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This paper is concerned with a singular limit of the Kobayashi–Warren–Carter
system, a phase field system modelling the evolutions of structures of grains. Under a
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suitable scaling, the limit system is formally derived when the interface thickness
parameter tends to zero. Different from many other problems, it turns out that the
limit system is a system involving fractional time derivatives, although the original
system is a simple gradient flow. A rigorous derivation is given when the problem is
reduced to a gradient flow of a single-well Modica–Mortola functional in a
one-dimensional setting.

Keywords: fractional time derivative; gradient flow; Kobayashi–Warren–Carter
system; singular limit
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1. Introduction

We consider the Kobayashi–Warren–Carter system, introduced in [14, 15, 29], to
model evolutions of structures in a multi-grain problem. It is a kind of phase-field
system in a domain Ω in Rn , formally a gradient flow of the energy

Eε
KWC(u, v) :=

∫
Ω

α0(v)|∇u|+ Eε
sMM(v), (1.1)

Eε
sMM(v) :=

∫
Ω

ε

2
|∇v|2 dx+

∫
Ω

1

2ε
F (v) dx. (1.2)

Here, α0(v) ≥ 0 is a given function, typically α0(v) = rv2, with a constant r > 0,
and F (v) is a single-well potential, typically F (v) = a2(v − 1)2, with a constant
a > 0. The functional Eε

sMM is often called a single-well Modica–Mortola functional.
The Kobayashi–Warren–Carter system is regarded as a gradient flow with respect
to L2-inner product

((u1, v1), (u2, v2)) =

∫
Ω

αwu1u2 dx+ τ

∫
Ω

v1v2 dx,

(ui, vi) ∈ L2(Ω)× L2(Ω), i = 1, 2,

where αw ≥ 0 and τ > 0 are weights. The function αw = αw(v) is given, but it
may depend on v ∈ L2(Ω), so the above inner product is a Riemann metric on the
tangent bundle TL2(Ω). A typical form of αw(v) equals αw(v) = τ0v

2, where τ0 is
a positive constant. We consider the gradient flow of Eε

KWC under this metric, and
its explicit form is


τvt = ε∆v − 1

2εF
′(v)− α′

0(v)|∇u|, (1.3)

αw(v)ut = div
(
α0(v)

∇u
|∇u|

)
. (1.4)
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A singular limit of the Kobayashi–Warren–Carter system 3

An explicit form in [14] corresponds to the case when s = ε, ν = ε2, τ1 = τε,
F (v) = (v − 1)2, α0(v) = v2, αw(v) = τ0v

2/ε with τ0 > 0. In other words,


τ1vt = ν∆v + (1− v)− 2sv|∇u|, (1.5)

τ0v
2ut = s div

(
v2 ∇u

|∇u|

)
. (1.6)

The function v represents an order parameter, where v =1 corresponds to a grain
region and where v away from 1 corresponds to grain boundaries. The function u
represents a structure-like averaged angle in each grain.

We are interested in a singular limit problem for Eqs. (1.3) and (1.4) as ε ↓
0. It turns out that the correct scaling of time should be τ = τ1/ε, while τ1 is
independent of ε. Since the system Eqs. (1.3)–(1.4) is regarded as a gradient flow of
Eε

KWC(u, v) of Eq. (1.1), we are tempted to expect that the limit flow is the gradient
flow of its limit energy E0

KWC which was obtained in our papers [8, 9]. Surprisingly,
this conjecture is wrong. The limit flow contains a fractional time derivative. In
this paper, we consider the problem in a one-dimensional setting. Moreover, we
consider a special but typical case when the problem is essentially reduced to a
single equation for v in Eq. (1.3) because handing Eq. (1.4) is technically involved
since it is a total variation flow type equation. This reduced problem becomes a
linear problem and is easy to discuss.

We consider Eqs. (1.3)–(1.4), where Ω is an interval Ω = (−L,L), and impose
the Dirichlet boundary condition for u and the Neumann boundary condition for
v. More precisely,

u(−L, t) = 0, u(L, t) = b > 0, (1.7)

while

vx(±L, t) = 0 for t > 0. (1.8)

We set

F (v) = a2(v − 1)2 with a ≥ 0, α0(v) = v2. (1.9)

We expect that the function

ub(x) =

{
b, x > 0,

0, x < 0,

with b> 0, solves Eq. (1.4). Since Eq. (1.4) is of total variation flow type, the
definition of a solution is not obvious. Fortunately, under a suitable assumption of
v, say v(0, t) ≤ v(x, t) for all x ∈ (−L,L), t > 0, the function ub solves Eq. (1.4)
under Eq. (1.7), as shown in the following lemma by setting β = α0(v).
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Lemma 1.1. (A stationary solution) Assume that β ∈ C[−L,L] satisfies

β(0) ≤ β(x) for all x ∈ (−L,L).

Then, ub solves (
β
ux
|ux|

)
x

= 0 in (−L,L)

under Eq. (1.7).

We stress that the notion of a solution of the equation for u in lemma 1.1 and
also Eq. (1.4) under the Dirichlet condition Eq. (1.7) is not obvious and will be
discussed in §4.

Problem Eqs. (1.3)–(1.4) are reduced to

τ1
ε
vt = εvxx − a2(v − 1)

ε
− 2bv∂x(1x>0) in Ω× (0,∞) (1.10)

under the boundary condition

vx(±L, t) = 0, t > 0, (1.11)

and the initial condition

v(x, 0) = vε0(x), x ∈ Ω, (1.12)

where 1x>0 is a characteristic function of (0,+∞), i.e., the Heaviside function,
so that its distributional derivative equals the Dirac δ function. We note that if
we assume that vε0 is even and non-decreasing for x > 0, i.e., vε0(x) = vε0(−x) and
vε0x(x)x ≥ 0 for x ∈ (−L,L), then ub is indeed a stationary solution of Eq. (1.4)
with Eq. (1.7). This follows from lemma 1.1 since we have vε(0, t) ≤ vε(x, t) for all
x ∈ (−L,L), t > 0 by the maximum principle. By a scaling transformation y = x/ε,
Eq. (1.10) becomes

τ1Vt = Vyy − a2(V − 1)− 2bV ∂y(1y>0) (1.13)

in (−L/ε, L/ε) × (0,∞) for V = V ε(y, t) = vε(εy, t), where vε is a solution
of Eq. (1.10). Thus, we expect that this limit V = limε→0 V

ε solves Eq. (1.13)
on R and is bounded. Since the solution vε of Eq. (1.10) is expected to converge
to 1 except at x =0, we are interested in the behaviour of ξε(t) = vε(0, t). More
precisely, we would like to find the equation which ξ = limε→0 ξ

ε solves.
We set

E0,b
sMM(ζ) = bζ2 + 2G(ζ) where G(ζ) =

∣∣∣∣∣
∫ ζ

1

√
F (ρ) dρ

∣∣∣∣∣ .
Since F (v) = a2(v − 1)2 to get G(ζ) = a(ζ − 1)2/2, we have

E0,b
sMM(ζ) = bζ2 + a(ζ − 1)2.
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As proved in [9], this energy is obtained as a value at Ξ of Γ-limit of Eε
sMM(v)

in Eq. (1.2) as ε→ 0 if v converges to a set-valued function Ξ (under the graph
convergence) of the form

Ξ(x) =

{
{1} for x 6= 0,

[ζ, 1] for x = 0

for ζ ∈ (0, 1).
A key observation is to derive an equation for ξ. For α ∈ R, β > 0, we set

fαβ (t) :=
e−αttβ−1

Γ(β)
,

where Γ denotes the gamma function. We consider well-prepared initial data in the
sense that it is continuous and solves Eq. (1.13) outside y =0.

Lemma 1.2. (Limit equation) Assume that τ1 = 1. Let V be the bounded solution
of Eq. (1.13) in R× (0,∞) with initial data V (y, 0) = 1− ce−a|y| with some c ∈ R.
Then, ξ(t) = V (0, t) solves∫ t

0

ma(t− s)ξs(s) ds = − gradE0,b
sMM(ξ), (1.14)

with

ma(t) = 2

{
fa

2

1/2(t) + a2
∫ t

0

fa
2

1/2(s) ds− a

}
.

Moreover, m′
a(t) < 0 and ma(t) > 0, and limt→∞ma(t) = 0.

The assumption τ1 = 1 is just for the convenience of presentation. The formula
for general τ1 is obtained by rescaling the time variable t by t′ = tτ1.

Note that in case a =0, the left-hand side of Eq. (1.14) becomes the Caputo

derivative 2∂
1/2
t . For even initial data, the solution V of Eq. (1.13) is even. Since

Vy is odd in y, we see that the delta part of Vyy equals

(Vy(+0, t)− Vy(−0, t)) δ(y) = −2Vy(−0, t)δ(y),

where V (±0, t) = limγ→±0 V (γ, t) and δ denotes the Dirac delta function. Since V
is smooth outside y =0 and Vt has no delta part, Eq. (1.13) deduces that

2Vy(−0, t)δ(y) + 2bV (0, t)δ(y) = 0.

Thus, Eq. (1.13) in R × (0,∞) is reduced to the Robin boundary problem in
(−∞, 0)× (0,∞) with

∂yV (−0, t) + bV (0, t) = 0.

