural setting for the abstract 
study of difference-differential equations, and with some further specializations 

https://doi.org/10.4153/CJM-1969-089-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-089-0


800 RICHARD M. COHN 

have formed the subject ma t t e r of most work in difference and differential 
algebra. Condit ions (a) and (c) are used to obtain theorems showing SP(S£) 
to be Noether ian in impor tan t cases. I t is probable t h a t (c) could be replaced 
by weaker conditions on the commuta tors , b u t this has no t been explored. 
Such conditions would certainly be appropr ia te for some analyt ic problems. 
I t has been usual to assume (b) , b u t this is un impor tan t , a t least if J = ^ . 

I t will now be shown t h a t analyt ic s i tuat ions make it na tura l to s tudy 
subsets of 3C admi t t ing addit ional links. One of several possible examples 
will be given. None has been studied in any depth . 

Le t g D e the field of functions meromorphic in a s tr ip of the complex plane 
parallel to the real axis. Le t d denote the der ivat ive in the analyt ic sense and t 
the isomorphism defined by tf(z) = f{z + 1). T h e n df(z) = 0 implies 
tf(z) = f(z)- W e extend g to a difference-differential polynomial ring 
2Ï = ${y} m the usual way (cf. 3, p . 64 or 11, p . 2) and cont inue to use d and t 
to denote the derivat ion and the isomorphism of SI, respectively. W e wish 
to consider manifolds of the Z)-ideals of 21. I t is na tura l to restr ict a t t en t ion 
to manifolds whose solutions lie in rings for which an implication like the 
preceding one is valid. Certainly, meromorphic solutions will lie in such rings. 
Let p be a prime .D-ideal of 21. T h e n the desired implication will hold in the ring 
2l/p if and only if p admi t s the link (d; t — rj). I t will hold in the quot ien t 
field of 2ï/p if and only if for each x, y G 21, xdy — ydx G p implies 
xty — ytx G p. These requirements can easily be expressed by a set of links. 

(9) Restricted manifolds. In s tudying manifolds of polynomials over a field St 
one may wish to restr ict a t t en t ion to solutions lying in a given subset of a 
certain extension of $ . For example, if $ is the rat ional field, one m a y wish to 
consider only integral or only real solutions. Since each solution is determined to 
within equivalence by a homomorphism of the polynomial ring onto an integral 
domain, and hence by the prime ideal which is the kernel of the homomorphism, 
the restriction is described by giving certain subsets of the set of prime ideals 
of the polynomial ring. One m a y also wish to impose the condition t h a t the 
ideals of the manifolds studied belong to a certain conservat ive system. W e 
are thus led to the following generalization. 

Le t 21 be a ring, $T a conservative system of ideals in 21 such t h a t &(&) 
is Noether ian , i 2 a set of prime ideals of 21 such t h a t 21 G i2 . Le t <%/ consist 
of those ideals which are intersections of ideals of i2 , and let <2T consist of 21 
and the members of <3/ C\ & ( 2f). T h e n 2f is a Noether ian perfect conserva­
tive system. Every ideal of 3? can be expressed uniquely as the i r r edundan t 
intersection of finitely m a n y prime ideals of 3£'; however, these prime ideals 
need not be in j2 . If b G <2T, we define the (restricted) manifold M ( b ) of b to 
be the set of ideals of i2 containing b. If M is a manifold ( tha t is, if i f = M (b) 
for some b G 3f), then the ideal $(M) of M is the intersection of the ideals 
const i tut ing M. (Note t h a t M ( b ) m a y nei ther be included in nor include the 
set of ideals appearing in the i r redundant representat ion of b as an intersection 
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of prime ideals.) I t follows at once from the definitions that if b G i2f, then 
b = 3[M(b)]. If M is a manifold, say M = M(b), then 1) = 3 ( 1 ) , therefore, 
M = M [3f (AT)]. 

Let bi, . . . , br € 3T, and let b = bi H . . . H br. Then 

M(b) = M(bi) U . . . U M ( b r ) . 

