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ON SEQUENCES OF HOMOMORPHISMS INTO MEASURE
ALGEBRAS AND THE EFIMOV PROBLEM

PIOTR BORODULIN–NADZIEJA AND DAMIAN SOBOTA

Abstract. For given Boolean algebras A and B we endow the space H(A,B) of all Boolean
homomorphisms from A to B with various topologies and study convergence properties of sequences
in H(A,B). We are in particular interested in the situation when B is a measure algebra as in this case we
obtain a natural tool for studying topological convergence properties of sequences of ultrafilters on A in
random extensions of the set-theoretical universe. This appears to have strong connections with Dow and
Fremlin’s result stating that there are Efimov spaces in the random model. We also investigate relations
between topologies onH(A,B) for a Boolean algebraB carrying a strictly positive measure and convergence
properties of sequences of measures on A.

§1. Introduction. It is a common issue in analysis and topology to compare
convergence properties of sequences in topological spaces, in particular, to study
when a sequence convergent with respect to one topology converges also with respect
to another one. For instance, one can ask what properties a Banach space must have
so that its every weakly convergent sequence is also norm convergent (studying
so-called Schur property), or investigate when a given topological space does not
contain non-trivial convergent sequences, i.e., when every convergent sequence is
eventually constant. In this paper we also deal with these kinds of problems—our
setting are spaces of homomorphisms between Boolean algebras, especially measure
algebras, endowed with several miscellaneous topologies.

There are several motivations standing behind our research, but before we present
them, together with our main results, we introduce some basic notations. For a
cardinal κ let Mκ denote the measure algebra of the standard product measure �κ on
the product space 2κ. Denote 2 = M0 (the trivial Boolean algebra). IfA is a Boolean
algebra, then by H(A,Mκ) we denote the family of all Boolean homomorphisms
from A into Mκ. The measure �κ induces the so-called Fréchet–Nikodym metric d�κ
on Mκ, and thus Mκ may be treated as a metric topological space. Since H(A,Mκ)
is simply a subset of the family of all functions from A into Mκ, this further leads
to endowing H(A,Mκ) with two natural topologies—the pointwise topology and
the uniform topology. In this article we will investigate these structures and their
variations as well as the relations between them.

Received January 12, 2021.
2020 Mathematics Subject Classification. 28A20, 28A60, 03E40, 28E15, 03E75, 28A33.
Key words and phrases. Efimov problem, measure algebras, weak convergence of measures, algebraic

convergence, random forcing, perfect Hamming codes.

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/23/8801-0008
DOI:10.1017/jsl.2021.70

191

https://doi.org/10.1017/jsl.2021.70 Published online by Cambridge University Press

www.doi.org/10.1017/jsl.2021.70
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2021.70&domain=pdf
https://doi.org/10.1017/jsl.2021.70


192 PIOTR BORODULIN–NADZIEJA AND DAMIAN SOBOTA

Our first motivation for this research is the observation that for κ > 1 the space
H(A,Mκ) with the pointwise topology may be treated as a natural generalization
of the Stone space of the Boolean algebra A, or a Stone space of A of higher
order. Indeed, recall that every ultrafilter on the Boolean algebra A induces a
homomorphism from A into the two-element algebra 2, and vice versa, and
thus the Stone space St(A) of A may be seen as the space H(A,2), endowed
with the pointwise topology originating from the Fréchet–Nikodym metric d�0 ,
induced by the trivial measure �0 on 2. As the literature concerning convergence
properties of sequences in Stone spaces of Boolean algebras, or more generally in
totally disconnected topological spaces, is quite vast, cf., e.g., [5, 12, 13], we were
motivated to conduct similar research in the setting of the spaces H(A,Mκ) for
general κ’s and various topologies. Note that similar generalizations of topological
spaces are quite common in analysis, e.g., one can think of Radon measures of
norm 1 on compact spaces as generalizations of points in those spaces, or, as
it is done in non-commutative topology, of projections in general C*-algebras as
being analogous to characteristic functions of clopen subsets of locally compact
spaces.

For every κ the uniform topology on the space H(A,Mκ) is of course finer than
the pointwise topology, hence every uniformly convergent sequence in H(A,Mκ)
is pointwise metric convergent. As one can suspect, the converse in general does
not hold—cf. Section 5 for relevant counterexamples (especially interesting is the
example described in Section 5.4, which to obtain we used tools from information
theory such as perfect Hamming codes). In Section 3.3 we introduce and study a
strengthening of pointwise metric convergence—called by us the pointwise algebraic
convergence—that implies under certain conditions put on the Boolean algebra A

(such as �-completeness) also the uniform convergence (Corollary 7.4). This mode
of convergence is related to the well-known notion of the algebraic convergence in
�-complete Boolean algebras, studied, e.g., in [2, 3, 14].

In Section 3.4, using the dual functions to homomorphisms from A into Mκ

and Borel subsets of the Stone space A, we endow the space H(A,Mκ) with yet
another topology, which we call the pointwise Borel metric topology. This topology
is finer than the topology of pointwise convergence and has turned out to be
useful in investigations related to our second motivation which is the fact that
each homomorphism ϕ ∈ H(A,Mκ) naturally induces a measure on A of the
form �κ ◦ ϕ, as well as, by the virtue of the celebrated Maharam theorem, for
each strictly positive measure � on A there are a cardinal � and a (usually not
unique) homomorphism � ∈ H(A,M�) such that � = � ◦ �� . This correspondence
has inspired us to study relations between sequences (ϕn) of homomorphisms in
H(A,Mκ) and sequences of measures of the form �κ ◦ ϕn. In particular, we show in
Corollary 4.2 connections between the uniform convergence, pointwise Borel metric
convergence, and pointwise metric convergence of a sequence (ϕn) in H(A,Mκ) and
the norm convergence, weak convergence, and weak* convergence of the sequence
(�κ ◦ ϕn) of measures on A, respectively. In Section 4 we prove also that whenever
A has the Grothendieck property (see the end of Section 2.1 for the definition),
then every pointwise metric convergent sequence in H(A,Mκ) is pointwise Borel
metric convergent—a fact that does not hold for general Boolean algebras A (cf. the
example in Section 5.1).
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ON SEQUENCES OF HOMOMORPHISMS INTO MEASURE ALGEBRAS 193

Our last main motivation lies in the theory of forcing, where actually our interest
in studying the subject of this article started. Imagine that we force with a Boolean
algebra B over the ground model V and that we are interested in the behaviour of
sequences of ultrafilters in the forcing extension V B which are defined on a fixed
ground model Boolean algebra A. This is actually a quite common situation—e.g.,
reals in the extension can be seen as ultrafilters on the Cantor algebra C, i.e., the
free countable Boolean algebra. The usual problem is that the access to objects in
forcing extensions is quite remote, through B-names only. However, the B-names for
ultrafilters onA naturally correspond to homomorphismsϕ : A → B (see Section 6).
Then, the convergence of ultrafilters (treated as elements of the Stone space of A in
V B) appears to be strongly connected to certain convergence properties of sequences
of homomorphisms in the ground model. Namely, we prove in Proposition 6.3 that
for a given sequence (U̇n) of Mκ-names for ultrafilters on A the sequence of the
corresponding homomorphisms (ϕU̇n ) in H(A,Mκ) is algebraically convergent if
and only if the sequence ((U̇n)G) of the interpretations converges in V [G ] for every
Mκ-generic filter G. It turns out that this proposition has also variants regarding
uniform convergence of sequences of homomorphisms—Proposition 6.4 asserts
that if ((U̇n)G) is eventually constant in every generic extension V [G ], then the
sequence (ϕU̇n ) is uniformly convergent. The converse holds partially—in Theorem
6.5 we show that if a sequence of homomorphisms (ϕn) in H(A,Mκ) is uniformly
convergent to some ϕ ∈ H(A,Mκ), then for almost all n ∈ 	 and the corresponding
names U̇ϕn and U̇ϕ for ultrafilters on A there is a condition pn ∈ Mκ forcing that
U̇ϕn = U̇ϕ . This latter theorem is proved with the aid of Theorem 6.6 asserting that
if for two Mκ-names U̇ and V̇ for ultrafilters on A it holds �Mκ U̇ �= V̇ , then there
exists a large condition p ∈ Mκ, where large means of measure as close to 1/4 as
one wishes, and an element A ∈ A such that p � A ∈ U̇ � V̇—a result interesting
on its own, since a typical argument based on the countable chain condition of Mκ
provides us only with a countable antichain {pn : n ∈ 	} of conditions witnessing
that the two ultrafilters are different, but with no control over the value of �κ(pn)
for any n ∈ 	. The Proof of Theorem 6.6 is also interesting, because it boils down
to purely combinatorial Proposition 6.7 having a nice real-life interpretation (see
Remark 6.13).

The aforementioned results have connection with the famous long-standing open
question, called the Efimov problem, asking whether there exists an Efimov space,
that is, an infinite compact Hausdorff space which does not contain copies of 
	,
the Čech–Stone compactification of 	, nor non-trivial convergent sequences. No
ZFC example of an Efimov space is known; however, several consistent examples
have been obtained either under some additional set-theoretic assumptions, e.g., by
Fedorčuk [10] (under Jensen’s diamond principle), Dow and Pichardo-Mendoza [8]
(under the Continuum Hypothesis), Dow and Shelah [9] (under Martin’s axiom), or
using forcing, see, e.g., Sobota and Zdomskyy [19] or Dow and Fremlin [7]. Results
in the latter paper are of particular interest to us as they concern forcing with Mκ;
namely, Dow and Fremlin proved that if A is a ground model Boolean algebra such
that its Stone space is an F-space, which occurs, e.g., in the case of �-complete
Boolean algebras or the algebra P(	)/Fin, then, in VMκ , the Stone space St(A)
does not have any non-trivial convergent sequences (which yields, e.g., that if V is
a model of set theory satisfying the Continuum Hypothesis, then St(P(	) ∩ V ) is

https://doi.org/10.1017/jsl.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.70


194 PIOTR BORODULIN–NADZIEJA AND DAMIAN SOBOTA

an Efimov space in any M	2 -generic extension of V). In Section 7 we prove that
Mκ forces that the Stone space of a given ground model Boolean algebra A does
not contain any non-trivial convergent sequences if and only if in V every pointwise
algebraically convergent sequence in H(A,Mκ) is uniformly convergent (Theorem
7.2). This, together with Dow and Fremlin’s theorem, implies that if the Stone space
of an infinite Boolean algebra A is an F-space, then every pointwise algebraically
convergent sequence in H(A,Mκ) is uniformly convergent—note that this result
does not hold for ‘simple’ Boolean algebras such as the Cantor algebra (see the
example in Section 5.5).

