R. Kaufman
Nagoya Math. J.
Vol. 56 (1974), 139-145

LARGE INCREMENTS OF BROWNIAN MOTION
R. KAUFMAN

1. Let X(t) denote Brownian motion on the line 0 <t < oo, let
g(h) = 2hlog h~)Y%, and let 0 <« < 1. Orey and Taylor [5] have inves-
tigated the random set defined by the inequalities

E.:0<t<1,limsup X(t + h) — X([@)/g(h) > «

and proved that P{dimE, =1 — o’} = 1. Here we prove two theorems
on E, that reflect more subtle properties of FE, than its Hausdorff
dimension alone.

THEOREM 1. With probability 1, a certain compact subset of E,
carries a probability measure p such that u) = o(ur*),1 < u < co.

THEOREM 2. Let F be a closed set in (0,1) of dimension d > o
Then

PAdmFNE,>d—a}t=1.

For every pair d,« with 1 > d > «? there is almost-sure equality for a
certain fixed set F', of dimension d. For every « there is a set F, of
dimension 1 — o? such that dim F, N E, = 1 — «* almost surely.

The standard reference concerning relations between Fourier-Stieltjes
transforms and Hausdorff measures is [3]: in particular, by a theorem
of Beurling [3, Ch. III], the property of E, claimed in Theorem 1 is
stronger than the lower bound on dim E, found by Orey and Taylor.
For example, by a theorem of Zygmund [1, p. 413; 6] the property of
E, is not even shared by certain sets of positive Lebesgue measure.
Further examples concerning dimension and Fourier analysis are pre-
sented in [2], theorems on Brownian motion and dimension in [4 a — d],
while the indeterminacy of intersections of random sets and fixed sets
(as in the second and third statements in Theorem 2) was observed in
[4e].
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Thanks are due to Orey and Taylor for a preprint of [5] and to N.
Jain for pointing out many obscurities.

2. In the proofs we need estimates for sums 3 (p — &,)a,, where
the &, are independent random variables with common distribution

Pig, =1} =p=1— P& =0};0" = 2 |a.[",
B = max|a,|. The basic inequality is
pet® P 4+ (1 —pe <1+ p1 —pt*<explp,
valid for 0 <p <1,—1<t<1. In case the coefficients are real, we
find by Chebyshev’s inequality
P{I33|>Y}<2exptips’exp —tY, O0<tB<1.
Choosing the best value of ¢ we find
P{I>|>Y}<2exp — 1/4p~'¢7%Y?, provided YB < 2p¢” .

In the case of complex numbers a, in the sum > (p — &)a,, wWe
have merely to replace Y by 1Y and double the bounds so obtained;
this estimate is rough, but sufficient.

3. Let S be the functional max|X() — X(@)] 0 <a<b<L1); we
need only the ‘tail’ of the distribution of S, namely

P{S > Y} =exp — $Y?exp o(Y?) , Y 4.

This estimate is obtained simply from the Gaussian law and the reflec-
tion principle, and is of course valid for P{X(1) — X(0) > Y}. We use
it now to obtain an estimate from [5], involving parameters 0 < g <1,
0<b<1. The event

X(h) — X(0) > Bg(h), | X(t) — X(0)| < 2bYg(h) on [0, bh]
has probability hPh°® — o(h) as h— 0+. Thus the event
X(h) — X(t) > (B — 2bY)g(h) on 0 <t<bh

has probability >h#h°® for small » > 0. With the aid of this inequality
we can begin to construct the measure p. Let 0 <r<s <1 and let
I, A < n<N) be the usual division of (r,s) into adjacent intervals of
length (s — r)N~!; supposing that b~! is an integer (as in [5]) we have
a further subdivision of each I, into intervals I? (1 < ¢ < b™") of length
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(s — DN, An interval I? with left extremity «x is selected if
X + h) — X(t) > (B —2bHg(h) onz<t<x+ bh,

with o = N-%(s — ). We put B, = p — 2b* and suppose that 0 < g, <8
< a?!. The selections of the intervals I? (1 < n < N) are mutually in-
dependent for each ¢, with a probability » = py > N-#N°®, for large
N. Let m, be Lebesgue measure in (r, s), let & be the characteristic
function of the selected intervals, and let m,(dx) = p~&(x)m(dx).

LEMMA. For any e > 0 the inequality |m,(u) — m(w)| < e(1 + w)t*-?
for all uw > 0 holds, with probability approaching 1 as N — oo.

Proof. The parameter ¢q = 1,-..,b"! determines decompositions m,
= >, m{ and m, = >, m{; because b is fixed it is sufficient to prove the
inequality for each pair Mg and ¢, as we now do, dropping the super-
script q. Now i (u) — Mm,(u) = 2, (A — p~1&,) fn(w) wWhere

| fol L BN N7' and |f.(w)| < 2|ult.

The last inequality follows from

j" e““dtlg 2lut.  Setting C(u)

= max | f,(u)|, we cast the sum into the shape treated in paragraph 2,
except for a factor p~*. The inequality in question is thus |>] (» — &,) ()|
< ep(l + w)=*-V, where B = C(u), s> = NC*(u).