Conversely, let Mi, . . . , Mr be manifolds. Let b = 3 (Mi) H . . . H 3 (M r). 
Since ¥ j = M[3(M*)], i = 1, . . . , r, it follows from the preceding remark 
that M(b) = Mi U . . . U M r . Hence, a union of finitely many manifolds is 
a manifold. It is easy to see that the intersection of manifolds is a manifold 
provided â ç £ 

A manifold M is called irreducible if it is not the union of two proper sub-
manifolds. A manifold M is irreducible if and only if 3 ( M ) is prime. For 
suppose, first, that M is reducible, say M = Mi \J M2, where Mi ^ M, 
M2 ^ M. Then 3 ( M ) = 3 (Mi) H 3(M 2 ) . Since Mi = M[3(Mi)] and 
M = M[3(M)] , we see that 3(Afi) ^ 3 (M) . Similarly, 3(M 2 ) ^ 3 ( M ) . 
Choose x e 3 ( M i ) , x $ 3(M),and;y £ 3(M2),;y € 3(M).Thenx;y G 3 ( M ) . 
Hence, 3 ( M ) is not prime. Next, suppose that 3 ( M ) is not prime. Then 
b = 3(M") = bi H . . . H br, the b, G â", b, ^ b,r > 1; and 

M = M(b) = M(bi) U . . . U M ( b r ) . 

We cannot have M(b) = M(b*) for any i, since this would imply that 
b = 3?[M(b)] = 3[M(b,)] = hi. Hence, M is reducible. 

If M = Mi KJ . . . U M r , where the M* are irreducible manifolds no one of 
which is contained in any other, then the Mt are called a set of irreducible com­
ponents of M. Now, starting with an arbitrary manifold M, we may write 3 (M) 
as an irredundant intersection of prime ideals bi, . . . , br of <2T. It follows that 
M (bi), . . . , M (br) are a set of irreducible components of M. They are unique, 
since if M = Mi' \J . . . U M / , where the M / are irreducible manifolds no 
one of which is contained in any other, then 3 (M) = 3 (M/) C\ . . . C\ 3 ( M / ) , 
and it follows at once from earlier remarks that the ideals 3 ( M / ) are prime 
ideals no one of which is contained in any other. Hence, they coincide when 
suitably ordered with bi, . . . , br. It follows that the M / and the Mt coincide 
when suitably ordered. Every manifold is the irredundant union of a uniquely 
determined finite set of irreducible components. 

(10) Bi-ideals. We introduce a second commutative ring 93 with a conserva­
tive system <8/ of ideals. Let \p be a homomorphism from 91 into 93. We call a pair 
[a, b], a e &(3T), b G ̂ ( « 0 , *a C b, a M-«feaZ of [21, 93, ^ â " " , ^ ] . Let <% 
denote the set of these bi-ideals. Robinson (13) introduced bi-ideals in order 
to give an abstract algebraic treatment of the initial value problem for 
differential equations. 

Let a = [a, b] € %. Then a is prime if a and b are prime, proper if b =̂  93. 
Let at = [<Xi, bf], i £ */, be members of %. The greatest lower bound y of the 
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ai is defined to be [Di^du Hie^il- W e write 7 = Dic^i- Of course, 7 
If b is an ideal of 33, then b* will denote the set of c G SI such t h a t \pc G b. 
Then b* is an ideal, and if b is prime, b* is prime. 

Le t a = [a, b] G ^ , and let a*, i ^ J, bj}j G ̂ , be the minimal prime 
ideals containing a and b, respectively. Then b* 2 a, j G ^ / ; so t h a t we m a y 
define i(j),j G <fl, such t h a t i(j) G </ and a ^ ) C b / \ By Theorem I, the 
[ftiO), b j and [a*, 33] are in ^ . T h e y are prime, and their intersection is a. 
Hence, every bi-ideal is the greatest lower bound of a set of prime bi-ideals. 
A proper bi-ideal is no t necessarily the greates t lower bound of a set of proper 
prime bi-ideals (13, p . 444). However, we see a t once from the decomposition 
jus t obtained t h a t if a is proper and â = [a, b] is the greatest lower bound of 
the set of all proper prime bi-ideals containing a, then b = b. W e call â the 
closure of a. 