The Caputo derivative appears in the equation of the boundary value.
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Corollary 1.3. Let w = w(x, t) be the bounded solution of the heat equation

wt − wxx = 0 in (−∞, 0)× (0,∞),

with the Robin boundary condition

wx(0, t) + bw(0, t) = 0 for t > 0.

Assume that w(x, 0) = −c for some c ∈ R; the boundary value ξ(t) = w(0, t) solves∫ t

0

f01/2(t− s)ξs(s) ds = −bξ(t), t > 0.

In other words, ∂
1/2
t ξ = −bξ, where ∂1/2t is the Caputo half derivative.

It is well known that the fractional Laplace operator (−∆)1/2 arises as the

Dirichlet–Neumann map of the Laplace equation. Here, the Caputo derivative ∂
1/2
t

is obtained as the Dirichlet–Neumann map of the heat equation. Formally, it is easy

to guess since the Robin boundary condition yields ∂
1/2
t ξ + bξ = 0 by replacing ∂x

with ∂
1/2
t , which is natural since ∂t = ∂2x for w. In a seminal paper, Caffarelli and

Silvestre [3] show that (−∆)γ (0 < γ < 1) is obtained as the Dirichlet–Neumann
map for the degenerate Laplace equation. We remark that ∂γt is obtained as the
Dirichlet–Neumann map of a degenerate heat equation wt − (−x)αwxx = 0 with
γ = 1/(2 − α) as in [3]; see remark 2.4 at the end of §2. We do not pursue this
problem in this paper.

Since Eq. (1.13) is linear and of constant coefficients, we can use the Laplace
transform to obtain the desired equation. As one expects, we are able to prove the
convergence of V ε.

Lemma 1.4. (Convergence) Let V be the bounded solution of Eq. (1.13) in R ×
(0,∞) with initial data V0, which is bounded and uniformly continuous on R.
Let vε be the solution of Eq. (1.10) under Eqs. (1.11) and (1.12). Assume that
V ε
0 = V ε|t=0 ∈ C [−L/ε, L/ε] converges to V0 in the sense that

lim
ε↓0

sup
|y|≤L/ε

|V ε
0 (y)− V0(y)| = 0.

Then, Vε converges to V locally uniformly in R × [0,∞). In particular, ξε(t) =
vε(0, t) = V ε(0, t) converges to ξ(t) = V (0, t) locally uniformly in [0,∞). If we
assume that

lim
|y|→∞

(V0(y)− 1) |y| = 0,

then

lim
ε↓0

sup
0≤t≤T

‖V ε − V ‖L∞(−L/ε,L/ε) = 0
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for any T> 0. Moreover,

lim
|y|→∞

sup
0≤t≤T

(|V (y, t)− 1| |y|) = 0.

Although the statement is for linear equations, we have to be a little bit careful
since the domains where solutions are defined depend on ε. We extend the initial
data V ε

0 to a whole space. If the solution W ε to the whole space problem with the
extended data V ε

0 solves the Neumann problem in (−L/ε, L/ε), it is very convenient.
We take this strategy. However, V ε

0 may not be close to V 0 outside (−L/ε, L/ε), so
the maximum principle does not imply the convergence of the solution W ε starting
from V ε

0 to V even locally. We regularize initial data and prove that {W ε} is
bounded and equi-continuous in R× [0, T ], 0 < T <∞. By Arzelà–Ascoli theorem
and a diagonal argument, it converges to some function by taking a subsequence
locally uniformly in R × [0, T ]. The limit is identified with a solution V, so it is a
full convergence. This eventually yields that V ε converges to V locally uniformly
in R × [0,∞), so it yields the convergence of ξε. Because of the term V ∂y(1y>0),
the actual proof is more involved. We divide the initial data into even part and
odd part. For the odd part, the problem is reduced to the problem without the
V ∂y(1y>0) term. For the even part, the problem is reduced to the Robin boundary
problem and the proof is more involved. Note that we do not assume behaviour of
V0(y) so |y| → ∞ to derive locally uniform convergence.

To obtain the uniform convergence of V ε to V in (−L/ε, L/ε)× (0, T ), it seems
that the behaviour of V0(y) as |y| → ∞ should be controlled. We observe that our
decay assumption for V0(y) − 1 is preserved not only for V but also for ∂yV for
t > δ > 0. This allows us to compare V ε with V globally in space. All proofs are
quite elementary, but we give full proofs for the reader’s convenience.

Applying lemmas 1.2 and 1.4, we can obtain a characterization of the limit
equation.

Theorem 1.5 Assume that τ1 = 1. Let vε be the solution of Eq. (1.10) under
Eqs. (1.11) and (1.12). Assume that vε0 is well-prepared in the sense

sup
x∈Ω

∣∣∣vε0(x)− (1− ce−a|x|/ε
)∣∣∣→ 0,

as ε→ 0, with some c independent of ε. Then, ξε(t) converges to ξ locally uniformly
in [0,∞), and ξ solves Eq. (1.14). Moreover, the graph of vε converges to a set-
valued function Ξ of the form

Ξ(x, t) =

{
{1} for x 6= 0,

closed interval between ξ(t) and 1 for x = 0.

The convergence is in the sense of the Hausdorff distance of graphs over [−L,L]×
[0, T ] for any T> 0.

We also handle initial data not necessarily well-prepared. In this case, Eq. (1.14)
is altered because there are a few lower-order terms; see Eq. (2.9). If V (y, 0) =

https://doi.org/10.1017/prm.2024.122 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.122


8 Y. Giga, A. Kubo, H. Kuroda, J. Okamoto, K. Sakakibara and M. Uesaka

Figure 1. Graph of u with χ1 = 1, χ2 = −1 and χ3 = −1

1 − ce−µ|x| with µ 6= a, we still get an explicit form corresponding to Eq. (1.14);
see Eq. (2.16). In these cases, the solution ξ is explicitly represented by using the
error function. We shall discuss these extensions for non-well-prepared data and
the proof of lemma 1.2 in §2. We also calculate numerically how the solution of the
ε-problem converges by comparing it with the explicit solution of Eq. (1.14) and
more general Eq. (2.16).

We now come back to the singular limit problem of the
Kobayashi–Warren–Carter system Eqs. (1.3)–(1.4), with τ = τ1/ε,
F (v) = a2(v − 1)2, and α0(v) = v2 as ε→ 0. We give a purely formal argu-
ment. Eq. (1.4) is of the total variation flow type, and its well-posedness for
given v is known when v is independent of time and inf αw(v) > 0; in this case,
Eq. (1.4) is the gradient flow of the weighted total variation

∫
α0(v)|∇u| under

αw(v)-weighted L2 inner product if we impose the natural boundary condition
like the Neumann boundary condition. As in [4], we consider Eq. (1.4) for
piecewise constant functions. For an interval I = (p, q) and its given division
p = p0 < p1 < · · · < pm = q, we consider a piecewise constant function of form

u(x, t) = hj(t), pj−1 < x ≤ pj (j = 1, . . . ,m).

We interpret a solution by mimicking the notion of a solution when v is independent
of time and inf αw(v) > 0 (under the periodic boundary condition for simplicity).
It is of the form

{
αw(v)∂tu = div(v2z), |z| ≤ 1,

z(pj) = χj , j = 0, 1, . . . ,m− 1,
(1.15)

where χj = sgn(hj+1 − hj); we identify pm = p0 by periodicity. See figure 1. The
function z is called a Cahn–Hoffman vector field.

For a given v, it is unclear whether the solution remains in a class of piecewise
constant functions [4], known as a facet-splitting problem. If v is constant, it is well
known that the solution remains in a class of piecewise constant functions.
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We postulate that our system Eq. (1.15) has a (spatially) piecewise constant
solution. Integrating the first equation of Eq. (1.15) in (pj−1, pj) yields∫ pj

pj−1

αw (v(x, t)) dx
d

dt
hj(t) = v2(pj , t)χj − v2(pj−1, t)χj−1.

If vε → Ξ in the graph topology as ε→ 0, we arrive at

αw(1)
d

dt
hj =

ξ2jχj − ξ2j−1χj−1

pj − pj−1
, (1.16)

where the set-valued function Ξ is defined as

Ξ(x, t) =

{1}, x 6∈ {p1, . . . , pm−1},
[ξj(t), 1], x = pj .

Since jump bj = |hj+1−hj | determines the ξj-equation as indicated in theorem 1.5,
the equation for ξj (assuming τ1 = 1) is expected to be

Ma∂tξj = − gradE
0,bj
sMM(ξj) (= −2 ((|hj+1 − hj |+ a) ξj − a)) , (1.17)

where Maf =
∫ t

0
ma(t − s)f(s) ds for well-prepared initial data at least when

hj+1 − hj is independent of time t. We postulate that Eq. (1.17) is still
valid when hj depends on time. Thus, the singular limit equation of the
Kobayashi–Warren–Carter equations Eqs. (1.3)–(1.4) as ε→ 0 (under the periodic
boundary condition) is expected to be the system Eqs. (1.16)–(1.17) for hj and
ξj. If we consider other boundary conditions, we always impose the homogeneous
Neumann boundary condition for v, like Eq. (1.8). If we consider the Dirichlet
boundary condition for u with time-independent data, the values of h1 and hm are
prescribed. We can impose the Neumann condition for u; in this case, imposing
z(p0) = z(pm) = 0 in Eq. (1.15) is natural. It is rather standard [23] to construct a
unique local-in-time solution for a system of a fractional differential equation and
an ordinary differential equation.