The structure of the paper is as follows. In the next section we present basic
notations, terminology, and facts used in the paper. In Section 3 we introduce four
types of topologies and modes of convergence of sequences of homomorphisms,
mostly into measure algebras. Section 4 is devoted to study relations between
convergence properties of sequences (ϕn) of homomorphisms into a Boolean algebra
carrying a strictly positive measure � and convergence properties of sequences of
measures of the form (� ◦ ϕn). In Section 5 we present a series of examples of
sequences of homomorphisms between Boolean algebras being convergent with
respect to one topology but not with respect to another one. In Section 6 we study
relations between various types of convergence of sequences of homomorphisms
into measure algebras and convergence of corresponding ultrafilters in random
generic extensions of the ground model. This study is continued in Section 7, where
we characterize those Boolean algebras whose Stone spaces contain no non-trivial
convergent sequences in random extensions with the aid of convergence properties
of sequences of homomorphisms in the ground model. The last section provides
several open questions and problems.

§2. Notations and terminology. All compact spaces considered in the paper are
assumed to be Hausdorff. If K is a compact space, then by Clopen(K) and Bor(K)
we denote the Boolean algebra of clopen subsets of K and the �-field of all Borel
subsets of K, respectively. If A is a Boolean algebra, then by St(A) we denote its
Stone space. Note that A and Clopen(St(A)) are isomorphic.

Unless otherwise stated, all measures considered by us are probability measures.
A measure on a Boolean algebra is always meant to be finitely additive. On the other
hand, a measure on a compact space is always a Radon measure, i.e., it is countably
additive, Borel, and inner regular with respect to compact subsets. Note that every
measure � on a Boolean algebra A has a unique extension to a Radon measure �̂
on the Stone space St(A), i.e., � = �̂ � Clopen(St(A)), where A is identified with
Clopen(St(A)). When there should be no confusion, we will usually drop̂and
write simply � for �̂.

If A and B are two Boolean algebras, then H(A,B) denotes the family of all
homomorphisms from A to B. In Section 3 we will endow H(A,B) with various
topologies and consider various types of convergences of sequences in H(A,B). If
ϕ ∈ H(A,B), then the function fϕ : St(B) → St(A) defined as fϕ(x) = ϕ–1[x] is
continuous (here x is an ultrafilter on B). On the other hand, if f : St(B) → St(A)
is a continuous function, then the function ϕf : A → B defined by the formula
ϕf(A) = f–1[A] is a homomorphism between Boolean algebras A and B. It follows
that f = f(ϕf ) and ϕ = ϕ(fϕ ).
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2.1. Topologies on spaces of measures. Let A be a Boolean algebra and let K be
a compact space. The space of all measures on K is denoted by P(K). By C (K) we
denote the Banach space of continuous real-valued functions on K endowed with
the supremum topology. If � ∈ P(K) and f ∈ C (K), then �(f) is defined as the
integral �(f) =

∫
K
fd�.

We endow P(K) with three topologies: the norm topology, the weak topology,
and the weak* topology. The norm topology on P(K) is induced by the variation
metric dvar on P(K) defined by the formula

dvar(�, �) = sup
A,B∈Bor(K)
A∩B=∅

(
|�(A) – �(A)| + |�(B) – �(B)|

)
for every �, � ∈ P(K). Note that if K is totally disconnected, then in the above
formula for dvar(�, �) we may confine ourselves only to pairs of disjoint clopen
subsets of K.

The weak topology on the dual space C (K)∗ (and hence on P(K)) is the weakest
topology which makes all functionals from C (K)∗ continuous and so it is induced
by the subbase given by sets of the form

V (�,ϕ, ε) =
{
� ∈ P(K) : |ϕ(�) – ϕ(�)| < ε

}
,

where � ∈ P(K), ϕ ∈ C (K)∗∗, and ε > 0. Similarly, the weak* topology on P(K) is
defined by sets of the form

V (�,f, ε) =
{
� ∈ P(K) : |�(f) – �(f)| < ε

}
,

where � ∈ P(K), f ∈ C (K), and ε > 0. Recall that P(K) with the weak* topology
is a compact space. Of course, the weak* topology on P(K) is weaker than the weak
topology which is on the other hand weaker than the norm topology.

The following facts are well-known.

Proposition 2.1. Let K be a totally disconnected compact space. Let V be the
collection of the sets of the form:

V (�,C, ε) =
{
� ∈ P(K) : |�(C ) – �(C )| < ε

}
,

where � ∈ P(K), C is a clopen subset of K, and ε > 0. Then V is a subbase of the
weak* topology on P(K).

Proposition 2.2. [6, Section VII, Theorem 11] Let K be a compact space. Then
the sequence (�n) of measures on K converges weakly to some � if and only if �n(B)
converges to �(B) for each Borel subset B ⊆ K.

We say that a Boolean algebra A has the Grothendieck property if every weak*
convergent sequence of (signed) Radon measures on St(A) is weakly convergent. It
is well-known that �-complete Boolean algebras have the property, but countable
ones do not (or more generally those algebras whose Stone spaces contain non-trivial
convergent sequences).

2.2. Measure algebras. If � is a measure on a Boolean algebra A, then we put
N� =

{
A ∈ A : �(A) = 0

}
. Similarly, if � is a Radon measure on a compact space

K, then we denote N� =
{
A ∈ Bor(K) : �(A) = 0

}
. For an infinite cardinal number
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κ, by Mκ we will denote the (standard) measure algebra of Maharam type κ, i.e.,
Mκ = Bor(2κ)/Nκ, where Nκ is the �-ideal of null sets with respect to the standard
product measure �κ on the space 2κ, i.e., Nκ = N�κ . By � and M we mean simply
�	 and M	 , respectively.

By 2 we mean the 2-point Boolean algebra {0, 1}. Notice that 2 = M0, i.e., it is a
measure algebra (with measure �0).

C will denote the Cantor algebra, i.e., the free algebra generated by 	 generators.
Note that C is isomorphic to the algebra of clopen subsets of the Cantor space 2	

and hence St(C) is homeomorphic to 2	 . We will use this identification frequently.
In general we denote elements of Boolean algebras, including Mκ’s, with capital

letters. However, speaking about an element of Mκ sometimes we understand it as a
condition of the forcing notionMκ \ {0}. In this case, we will rather use the standard
forcing notation: p, q, and so on.

2.3. Metric Boolean algebras. We will say, after Kolmogorov [15], that a Boolean
algebra B is metric if it supports a strictly positive measure, i.e., there is a measure
� on B such that �(A) > 0 for every A ∈ B \ {0}. Note that a metric algebra need
not be �-complete, so it is not necessarily a measure algebra. The word metric is
explained by the following simple fact.

Fact 2.3. If � is a strictly positive measure on a Boolean algebra B, then the
function d� : B× B → R defined for every A,B ∈ B by the formula

d�(A,B) = �(A� B)

is a metric on B (called the Fréchet–Nikodym metric).

Note that we may define easily a Radon version of the Fréchet–Nikodym metric.
Namely, if � is a strictly positive measure on a Boolean algebra B, then the function
dBor� : Bor(St(B)) × Bor(St(B)) → R defined as

dBor� (A,B) = �̂(A� B),

where A,B ∈ Bor(St(B)), is a pseudometric. Call dBor� the Borel Fréchet–Nikodym
pseudometric on (B, �).

Recall that there is a natural and well-studied notion of convergence in complete
Boolean algebras. Let A be a complete Boolean algebra and let (An) be a sequence
of its elements. We say that (An) algebraically converges to A ∈ A if∨

n

∧
m>n

Am =
∧
n

∨
m>n

Am = A.

Such a notion was deeply studied, e.g., in [2, 3, 14]. The sequential topology on A is
the largest topology with respect to which all the algebraically convergent sequences
converge. If A is a measure algebra, then the sequential topology coincides with the
topology introduced by the Fréchet–Nikodym metric (see [3]).

§3. Convergences and topologies in H(A,B). In the next subsections we will see
that for given Boolean algebras A and B we may endow the space H(A,B) with
several topologies and convergences.
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3.1. Pointwise metric topology. Let (B, �) be a metric algebra. Then, there is a
natural topology on H(A,B) given by the metric d�, which we call the pointwise
metric topology. Namely, an element of the subbase is of the form

V (ϕ,A, ε) =
{
� ∈ H(A,B) : d�(ϕ(A), �(A)) < ε

}
for ϕ ∈ H(A,B), A ∈ A, and ε > 0.

Let (ϕn) be a sequence of homomorphisms from A to B. It follows that (ϕn) is
convergent in the pointwise metric topology to some ϕ ∈ H(A,B) if and only if for
everyA ∈ A and every ε > 0 there isN ∈ 	 such that d�

(
ϕn(A), ϕ(A)

)
< ε for every

n > N—in this case, we will say that (ϕn) is pointwise metric convergent to ϕ. Note
that if (ϕn) is not convergent to ϕ, then there are A ∈ A, ε > 0 and a subsequence
(ϕnk ) such that for every k ∈ 	 we have

ε ≤ d�
(
ϕnk (A), ϕ(A)

)
= �

(
ϕnk (A) \ ϕ(A)

)
+ �

(
ϕ(A) \ ϕnk (A)

)
,

so either�
(
ϕnk (A) \ ϕ(A)

)
≥ ε/2 for infinitely many k ∈ 	, or�

(
ϕ(A) \ ϕnk (A)

)
≥

ε/2 for infinitely many k ∈ 	. Since

�
(
ϕ(A) \ ϕnk (A)

)
= �

(
ϕnk (Ac) \ ϕ(Ac)

)
,

it follows that if (ϕn) does not converge pointwise metric to ϕ, then we may always
find A ∈ A, ε > 0, and a subsequence (ϕnk ) such that �

(
ϕnk (A) \ ϕ(A)

)
≥ ε. We

will use this observation regularly.

Remark 3.1. Using the natural bijection between the set of ultrafilters on a
Boolean algebra A and the set of homomorphisms from H(A,2), we see that the
pointwise metric topology coincides with the Stone topology on the set of ultrafilters
on A, i.e., St(A) and H(A,2) are homeomorphic. Thus, since 2 embeds into every
(metric) Boolean algebra B, the space H(A,B) with the pointwise metric topology
always contains a closed copy of the Stone space of A, which is immediately yielded
by the following trivial fact.

Lemma 3.2. Let A, B, and B
′ be Boolean algebras. Assume that (B, �) and (B′, �)

are metric and such that B is a subalgebra of B′ with � = � � B. Endow H(A,B) and
H(A,B′) with the pointwise metric topologies. If for every A ∈ B

′ \ B there is ε > 0
such that d�(A,B) < ε for no B ∈ B, then H(A,B) is closed in H(A,B′).