A bi-ideal [a, b] is regular if, given x G 21 such t h a t ${x\êP{3£)) Q b, 
then x G et. One sees a t once t h a t there is a t most one regular bi-ideal with 
the second member b. 

T o obtain a satisfactory theory of regular bi-ideals we impose the following 
regularity conditions on (21, 23, \f/, 3f, (W)\ 

R - l : V ( 0 ; ^ ( < T ) ) C ( 0 ; ^ W ) ; 
R-2: Let b G &(<&) and let ct„ i G J, be members of £?(2f) such t h a t 

for each i, ^at C b. Then t(Ui^at; ^(&)) Q b. 
Le t b Ç ^ ( ^ ) . Le t S£' denote the set of all a G ^ such t h a t fa C b. 

Then <âT' is no t e m p t y by R - l . I t follows from R-2 t h a t the union b' of the 
members of 2f ' is in $?'. T h e n [b', b] is a bi-ideal. If 

x G 8Ï and iKx',&>(&)) £ 6, 

then (x; &(&)) G «ST', and therefore x G b'. Hence, [bf, b] is regular. W e call 
b' the expansion of b. 

Remark. Robinson 's definition (13) of regulari ty for the case t h a t &(3tf) 
consists of those perfect differential ideals which are also 3-ideals, 3 a mult i-
plicatively closed set, agrees with ours provided t h a t (13, conditions 6.1 and 
6.2) and the assumptions made th roughout t h a t paper hold; and R - l , R-2 are 
then valid. These facts follow from (13, 6.3 and 6.4). If S?{3£) consists of 
perfect differential ideals (i.e. 3 = 21 — 0) , they are obvious. 

If b Ç^ & is prime, then so is the expansion b' of b. 

Proof. Let xy £b'. Le t u = (x; 0> ( &)), t) = (y; 0>( 3T)). By L e m m a VI , 
u H t) = (xy;£P(3£y) C b'. Hence ^u Pi \f/\) C b. Since b is prime, either 
xj/U C b or î/'t) C b. T h e regulari ty of [b', b] implies either x G b' or y G b'. 

I t is evident t h a t the greates t lower bound of a set of regular bi-ideals is 
regular. Le t b G & and let b*, i G */ , be the minimal prime ideals containing b. 
Le t bi be the expansion of bu i G « / . Then the b / are prime. If b' = P lzc^b/ , 
then [b', b] is regular. Hence, ê er̂ y regular bi-ideal is the greatest lower bound 
of a set of regular prime bi-ideals. 
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7. Primary representations. Let 3f be a conservative system of ideals in 21 
such that &9{3£) C ^ ( ^ ) , and let (77,/) be a simple link admitted by 
every ideal of X. Let a G «ŜT be the intersection of primary ideals qi? . . . , qn 

of «ST. Then a G &2iï{3f), as was pointed out in the first paragraph of § 2, 
so that if xy G a, there exists an integer r such that xrfy G a. However, it 
also follows easily from the fact that the q* are in ^(ST) that there exists 
an integer 5 such that x(fy)s G et. Hence, we have a new necessary condition 
for an ideal of 9£ to be an intersection of primary ideals of 3tf. Under rather 
special circumstances, this condition becomes sufficient. 