We note that the solvability of the initial value problem for the original
Kobayashi–Warren–Carter system Eqs. (1.5)–(1.6) is still an open problem, even
in a one-dimensional setting. If we write it in the form of Eqs. (1.3)–(1.4), the
difficulty stems from the fact that the weights αw and α0 can vanish somewhere.
In the literature, αw is assumed to be away from zero. If α0 is allowed to vanish,
the ∆u term is added in the right-hand side of Eq. (1.6). For example, instead of
considering Eq. (1.6), we consider

τ0(v
2 + δ)ut = s div

(
(v2 + δ′)∇u/|∇u|+ µ∇u

)
, (1.18)

with δ > 0, δ′ ≥ 0 and µ ≥ 0 such that δ′ + µ > 0. The existence of a solution
to Eqs. (1.5) and (1.18) with its large time behaviour is established in [10–13, 19,
20, 26, 27, 30] under several homogeneous boundary conditions. (The case δ=0 is
included in [11, 30].) Unfortunately, the uniqueness of their solution is only known
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in a one-dimensional setting under the relaxation term µ> 0 [10, Theorem 2.2]. The
extension of these results to inhomogeneous boundary condition is not difficult. In
[21], under non-homogeneous Dirichlet boundary conditions, structured patterns
of stationary (i.e., time-independent) solutions were studied. In a one-dimensional
setting, they thoroughly characterized all stationary solutions. Our Γ-convergence
result in [9] gives the convergence of minimizer of Eε

KWC to that of the limit energy
as ε→ 0. We do not know the convergence of stationary solutions.

This paper is organized as follows. In §2, we derive the limit equation for
both well-prepared and non-well-prepared initial data. We also give the large
time behaviour of a solution. Most of the calculations are very explicit. In §3, we
prove lemma 1.4. Section 4 gives a rigorous definition of the Dirichlet problem for
Eq. (1.4), assuming that v is given and αw(v) ≡ 1. In §5, we give several numerical
tests.

2. Derivation of equations with the fractional time derivative

The first goal of this section is to prove lemma 1.2. We then consider more general
initial data. We in particular consider the case V (y, 0) = 1 − ce−µ|y| with µ> 0
not necessarily equal to a and derive the equation corresponding to Eq. (1.14); see
Eq. (2.16). The solution ξ can be written explicitly (see Eq. (2.18)), and it is of the
form

ξ = 1 + η̄ + ηe(t), lim
t→∞

η̄(t) = − b

b+ a
,

with a lower-order term

lim
t→∞

ηe(t)e
a2t = 0.

This asymptotic result is shown for general µ; see lemma 2.3 for a detailed state-
ment. At the end of this section, we give remarks related to corollary 1.3. It turns
out that corollary 1.3 follows from an expression of the Dirichlet–Neumann map
of the heat equation. The Caputo derivatives can be naturally derived using the
Dirichlet–Neumann map.

We begin with recalling several elemental properties of the Laplace transform

L[g](λ) :=
∫ ∞

0

e−λsg(s) ds, λ > 0

for a locally integrable function g in [0,∞). By definition,

L
[
e−µsg(s)

]
(λ) = L[g](λ+ µ), (2.1)

and by definition of the Gamma function, we see

L[sβ−1](λ) = Γ(β)λ−β .

We now arrive at a well-known formula

L[fαβ ](λ) = L[e−αsf0β ](λ) = (λ+ α)−β (2.2)
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for α, β > 0.

Lemma 2.1. For a> 0, let ma(t) be

ma(t) = 2

{
fa

2

1/2(t) + a2
∫ t

0

fa
2

1/2(s) ds− a

}
.

Then

L[ma](λ) = 2

(√
λ+ a2 − a

λ

)
.

Moreover, m′
a(t) < 0 and ma(t) > 0 for t> 0, with limt→∞ma(t) = 0.

Proof. We recall that the Laplace transform of the convolution (g1 ∗ g2)(t) =∫ t

0
g1(t− s)g2(s) ds is given by

L[g1 ∗ g2] = L[g1]L[g2]. (2.3)

If we take g1 ≡ 1, we see

L
[∫ t

0

g2(s) ds

]
(λ) = L[g2](λ)λ−1 (2.4)

since L[g1](λ) = λ−1 by Eq. (2.2). Setting α = a2, we apply Eqs. (2.2) and (2.4) to
get

L
[ma

2

]
= (λ+ α)−1/2 + α(λ+ α)−1/2λ−1 − aλ−1

=
(
(λ+ α)1/2 − a

)
λ−1,

which yields the desired formula for L[ma].
We differentiate ma/2 to get

1

2
m′

a(t) = (−α)fα1/2(t)−
1

2t
fα1/2(t) + αfα1/2(t)

= − 1

2t
fα1/2(t) < 0 for t > 0.

We observe that

lim
t→∞

∫ t

0

fα1/2(s) ds =
1

Γ (1/2)

∫ ∞

0

e−αss
1
2−1 ds = α−1/2.

Thus, limt→∞ma(t) = 0 since limt→∞ fα1/2(t) = 0, which implies that ma(t) > 0

for t > 0 since m′
a(t) < 0. �
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Proof of lemma 1.2. Since the property of ma has been proved in lemma 2.1,
it suffices to derive Eq. (1.14). Studying the equation for w = V − 1 instead of
Eq. (1.13) is more convenient. Eq. (1.13) for w (with τ1 = 1) becomes

wt − wxx + a2w + 2b(w + 1)δ = 0, x ∈ R, t > 0. (2.5)

The initial data w(x, 0) equal

w(x, 0) = w0(x),

with w0(x) = −ce−a|x|. Let ŵ(x, λ) be the Laplace transform of w in the t variable,
i.e.,

ŵ(x, λ) = L[w](x, λ) =
∫ ∞

0

e−λtw(x, t) dt.

We note that

ŵt = λŵ − w0, w|t=0 = w0.

Taking the Laplace transform of Eq. (2.5), we arrive at

λŵ − w0 − ŵxx + a2ŵ + 2b
(
ŵ + λ−1

)
δ = 0, (2.6)

a second-order linear ordinary differential equation with a jump of the derivatives
ŵx. Since the coefficients are constants, we can solve Eq. (2.6) explicitly.

A bounded solution satisfying

λŵ − w0 − ŵxx + a2ŵ = 0 for x > 0 and x < 0

is of form

ŵ = Ae−
√

λ+a2|x| − c

λ
e−a|x|,

with A ∈ R. One should determine A so that Eq. (2.6) holds. We observe

ŵx =
(
−A
√
λ+ a2e−

√
λ+a2|x| +

ca

λ
e−a|x|

)
(sgnx)

so that

ŵxx =

(
−2A

√
λ+ a2 +

2ca

λ

)
δ +A(λ+ a2)e−

√
λ+a2|x| − ca2

λ
e−a|x|

since (sgnx)′ = 2δ. Eq. (2.6) imposes that

the δ part of ŵxx = 2b(ŵ + λ−1)δ,
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which implies

−2A
√
λ+ a2 +

2ca

λ
= 2b

(
ŵ(0, λ) + λ−1

)
.

Since ŵ(0, λ) = A− cλ−1, we end up with

(√
λ+ a2 + b

)
A = −b(1− c)

λ
+
ca

λ
.

We set η(t) = w(0, t) and observe that

η̂ = A− c

λ
=

1√
λ+ a2 + b

1

λ
(ca+ bc− b)− c

λ
.

We next extract the time derivative of η. We note that

η̂t = λη̂ − η(0)

so that η̂t = λη̂ + c since η(0) = −c. Then,

η̂t =
1√

λ+ a2 + b
(ca+ bc− b).

Multiplying
√
λ+ a2 + b and subtracting (a+ b)η̂t from both sides, we get(√
λ+ a2 − a

)
η̂t = −(b+ a)η̂t + (ca+ bc− b)

= −(b+ a)λη̂ − (b+ a)c+ (ca+ bc− b)

= λ

(
−(b+ a)η̂ − b

λ

)
.

The energy for ξ equals

E0,b
sMM(ξ) = bξ2 + a(ξ − 1)2.

Since η = ξ − 1, we see gradE0,b
sMM(ξ) = 2(b+ a)η + 2b. Thus,

2

(√
λ+ a2 − a

λ

)
η̂t = −2(b+ a)η̂ − 2b1̂. (2.7)

By lemma 2.1 and Eq. (2.3), we now conclude that ξ = η + 1 solves Eq. (1.14) by
taking the inverse Laplace transform of Eq. (2.7). �

In lemma 1.2, we only considered well-prepared initial data, meaning that V (y, t)
is a stationary solution of Eq. (1.13) in R\{0}. We take this opportunity to write
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a general equation corresponding to Eq. (1.14) starting from general initial data.
We set

(Maf)(t) = ma ∗ f(t) =
∫ t

0

ma(t− s)f(s) ds,

and Eq. (1.14) is

Maξs = − gradE0,b
sMM(ξ). (2.8)

For general initial data, our equation corresponding to Eq. (2.8) becomes more
complicated than Eq. (2.8).