3.2. Uniform topology. Let us again assume that (B, �) is a metric algebra. We
may define a metric dhom on the set H(A,B) in the following way:

dhom(ϕ,�) = sup
{
d�(ϕ(A), �(A)) : A ∈ A

}
,

where ϕ,� ∈ H(A,B). According to the topology induced by dhom, which we call
the uniform topology, a sequence (ϕn) converges to ϕ iff it converges uniformly with
respect to the metric d�, i.e., for each ε > 0 there is N such that for every n > N
we have d�

(
ϕn(A), ϕ(A)

)
< ε for each A ∈ A. We will say in this case that (ϕn)

converges uniformly to ϕ. Of course, if a sequence of homomorphisms converges
uniformly, then it converges pointwise—the converse however does not necessarily
hold (see Sections 5.1, 5.3, and 5.4 for appropriate examples).
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198 PIOTR BORODULIN–NADZIEJA AND DAMIAN SOBOTA

Remark 3.3. Contrary to the pointwise metric topology (see Remark 3.1), for
every Boolean algebra A the uniform topology on H(A,2) is discrete.

3.3. Pointwise algebraic convergence. This kind of convergence can be introduced
in H(A,B) if B is �-complete (but not necessarily metric). We say that a sequence
of homomorphisms (ϕn) from A to B converges pointwise algebraically to ϕ if for
every A ∈ A we have ∨

n

∧
m>n

ϕm(A) =
∧
n

∨
m>n

ϕm(A) = ϕ(A).

In fact, by the de Morgan laws, (ϕn) converges pointwise algebraically to ϕ if and
only if any of the following two equivalent conditions holds:

• for every A ∈ A we have
∨
n

∧
m>n ϕm(A) = ϕ(A);

• for every A ∈ A we have
∧
n

∨
m>n ϕm(A) = ϕ(A).

If we assume that B is metric (with a strictly positive measure �), then if (ϕn)
converges pointwise algebraically to ϕ, then for each A ∈ A we have

lim
n→∞

�

( ∧
m>n

ϕm(A)
)

= lim
n→∞

�

( ∨
m>n

ϕm(A)
)

= �(ϕ(A)).

The following fact binds the pointwise algebraic convergence with the pointwise
metric convergence. Recall that for every κ the measure �κ is continuous, i.e., for
every decreasing sequence (An) in Mκ we have limn→∞ �κ(An) = �κ

( ∧
n∈	 An

)
.

Proposition 3.4. Let A be a Boolean algebra and κ a cardinal number. Let (ϕn)
be a sequence of homomorphisms from A to Mκ. If (ϕn) is pointwise algebrically
convergent to some ϕ ∈ H(A,Mκ), then ϕn converges pointwise metric to ϕ.

Proof. Let A ∈ A. We will show that limn→∞ �κ
(
ϕn(A)�ϕ(A)

)
= 0. For the

sake of contradiction assume that there are ε > 0 and a subsequence (ϕnk ) such that
�κ(ϕnk (A) \ ϕ(A)) ≥ ε for every k ∈ 	. Then, by the continuity of �κ,

�κ

( ∧
k∈	

∨
l>k

(
ϕnl (A) \ ϕ(A)

))
≥ ε.

However, since
∧
k∈	

∨
l>k ϕnl (A) = ϕ(A), we get that

∧
k∈	

∨
l>k

(
ϕnl (A) \

ϕ(A)
)

= 0, so

0 = �κ

( ∧
k∈	

∨
l>k

(
ϕnl (A) \ ϕ(A)

))
≥ ε > 0,

a contradiction. �

As we will see in Sections 5.2 and 5.3, the converse to Proposition 3.4 does not
hold in general. However, for B = 2 we have the following corollary.

Corollary 3.5. Let A be a Boolean algebra. Then, in H(A,2) the pointwise
algebraic convergence coincides with the pointwise metric convergence.
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Proof. Let (ϕn) be a sequence in H(A,2). If (ϕn) is pointwise algebraically
convergent, then by Proposition 3.4 it is also pointwise metric convergence.

Conversely, if (ϕn) is pointwise metric convergent to ϕ ∈ H(A,2), then for every
A ∈ A there is N ∈ 	 such that ϕn(A) = ϕ(A) for every n > N . It follows that∧
n>N ϕn(A) = ϕ(A), so in particular

∨
N∈	

∧
n>N ϕn(A) = ϕ(A). Hence, (ϕn)

converges pointwise algebraically to ϕ. �

3.4. Pointwise Borel metric topology and uniform Borel topology. Let A be a
Boolean algebra and (B, �) a metric Boolean algebra. To introduce yet another
topology on H(A,B), called by us pointwise Borel metric topology, we need to
appeal to dual continuous functions and the pseudometric dBor� . Namely, we define
the subbase of the topology to be given by the sets of the form

VBor(ϕ,A, ε) =
{
� ∈ H(A,B) : dBor�

(
f–1
ϕ [A], f–1

� [A]
)
< ε

}
for ϕ ∈ H(A,B), A ∈ Bor(St(A)), and ε > 0.

Let (ϕn) be a sequence of homomorphisms from A to B. For each n ∈ 	 let
fn = fϕn and let f = fϕ . We say that (ϕn) converges pointwise Borel metric to
ϕ if limn→∞ �̂

(
f–1
n [B] � f–1[B]

)
= 0 for every B ∈ Bor(St(A)). Obviously, if a

sequence of homomorphisms converges pointwise Borel metric, then it converges
pointwise metric; however, the converse may not hold—we provide relevant
counterexamples in Sections 5.1 and 5.3 as well as some positive results in Section
4 (see, in particular, Corollary 4.6).

Similarly to the uniform topology on H(A,B), we may define the uniform Borel
topology. Namely, we define a Borel version dBorhom of the metric dhom:

dBorhom(ϕ,�) = sup
{
dBor�

(
f–1
ϕ [A], f–1

� [A]
)

: A ∈ Bor(St(A))
}
,

where ϕ,� ∈ H(A,B). Note that, since � is strictly positive on A, dBorhom is a metric,
even though dBor� is only a pseudometric. As before, we will say that a sequence
(ϕn) converges uniformly Borel to ϕ if for every ε > 0 there is N ∈ 	 such that
dBorhom(ϕn, ϕ) < ε for every n > N , i.e., �̂

(
f–1
n [B] � f–1[B]

)
< ε for every n > N and

every Borel subset B ⊆ St(A). Of course, if a sequence converges uniformly Borel,
then it converges pointwise Borel metric and uniformly. It appears that, conversely,
the uniform convergence easily implies the Borel uniform convergence, because, in
fact, the uniform topology and uniform Borel topology coincide.

Lemma 3.6. Let A be a Boolean algebra and (B, �) a metric Boolean algebra. Then,
for the metrics dhom and dBorhom on H(A,B) we have dhom = dBorhom.

Proof. Fix ϕ,� ∈ H(A,B). Since every clopen set in St(A) is Borel, we have
dhom(ϕ,�) ≤ dBorhom(ϕ,�). Let ε > 0—we will show that dBorhom(ϕ,�) ≤ dhom(ϕ,�) +
ε, which will prove that dBorhom(ϕ,�) ≤ dhom(ϕ,�). By the regularity of �̂ ◦ f–1

ϕ and
�̂ ◦ f–1

� , for every B ∈ Bor(St(A)) there is AB ∈ A such that B ⊆ AB , �̂
(
f–1
ϕ [AB \

B]
)
< ε/2, and �̂

(
f–1
� [AB \ B]

)
< ε/2. Thus, for every Borel B ∈ Bor(St(A)) we

have:
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�̂
(
f–1
ϕ [B] � f–1

� [B]
)
≤

�̂
(
f–1
ϕ [B] � f–1

ϕ

[
AB

])
+ �̂

(
f–1
ϕ

[
AB

]
� f–1

�

[
AB

])
+ �̂

(
f–1
�

[
AB

]
� f–1

� [B]
)
<

ε/2 + d�
(
ϕ

(
AB

)
, �

(
AB

))
+ ε/2 ≤ dhom(ϕ,�) + ε,

so dBorhom(ϕ,�) ≤ dhom(ϕ,�) + ε. �

Corollary 3.7. Let A be a Boolean algebra and (B, �) a metric Boolean algebra.
Then:

(1) the uniform topology and the uniform Borel topology coincide;
(2) a sequence of homomorphisms from A to B converges uniformly if and only if it

converges uniformly Borel.

§4. Homomorphisms and measures. By the Maharam theorem for every measure
� on a Boolean algebra A there are a cardinal number κ and an injective
homomorphism ϕ : A → Mκ such that � = �κ ◦ ϕ. On the other hand, if ϕ : A →
Mκ is a homomorphism, then it is plain to check that the function �κ ◦ ϕ : A → R is a
(finitely additive) measure. It follows that there is a natural mapping from the family
of homomorphisms H(A,Mκ) into the family of measures on A. This observation
allows us to use notions from the theory of measures on Boolean algebras to study
H(A,Mκ).

Proposition 4.1. LetA be a Boolean algebra and (B, �) a metric algebra. Consider
the space H(A,B) with the topology  and the space P(St(A)) with topology ′, both
given below. Then, the function F� : H(A,B) → P(St(A)), given by F�(ϕ) = �̂ ◦ f–1

ϕ ,
is continuous in each of the following cases:

(1)  is the uniform topology and ′ is the norm topology;
(2)  is the pointwise metric topology and ′ is the weak* topology.

Proof. We will use below the fact that |�(C ) – �(D)| ≤ �(C �D) for every
C,D ∈ B.

We first prove (1). Using the above inequality, for every A ∈ A we have∣∣�(ϕ(A)) – �(�(A))
∣∣ ≤ �(ϕ(A) � �(A)

)
,

and thus, by the definition of the variation metric on P(St(A)), it holds:

dvar
(
F�(ϕ), F�(�)

)
= sup
A,B∈A

A∧B=0A

(∣∣F�(ϕ)(A) – F�(�)(A)
∣∣ +

∣∣F�(ϕ)(B) – F�(�)(B)
∣∣)

≤ 2 sup
A∈A

∣∣F�(ϕ)(A) – F�(�)(A)
∣∣ ≤ 2 sup

A∈A

d�(ϕ(A), �(A)) = 2dhom(ϕ,�),

which actually shows that F� is 2-Lipschitz.
To prove (2) let ϕ ∈ H(A,B) and fix an element V of the subbase of the weak*

topology onP(St(A)) of the formV = V (F�(ϕ), A, ε) =
{
� :

∣∣F�(ϕ)(A) – �(A)
∣∣ <

ε
}
, where A ∈ A and ε > 0. Put:

U =
{
� ∈ H(A,B) : d�(ϕ(A), �(A)) < ε

}
.
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Then, U is an open set in H(A,B). For every � ∈ U we have:∣∣F�(ϕ)(A) – F�(�)(A)
∣∣ ≤ d�(ϕ(A), �(A)

)
< ε,

so ϕ ∈ F�[U ] ⊆ V , which proves that F� is continuous. �

Consequently, the equivalence relation on H(A,B) defined by the formula

ϕ ∼ � ⇐⇒ F�(ϕ) = F�(�),

has closed equivalence classes, provided that H(A,B) is endowed with any of the
topologies  mentioned in Proposition 4.1.