THEOREM VIII. Let 3£ be a conservative system in the commutative ring 21 
such that: 

(1) 9C consists of those ideals of 21 admitting a set M of simple links with 
consequents mui G */. Let*Jt denote the set consisting of all products of the mt 

and of the identity; 
(2) 3T is additive, and 3T = &9(&) = ^ ( < T ) ; 
(3) For each x G 2Ï, the ideal generated by the elements mx, m G ^ , is (x; 3T) 

and has a finite basis; 
(4) If x G SI, m G ^ , then for any positive integer h, mxh is a linear combina­

tion with coefficients in 21 of products of the form (m(1)x) . . . (m{h)x), where the 
m{i) are in ^Jé; 

(5) If a G 3C, xy G et, i G </, there exists an integer r such that x{mty)r G a. 
(This implies that if m G <y^, then x{my)s G et, for a suitable s.) 

Then if a G 3£ is an intersection of finitely many primary ideals of 21, a is an 
intersection of finitely many primary ideals in ST. 

Remark. If the mi are linear, the first parts of (2) and (3) follow from the 
other conditions. Even in this case, (4) is more general than the requirement 
that 21 be an M-ring. 

Proof. Let 3̂ C 21. If $ is not empty, the ideal generated by the elements 
ms, m G ^ , s G $, is C ^ ; ^ ) . To prove this, let 2 denote the set of subsets 
G of $ such that the ideal generated by the elements mt, m G ^ , t G Q , is 
(O ; -X"). 2 contains the one-element subsets of $ by (3). By C-2 and Zorn's 
lemma, 2 contains a maximal subset $*. Let 5 G $. Let a = (s\9f) + (^3*;<$T). 
Then a G f , since 3C is additive. However, by (3), a is the ideal generated 
by the mt, m G «^, £ G $*, and the ras, m G «^. Hence s G $*, $* = ^3. 

Let a G «3T, and suppose that a = qi P\ . . . C\ qn, where the qt are primary 
ideals. Let q**, i = 1, . . . , n, denote the set of elements x of 21 such that for 
each m G *srff, mx G q*. If x G q**, then mx G q** for each m G ^ . Hence, 
(<h*) =

 ( C | Ï * ; ^ ) by the result just proved. (Here, (q**) denotes, as usual, 
the ideal generated by q**.) Evidently, (q<*) Q q*. These statements imply 
that if x G (q**), w G ^ , then mx G q*. Hence, q* = (q**), i = 1, . . . , n. 
Evidently, a C qt*, i = 1, . . . , n. Hence a = qi* H . . . Pi qw*. I t remains 
only to prove that the q* are primary. 
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Let xy G c\*, x Q c\*. Let m G <Jé. Let r be such that x(my)r G q*. Then 
^ € (c|i*)™?/ € ^ - There exists m' G ^ such that m'x Q qz-. Since 

w'x G (q**)^, 

q* does not contain (q**)wy. Then certainly q* does not contain {(\i)my. Since 
c\i is primary, this implies that my G Vq*- Hence, there exists for each 
m G ~ # a positive integer 5 such that (Wy)s G q*. Since the ideal generated 
by the my, m G <Jé, has a finite basis by (3), there exists a positive integer / 
such that if ra(1), . . . , m(t) G ^ , then lF* = im(i);y G q*. I t follows from (4) that 
my1 G q*, w G ^- Hence y1 G q**. 

We investigate two special cases, the first of which is well known, and the 
second of which has recently been treated by Seidenberg (16). 

COROLLARY I. Let % be a graded commutative ring. If a homogeneous ideal a 
of 3t is the intersection of finitely many primary ideals, then a is the intersection 
of finitely many homogeneous primary ideals. 

Proof. Let ffl denote the conservative system consisting of the homogeneous 
ideals of 2Ï, and define m and the ht as in example (1). ̂  is an additive, 
conservative system, and it has already been shown that 

All the conditions except (5) are then readily verified, with 

M = [hui = 0, ± 1 , . . . } . 