We set

Ga
λ(y) =

e−
√

λ+a2|y|

2
√
λ+ a2

,

which is the Green function of −∂2y + σ with σ = λ+ a2, i.e.,

−∂2yGa
λ + (λ+ a2)Ga

λ = δ.

For w0 ∈ L∞(R), we set

ga(λ,w0) = (Ga
λ ∗x w0)(0),

where ∗x denotes the convolution in space, i.e.,

(Ga
λ ∗x w0)(y) =

∫ ∞

−∞
Ga

λ(y − z)w0(z) dz.
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Lemma 2.2. Let τ1 = 1. Let V be the bounded solution of Eq. (1.13) in R× (0,∞)
with initial data V (y, 0) = 1 + w0, where w0 is bounded and Lipschitz continuous
in R. Then, ξ(t) = V (0, t) solves

Maξt +ma (ξ(0)− 1)− L−1
[
2
√
λ+ a2ga(λ,w0)

]
= − gradE0,b

sMM(ξ). (2.9)

Proof. If w0 is Lipschitz, then we easily see that |wt|t1/2 is bounded (near t =0)
so that the integrand of

L[wt](λ) =

∫ ∞

0

e−λsws(x, s) ds

is integrable for all x ∈ R near s =0; see lemma 3.4.
We argue in the same way to prove lemma 1.2. We begin with Eq. (2.6), where

w = V − 1. Its solution outside x =0 is given as

ŵ = Ae−
√

λ+a2|x| +Ga
λ ∗x w0,

with A ∈ R. As before, we determine A and obtain that η = ξ − 1 satisfies

η̂(λ) =
−b√

λ+ a2 + b

(
ga(λ,w0) +

1

λ

)
+ ga(λ,w0). (2.10)

Since η̂t = λη̂ − η(0), we proceed with(√
λ+ a2 − a

)
η̂t

= −(b+ a)η̂t − λb

(
ga(λ,w0) +

1

λ

)
+
(√

λ+ a2 + b
)
(λga(λ,w0)− η(0))

= −(b+ a)λη̂ + (b+ a)η(0)− λb

(
ga(λ,w0) +

1

λ

)
+
(√

λ+ a2 + b
)
(λga(λ,w0)− η(0))

= −(b+ a)λη̂ − λ
b

λ
+
(
a−

√
λ+ a2

)
η(0) +

√
λ+ a2λga(λ,w0).

Thus,

2
(√
λ+ a2 − a

)
λ

η̂t = −2(b+ a)η̂

− 2
b

λ
−

2
(√
λ+ a2 − a

)
λ

η(0) + 2
√
λ+ a2ga(λ,w0).

Taking the inverse Laplace transform, we obtain

Maηt = − gradE0,b
sMM(η + 1)−ma(t)η(0) + L−1

(
2
√
λ+ a2ga(λ,w0)

)
,

the same as Eq. (2.9). �
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The term L−1
[
2
√
λ+ a2ga

]
has a more explicit form. Let E(x, t) be the Gauss

kernel, i.e.,

E(x, t) =
1√
4πt

e−|x|2/4t.

We know that its Laplace transform (as a function of t) is

L[E](λ) =
1

2λ1/2
e−|x|λ1/2 .

Let Ea = e−a2tE, then

L[Ea](λ) =
1

2
√
λ+ a2

e−
√

λ+a2|x| = Ga
λ(x).

Since L
[
fa

2

1/2

]
= (λ+ a2)−1/2 and L[g1 ∗ g2] = L[g1]L[g2], we end up with

L
[
fa

2

1/2 ∗ E
a
]
(λ) =

1

2(λ+ a2)
e−

√
λ+a2|x|.

Thus,

L
[
∂t

(
fa

2

1/2 ∗ E
a
)
+ a2

(
fa

2

1/2 ∗ E
a
)]

=
1

2
e−

√
λ+a2|x|.

Since
√
λ+ a2ga = 1

2

(
e−

√
λ+a2|x| ∗x w0

)
(0, t), we conclude that

L−1
[
2
√
λ+ a2ga

]
= 2∂t

(
fa

2

1/2 ∗ (E
a ∗x w0)(0)

)
+ 2a2fa

2

1/2 ∗ (E
a ∗x w0)(0).

If w0 = −ce−µ|x|, we observe that

L−1
[
2
√
λ+ a2ga

]
= −2c

(
fa

2

1/2 − µe(µ
2−a2)t erfc

(
µ
√
t
))

, (2.11)

where erfc denotes the complementary error function, i.e.,

erfc(s) =
2√
π

∫ ∞

s

e−τ2 dτ.

Indeed, we proceed with

ga(λ) =
(
Ga

λ ∗x
(
−ce−µ|x|

))
(0) = −c 1

2
√
λ+ a2

∫ ∞

−∞
e−

√
λ+a2|0−y|e−µ|y| dy

= − c√
λ+ a2

∫ ∞

0

e
−
(
µ+

√
λ+a2

)
y
dy = − c√

λ+ a2
(
µ+

√
λ+ a2

) .
(2.12)

https://doi.org/10.1017/prm.2024.122 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.122


A singular limit of the Kobayashi–Warren–Carter system 17

By a direct calculation, we observe that

L
[
erfc

(
µ
√
t
)]

=

∫ ∞

0

e−λt

(
2√
π

∫ ∞

µ
√
t

e−s2 ds

)
dt

=
2√
π

∫ ∞

0

[∫ s2/µ2

0

e−s2e−λt dt

]
ds =

2√
π

∫ ∞

0

e−s2

[∫ s2/µ2

0

e−λt dt

]
ds

=
2√
π

∫ ∞

0

e−s2

(
1− eλs

2/µ2

λ

)
ds =

2√
π

1

λ

(√
π

2
−

√
π

2

√
µ2

µ2 + λ

)

=
1

λ

(
1− µ√

λ+ µ2

)
.

Thus,

L
[
f01/2 − µeµ

2t erfc
(
µ
√
t
)]

=
1√
λ
− µ

λ− µ2

(
1− µ√

λ

)
=
λ− µ2 −

√
λµ+ µ2

√
λ(λ− µ2)

=

√
λ− µ

λ− µ2
=

1√
λ+ µ

,

(2.13)

where we invoked Eqs. (2.2) and (2.1). We set qµ(t) = f01/2(t)−µeµ
2t erfc

(
µ
√
t
)
so

that Eq. (2.13) becomes

L[qµ] = 1√
λ+ µ

. (2.14)

Using Eq. (2.1) again, we now obtain Eq. (2.11).
The formula (2.13) gives another representation of ma. Indeed, since

1

2
L[ma](λ) =

√
λ+ a2 − a

λ
=

1√
λ+ a2 + a

,

we see

1

2
ma(t) = e−a2tqa(t) = fa

2

1/2(t)− a erfc
(
a
√
t
)
, (2.15)

in particular, implies that ma(t) ≤ 2fa
2

1/2(t) and

erfc
(
a
√
t
)
= 1− a

∫ t

0

fa
2

1/2(s) ds.

Moreover, by Eq. (2.15), we see

qa(t) = ea
2tma(t)/2.
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Therefore, the positivity of ma (lemma 2.1) implies qa(t) > 0 for t > 0. The formula
Eq. (2.9) in lemma 2.2 becomes

Maξt + 2ca erfc
(
a
√
t
)
− 2cµe(µ

2−a2)t
(
erfc

(
µ
√
t
))

= − gradE0,b
sMM(ξ) (2.16)

if w0 = −ce−µ|x|. If µ = a, this is reduced to Eq. (1.14) (or Eq. (2.8)).
One can give an explicit form of a solution of Eq. (2.16) starting from ξ(0) = 1−c.

We substitute Eq. (2.12) into Eq. (2.10) to get

η̂(λ) =

√
λ+ a2√

λ+ a2 + b
ga(λ) +

−b
λ
(√
λ+ a2 + b

)
=

1√
λ+ a2 + b

(
−c

µ+
√
λ+ a2

− b

λ

)
.

(2.17)

Since

L
[
e−a2tqµ

]
=

1√
λ+ a2 + µ

by Eqs. (2.13) and (2.1), we have

η = −ce−a2tqb ∗ e−a2tqµ − b

∫ t

0

e−a2sqb(s) ds

= −ce−a2t(qb ∗ qµ)− b

∫ t

0

e−a2sqb(s) ds.

However, the calculation of qb ∗ qµ is quite involved, and it is easier to calculate η̂
in Eq. (2.17) more. We proceed

η̂(λ) =
1√

λ+ a2 + b

(
−
c
(√
λ+ a2 − µ

)
λ+ a2 − µ2

− b

λ

)

=
1√

λ+ a2 + b

(
−c
((√

λ+ a2 + b
)
− b− µ

)
λ+ (a2 − µ2)

− b

λ

)

=
1√

λ+ a2 + b

(b+ µ)c

λ+ (a2 − µ2)
− c

λ+ (a2 − µ2)
− 1√

λ+ a2 + b

b

λ

≡ I + II + III.

It is easy to see that

L−1(II) = −ce−(a2−µ2)t.