Corollary 4.2. Let A be a Boolean algebra and (B, �) a metric algebra. Let
ϕn ∈ H(A,B), n ∈ 	, and ϕ ∈ H(A,B). The following hold:

(1) if (ϕn) converges uniformly to ϕ, then
(
�̂ ◦ f–1

ϕn

)
converges to �̂ ◦ f–1

ϕ in norm;
(2) if (ϕn) converges pointwise Borel metric to ϕ, then

(
�̂ ◦ f–1

ϕn

)
converges weakly

to �̂ ◦ f–1
ϕ ;

(3) if (ϕn) converges pointwise metric to ϕ, then
(
�̂ ◦ f–1

ϕn

)
converges weakly* to

�̂ ◦ f–1
ϕ .

Proof. (1) and (3) are direct consequences of Proposition 4.1. (2) follows from
Proposition 2.2. �

Remark 4.3. Note here that the converse to Corollary 4.2 may not hold even in
the simplest case when all homomorphisms ϕn’s are the same. Indeed, let (B, �) be a
metric algebra and let each ϕn be the identity homomorphism on B. If ϕ ∈ H(B,B)
is a homomorphism such that�(ϕ(A)) = �(A) andϕ(A) �= A for someA ∈ B, then
the sequence (ϕn) does not converge to ϕ in any of the considered topologies, even
though �(ϕn(B)) = �(ϕ(B)) for every n ∈ 	 and B ∈ B.

We now prove that if a Boolean algebra A has the Grothendieck property, then
every pointwise metric convergent sequence of homomorphisms fromA into a metric
algebra is also pointwise Borel metric convergent. Recall that a sequence (�k) of
Radon measures on a compact Hausdorff space K is uniformly countably additive
(also, uniformly exhaustive) if for every descending sequence (En) of Borel subsets
of K such that

⋂
n En = ∅ and every ε > 0 there is N ∈ 	 such that

∣∣�k(En)∣∣ <
ε for every n ≥ N and k ∈ 	. Equivalently, there is N ∈ 	 such that

∣∣�k(Em) –
�k(En)

∣∣ < ε for every n,m ≥ N and k ∈ 	 (see [6, Chapter VII, Theorem 10]
for other equivalent definitions). We also say that (�n) is weakly convergent to a
Radon measure � on K if limn→∞ �n(B) = �(B) for every Borel subset B of K. The
Nikodym Convergence Theorem [6, Chapter VII, p. 90] asserts that every weakly
convergent sequence of Radon measures is uniformly countably additive.

Proposition 4.4. Let A be a Boolean algebra and (B, �) be a metric Boolean
algebra. Let (ϕn) be a sequence in H(A,B) pointwise metric convergent to a
homomorphism ϕ ∈ H(A,B). If the sequence

(
�̂ ◦ f–1

ϕn

)
is uniformly countably

additive, then (ϕn) converges pointwise Borel metric to ϕ.
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Proof. Write simply fn for fϕn and f for fϕ . Fix ε > 0 and a Borel subset B of
St(A). Let � = ε/2. We will show first that �̂

(
f–1[B] \ f–1

k [B]
)
< � for almost all

k ∈ 	.
Since each measure �̂ ◦ f–1

k is (outer) regular on St(A), for each k ∈ 	 we can
find Ak ∈ A such that B ⊆ Ak and

�̂
(
f–1
k [Ak \ B]

)
< �/4. (1)

By taking intersections, we may assume that Ak+1 ≤ Ak for every k ∈ 	. By the
uniform countable additiveness of

(
�̂ ◦ f–1

n

)
, there is k0 ∈ 	 such that

�̂
(
f–1
k [Al \ Ak]

)
< �/4 (2)

for every k > l > k0. Since obviously the measure �̂ ◦ f–1 is also countably additive,
there is k1 ≥ k0 such that

�̂
(
f–1[Al \ Ak]

)
< �/4 (3)

for every k > l > k1. Now, fix l = k1 + 1. By the pointwise metric convergence of
(ϕk) to ϕ, there is k2 ≥ l such that

�̂
(
f–1[Al ] � f–1

k [Al ]
)
< �/4 (4)

for every k > k2. Using (3), (4), and (2), for every k > k2 we have:

�̂
(
f–1[Ak] � f–1

k [Ak]
)

(5)

≤ �̂
(
f–1[Ak] � f–1[Al ]

)
+ �̂

(
f–1[Al ] � f–1

k [Al ]
)

+ �̂
(
f–1
k [Al ] � f–1

k [Ak]
)
<

3�
4
.

(5) and (1) yield that for every k > k2 it holds:

�̂
(
f–1[B] \ f–1

k [B]
)
≤ �̂

(
f–1[Ak] \ f–1

k [B]
)
≤ �̂

(
f–1[Ak] � f–1

k [B]
)

≤ �̂
(
f–1[Ak] � f–1

k [Ak]
)

+ �̂
(
f–1
k [Ak] � f–1

k [B]
)
≤ 3�

4
+
�

4
= �,

so

�̂
(
f–1[B] \ f–1

k [B]
)
< ε/2. (6)

Changing B to Bc and doing exactly the same computations that led us to (6), we
get that there is k3 ≥ k2 such that

�̂
(
f–1
k [B] \ f–1[B]

)
= �̂

(
f–1[Bc ] \ f–1

k [Bc ]
)
< ε/2 (7)

for every k > k3. Thus, by (6) and (7), for every k > k3 we get:

�̂
(
f–1[B] � f–1

k [B]
)
< ε.

This proves that (ϕn) converges pointwise Borel metric to ϕ. �

Corollary 4.5. LetA be a Boolean algebra and (B, �) be a metric Boolean algebra.
Let (ϕn) be a sequence in H(A,B) pointwise metric convergent to a homomorphism
ϕ ∈ H(A,B). If A has the Grothendieck property, then (ϕn) converges pointwise Borel
metric to ϕ.
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Proof. Assume that A has the Grothendieck property. Let (fk) and f be the
continuous functions dual to (ϕk) and ϕ, respectively. Since limk→∞ �̂

(
f–1
k [A]

)
=

�̂
(
f–1[A]

)
for every A ∈ A, the sequence

(
�̂ ◦ f–1

k

)
is weakly* convergent to

�̂ ◦ f–1 (as it is uniformly bounded). The Grothendieck property of A implies
that

(
�̂ ◦ f–1

k

)
is weakly convergent to �̂ ◦ f–1. By the Nikodym Convergence

Theorem, the sequence is uniformly countably additive, so the conclusion follows
by Proposition 4.4. �

Notice here that the measures �̂ ◦ f–1
k considered in the Proof of Corollary 4.5

are non-negative, i.e., �̂ ◦ f–1
k (B) ≥ 0 for every B ∈ Bor(St(A)). It follows that in

the proof we do not need the full Grothendieck property of the algebra A, but only
the property for non-negative measures, i.e., if a sequence of non-negative measures
on A is weakly* convergent, then it is weakly convergent. Such a variant of the
Grothendieck property was introduced in Koszmider and Shelah [17], where it was
called the positive Grothendieck property.

Corollary 4.6. LetA be a Boolean algebra with the positive Grothendieck property
and (B, �) be a metric Boolean algebra. Let (ϕn) be a sequence in H(A,B) pointwise
metric convergent to a homomorphism ϕ ∈ H(A,B). Then, (ϕn) converges pointwise
Borel metric to ϕ.

The following weaker form of the �-completeness was also introduced in [17]: a
Boolean algebra A is said to have the Weak Subsequential Separation Property (the
WSSP) if for every sequence (An) of pairwise disjoint elements of A there is an
element A ∈ A such that both of the sets

{
n ∈ 	 : An ≤ A

}
and

{
n ∈ 	 : An ∧ A =

0
}

are infinite. Proposition 2.4 of [17] asserts that every Boolean algebra with the
WSSP has the positive Grothendieck property. Note that there exists a Boolean
algebra with the WSSP (and hence with the positive Grothendieck property), but
without the Grothendieck property (see [17, Proposition 2.5]).

Recall that by the Eberlein–Šmulian theorem and the Dieudonné–Grothendieck
characterization of weakly compact sets of Radon measures on compact spaces (see
[6, Chapter VII, Theorem 14]), a weakly* convergent sequence (�n) of measures on
a given compact space K is weakly convergent if and only if there is no antichain
(Uk) of open subsets of K, ε > 0 and subsequence (�nk ) such that |�nk (Uk)| ≥ ε for
every k ∈ 	.

Proposition 4.7. Let A be a Boolean algebra with the positive Grothendieck
property, (B, �) a metric Boolean algebra, and ϕ,ϕn ∈ H(A,B), n ∈ 	. Let (An)
be an antichain in A such that for some ε > 0 and every n ∈ 	 we have d�

(
ϕn(An),

ϕ(An)
)
≥ ε. Then, (ϕn) is not pointwise metric convergent to ϕ.

Proof. For the sake of contradiction assume that (ϕn) is pointwise metric
convergent to ϕ. Then, by Corollary 4.2(3), the sequence

(
�̂ ◦ f–1

ϕn

)
is weakly*

convergent to �̂ ◦ f–1
ϕ . Since (An) is an antichain in A, the sequence (ϕ(An))

is an antichain in B and thus limn→∞ �(ϕ(An)) = 0. From the assumption that
d�

(
ϕn(An), ϕ(An)

)
≥ ε for every n ∈ 	 it follows that there is N ∈ 	 such that

�(ϕn(An)) ≥ ε/2 for every n > N , so
(
�̂ ◦ f–1

ϕn

)
(An) ≥ ε/2 for every n > N . By the

aforementioned characterisation of weakly convergent sequences of measures on
compact spaces, the sequence

(
�̂ ◦ f–1

ϕn

)
is not weakly convergent to �̂ ◦ f–1

ϕ , and
hence, by the positive Grothendieck property of A, not weakly* convergent, which
is a contradiction. �
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§5. Examples of sequences of homomorphisms. In this section we will present
certain examples distinguishing different types of convergence. First, we summarize
in the following self-explanatory diagram all the implications which we have already
proved or which we are going to prove.

uniform pointwise Borel metric pointwise metric

pointwise algebraic

1 2

the positive Grothendieck property

4

Seever’s interpolation property
5 3

Of those, (2) is trivial, (1) follows from Corollary 3.7, and (3) is proved in
Proposition 3.4. No other implication holds in general. (4) holds for Boolean
algebras with the positive Grothendieck property and hence, in particular, for
Boolean algebras with the WSSP (Corollary 4.6). (5) is true for Boolean algebras
with the interpolation property (or, the property (I)) introduced by Seever (see
Section 7). Corollary 3.5 implies that (3) may be reversed for B = 2, but we skipped
that in the diagram, since it is trivial.