To verify (5), let a ^^f,xy G a, and let y = X)Ui3^, m the notation of 
example (1). I t is easy to see that (5) will follow if we can find a positive 
integer t such that xyt* G et, i = 1, . . . , s. Suppose that there exists a positive 
integer r such that xy/ G et, i = 1, . . . , k, where 1 ^ k < s. For k = 1, the 
existence of such an integer was shown in the course of proving that 
Jtf = ^^(Jt). Now x(y — y 1 — . . . — yk)

r1c G a, as one sees by expanding 
the left-hand side. However, m(y — yi •—...— yk)

Tk = (yk+i)rlc. Now 
applying again the result cited for the case k = 1, we find that there exists a 
positive integer rr such that x (yk+i)r' G et. Thus, the desired result follows by 
induction. 

COROLLARY II (Seidenberg). Let % be a commutative ring with derivations 
du i G J1. If %is Noetherian and a Ritt algebra, then every differential ideal of 21 
is an intersection of finitely many differential primary ideals. 

Proof. All the requirements of the theorem except (5) are readily verified 
for the set S£ of differential ideals using the discussion of example (5). I t only 
remains to show that if a is a differential ideal, xy G et, and d one of the dif 

then there exists an integer r such that y(dx)r G a. 
Since only the derivation d will concern us henceforth, we introduce the 

set & of differential ideals closed under d, and note that a G J Ç <%/, We 
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also introduce a differential polynomial ring 33 in two indeterminates u, v 
over the field 9? isomorphic to the rational field which is contained in 21 by 
hypothesis. In both SI and 33, derivatives will be indicated by subscripts, for 
example ji for dly. Let 2? be the set of differential ideals of 23. 

Let ^ be the set of all differential polynomials of 23 which yield members 
of ((xy);&) on substituting u — x, v = y. Evidently, 3 is an ideal, 3 G 3f, 
and ((uv);3T) C 3 . 

Since 21 is Noetherian, there exists a non-negative integer k such that 
(y;&) = (y, yi, . . . ,yk). Since W = 8P£iï(<8/), there exists a positive 
integer r such that xryt G ((#30;$O, i = 0, 1, . . . , k. Then actually 
xTyt G ((xy)\<8/),i = 0, 1, It follows that urvt G 3 , i = 0, 1, 

From the work of Levi (see 9, p. 562), it follows easily that 

u\rv — kurvr G {(uv))3f), k G 9î. 

(Note that urvT is the only "a-term" of signature (r, 1) and weight r, and 
that U\V is a "/3-term" of this weight and signature.) Applying the result of 
the preceding paragraph we find that U\rv G 3- Hence X\ry G a. 

Remark. If 21 is a unique factorization domain and 9£ the admissible system 
consisting of principal ideals of 21, then also every ideal of S£ is an intersection 
of primary ideals of 3F, but this case is not covered by Theorem VIII if 3£ 9^ 5f. 

8. Comaximal representations in b r i n g s . Theorems IV and V furnish 
comaximal representations for certain ideals of &£?(&), where 3£ is a con­
servative system. Ritt obtained such representations for ^{SF), where SC 
is the set of difference ideals; and since we have seen that *$ ( 3fr) D SPSiï( «ST) 
is possible in this case, these theorems are not a generalization of Ritt 's 
results. The following theorem generalizes Ritt's theorems on comaximal 
representations in either differential or difference rings. The notation follows 
example (4). 

Definition. An ikf-ring is of finite type if each i G J is contained in a finite 
subset <X(i) of J such that for each j G cr (ï) the cjkm are 0 if either k (? </(i) 
or m Q <f(i). 

THEOREM IX. Let 21 be an M-ring of finite type with identity e. Let 3£ be the 
set of M-ideals of 21. If a G & ( 3C) and b = y/a is the intersection of pairwise 
comaximal ideals bi, . . . , brj then there exist unique pairwise comaximal ideals 
eu, . . . , ar in *$(3£) such that a = cti P\ . . . P\ ar and bi = Vet*, i — 1, . . . , r. 

Proof. By Lemma IX there exist unique pairwise comaximal ideals 
cti, . . . , ar such that a = cti H . . . Pi ar and bt = Vet*, i = 1, . . . , r. From 
Lemma X and the fact that the bt are radical, each bi G &(&). I t remains 
only to prove that each et* G 3£. By Lemma VII it suffices to consider only 
the case r = 2. 