On the interval 0 < 4 < N we replace ¢> and B by their common
upper bound N-! and choose Y = ¢pN¥**-, Then YB < p¢®* and we
obtain an exponential bound 4 exp — ¢p~'¢~2Y% Here the exponent exceeds
cpNN=-1 > N° Dbecause —pf'+1+a*—1>0. When >N we use
B =2ut,¢ = 4Nu? Y = eput(a® — 1). To choose the best value of ¢ in
Chebyshev’s inequality we must verify that YB < 2p¢? and this is true
if u***t < N?. The exponent obtained exceeds cp~le~?Y? > pN 'u**' > N°,
as before. For the remaining numbers u, defined by the inequality
u***t > N?, we choose t = »B~' with a small constant 7 > 0 and obtain
from Chebyshev’s inequality a bound 4 exp — ¢B~'Y, wherein B~'Y >N?.

Thus, for each individual u > 0 the inequality sought holds except
on a set of measure exp — N’; in particular, at v = 0, |m,|| < 2, except
on such a set. Thus, with probability near 1, the result is valid for
fractions 4 = jN2,0 < j < N%, and since 7, — M, has derivative at most
2, this disposes of the interval 0 < u < N? (since the error introduced
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by passing to real numbers u doesn’t exceed N-»). When u > N?, we
use the inequality

[, ()| < 2u7'p™t 31 &, < 4u'N = o(u7?) .

An approach more congenial in Fourier analysis is to prove the
inequality for all integers k¥ and then pass to real numbers % by expand-
ing et in terms of e%*’, on the interval 0 < ¢ < 1, whose length is less
than 2z.

Using the lemma carefully we can prove Theorem 1. Once 7 is
specified in (0,1) we state once and for all that the n~th step, in the
inductive process to be described, must be accomplished except on a set
of P<7z+ .-+ + 7% and the measures constructed in the n-th step must
have mass m in the interval |1 —m| <54 --- +9". In an obvious
way we make g — 2b? increase to «. The lemma is applied first with
(r,s) = (0,1), and the random measures m, constructed are step-functions,
with level intervals jN-3(0 < 7 < N). As N is fixed, we can apply the
lemma to these N intervals (7, s), and then sum the N different measures
constructed to obtain a random measure m, such that [#,(t) — m,(f)]
<1/4 + t)¥*-? for all ¢t > 0. The closed support of m, is contained
in that of m, --.. Clearly we can find a limit measure p, of mass
between 1 — 27 and 1+ 27 such that |[A() — M| < 2771 + pEe-D,
supported in a compact subset of E,. Since p is defined except on a
set of P < 2y, Theorem 1 is completely proved.

4. In the proof of Theorem 2 we require a lemma somewhat
analogous to the one already proved; Fourier transforms are of little
use here, since the set I need not carry any measure whose transform
£ tends to zero. We therefore work directly on the metrical properties
of meagures, assigning to each measure g4, on [0,1] a random measure
w1 by the same process as before. Let 0 < p<a<1, ®<d<1.

LEMMA. Suppose that p(I) < C|I* for all intervals I of length |I|.
Then the inequality |p(l) — (D} < e|I1*~** for all intervals I holds, with
probability approaching 1 as N — co.

Proof. Because u(S) < p~'u,(S) for all sets S, the inequality is
valid for intervals I so small that 2p~'C|I|* <¢|I|*", or |II*<é&p.
Now p = N~#N°?Y  go that the upper bound on |I| exceeds N-! for large
N. For larger intervals we have the partition of p, and p, determined
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by q, and as before we omit the superscript. Let then I Z (0,1) and
observe that

o) — ) = p7' 220 — & N 1) .

Now p(I N 1I,) < CN-¢, while ¢* < CN~%(I) < C’'N-¢|I|?2. To estimate
the probability of the event || > ep|I|*~** we use the exponential
integrals with ¢t = 7N (y > 0 small). Here tY majorizes t*ps* because
[I| < 1; moreover tY > ¢N®|I|*~**p > N’ because |I| > N~ and o’ > p.
This estimate is strong enough to account for the N? intervals I composed
of adjacent intervals I, ; because the p-measure of an interval of length
N-'is at most CpIN~¢ = o(N**"%), this in turn accounts for all intervals
of length |I| > N7!; now the lemma is completely proved:

To prove the first statement in Theorem 2, let dimF > ¢ > o?, so
that F' carries a measure g, subject to a Lipschitz condition with exponent
e [3, Ch. III]l. The lemma can then be applied to construct a sequence
of measures py, concentrated in F, whose limit measure is concentrated
in FNE, and has mass >%; each py fulfills a Lipschitz condition
with exponent e, while the entire sequence fulfills a wuniform (with
respect to N) Lipschitz condition with exponent e — o?, ensuring that
F N E, has dimension at least e —«®. As before, this can be accom-
plished on a set of probability arbitrarily close to 1, so P{dim F N E,
>e—da} =1