Note that it is easy to obtain a sequence which satisfies simultaneously all of the
above types of convergence (e.g., a trivial sequence). Below we present examples
of sequences of homomorphisms satisfying various other combinations of types of
convergence and witnessing that the above diagram is complete.

In what follows we will often abuse the notation identifying equivalence classes
(particularly elements of M) with their representatives.

5.1. A pointwise algebraically convergent sequence which is not pointwise Borel
metric convergent. To see that the pointwise algebraic convergence does not imply
the pointwise Borel metric convergence, consider the Cantor algebra C and a non-
trivial sequence (xn) of points in the Cantor space St(C) = 2	 convergent to some
x ∈ 2	 . For each n ∈ 	 define ϕn ∈ H(C,2) by the condition: ϕn(A) = 1 iff xn ∈ A,
where A ∈ C. Similarly, define ϕ ∈ H(C,2) by the condition: ϕ(A) = 1 iff x ∈
A, where A ∈ C. Since limn→∞ xn = x in St(C), (ϕn) is pointwise algebraically
convergent. On the other hand, (ϕn) does not converge pointwise Borel metric to ϕ,
since for the Borel set {x} and every n ∈ 	 we have:

�̂0
(
f–1
ϕn

[
{x}

]
� f–1

ϕ

[
{x}

])
= �0(0 � 1) = 1.

Of course, in the above example instead of C we may use any Boolean algebra
such that its Stone space contains a non-trivial convergent sequence.

5.2. A uniformly convergent sequence which is not pointwise algebraically conver-
gent. Here we will present an example of a sequence of homomorphisms inH(C,M)
which converges uniformly but not pointwise algebraically.

Let {sn : n ∈ 	} be any enumeration of 2<	 . For x ∈ 2	 define x ∈ 2	 by

x(k) =

{
1 – x(k), if k = 0,
x(k), otherwise,
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so x is just x but with the 0-th bit flipped. For s ∈ 2<	 and x ∈ 2	 we will say
that x agrees with s, if x(k + 1) = s(k) for each k < |s | (so, in other words, s is a
segment of x starting with the 1st bit).

Now for n ∈ 	 define gn : 2	 → 2	 by

gn(x) =

{
x, if x agrees with sn,
x, otherwise.

It is easy to check that �n : C → M defined by �n(A) = gn[A] = g–1
n [A] is a

homomorphism. Let � be the natural embedding of C into M, i.e., �(A) = A for
every A ∈ C. (Note that here we treat C as the algebra of clopen subsets of 2	 and
writing gn[A] we mean the appropriate equivalence class, that is, an element of M.)

Proposition 5.1. (�n) converges uniformly to � but it does not converge pointwise
algebraically.

Proof. For each s ∈ 2<	 let As = {x ∈ 2	 : x agrees with s}. Clearly, �(As) =
1/2|s| and so limn→∞ �(Asn ) = 0. But �n coincides with � on 2	 \ Asn and so (�n)
converges uniformly to �.

LetA = {x ∈ 2	 : x(0) = 0}. Fix x ∈ 2	 and n ∈ 	. If x ∈ A, then there ism > n
such that x agrees with sm and so x �∈ gm[A]. Hence,A ∩

⋂
m>n gm[A] = ∅. If x �∈ A,

then there is m > n such that x does not agree with sm and so x �∈ gm[A]. Hence,
Ac ∩

⋂
m>n gm[A] = ∅, and so

⋂
m>n gm[A] = ∅. Since n was arbitrary, we get that⋃

n

⋂
m>n gm[A] = ∅ and hence

∨
n

∧
m>n �n(A) = 0 �= A = �(A), which implies

that (ϕn) does not converge pointwise algebraically to �. �
Note that since the pointwise algebraic convergence implies the pointwise metric

convergence, it is not possible that (�n) converges pointwise algebraically to a
homomorphism other than �.

5.3. A pointwise metric convergent sequence which is neither pointwise Borel
metric convergent nor pointwise algebraically convergent. Combining methods used
in Sections 5.1 and 5.2, we may easily obtain an example of a sequence of
homomorphisms in H(C,M) which is only pointwise metric convergent.

For each n ∈ 	, let ϕn : C → 2 be defined as in Section 5.1 and let �n : C →
M be defined as in Section 5.2. Define �n : C → 2×M by the formula �n(A) =
(ϕn(A), �n(A)) for every A ∈ C.

By the same arguments as in Sections 5.1 and 5.2, the sequence (�n) is pointwise
metric convergent to the homomorphism � = (ϕ,�), yet, again by the same
arguments, it is not pointwise Borel metric convergent nor pointwise algebraically
convergent. Of course, 2×M can be embedded into M, so (�n) can be treated as a
sequence in H(C,M).

5.4. A pointwise Borel metric convergent sequence which is neither uniformly con-
vergent nor pointwise algebraically convergent. For every n ∈ 	 define flipn : 2	 →
2	 by flipn(x) = x + �{n}, where + is pointwise modulo 2 (so, in short, flipn flips
the n-th coordinate of x). In the analogous way we define flipn also on 2<	 \ 2<n (of
course, flipn(s) makes sense only if n < |s |). Letϕn : M → M be the homomorphism
induced by flipn, i.e., the homomorphism defined by ϕn(B) = flipn[B]. Then (ϕn) is
convergent to the identity on M in the pointwise metric topology. Indeed, first notice
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that (ϕn(A)) converges trivially to A if A is a clopen subset of 2	 . Also, for every
ε > 0 and every measurable set B there is a clopen set A such that d�(B,A) < ε.
Since ϕn is an isometry for each n, we get that ϕn(B) converges with respect to the
pointwise metric topology for every Borel subset B of 2	 .

AsM has the Grothendieck property, (ϕn) is automatically pointwise Borel metric
convergent. On the other hand, d�

(
ϕn(Xn), Xn

)
= 1 for each n, where Xn = {x ∈

2	 : x(n) = 0}, so (ϕn) does not converge uniformly.
The rest of this section will be devoted to the proof that (ϕn) does not converge

pointwise algebraically. The crucial fact is the following.

Proposition 5.2. There is a closed subset B of 2	 such that �(B) > 1/2 and for
each x ∈ B we have flipn(x) /∈ B for infinitely many n’s.

Perhaps quite unexpectedly, to prove Proposition 5.2 we will use several notions
from coding theory. For n ∈ 	 the function �n : {0, 1}n → 	 defined by

�n(x, y) =
∣∣{i ≤ n : x(i) �= y(i)}

∣∣
is clearly a metric (called the Hamming metric). We will call a subset A ⊆ {0, 1}n a
code if for every x ∈ {0, 1}n there is y ∈ A such that �n(x, y) ≤ 1. In coding theory
this property is one of the conditions defining so-called 1-error correcting codes.

In what follows we will use the fact that there is a perfect sphere packing in {0, 1}n
for each n of the form n = 2m – 1, m ∈ 	, i.e., {0, 1}n is a disjoint union of the
closed balls of radius 1 with respect to the Hamming metric (see [11]). The set of
centers of those balls is a code, which we will call a perfect code (in the coding theory
terminology this is the same as a perfect 1-error-correcting Hamming code). There
is a rich literature concerning Hamming codes and it is quite easy to learn how to
find perfect codes. It seems, however, that it is not so easy to find a proof why those
algorithms work, so we sketch here the argument, using the algorithm for creating
perfect codes presented, e.g., in [1, Section 2.5].

Proposition 5.3. If n = 2m – 1, for m ∈ N, then {0, 1}n is a disjoint union of the
closed balls of radius 1 with respect to the Hamming metric.

Proof. Let n = 2m – 1. We endow the set {0, 1}n with the algebraic structure
and see it as Fn2 (i.e., n-dimensional vector space over F2, the field consisting of two
elements). Let H be a matrix created by putting all the non-zero elements of Fm2 as
its columns. Then H is an (n ×m)-matrix. Define

C =
{
v ∈ F

n
2 : Hv = 0Fn2

}
.

In other words, v ∈ C if and only if
∑
l<n H (k, l) · v(l) = 0 for each k < m.

We claim that C is a perfect code, i.e., the collection K = {K1(c) : c ∈ C}, where
Kr(x) is a closed ball of radius r centered at x, forms a partition of Fn2 .

First, notice that if v ∈ C and 1 ≤ �n(v,w) ≤ 2 for some w ∈ F
n
2 , then w /∈ C .

Indeed, suppose first that there is exactly one i < n such that v(i) �= w(i). There
is k < m such that H (k, i) = 1 and then

∑
l<n H (k, l) · w(l) = 1 and so w /∈ C . If

there are exactly two indices i < j < n such that v(i) �= w(i) and v(j) �= w(j), then
for k < m such that H (k, i) �= H (k, j) we again have

∑
l<n H (k, l) · w(l) = 1, and

w /∈ C .

https://doi.org/10.1017/jsl.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.70


ON SEQUENCES OF HOMOMORPHISMS INTO MEASURE ALGEBRAS 207

So, by the above, the family K is pairwise disjoint. Furthermore, we may arrange
columns of H as we wish, so we may suppose that the last m columns of H consist
of vectors with only one 1. In this way it is easy to see that every vector in F

n–m
2 has

exactly one extension to the vector in F
n
2 which belongs to C and so |C | = 2n–m. As

every element of K consists of n + 1 points and every point is covered by at most
one element of K, we see that K covers (n + 1) · 2n–m = 2n points, i.e., the whole
space F

n
2 . �

Let cn be the smallest size of a code in {0, 1}n and let an = cn/2n (so an measures
how big portion of whole {0, 1}n we have to take to obtain a code). The following
fact is a consequence of the existence of perfect codes.

Proposition 5.4. limn→∞ an = 0.

Proof. First, notice that (an) is non-increasing. Indeed, if A is a code in {0, 1}n,
then the family A′ = {x�0: x ∈ A} ∪ {x�1: x ∈ A} is a code in {0, 1}n+1 and
|A′| = 2|A|.