As we already observed,

L−1(III) = −b
∫ t

0

e−a2sqb(s) ds.
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For the first term,

L−1(I) = c(b+ µ)e−(a2−µ2)t ∗ e−a2tqb.

By definition,

e−(a2−µ2)t ∗ e−c2tqb =

∫ t

0

e−(a2−µ2)(t−s)e−a2sqb(s) ds

= e−(a2−µ2)t

∫ t

0

e−µ2sqb(s) ds.

We thus conclude that

η(t) = c

[
(µ+ b)

∫ t

0

e−µ2sqb(s) ds− 1

]
e−(a2−µ2)t − b

∫ t

0

e−a2sqb(s) ds. (2.18)

Thus, ξ = η + 1 is the solution of Eq. (2.16) with ξ(0) = 1− c.
From this solution formula, we can establish the solution’s large-time behaviour.

We set

η = η̄(t) + ηe(t), η̄(t) = −b
∫ t

0

e−a2sqb(s) ds.

Lemma 2.3.

(i) The function η̄ is negative, monotonically decreasing, and converging to
−b/(b+ a) as t→ ∞.

(ii) The estimate ∣∣∣∣ ηe
c(µ+ b)

∣∣∣∣ ≤ e−a2t

∫ ∞

t

qb(s) ds ≤ e−a2t 1

b

holds for t> 0. In particular,

lim
t→∞

ηee
a2t = 0.

Proof.

(i) Since qb ≥ 0, the monotonicity is clear. We observe that

∫ ∞

0

e−a2sqb(s) ds = L
[
qb
]
(0 + a2) =

1√
a2 + b

by Eq. (2.13). Thus, limt→∞ η̄(t) = −b/(b+ a).
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(ii) Since ∫ ∞

0

e−µ2sqb(s) ds =
1

µ+ b
,

we observe that

ηe = −c(µ+ b)

∫ ∞

t

e−µ2sqb(s) ds e−(a2−µ2)t

= −c(µ+ b)

∫ ∞

t

eµ
2(t−s)qb(s) ds e−a2t.

Since eµ
2(t−s) ≤ 1 for s ≥ t, this implies |ηe/c(µ+ b)| ≤ e−a2t

∫∞
t
qb(s) ds ≤

e−a2t
∫∞
0
qb(s) ds = e−a2t/b. The proof is now complete.

�

We conclude this section by giving remarks on corollary 1.3. It turns out that
corollary 1.3 can be derived using the expression of the Dirichlet–Neumann map.

Remark 2.4. We consider the initial-boundary value problem for
wt − (−x)αwxx = 0 in (−∞, 0)× (0,∞),

w(0, t) = η(t) for t > 0, η(0) = 0,

lim
x→−∞

w(x, t) = 0 for t > 0,

w(x, 0) = 0 for x < 0.

Then, as in [3], we obtain that

wx(0, t) = cγ∂
γ
t η,

where γ = 1/(2−α) with some constant cγ > 0, provided that α< 1. Indeed, as in
[3], let ψ be a solution of

ψ − (−x)αψxx = 0 in (−∞, 0),

ψ(0) = 1,

lim
x→−∞

ψ(x) = 0.

Since the Laplace transform ŵ of w satisfies

λŵ − (−x)αŵxx = 0, ŵ(0, λ) = η̂(λ),

we see, by scaling, that

ŵ(x, λ) = η̂(λ)ψ
(
λ1/(2−α)x

)
.
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Thus,

∂xŵ(0, λ) = λ1/(2−α)ψ′(0)η̂(λ)

= ψ′(0)λγ−1η̂t(λ)

since η(0) = 0. Thus,

wx(0, t) = ψ′(0)f01−γ ∗ ηt.

If γ < 1, then f01−γ is integrable. As noted in [3], ψ′(0) exists (even for the degenerate
case, i.e., α> 0) and ψ′(0) > 0. Thus,

wx(0, t) = cγ∂
γ
t η with cγ = ψ′(0)

at least for γ = 1/(2− α) < 1, i.e., α< 1.

Corollary 1.3 is easily derived by this result since wx = ∂
1/2
t w and wx + bw = 0;

note that c1/2 = 1.

Remark 2.5. The reader might be interested in how fractional partial differential
equations like fractional diffusion equations are derived. We consider

wt − (−x)αwxx = 0 in (−∞, 0)×Rn−1 × (0,∞),

wx −∆yw = f on (−∞, 0)×Rn−1 × (0,∞),

w(x, y, 0) = 0 on (−∞, 0)×Rn−1,

where f = f(y, t) is a given function. Then, by remark 2.4, the equation for η(y, t) =
w(0, y, t) is formally obtained as

cγ∂
γ
t η −∆yη = f in Rn−1 × (0,∞). (2.19)

This type of equation is a kind of fractional diffusion that has been well-studied;
see [17, 32]. Here, we briefly recall only the well-posedness of its initial boundary
value problem for Eq. (2.19) in a domain. In the framework of distributions, the
well-posedness of its initial boundary value problems has been established in [25,
31] by using the Galerkin method. The unique existence of viscosity solutions for
Eq. (2.19), including general nonlinear problems, has been established in [7, 22] and
also in [28] for the whole space Rn−1. The scope of equations these theories apply is
different. However, it has been proved in [6] that two notions of solutions (viscosity
solution and distributional solution) agree for Eq. (2.19) when we consider the
Dirichlet problem in a smooth bounded domain.

3. Convergence

The goal of this section is to prove lemma 1.4. For this purpose, we shall study a
homogeneous version of Eq. (1.13) in a whole space R × (0,∞) and estimate the
derivative of a solution as |y| → ∞. We begin with several estimates related to the
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heat semigroup in R. Let E(x, t) be the Gauss kernel, and write Et(x) = E(x, t),
i.e.,

Et(x) =
1√
4πt

e−|x|2/4t

and Ea
t = e−a2tEt. Then,

(e∆atf)(x) := (Ea
t ∗x f)(x) =

∫ ∞

−∞
Ea

t (x− y)f(y) dy

solves

(∂t −∆a)u = 0 in R× (0,∞), ∆a = ∆− a2, a ≥ 0,

with initial data f ∈ L∞(R) ∩ C(R), i.e., f is bounded and continuous on R.

Proposition 3.1. Assume that f ∈ C(R) ∩ L∞(R) satisfies a decay condition

lim
|x|→∞

|f(x)x| = 0.

Then, for T > δ > 0,

lim
|x|→∞

sup
δ≤t≤T

|x| |∂x(Ea
t ∗x f)(x)| = 0

and

lim
|x|→∞

sup
0<t≤T

|x| |(Ea
t ∗x f)(x)| = 0.

Proof. We may assume a =0. We notice that

|(∂xEt)(x)| ≤
C

t1/2
E2t(x),

with some C independent of t and x, since ∂xEt = −(x/2t)Et and supy>0 ye
−y2 <

∞. Thus, it suffices to prove that

lim
|x|→∞

sup
0≤t≤T

|x| |(Et ∗x f)(x)| = 0. (3.1)

We divide

(Et ∗x f)(x) =

(∫
2|y|≤|x|

+

∫
2|y|>|x|

)
Et(x− y)f(y) dy = I + II.

We notice that

Et(x− y) ≤ C ′ exp

(
−|x− y|2

8T

)
E2t(x− y), t < T,
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with some constant C
′
independent of x, y ∈ R and t <T. Since 2|y| ≤ |x| implies

|x− y| ≥ |x| − |y| ≥ |x|/2, we obtain that

|I| ≤ C ′ exp

(
− |x|2

32T

)
|E2t ∗x |f |(x)| ≤ C ′ exp

(
− |x|2

32T

)
‖f‖L∞(R).

For II, we proceed

|x||II| ≤
∫
2|y|>|x|

Et(x− y)2|y| |f(y)| dy ≤ sup
|y|≥|x|/2

|y| |2f(y)| → 0 as |x| → ∞.

We thus obtain Eq. (3.1). The proof is now complete. �

We also need to estimate decay as |x| → ∞ for

∫ t

0

e∆a(t−s)g(s) ds

when g(s) = h(s)∂x(1x>0), h ∈ L∞(0, T ). This quantity equals

∫ t

0

Ea
t−s(x)h(s) ds.

Proposition 3.2. For h ∈ L∞(0, T ) and m> 0,

lim
|x|→∞

|x|m sup
0≤t≤T

∣∣∣∣∂x ∫ t

0

Ea
t−s(x)h(s) ds

∣∣∣∣ = 0,

lim
|x|→∞

|x|m sup
0≤t≤T

∣∣∣∣∫ t

0

Ea
t−s(x)h(s) ds

∣∣∣∣ = 0.