There exists x G ai, y G et 2 such that x + y = e. Since x G 61, mtx G bi, 
i G */. Hence, for each i £ J* there exists a positive integer 5 = s(ï) such 
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that {mtx)s G ai. I t follows that if f is a finite subset of J, there exists a 
positive integer t = t(^f ) such that every product of the form L\tj=\mijx1 

h G <A is in cti. 
Since xk — xk+l = xky G a, k = 1, 2, . . . , it follows that x — xk G a, 

fe = 1, 2, . . . . Then rape — ra^x* G a, i G </, & = 1, 2, . . . . For given i ^ J 
l e t ^ be the finite subset of */ to which i is assigned in the definition of Af-ring 
of finite type. Define t = t{^ ) as above. Then mtx — ra^x' G a Q cti; how­
ever, rape* can be expanded by the multiplication theorem to a sum of terms 
which are in cti by the choice of t. Hence, WjX Ç cti. 

Let u G ai. Then uy G a. Let i ^ «/. Then the multiplication theorem 
yields miiuy) = XI Cijk(wijU)(mky)} where the sum is over those j and & in a 
finite subset of */. For each k, mky = mke — m^x, and rape G ai. Hence 
Z) Cijk(mju)(mke) G ai. However, the multiplication theorem shows that the 
sum on the left is m^ue) = miU. Hence, mtu G ai for all u G ai, i G «/. 

THEOREM X. Ze£ §ï fre a^ M-ring of finite type with identity, and let 3£ be 
the set of M-ideals of %. Let £P(2f) be Noetherian. If a G ^ ( ^ T ) , a ^ 21, 
then there is a uniquely determined set cti, . . . , a* of ideals of ^{Stf) distinct 
from 31 such that: 

(a) The at are pairwise comaximal; 
(b) None of the â  is the intersection of two pairwise comaximal ideals distinct 

from 31; 
(c) a = Hi-la*. 

7/ a G &2{X)> then each a, € ^(ST). If a f ^ ( f ) , *fon eacfe 
a, G ^ ( < T ) . 

Proof. The proof of (a), (b), (c), and uniqueness is similar to the proof of 
Theorem V. The final statements follow from Theorem V. 

9. Concluding remarks. A set 3C of radical ideals of a commutative ring 31 
will be said to have the Krull property if 3C consists precisely of those ideals 
which are intersections of prime ideals of 9£. If 3C has the Krull property, 
and if also 9Hf contains the minimal prime divisors of each ideal of ST, then 
3C will be said to have the strong Krull property. Evidently, C-l and divisi­
bility are necessary conditions for Stf to have the Krull property. Theorem I 
shows that C-l, C-2, and divisibility are sufficient for the strong Krull property. 
However, neither of these sets of conditions is both necessary and sufficient 
for either the Krull property or the strong Krull property, and further elucida­
tion of the situation is needed. 

Example (1). Let 31 be a ring containing an infinite ascending sequence of 
distinct prime ideals, and let 3C consist of the ideals of such a sequence. 
Then 2f has the strong Krull property, but does not satisfy C-2. 

Example (2). Let 31 be the ring of continuous real-valued functions on a 
closed interval / ; and let J be a closed proper sub-interval of / . Let a be the 

https://doi.org/10.4153/CJM-1969-089-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-089-0


SYSTEMS OF IDEALS 807 

ideal of functions of 21 which vanish on J, and let 3£ be the set of all ideals 
ct:£, X Q 2Ï. Then 3C is divisible and satisfies C-l. For any X, a:X consists of 
those functions vanishing at every point of / — J', where J' is the set of points 
in / which are zeros of every member of X. Since J — J' cannot consist of 
a single point, a:X is not a proper prime ideal. Hence, 3£ does not have the 
Krull property. 
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