To show that (an) can be arbitrarily close to 0, fix m ∈ 	 and let n = 2m – 1. By
Proposition 5.3, there is a perfect code C in {0, 1}n, and from the proof we know
that |C | = 2n–m = 2n/(n + 1) and so cn ≤ 2n/(n + 1) and hence an ≤ 1/(n + 1). As
(an) is non-increasing, limn→∞ an = 0. �

Proof of Proposition 5.2. We are going to construct inductively an increasing
sequence (dn) of natural numbers and a sequence (Cn) of sets such that for every
n ∈ 	 the following conditions hold:

(1) Cn ⊆ {0, 1}dn ,
(2) |Cn| < 2dn–1,
(3) for every c ∈ Cn and t ∈ {0, 1}dn+1–dn we have c�t ∈ Cn+1,
(4) For each s ∈ {0, 1}dn+1 \ Cn+1 there is dn ≤ m < dn+1 such that flipm(s) ∈
Cn+1.

Let d0 = 3 andC0 be a perfect code in {0, 1}3 (e.g.,C0 may consist of two constant
sequences). Suppose now that we have constructed dn and Cn. Let

α =
2dn–1 – |Cn|
2dn – |Cn|

.

By (2) α > 0 and so, using Proposition 5.4, we may find k so that ak < α. Let C be
a code in {0, 1}k such that |C | = ak2k . Define Cn+1 in the following way:

Cn+1 =
{
t�x : t ∈ Cn, x ∈ {0, 1}k

}
∪

{
t�c : t ∈ {0, 1}dn \ Cn, c ∈ C

}
.

Thus, Cn+1 consists of two parts: all the possible extensions of elements of Cn
to {0, 1}dn+k and all the extensions of the rest of {0, 1}dn by elements of C. Put
dn+1 = dn + k. We claim thatCn+1 and dn+1 satisfy all the desired properties. Indeed,
(1) and (3) are clear, and concerning (2) we have:

|Cn+1| = 2k |Cn| + (2dn – |Cn|) · ak2k,
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so

|Cn+1|
2dn+1

=
|Cn+1|
2dn+k

=
|Cn|
2dn

+
(2dn – |Cn|) · ak

2dn

<
|Cn|
2dn

+
(2dn – |Cn|)

2dn
· (2dn–1 – |Cn|)

(2dn – |Cn|)
=

2dn–1

2dn
=

1
2
,

hence |Cn+1| < 2dn+1–1.
Finally, to check (4) let s ∈ {0, 1}dn+1 \ Cn+1 and t = s � dn. If t ∈ Cn, then

flipm(s) ∈ Cn+1 for every dn ≤ m < dn+1. If t �∈ Cn, then, as C is a code, there is
c ∈ C such that �dn+1(t�c, s) ≤ 1, which means that there is dn ≤ m < dn+1 such
that flipm(s) = t�c and so flipm(s) ∈ Cn+1.

Let Bn = 2	 \
⋃
c∈Cn [c]. By (3), the sequence (Bn) is ⊆-decreasing. Let B =⋂

n Bn. Because of (2) we have that �(Bn) > 1/2 for each n and so �(B) ≥ 1/2.
Let x ∈ 2	 . If x /∈ B , then c = x � dn ∈ Cn for some n. Then flipm(x) ∈ [c] for

every m > dn and so flipm(x) /∈ B for every m > dn. Now, assume that x ∈ B , so
x � dn �∈ Cn for any n ∈ 	. FixN ∈ 	. Find n such that dn > N and let s = x � dn+1,
so that s ∈ {0, 1}dn+1 \ Cn+1. By (4), there ism ≥ dn such that flipm(s) ∈ Cn+1. This
means that flipm(x) /∈ Bn+1 and so flipm(x) /∈ B . Since N was arbitrary, we are
done. �

Corollary 5.5. (ϕn) does not converge pointwise algebraically.

Proof. Let B be a set given by Proposition 5.2. For each m we have⋂
n>m

flipn[B] = ∅.

Indeed, if x ∈
⋂
n>m flipn[B], then for every n > m there is yn ∈ B such that

x = flipn(yn). But this means that flipn(x) = yn ∈ B for each n > m, which is a
contradiction with the property of B promised by Proposition 5.2.

It follows that
∨
m

∧
n>m ϕn(B) = 0, but B �= 0 and so (ϕn) does not converge

pointwise algebraically to the identity �. �

Remark 5.6. Notice that in fact in Proposition 5.2 we can ask for B of arbitrarily
large measure (smaller than 1)—it is enough to adjust the definition of α in the
proof.

Remark 5.7. Using the Vitali equivalence relation, it is easy to construct a non-
measurable set A such that �∗(A) = 1 with even stronger property: for each x ∈ A
and every n ∈ 	 we have flipn(x) /∈ A. Using this set is probably the easiest method
of showing the existence of an infinite game with perfect information which is not
determined (see, e.g., [16]). It seems however that to obtain a Borel set, we have to be
much more careful and we do not know any way to do this without using Hamming
codes.

5.5. A sequence which is pointwise Borel metric convergent and pointwise
algebraically convergent but not uniformly convergent. The above example may
be adapted to obtain a sequence which is pointwise Borel metric convergent and
pointwise algebraically convergent but not uniformly convergent.
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Let (ϕn) be the sequence defined in Section 5.4. Define �n : C → M by �n = ϕn �
C. Here, we treat C as a subalgebra of M, identifying each clopen subset of 2	 with
its equivalence class (i.e., the elements of M). By the same argument which showed
that (ϕn) was pointwise metric convergent to the identity on M, (�n) is pointwise
Borel metric convergent to the identity on C. Since the setsXn’s from Section 5.4 are
clopen in 2	 , (�n) is not uniformly convergent. It is however pointwise algebraically
convergent, since flipn[C ] is eventually constant for C being a clopen subset
of 2	 .

In Section 7 we prove however that if a Boolean algebra A is somewhat more
complicated than C, e.g., A is �-complete, then there is no similar example in
H(A,Mκ).

§6. Homomorphisms and forcing names for ultrafilters. Fix, once and for all, an
infinite cardinal κ and suppose that we force with the notion Mκ over a model V of
set theory. If A is a Boolean algebra in V and G is an Mκ-generic filter over V, then
we can consider A as an element of V [G ]; however, there might be new ultrafilters
on A in V [G ]. It appears nevertheless that to each Mκ-name U̇ for an ultrafilter, i.e.,
to such U̇ that �Mκ “U̇ is an ultrafilter on A,” we can assign a homomorphism from
A to Mκ in V in a quite natural way. Namely, if U̇ is such an Mκ-name, then the
function ϕU̇ : A → Mκ defined for every A ∈ A (recall that A ∈ V ) by the formula

ϕU̇ (A) = [[A ∈ U̇ ]]

is a Boolean homomorphism belonging to V. (We skip writing the symbol ˇ over
canonical names for elements of V.)

Now fix a homomorphism ϕ : A → Mκ in V and define an Mκ-name ϕ for a
family of subsets A by

ϕ =
{
〈A,ϕ(A)〉 : A ∈ A

}
.

Then, �Mκ“ϕ is an ultrafilter on A”; in fact, we actually get that �Mκ ϕ = ϕ–1[Γ],
where Γ is the canonical Mκ-name for an Mκ-generic filter over V.

Lemma 6.1. For every Mκ-name U̇ for an ultrafilter on a Boolean algebra A and
for every homomorphism ϕ : A → Mκ it holds ϕ(ϕ ) = ϕ and �Mκ (ϕU̇ ) = U̇ .

In this way we obtain a bijective correspondence between elements of H(A,Mκ)
and ultrafilters onA in the forcing extension byMκ. One of the advantages of such an
approach is that we may use properties of measures associated with homomorphisms
(as in Section 3) to study Mκ-names for ultrafilters on old Boolean algebras (in
particular, to study ultrafilters on the Cantor algebra, i.e., reals).

Example 6.2. Suppose thatϕ : A → Mκ is such that the measure �κ ◦ ϕ is a point
mass measure �V for some V ∈ St(A) ∩ V . Then, �Mκ ϕ = V .

A study of the interplay between the properties of Mκ-names for ultrafilters and
measures is a subject of forthcoming paper [4].

In what follows (ϕn) and ϕ will denote (a sequence of) elements of H(A,Mκ)
associated—as described above—with (a sequence of) Mκ-names (U̇n) and U̇ for
ultrafilters on a fixed Boolean algebra A ∈ V , respectively. Note that by Lemma 6.1,
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it has the same meaning whether we associate homomorphisms in H(A,Mκ) with
Mκ-names, or Mκ-names with homomorphisms in H(A,Mκ).

Recall here that for every sequence (φn) of formulae the following equalities hold:

[[∃∞n φn]] = [[∀n∃m > n φn]] =
∧
n

∨
m>n

[[φn]]

and

[[∀∞n φn]] = [[∃n∀m > n φn]] =
∨
n

∧
m>n

[[φn]];

we will use them frequently.

6.1. Pointwise algebraic convergence. There is a strong connection between the
pointwise algebraic convergence of sequences of homomorphisms from a Boolean
algebra A into Mκ in the ground model V and the convergence of the sequences
of corresponding ultrafilters in the Stone space St(A) in the Mκ-generic extension
V [G ].

Proposition 6.3. The following conditions are equivalent:

• �Mκ “(U̇n) converges to U̇ .”
• (ϕn) converges to ϕ pointwise algebraically.

Proof. Suppose that it is not true that �Mκ “(U̇n) converges to U̇ .” It means that
there is a non-zero p ∈ Mκ which forces the opposite, i.e., that there is A ∈ A such
that p � ∃∞n A ∈ U̇ \ U̇n. It follows that

p ≤
∧
m

∨
n>m

[[A ∈ U̇ \ U̇n]],

and hence ∧
m

∨
n>m

(
ϕ(A) \ ϕn(A)

)
�= 0.

Thus, (ϕn(A)) does not converge to ϕ(A) and hence (ϕn) does not converge
pointwise algebraically to ϕ.

If (ϕn(A)) does not converge algebraically to ϕ(A) for some A ∈ A, then

p = ϕ(A) \
( ∧
m

∨
n>m

ϕn(A)
)
�= 0 or q =

(∧
m

∨
n>m

ϕn(A)
)
\ ϕ(A) �= 0.

Assume first that the former case holds, i.e., p �= 0. We have:

p = ϕ(A) ∧
( ∨
m

∧
n>m

ϕn(Ac)
)
,

so p � A ∈ U̇ and p � ∃∞n Ac ∈ U̇n. It follows that p � “(U̇n) does not converge
to U̇ .”

We proceed similarly in the latter case, i.e., when q �= ∅. �
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6.2. Uniform convergence. In this section we will show that the notion of uniform
convergence of homomorphisms is connected to trivial convergence of ultrafilters
in the random extension.

Proposition 6.4. If �Mκ ∀∞n ∈ 	 U̇n = U̇ , then (ϕn) converges uniformly to ϕ.

Proof. Assume that �Mκ ∀∞n ∈ 	 U̇n = U̇ . Then
∨
m[[∀n > m U̇n = U̇ ]] = 1.