Proof. Again, we may assume that a =0. Since

(∂xEt) ≤
C

t1/2
E2t(x) ≤

C ′′

t
e−M2/(16t)e−|x|2/(16T )

for |x| ≥M and t ≤ T . Since t−1e−M2/(16t) is integrable near t =0, we see that

∣∣∣∣∂x ∫ t

0

Et−s(x)h(s) ds

∣∣∣∣ ≤ C0e
−|x|2/(16T )‖h‖L∞(0,T ), |x| ≥M, t ≤ T,∣∣∣∣∫ t

0

Et−s(x)h(s) ds

∣∣∣∣ ≤ C ′
0e

−|x|2/(8T )‖h‖L∞(0,T ), |x| ≥M, t ≤ T,

with some constants C 0, C
′
0 depending only on M and T. The proof is now

complete. �
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We consider a homogeneous version Eq. (1.13) inR×(0,∞). Namely, we consider{
τ1wt = ∆aw − 2bw∂x(1x>0)

w|t=0 = w0.
(3.2)

Proposition 3.3. Let w be a bounded solution of Eq. (3.2) with initial data w0 ∈
C(R) ∩ L∞(R). Assume that

lim
|x|→∞

w0(x)|x| = 0.

Then,

lim
|x|→∞

|x| sup
δ≤t≤T

|∂xw(x, t)| = 0, lim
|x|→∞

|x| sup
0≤t≤T

|w(x, t)| = 0

for any δ, T satisfying T > δ > 0.

Proof. We may assume τ1 = 1. By Duhamel’s formula, w is of the form

w(x, t) = (e∆atw0)(x)−
∫ t

0

e∆a(t−s)2b (w(s)∂x(1x>0)) ds.

Applying propositions 3.1 and 3.2, we obtain desired results. �

Proof. Proof of lemma 1.4. For a function f on (−L,L), we decompose it into
its odd and even parts, i.e.,

fodd(x) :=
f(x)− f(−x)

2
, feven(x) :=

f(x) + f(−x)
2

,

so that f = fodd + feven. By the structure of the equation, V ε
odd and V ε

even solve
Eq. (1.13) separately.

At first glance, the locally uniform convergence follows from the maximum or
comparison principles for a linear parabolic equation [24]. However, a direct appli-
cation of the maximum principle is impossible since the domains of functions V ε

and V are different. We first show the convergence where initial data are smooth.
For the odd part, the term V ∂y(1y>0) does not affect since V =0 at y =0. Thus,

Eq. (1.13) is reduced to{
τ1Vt = Vyy − a2(V − 1), |y| < L/ε

V |t=0 = V ε
0 , Vy(±L/ε, t) = 0 for t > 0,

(3.3)

where V ε
0 (y) = V ε(y, 0) for |y| < L/ε. Let V ε be its solution.

We extend an odd function V ε
0 to (L/ε, 3L/ε) for x to be ‘even’ with respect to

L/ε, i.e.,

Ṽ ε
0 (x− L/ε) = Ṽ ε

0 (L/ε− x) , x ∈ (L/ε, 3L/ε) ,

where Ṽ ε
0 is its extension. We extend Ṽ ε

0 outside (−L/ε, 3L/ε) so that the exten-
sion V ε

0 is periodic in R with period 4L/ε. Since V ε
0 is even with respect to L/ε,
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V ε
0

)
y
(±L/ε) = 0 if V ε

0y (±L/ε) = 0 and smooth. Solution V ε is the restriction on

(−L/ε, L/ε) of a solution W ε of{
τ1Wt =Wyy − a2(W − 1), y ∈ R

W |t=0 = V ε
0 .

(3.4)

Although the maximum principle implies

‖W ε − V ‖L∞(R) (t) ≤
∥∥V ε

0 − V0
∥∥
L∞(R)

,

our assumption of the convergence V ε
0 → V0 does not guarantee

∥∥V ε
0 − V0

∥∥
L∞(R)

→
0. We argue differently.

We approximate V 0 by V0δ = V0 ∗ ρδ, where ρδ is a symmetric mollifier. We also
approximate V ε

0 by

V ε
0δ = V ε

0 ∗ ρδ.

We set W ε
δ = W ε ∗ ρδ, where W ε is the solution of Eq. (3.4). Since Eq. (3.4) is of

constant coefficients, this W ε
δ solves Eq. (3.4)1 with initial data V ε

0δ. Let V
ε
δ be the

restriction of W ε
δ on (−L/ε, L/ε). It follows from the parity and periodic condition

that this V ε
δ solves Eq. (3.3). We set Vδ = V ∗ρδ and observe that Vδ is the bounded

solution of Eq. (3.4)1 with initial data V0δ since Eq. (3.4) is of constant coefficients.
For fixed δ > 0, we observe that

V ε
δ → Vδ in L∞ ((−M,M)× (0, T ))

for M > 0. Indeed, by the maximum principle

‖V ε
δ − 1‖∞,ε (t) ≤ ‖V ε

0δ − 1‖∞,ε ,

‖∂yV ε
δ ‖∞,ε (t) ≤ ‖∂yV ε

0δ‖∞,ε ,

‖∂tV ε
δ ‖∞,ε (t) ≤ ‖∂tV ε

0δ‖∞,ε ,

where ‖ · ‖∞,ε is the sup norm on (−L/ε, L/ε). Here, the notation ∂tV
ε
0δ for a

function V ε
0δ of y should be interpreted as

∂tV
ε
0δ =

(
V ε
0δyy − a2(V ε

0δ − 1)
)
/τ1.

Because of the mollifier, the right-hand side is bounded by a constant multiple of
‖V ε

0 ‖∞,ε, which is uniformly bounded for ε< 1. By the Arzelà–Ascoli theorem and
a diagonal argument, V ε

δ converges (locally uniformly in R× [0,∞)) to a bounded
(weak) solution to Eq. (3.4) with initial data V0δ by taking a subsequence. Since
V is bounded, by the uniqueness of the limit problem, the convergence is now
full (without taking a subsequence). Note that we only invoke the locally uniform
convergence of V ε

0 to V 0 other than the uniform bound on derivatives.
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We note that

V − V ε = V − Vδ + Vδ − V ε
δ + V ε

δ − V ε

and observe that

‖V − V ε‖(t) ≤ ‖V − Vδ‖(t) + ‖Vδ − V ε
δ ‖(t) + ‖V ε

δ − V ε‖(t) =: I + II + III

where the norm is ‖·‖ taken in L∞(−M,M) for M > 0. By the maximum principle,

‖V ε
δ − V ε‖∞,ε(t) ≤ ‖V ε

0δ − V ε
0 ‖∞,ε,

‖V − Vδ‖L∞(R)(t) ≤ ‖V0δ − V0‖L∞(R).

Since

V ε
0δ = ρδ ∗

(
V ε
0 − V0

)
+ ρδ ∗ V0,

V ε
0 = V ε

0 − V0 + V0 on (−L/ε, L/ε),

and ‖ρδ ∗ f‖∞ ≤ ‖f‖∞, we see that

‖V ε
0δ − V ε

0 ‖L∞(−L/ε,L/ε) ≤ 2‖V ε
0 − V0‖∞,ε + ‖ρδ ∗ V0 − V0‖∞.

Thus,

sup
0<t<T

III ≤ 2‖V ε
0 − V0‖∞,ε + ‖ρδ ∗ V0 − V0‖∞.

Fixing δ > 0 and sending ε→ 0, we observe that

lim
ε↓0

sup
0<t<T

(I + II + III) ≤ 2‖ρδ ∗ V0 − V0‖∞

since V ε
δ → Vδ in L∞ ((−M,M)× [0, T ]). Sending δ ↓ 0, we obtain

lim
ε↓0

sup
0<t<T

‖V − V ε‖(t) = 0

since V 0 is uniformly continuous.
We next study the even part. The general strategy is the same but more involved

than the odd part. For the even part, we first note that V ε
even solvesτ1Vt = Vyy − a2(V − 1), y ∈ Iε := (−L/ε, 0) , t > 0,

Vy(0, t) + bV (0, t) = 0, Vy (−L/ε, t) = 0, t > 0,
V |t=0(y) = V ε

0 even,
(3.5)

where V ε
0 (y) = V ε(y, 0) for y ∈ Iε. We suppress the word ‘even’ from now on. We

shall approximate V ε
0 by a smoother function V ε

0δ and approximate V0 = limε→0 V
ε
0

by a smoother function uniformly. There are many possible ways, and we rather like
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an abstract way. Let BUC(Iε) denote the space of all bounded uniformly continuous
functions in Iε. It is a Banach space equipped with the norm

‖f‖∞,ε = sup
{
|f(x)|

∣∣ x ∈ Iε
}
.

If ε=0, then Iε should be interpreted as (−∞, 0]. Let A be the operator on BUC(I0)
defined by

Af := (−∂2y + a2)f (in the distribution sense),

with

D(A) =
{
f ∈ BUC(I0)

∣∣ Af ∈ BUC(I0), fy(0) + bf(0) = 0
}
.

A standard theory [18] implies that −A generates an analytic semigroup e−tA in
BUC(I0). In particular, ∥∥Ae−tAf

∥∥
∞,0

≤ Ct−1‖f‖∞,0,∥∥e−tAf
∥∥
∞,0

≤ C‖f‖∞,0,

with some constant C > 0 independent of time t ∈ (0, 1) and f ∈ BUC(I0). For a

function h ∈ BUC(Iε), we extend it to h̃ so that h̃(x) = h (−L/ε) for x < −L/ε.
For V 0, we set V0δ = e−δAV0. For V

ε
0 , we tempt to set V ε

0δ = e−δAṼ ε
0 . However,

unfortunately, V ε
0δ does not satisfy the boundary condition at −L/ε although it

satisfies (∂yV
ε
0δ + bV ε

0δ) (0) = 0 and is C 2 (actually smooth). We set σ(x) = ρδ′ ∗
(1− |x|)+ for a fixed δ′ > 0 so that σ′ (1/2) = −κ with κ< 0. We set σδ′′(y) =

δ′′σ (y/δ′′) for small δ′′ > 0. For a given h ∈ C2(−∞, 0], we modify

hδ′′(y) = h(y) + cσδ′′(y − ν),

where we take c so that cκ = hy (−L/ε), −L/ε− ν = δ′′/2. By this modification,

∂yhδ′′ (−L/ε) = 0

and hδ′′ → h in L∞(−∞, 0) as δ′′ → 0. We set

V ε
0δ =

(
e−δAṼ ε

0

)
δ
.