To prove the remaining statements in Theorem 2 we choose for F,
and F, certain dyadic sets, defined as follows. To each strictly increas-
ing sequence M = (m,) of positive integers we associate the set of all
infinite sums > &2 ™ (¢, = 0,1). The Hausdorff dimension of F' is then
lim inf & /m;, the lower density of M [2, Ch. II]l. For F, we choose
my = [d~'m;], so that m,,, > m, >1 and M has density d > 1 — o’
Each integer k£ > 1 determines a covering of F, by 2% intervals J of
length 2-™¢; let us estimate the number of intervals J that contain a
number ¢, for which |X(¢t + k) — X()] > pg(h), for some number & in
the range 2-™ < h < k2-™, The expected number is at most 2¥2-#*m:0®>
and it is almost sure that for large & a bound of this type is valid.
Clearly this implies that dim F, N E, < d — f* (whenever g < a®) hence
P{dimF, N E, < d— o’} =1. Moreover, when d <a&* F|, N E, = ¢ almost
surely.

We now sketch briefly a curious result about the critical case d = «?,
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choosing a sequence M with m, = d7'k + ok), m; — d 'k — c©. As will
be explained below, F, carries a measure p satisfying the Lipschitz con-
dition in each exponent d, < d. Adapting the second lemma we can
prove that F, N E, almost surely supports a continuous measure and
must then be uncountable; a proper choice of M, taking account of the
distribution of S, yields a set F, of dimension «® such that

| X+ b — X(@®)| < aglh) for h < hy and all ¢ in F,

almost surely. (The argument in this paragraph is adapted from [5].)

The sequence M defining F, is described in terms of its counting
function v: v(s) = k if m; < s < my,;. We require that d =1 — o* and
that )

Q) wv(s) > ds + s¥* for s > s,

(2) liminf s~w(s) = d,

B) v > t* — t for all integers ¢ in an infinite set 7.

Then F, carries a product measure p, derived from its representation as
a Cantor set; its modulus of continuity w(k) = sup w(a,a + k) is govern-
ed by the inequalities w(2~°%) < 2.27%9),

Now we follow the proof of the first statement, setting N = 2¢ for
some ¢t in T. The inequality necessary for one step in the construction
is |p) — w(D| < e|I* for all intervals I. First of all w(h) = o(h?);
thus w(h) < eph? for h < N-.. In fact, for h < 27%, say h = 2%, w(h)h~¢
< 2792 while p > N-#N°®, g0 the inequality s > t* yields w(h)h ¢ < N-!
= o(p). For h > 2-% we use the elementary inequality w(h) < 2h-2%w(2-%)
< 4h2t, Also, 4h2t < eph® when h < N7, because d + o> = 1. Thus we
have disposed of intervals I of length < N~

For remaining numbers 2 > N~' we study sums p' >, =p'> (p
—&)ud N 1,); in 3, we have B < w(N™") and ¢* < w()w(N""). In the
exponential integrals we take { = yw~'(N"") with a small » > 0 and obtain
a bound

P{|3|> eph®} < 2 exp g'pw()w (N ") exp — eph?w (N7 .
Now w(h) = 0(h?) so the exponent is negative for small » and has
modulus > c¢phlw ' (N"Y) > epN~%w (N~ > N? for a certain § > 0; these
inequalities are sufficient to construct a measure on F, N E, with modulus
of continuity 0(h%); so F, N E, has dimension 1 — a?.

By the same method we can prove an even stronger property for a
set F', of dimension 1 — a®. Let S be a sequence of positive numbers
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tending to 0, and let EF (S) be defined by the functional lim sup X(¢t + h)
— X(@)/g(h),heS. Then F, will be a compact set of dimension 1 — o?,
and dim F, N E(S) = 1 — & almost-surely, for each fixed null sequence
S.

F, is a “compound” dyadic set, slightly more complicated than F,
and F, in structure. Using the dyadic representation as before, we
have sets D, defined as follows: = = > ¢,2% is in D, if either ¢, =0
on g <k<d'lq, or ¢ =0 on @* <k <d'¢*; F, is the intersection
N D(q;), where q;,, > (7 + Dq3. Since each D(q) has an efficient cover-
ing by dyadic intervals, dim F;, <1 — «* = d. Each sequence of symbols
a; = I or II determines a dyadic set contained in F,: when a; =1 we
take the first alternative allowed in D(g;), and the second when «; = II.
When the sequence s = h, > h, > -.- > h,, > --. is specified, there is a
subsequence of S, say (k}) and a choice of the symbols «; = I, II with
this property: the numbers — log 2¥ and the digits ¢, omitted from the
dyadic set become far apart in the sense that for large m all integers
k in [—elog k¥, —e!log h¥] are unrestricted. Now, choosing the product
measure on this special subset of F, and using N = h;! in the construc-
tion leading to F,, we can construct a subset of F, N E,(S) of dimension
1—oat
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