Fix ε > 0 and take m ∈ 	 such that �κ
(
[[∀n > m U̇n = U̇ ]]

)
> 1 – ε. Then for each

k > m and each A ∈ A we have(
ϕk(A) � ϕ(A)

)
∩ [[∀n > m U̇n = U̇ ]] = 0

and so �κ
(
ϕk(A) � ϕ(A)

)
< ε. �

It appears that a fact which is in a sense converse to Proposition 6.4 also holds
and constitutes actually the main result of this section (Theorem 6.5). Note here
that in the proof of Proposition 6.4, as well as of Proposition 6.3, we actually did
not use that the Boolean algebra Mκ carries a strictly positive measure and thus
those results remain in fact true for any �-complete Boolean algebra B in place of
Mκ (and hence, of course, for any reasonable notion of forcing).

Theorem 6.5. If (ϕn) converges uniformly to ϕ, then for almost all n there is
pn ∈ Mκ such that pn � U̇n = U̇ .

We will prove this theorem in a series of lemmas and propositions. One of them,
Theorem 6.6, is interesting on its own sake.

Theorem 6.6. Let A be an atomless Boolean algebra in V. If U̇ and V̇ are Mκ-
names for ultrafilters on A such that �Mκ U̇ �= V̇ , then for every ε > 0 there is p ∈ Mκ

and C ∈ A such that �(p) > 1/4 – ε and p � C ∈ U̇ � V̇ .

Theorem 6.6 requires a brief comment. Assume that A is a Boolean algebra and
U̇ and V̇ are Mκ-names for ultrafilters on A such that �Mκ U̇ �= V̇ . Since Mκ is a ccc
forcing, there is a maximal antichain (pn) in Mκ and a sequence (An) of elements of
A such thatpn � An ∈ U̇ \ V̇ . The problem with this general statement is that a priori
we do not have any control on the measures of pn’s—it might as lief happen that all
of them are very small in terms of the measure. Theorem 6.6 shows however that we
can always find one “large” condition in Mκ which distinguishes the ultrafilters.

The Proof of Theorem 6.6 requires some auxiliary lemmas.

Proposition 6.7. Assume that (X,Σ, �) is a measure space with a non-negative
(not necessarily probability) measure �, K is a compact space, and f, g : X → K are
simple measurable functions. If f �= g�-almost everywhere, then there exists L ∈ Σ
such that �(L) ≥ �(X )/4 and f[L] ∩ g[L] = ∅.

Proof. Let P be a finite partition of X into measurable pieces such that for every
A ∈ P the functions f and g are constant on A and �(A) > 0. Define the functions
fP , gP : P → K as follows:

fP(A) = x if and only if f[A] = {x},
and similarly

gP(A) = x if and only if g[A] = {x}.
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For everyA ∈ P we havefP(A) �= gP(A) (since �(A) > 0). PutH = f[X ] ∩ g[X ].
Define an auxiliary measure � on P(H ×H ) as follows:

�
(
{(x, y)}

)
=

∑ {
�(A) : fP(A) = x, gP(A) = y,A ∈ P

}
for every (x, y) ∈ H ×H . It follows that �

(
{(x, x)}

)
= 0 for every x ∈ H .

For every N ⊆ H let

N0 = (N ×N ) ∪ (Nc ×Nc) and N1 = (N ×Nc) ∪ (Nc ×N ).

It follows that for every (x, y) ∈ H ×H with x �= y we have:∣∣{N ⊆ H : (x, y) ∈ N0}
∣∣ =

∣∣{N ⊆ H : (x, y) ∈ N1}
∣∣,

and so ∑
N∈P(H )

�(N0) =
∑

N∈P(H )

�(N1).

There exists N ⊆ H such that �(N1) ≥ �(N0). Since N0 ∪N1 = H ×H , �(N1) ≥
�(H ×H )/2 and hence either �(N ×Nc) ≥ �(H ×H )/4 or �(Nc ×N ) ≥ �(H ×
H )/4. Without loss of generality we may assume that �(N ×Nc) ≥ �(H ×H )/4
as this assumption makes no difference for the following arguments.

For the set L′ ⊆ X defined as follows:

L′ =
⋃ {
A ∈ P : fP(A) ∈ N, gP(A) ∈ Nc

}
,

we have:

�(L′) =
∑ {

�(A) : fP(A) ∈ N, gP(A) ∈ Nc, A ∈ P
}

= �(N ×Nc)

≥ �(H ×H )/4 =
1
4

∑ {
�(A) : fP(A) ∈ H, gP(A) ∈ H, A ∈ P

}
.

Note that for every x ∈ L′ we have f(x) ∈ N and g(x) ∈ Nc , so neither f(x) ∈
g[L′], nor g(x) ∈ f[L′]. Finally, for the set L ⊆ X given by the formula:

L = L′ ∪
⋃ {
A ∈ P : fP(A) �∈ H or gP(A) �∈ H

}
,

we also have that f[L] ∩ g[L] = ∅ as well as it holds:

�(L) = �(L′) +
∑{

�(A) : fP(A) �∈ H or gP(A) �∈ H
}

≥ 1
4

∑ {
�(A) : fP(A) ∈ H, gP(A) ∈ H

}
+

1
4

∑ {
�(A) : fP(A) �∈ H or gP(A) �∈ H

}
=

1
4

∑ {
�(A) : A ∈ P

}
= �(X )/4. �

Note that in the above proposition we may in fact assume that K is finite.
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Lemma 6.8. Assume that (X,Σ, �) is a probability space, K is a closed subset of
2	 , and f, g : X → K are measurable and f �= g�-almost everywhere. Then, for every
ε > 0 there is L ∈ Σ such that �(L) > 1/4 – ε and f[L] ∩ g[L] = ∅.

Proof. For every s ∈ 2<	 let s0 ∈ 2	 be the leftmost branch with root s (think of
s0 as of a fixed representative of the clopen {x ∈ 2	 : s ⊆ x}). For n ∈ 	 define the
simple measurable functionsfn, gn : X → K by puttingfn(x) = s0 and gn(x) = t0,
where s = f(x) � n and t = g(x) � n.

For every n ∈ 	 put An =
{
x ∈ X : fn(x) = gn(x)

}
and note that An+1 ⊆ An. It

follows that �
(
An0

)
< ε for some n0 ∈ 	. Indeed, if �(An) ≥ ε for every n ∈ 	, then

�(
⋂
n An) ≥ ε, and since f(x) = g(x) for every x ∈

⋂
n An, we get a contradiction

with the assumption that f �= g�-almost everywhere.
LetX0 = X \ An0 , so�(X0) > 1 – ε and for every x ∈ X0 we havefn(x) �= gn(x).

By Lemma 6.7 there is a measurable subset L ⊆ X0 such that �(L) ≥ 1/4�(X0) >
1/4 – ε and fn[L] ∩ gn[L] = ∅. It follows that for every x, x′ ∈ L we have fn(x) �=
gn(x′) and hence f(x) �= g(x′), so L is as desired. �

Proposition 6.9. Let A be a countable Boolean algebra. Assume that ϕ : A →
Mκ and � : A → Mκ are such homomorphisms that

∨ {
ϕ(A) � �(A) : A ∈ A

}
= 1.

Then, for each ε > 0 there is C ∈ A such that �κ
(
ϕ(C ) � �(C )

)
> 1/4 – ε.

Proof. Let X and Y be the Stone spaces of Mκ and A, respectively. In what
follows, we will treat �κ as a Radon measure on X. The functions fϕ,f� : X → Y
are �κ-measurable. We claim that fϕ �= f��κ-almost everywhere. If not, then there
is a Borel subset B ⊆ X of positive measure such that fϕ � B = f� � B . By the
regularity of �κ, there is a compact subset K of X such that K ⊆ B and �κ(K) > 0.
Recall that �κ is a normal measure, i.e., for every nowhere dense subset Z of X we
have �κ(Z) = 0, so K cannot be nowhere dense and thus there is U ∈ Mκ such
that U ⊆ K and �κ(U ) > 0. But for every A ∈ A we have (ϕ(A) \ �(A)) ∩U = 0
(since otherwise for each x ∈ (ϕ(A) \ �(A)) ∩U we would have fϕ(x) ∈ A and
f�(x) /∈ A and sofϕ(x) �= f�(x) despite the fact thatx ∈ B) and (�(A) \ ϕ(A)) ∩
U = 0 (by a similar argument). This is a contradiction with the assumption that∨ {
ϕ(A) � �(A) : A ∈ A

}
= 1.

Now fix ε > 0 and use Lemma 6.8 to find a measurable subset L ⊆ X such that
�κ(L) > 1/4 – ε and fϕ[L] ∩ f�[L] = ∅ (notice that Y may be treated as a closed
subset of 2	). Using the regularity of �κ, we may find a compact subset M of X such
thatM ⊆ L and �κ(M ) > 1/4 – ε. By the normality of �κ, the boundary of M has
measure 0, so there is V ∈ Mκ such that V ⊆M and �κ(V ) > 1/4 – ε. Let C be
a clopen in Y separating fϕ[V ] and f�[V ]. Then, V ⊆ ϕ(C ) but V ∩ �(C ) = ∅,
and hence �(ϕ(C ) \ �(C )) > 1/4 – ε. �

Proof of Theorem 6.6. Since Mκ is a ccc poset, there are a sequence (An) in A

and a maximal antichain (pn) in Mκ such that pn ≤ ϕU̇ (An) � ϕV̇(An) for every
n ∈ 	. It follows that ∨ {

ϕU̇ (An) � ϕV̇(An) : n ∈ 	
}

= 1.

Let B be the subalgebra of A generated by the set {An : n ∈ 	}. By Proposition
6.9, there is C in B (and hence in A) such that �κ

(
ϕU̇ (C ) � ϕV̇(C )

)
> 1/4 – ε. Put

p = ϕU̇ (C ) � ϕV̇(C ) to finish the proof. �
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Finally, we are in the position to prove the main theorem of this section.

Proof of Theorem 6.5. Since (ϕn) converges uniformly to ϕ, there is m ∈ 	
such that for each n > m and A ∈ A we have �κ

(
ϕn(A) � ϕ(A)

)
< 1/5. We get that

there is m ∈ 	 such that for each n > m there are no p ∈ Mκ and no A ∈ A such
that p ≤ ϕn(A) � ϕ(A) and �κ(p) ≥ 1/5, which, by Theorem 6.6, means that for
every n > m we have a non-zero pn ∈ Mκ such that pn �Mκ U̇n = U̇ . �

Remark 6.10. The uniform convergence alone does not imply that the statement
“∀∞n U̇n = U̇” is forced by a single condition, so Theorem 6.5 cannot be
strengthened in this way. Indeed, consider the homomorphisms �n : C → M and
� : C → M from the example of Section 5.2. Proposition 5.1 says that (�n)
converges uniformly to �. However, let p ∈ M \ {0} and fix m ∈ 	. Denote
qn = �([sn]) ∩ p, where sn’s are as in Section 5.2. There is n > m such that qn �= 0,
but �n([sn]) ∩ �([sn]) = 0, which implies that qn � U̇n �= U̇ .