Since V ε
0δ satisfies the boundary condition on the boundary of Iε and is smooth,

we observe that ∂tV
ε
δ is continuous up to the boundary of Iε × [0, T ), where V ε

δ

denotes the solution of Eq. (3.5) with initial data V ε
0δ. By the maximum principle,

‖V ε
δ − 1‖∞,ε(t) ≤ ‖V ε

0δ − 1‖∞,ε

‖∂yV ε
δ ‖∞,ε(t) ≤ ‖∂yV ε

0δ‖∞,ε + b‖V ε
δ ‖∞,ε

‖∂tV ε
δ ‖∞,ε(t) ≤ ‖∂tV ε

0δ‖∞,ε,

(3.6)

where ∂tV
ε
0δ for initial data V ε

0δ should be interpreted as in the proof for the odd
part. The term involving b appears because of the Robin type boundary condition.
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As in the case for Eq. (3.4), by the Arzelà–Ascoli theorem and the uniqueness
of the limit equation, we can prove that V ε

δ converges to Vδ locally uniformly in
(−∞, 0] × [0,∞). Note that for a fixed δ > 0, the right-hand sides of Eq. (3.6) are
uniformly bounded as ε→ 0 since V ε

0 converges to V 0 uniformly. The comparison
principle implies that

‖V ε
δ − V ε‖∞,ε(t) ≤ ‖V ε

0δ − V ε
0 ‖∞,ε, t > 0

‖V − Vδ‖∞,0(t) ≤ ‖V0δ − V0‖∞,0, t > 0.

Thus,

‖V − V ε‖(t) ≤ ‖V − Vδ‖(t) + ‖Vδ − V ε
δ ‖(t) + ‖V ε

δ − V ε‖(t)
≤ ‖V0 − V0δ‖∞,0 + ‖Vδ − V ε

δ ‖(t) + ‖V ε
0δ − V ε

0 ‖∞,ε,

where the norm ‖ · ‖ is taken in L∞(0,M) for M > 0. Taking the supremum in
t ∈ (0, T ) and sending ε→ 0, we obtain that

lim
ε→0

sup
0<t<T

‖V − V ε‖(t) ≤ 2‖V0δ − V0‖∞,0

since we know sup0<t<T ‖Vδ − V ε
δ ‖(t) → 0 as ε→ 0. Sending δ→ 0, we conclude

that V ε converges to V locally uniformly in [0,∞)× [0,∞).
Since we know that V ε is continuous up to y =0 and t =0, this gives the local

uniform convergence of V ε(0, t) in [0,∞).
So far, we do not invoke the assumption that (V0(x)− 1) |x| → 0 as |x| → ∞.

We shall prove

lim
ε→0

sup
0≤t≤T

‖V − V ε‖∞,ε(t) = 0.

We only discuss the case of even initial data since the odd case is easier. Since

‖V − V ε‖∞,ε(t) ≤ ‖V − Vδ‖∞,ε(t) + ‖Vδ − V ε
δ ‖∞,ε(t) + ‖V ε

δ − V ε‖∞,ε(t)

≤ ‖V0 − V0δ‖∞,0(t) + ‖Vδ − V ε
δ ‖∞,ε(t) + ‖V ε

0δ − V ε
0 ‖∞,ε,

it suffices to prove that

lim
ε→0

sup
0≤t≤T

‖Vδ − V ε
δ ‖∞,ε(t) = 0. (3.7)

By our construction, the function Vδ(y, t) is

Vδ(y, t) = w(y, t+ δ) + 1, x < 0

for w solving Eq. (3.2) with w0 = V0 − 1. By proposition 3.3,

lim
y→∞

|y| sup
0≤t≤T

|∂yVδ(y, t)| = 0. (3.8)
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The difference Vδ − V ε
δ = uε satisfies

τ1ut = ∆au, −L/ε < y < 0,

u(0, t) = (Vδ − V ε
δ )(0, t) =: uεb(t), t > 0,

∂yu(−L/ε, t) = ∂yVδ(−L/ε, t)− 0, t > 0,

u(y, 0) = V0δ − V ε
0δ =: uεi (y), −L/ε < y < 0.

Let ūε be the solution of
τ1ūt = ∆aū, −L/ε < y < 0,

ū(0, t) = uεb(t), t > 0,

∂yū(−L/ε, t) = 0 t > 0,

ū(y, 0) = uεi (y), −L/ε < y < 0.

By the maximum principle,

‖ūε‖∞,ε(t) ≤ sup
0≤t≤T

|uεb(t)|+ ‖uεi‖∞,ε.

Since we know that sup0<t<T |uεb(x)| → 0 as ε→ 0, sending ε→ 0 yields

lim
ε↓0

‖ūε‖∞,ε(t) ≤ 0.

We set r = uε − ūε and observe that r satisfies
τ1rt = ∆ar, −L/ε < y < 0,

r(0, t) = 0, t > 0,

∂yr(−L/ε, t) = ∂yVδ(−L/ε, t),
r(y, 0) = 0, −L/ε < y < 0.

We set r̃ = ea
2tr and observe that r̃ satisfies

τ1r̃t = ∆r̃

r̃(0, t) = r̃(y, 0) = 0, −L/ε < y < 0, t > 0,

∂y r̃ = ea
2t∂yV0δ for x = −L/ε, t > 0.

We take Mε = sup0≤t≤T e
a2t |(∂yVδ)(−L/ε, 0)| and observe that −yM and yM are

the super- and subsolution, respectively. By the comparison principle,

|r̃| ≤Mε|y| or |r| ≤ e−a2tMε|y| for y ∈ (−L/ε, 0), t ∈ (0, T ).

This implies that

|r| ≤MεL/ε.
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By Eq. (3.8), MεL/ε→ 0 as ε→ 0. We thus conclude that

lim
ε↓0

sup
0≤t≤T

‖uε − ūε‖∞,ε(t) ≤ ‖V − Vδ‖∞,ε.

Sending δ ↓ 0, we obtain Eq. (3.7). The statement that sup0≤t≤T |V − 1|(y)|y| → 0
as |y| → ∞ follows from proposition 3.3. The proof is now complete. �

If we only assume that the initial data for Eqs. (3.4) and (3.5) are bounded and
Lipschitz, we have a similar estimate in Eq. (3.6) up to the first derivative of the
solution. However, the estimate for the time derivative should be altered. Since we
used such an estimate in lemma 2.2, we state it in the case of ε=0 for the reader’s
convenience.

Lemma 3.4. Let V be the bounded solution of Eq. (1.13) in R × (0,∞) with the
bounded and Lipschitz continuous initial data V0. Then, for each T> 0, there is a
constant C depending only on a, b, and T such that

t1/2‖∂tV ‖L∞(R)(t) ≤ C
(
‖∂yw0‖L∞(R) + ‖w0‖L∞(R) + 1

)
for t ∈ (0, T ).

Proof. We give direct proof. We may assume that τ1 = 1. We set w = V − 1

and u = ea
2tw to get

ut = uxx − 2b∂x{1x>0}
(
u+ ea

2t
)
,

where we denote by x instead of y. We consider this equation with initial data
w0 = V0 − 1. It suffices by simple scaling uλ(x, t) = u(λx, λ2t) to prove the desired
estimate for some T independent of w0.

Let E(x, t) be the Gauss kernel as before. Then, the solution can be represented
as

u(x, t) = (E∗xw0)(x, t)−
∫ t

0

E(x, t−τ)h(τ) dτ, h(t) = 2b
(
u(0, t) + ea

2t
)
, (3.9)

where

(E ∗x w0)(x, t) :=

∫ ∞

−∞
E(x− y, t)w0(y) dy.

Since we can approximate a smooth w0, establishing

‖∂tu‖L∞(R)(t) ≤ Ct−1/2
(
‖∂xw0‖L∞(R) + ‖w0‖L∞(R) + 1

)
for t ∈ (0, T )

(3.10)

https://doi.org/10.1017/prm.2024.122 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.122


A singular limit of the Kobayashi–Warren–Carter system 31

with some positive constants C and T independent of w0 suffices, assuming that
∂tu exists and is bounded in R × (0, T ) for small T. By the maximum principle
Eq. (3.6) and the corresponding estimate for the odd part, we know that

‖u‖L∞(R)(t) ≤ c
(
1 + ‖w0‖L∞(R)

)
, (3.11)

with c independent of w0 and t > 0. We estimate ∂tu in Eq. (3.9). Since ‖f ∗x
g‖L∞(R) ≤ ‖f‖L1(R)‖g‖L∞(R) and

∂t(E ∗x w0) = (∂xE) ∗x ∂xw0,

we easily see (cf. [5, Chapter 1]) that

‖∂t(E ∗x w0)‖L∞(R) (t) ≤
c′

t1/2
‖∂xw0‖L∞(R) for t > 0, (3.12)

with c
′
independent of w0. The second term of the right-hand side of Eq. (3.9) is

more involved than the first term because h contains u. We observe that

∂t

∫ t

0

E(x, t− τ)h(τ) dτ =

∫ t

0

E(x, t− τ)∂τh(τ) dτ + E(x, t)h(0).

Since |E| ≤ (4πt)−1/2, it holds that

∣∣∣∣∫ t

0

E(x, t− τ)∂τh(τ) dτ

∣∣∣∣ ≤ ∫ t

0

1

(4π(t− τ))1/2
1

τ1/2
dτ · sup

0<t<T
|t1/2∂th(t)|

for t ∈ (0, T ).
Thus,

sup
0<t<T

∥∥∥∥∂t ∫ t

0

E(x, t− τ)h(τ) dτ

∥∥∥∥
∞

≤ C1 sup
0<t<T

∣∣∣t1/2∂th(t)∣∣∣+ (4πt)−1/2 |h(0)|

≤ C2

(
sup

0<t<T
‖t1/2∂tu‖L∞(R)(t) + 1

)
+ C3t

−1/2
(
‖u‖L∞(R)(t) + 1

)
with some constants Cj (j = 1, 2, 3). By Eqs. (3.9) and (3.12), we now observe that

sup
0<t<T

∥∥∥t1/2∂tu∥∥∥
L∞(R)

(t) ≤ C4 ‖∂xw0‖L∞(R) + C2T
1/2

(
sup

0<t<T
‖t1/2∂tu‖L∞(R) + 1

)
+ C3 sup

0<t<T

(
‖u‖L∞(R)(t) + 1

)
,

with C 4 independent of w0, u, and T. Applying estimate for ‖u‖∞ in
Eq. (3.11), we conclude Eq. (3.10) for sufficiently small T by absorbing
C2T

1/2 sup0<t<T ‖t1/2∂tu‖L∞(R) on the right-hand side to the left. �
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4. Dirichlet condition for the total variation flow

In this section, we recall a notion of total variation flow for a given v and prove
lemma 1.1. We consider

∂tu = div (β∇u/|∇u|) in I × (0, T ), (4.1)

where β ∈ C (I × [0, T ]) is a given non-negative function; here, I = (p0, p1) is an
open interval and T > 0. If we impose the Dirichlet boundary condition

u = g on ∂I, (4.2)

Eq. (4.1) with Eq. (4.2) should be interpreted as an L2-gradient flow of a time-
dependent total variation type energy

Φt(u) =

∫
I

β(x, t)|ux|+
1∑

i=0

|γu− g|(pi)β(pi, t)

when
∫
β|ux| is a weighted total variation of β and γu is a trace of u on ∂I. We

consider this energy in L2(I) by Φt(u) = ∞ when Φt(u) is not finite. It is clear
that Φt is convex in L2(I). If β is spatially constant, it is well known that Φt is also
lower semicontinuous; see e.g. [1]. The solution of Eq. (4.1) with Eq. (4.2) should
be interpreted as the gradient flow of form

ut ∈ −∂Φt(u), (4.3)

where ∂Φt denotes the subdifferential of Φt in L2(I), i.e.,

∂Φt(u) =

{
f ∈ L2(I)

∣∣∣∣ Φt(u+ h)− Φt(u) ≥
∫
I

hf dx for all h ∈ L2(I)

}
.

It is standard that Eq. (4.3) is uniquely solvable for given initial data u0 ∈ L2(I) if
Φt does not depend on time and is lower semicontinuous and convex on the Hilbert
space L2(I) (see, for instance, [2, 16]). It applies to the total variation flow case
when β is a constant. In one-dimensional case, u ∈ BV (I) implies u ∈ L∞(I), so
the subdifferential becomes

∂Φ(u) =

{
v ∈ L2(I)

∣∣∣∣ v = −(βz)x, ‖z‖∞ ≤ 1,

∫
I

(βz, ux) =

∫
I

β|ux|,

− (βz)(pi)(−1)i(g − γu)(pi) = |γu− g|(pi)β(pi) for i = 1, 2

}
,

when Φ = Φt; see [1, Proposition 5.10 and Lemma 5.13]1.. Here, (βz, ux) denotes
the Anzellotti pair [1] and∫

I

(βz, ux) = −
∫
I

(βz)xu dx−
1∑

i=0

(βz)(pi)(−1)iγu(pi).

1.In [1], the case β ≡ 1 is discussed, but its extension to β ∈ C(Ī) is straightforward.
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Eq. (4.3) is

ut = (βz)x,

with |z| ≤ 1 in I and

−
∫
I

(βz)xu dx

=

∫
I

β|ux|+
1∑

i=0

(βz)(pi)(−1)iγu(pi)

=

∫
I

β|ux|+
1∑

i=0

{
(βz)(pi)(−1)i (γu(pi)− g(pi)) + (βz)(pi)(−1)ig(pi)

}
= Φ(u) +

1∑
i=0

(βz)(pi)(−1)ig(pi),

with −(βz)(pi)(−1)i(g− γu)(pi) = β|γu− g|(pi) for i = 0, 1. We mimic this notion
of the solution. A function u ∈ C

(
[0, T ), L2(I)

)
is a solution to Eq. (4.1) with

Eq. (4.2) if there is z ∈ L∞ (I × (0, T )) such that

ut = (βz)x in I × (0, T ) (4.4)

|z| ≤ 1 in I × (0, T ) (4.5)

−
∫
I

(βz)xu = Φ(u) +
1∑

i=0

(βz)(pi)(−1)ig(pi), with

− (βz)(pi)(−1)i(g − γu)(pi) = |γu− g|(pi)β(pi) for i = 1, 2. (4.6)

Under this preparation, we shall prove lemma 1.1.

Proof. Proof of lemma 1.1. We set p0 = −L, p1 = L so that I = (−L,L). Since
ubt = 0, Eq. (4.4) says that βz is a constant c. The condition Eq. (4.5) is equivalent
to saying that |c| ≤ minβ = β(0). Since∫

I

β|ubx| = β(0)b and ub = g on ∂I

with g(L) = b, g(−L) = 0, Eq. (4.6) is equivalent to

0 = β(0)b− (βz)(L)b.

In other words, c must be β(0). Thus, the existence of z satisfying |z| ≤ 1 is
guaranteed if and only if

c = β(0) ≤ β(x) for all x ∈ (−L,L).
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Eq. (4.6) is fulfilled with u = ub by taking g(−L) = 0 and g(L) = b. Thus, ub is a
stationary solution to Eq. (1.4) with Eq. (1.7). �

5. Numerical experiment

In this section, we calculate the solution of Eqs. (1.10)–(1.12) with v0(x) = 1 −
ce−a|x|/ε and compare its value at x =0 with an explicit solution of Eq. (2.16)
whose explicit form is given in Eq. (2.18).

5.1. Numerical scheme

Since the initial function, v0, is an even function, the original problem
Eqs. (1.10)–(1.12) is reduced to

τ1
ε vt = εvxx − a2(v−1)

ε in (0, L)× (0,∞),

−vx(0, t) + b
εv(0, t) = 0, for t > 0,

vx(L, t) = 0, for t > 0,

v(x, 0) = v0(x), forx ∈ [0, L].

The computational region [0, L] is divided into uniform mesh partitions:

xi = i∆x, i = −1, 0, . . . , N,N + 1, ∆x =
L

N
.

The points x−1 and xN+1 are needed to handle the Neumann boundary conditions.
The approximation of v at x = xi is written as vi. The central finite difference

approximates the Laplace operator, and the time derivative is approximated by the
backward difference, yielding the following linear system:

τ1
ε

vi − v̂i
∆t

= ε
vi−1 − 2vi + vi+1

(∆x)2
− a2(vi − 1)

ε
, i = 0, 1, . . . , N,

where v̂i is the value known at the current time and vi is the value to be found at the
next time. The Neumann boundary conditions at x =0 and x =L are approximated
as

−v1 − v−1

2∆x
+
b

ε
v0 = 0 and

vN+1 − vN−1

2∆x
= 0

by the central finite differences.

5.2. Results

Some results are shown for different values of c for parameters

τ1 = 1, L = 1, a = 1, N = 200, ∆t = (∆x)2, b = 1.

The results of the numerical experiments are summarized in figure 2. In (a), (b),
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Figure 2. Results of numerical experiments: (a) c=0, (b) c = 1/4, (c) c=2, (d) table of
L∞-errors for different ε and c values.

and (c), the horizontal axis represents time, and the vertical axis represents the
value at the origin. As ε is decreased, the numerical solution converges to the exact
solution to the extent that the exact and numerical solutions overlap. Indeed, the
table of L∞-errors for different values of ε and c is shown in (d). The errors for
ε = 2−3 are of order 10−5, indicating that the solution for small ε is an excellent
approximation to the solution of the fractional time differential equation obtained
as the singular limit.
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