Surprisingly, in general we cannot hope to find anything better than the constant
1/4 in Proposition 6.7 and in Theorem 6.6.

Lemma 6.11. For each non-zero even n ∈ 	 put Xn = {1, 2, ... , n · (n – 1)} and
let �n be such that �n({x}) = 1/|Xn| for each x ∈ Xn. Let fn, gn : Xn → 	 be such
functions that for every distinct a, b ∈ {1, ... , n} there is x ∈ Xn for which we have
fn(x) = a and gn(x) = b. Then, for each subset L ofXn such that fn[L] ∩ gn[L] = ∅
we have:

�n(L) ≤ 1
4

+
1

4(n – 1)
.

Proof. Let L ⊆ Xn be a set such that fn[L] ∩ gn[L] = ∅. If |fn[L]| = k for
some 1 ≤ k ≤ n, then |gn[L]| ≤ n – k. Since each pair (a, b) ∈ {1, ... , n}2, a �= b,
occurs exactly once in the set fn[Xn] × gn[Xn], L may have cardinality at most
k · (n – k). The only maximum of the function �n : R → R given by the formula
�n(x) = x · (n – x) occurs at x = n/2 and is equal to n2/4. It follows that the
maximal possible cardinality of L is also n2/4 and thus:

�n(L) ≤ n
2

4
· 1
n(n – 1)

=
1
4

+
1

4(n – 1)
. �

Corollary 6.12. Let A be an infinite Boolean algebra. Then, for every ε > 0 there
are Mκ-names U̇ and V̇ for ultrafilters on A having the following properties:

• �Mκ U̇ �= V̇ , and
• for every p ∈ Mκ for which there is A ∈ A such that p � A ∈ U̇ \ V̇ we have
�κ(p) ≤ 1/4 + ε.

Proof. Let ε > 0 and fix n such that 1
4(n–1) < ε. Let (Ui)i<n be sequence of distinct

ultrafilters on A (in V).
LetXn,fn, and gn be as in Lemma 6.11. Fix a maximal antichain {Pk : k ∈ Xn} in

Mκ consisting of sets of measure 1/|Xn|. For i < n denote Fi =
∨
{Pk : f(k) = i}

and Gi =
∨
{Pk : g(k) = i}. Notice that both {Fi : i < n} and {Gi : i < n} form

maximal antichains in Mκ consisting of sets of measure 1/n.
Now, let U̇ be an Mκ-name for an ultrafilter on A such that [[U̇ = Ui ]] = Fi for

every i < n. In other words, Mκ forces that U̇ is one of the Ui ’s and the elements of
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the antichain {Fi : i < n} decides which of them. Similarly, choose an Mκ-name V̇
in such a way that [[V̇ = Ui ]] = Gi . Then, for every k

Pk � U̇ = Uf(k) and V̇ = Ug(k),

and since f(k) �= g(k) we have �Mκ U̇ �= V̇ .
Let p ∈ Mκ be such that �(p) ≥ 1/4 + ε and let L =

{
k ∈ Xn : Pk ∧ p �= 0

}
.

Then, |L| ≥ |Xn|( 1
4 + ε) and so, in terms of Lemma 6.11,

�n(L) ≥ 1
4

+ ε >
1
4

+
1

4(n – 1)
.

Thus, by Lemma 6.11 we have f[L] ∩ g[L] �= ∅ and so there are k, l ∈ L such that
f(k) = g(l) = i for some i < n. Then Pk ∧ p and Pl ∧ p are non-zero and

Pk ∧ p ≤ Fi � U̇ = Ui
but also

Pl ∧ p ≤ Gi � V̇ = Ui .

Hence, there is no A ∈ A such that p � A ∈ U̇ \ V̇ . �
Remark 6.13. The core argument of Theorem 6.6 is contained in Proposition

6.7, which is a statement in finite combinatorics. It can be formulated in a popular
way as follows. Adam and Eve are painting a picket fence between their properties.
The fence consists of n many rails. Each rail has two sides—Adam’s and Eve’s—and
those sides have to be painted in such a way that Adam’s side has different colour
than Eve’s. Proposition 6.7 says that no matter how many colours they use, there
is always a set B of at least n/4 many rails with the following property: the set of
Adam’s colours used in B is disjoint with the set of Eve’s colours used in B. (The
translation of the above into the terms of Proposition 6.7 is as follows: X is the set
of rails, K is the set of colors, � is the counting measure, and the functions f and g
assign colors to Adam’s and Eve’s sides of the fence.)

§7. The Efimov problem. We now use results from the previous section to obtain
a characterization of those Boolean algebras whose Stone spaces do not contain any
non-trivial convergent sequences in random extensions.

Recall that a Boolean algebra A has Seever’s interpolation property (or, property
(I)) if for every sequences (An) and (Bn) in A such thatAn ≤ Bm for every n,m ∈ 	
there isC ∈ A such thatAn ≤ C ≤ Bm for every n,m ∈ 	 (see [18]). It is immediate
that a Boolean algebra A has the interpolation property if and only if its Stone space
St(A) is an F-space, so, e.g., P(	)/Fin has the interpolation property as well as all
�-complete Boolean algebras do. The result of Dow and Fremlin mentioned in the
Introduction yields thus the following corollary.

Theorem 7.1. [7, Corollary 2.3] Let A be a Boolean algebra in V. If A has the
interpolation property in V, then in VMκ the space St(A) does not have non-trivial
convergent sequences.

Theorem 7.1 together with results obtained above allows us to bring down the
question about convergence of ultrafilters in the random extensions to the question
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about convergence of homomorphisms. Note that if the Stone space St(A) of a
Boolean algebra A contains a non-trivial convergent sequence in V, then St(A)
contains such a sequence in VMκ , too. The following theorem implies thus, e.g.,
that every countable Boolean algebra admits a sequence of homomorphisms into
Mκ which is pointwise algebraically convergent but not uniformly convergent (since
St(A) is metrizable; cf. the examples in Sections 5.1 and 5.5).

Theorem 7.2. Let A be a Boolean algebra in V. The following are equivalent:

(1) �Mκ St(A) does not have non-trivial convergent sequences;
(2) every pointwise algebraically convergent sequence of homomorphisms from A

into Mκ converges uniformly.

Proof. (1) =⇒ (2). Suppose that (ϕn) in H(A,Mκ) converges pointwise alge-
braically to some homomorphism ϕ. Then, by Proposition 6.3, �Mκ“ϕn converges
to ϕ .” By the assumption, �Mκ ∀∞n ∈ 	 ϕn = ϕ , and so, by Proposition 6.4, (ϕn)
converges uniformly to ϕ.

(2) =⇒ (1). Suppose now that there exist p ∈ Mκ, and Mκ-names (U̇n), U̇ for
ultrafilters on A such that p �Mκ “(U̇n) converges to U̇ and ∀n U̇n �= U̇ .” Since Mκ

is isomorphic to the restricted forcing p ∧Mκ =
{
q ∈ Mκ : q ≤ p

}
and hence Mκ-

generic extensions of V are the same as (p ∧Mκ)-generic extensions, we may assume
that p = 1.

By Proposition 6.3, the sequence (ϕU̇n ) converges pointwise algebraically to ϕU̇
and hence, by the assumption, uniformly. Theorem 6.5 implies that there is n and
a non-zero p ∈ Mκ such that p � U̇n = U̇ , a contradiction. It follows that there are
no non-trivial convergent sequences in St(A) ∩ VMκ . �

Since a compact space containing a copy of 
	 must necessarily have weight at
least 2	 and the forcing Mκ preserves cardinals, we immediately get the following
corollary.

Corollary 7.3. Assume that A ∈ V is a Boolean algebra of size < κ and such
that in V every pointwise algebraically convergent sequence in H(A,Mκ) is uniformly
convergent. Then, in VMκ , the Stone space of A is an Efimov space.

The theorem of Dow and Fremlin yields the following corollary.

Corollary 7.4. If A has the interpolation property, then every pointwise alge-
braically convergent sequence of homomorphisms in H(A,Mκ) converges uniformly.
In particular, this holds if A is �-complete or A = P(	)/Fin.

Recall that in Section 5.5 we presented an example of a pointwise algebraic
convergent sequence of homomorphisms from the Cantor algebra C to M which
is not uniformly convergent—this example, as contradicting the conclusion of
Corollary 7.4, shows that a Boolean algebra A in the corollary cannot be too
simple.

§8. Open questions and problems. Fix two Boolean algebras A and B and an
infinite cardinal number κ. The following two questions seem natural in the context
of Proposition 4.1 and Corollary 4.2.
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Question 8.1. Is the function F� from Proposition 4.1 continuous if the spaces
H(A,B) and P(St(A)) are endowed with the pointwise Borel metric topology and
weak topology, respectively?

Problem 8.2. Let A be a Boolean algebra and κ a cardinal. Is there a natural
convergence on the space P(St(Mκ)) which corresponds to the pointwise algebraic
convergence in H(A,Mκ) in the sense of Corollary 4.2?

The following question concerns possible extensions of the diagram from the
beginning of Section 5.

Question 8.3. What algebraic or structural properties of the Boolean algebras A
and B imply that a sequence in H(A,B) convergent in one topology is also convergent
in some other one?

In Section 5 we have presented several examples of sequences of homomorphisms
witnessing that the convergence in one topology may not be sufficient to imply the
convergence in some other one. We believe that some of those examples may be
generalized to work in more generic situations.

Problem 8.4. Provide a general scheme for constructing a definable sequence of
homomorphisms in H(A,B) such that it is convergent in one topology but not in the
other one, or a general scheme for constructing a Borel set or a sequence of Borel
sets in St(A) witnessing that a given sequence of homomorphisms in H(A,B) is not
convergent in some topology.

By the Dow–Fremlin theorem and Theorem 7.2 it follows that if A has the
interpolation property, then every pointwise algebraic sequence in H(A,Mκ) is
uniformly convergent (Corollary 7.4). Since the interpolation property implies the
Grothendieck property, we pose the following question being a particular case of
Question 8.3.

Question 8.5. Assume that A has the (positive) Grothendieck property. Is every
pointwise algebraic convergent sequence in H(A,Mκ) also uniformly convergent?

Note that, again by Theorem 7.2, obtaining an algebraic or topological proof
for an affirmative answer to Question 8.5 would yield an alternative proof to the
theorem of Dow and Fremlin.
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