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There are several important reasons to consider relativistic effects in rotational 
motion of celestial bodies. General Relativity is now recommended by the Inter­
national Astronomical Union and International Union of Geodesy and Geophysics 
as a theoretical framework for modeling of high-precision observational data. On 
the other hand, various geodynamical observations provide data which are widely 
used for testing General Relativity itself. 

In Newtonian mechanics it is well known how to describe rotational motion of 
an extended body. In General Relativity this is a rather subtle issue. The concept 
of a precessing extended rigid body in general relativity encounters fundamental 
difficulties and cannot be introduced even in the first post-Newtonian approxima­
tion. From a practical point of view, however, the rotational motion of the Earth 
even at the Newtonian level is defined operationally through the time-dependence 
of geocentric quasi-inertial coordinates of observing sites. An analogous opera­
tional definition can be applied in general relativity. To this end, we need a set of 
physically adequate reference systems. 

Nowadays there are two well-developed formalisms for the construction of rel­
ativistic astronomical reference systems: the Brumberg-Kopeikin formalism (see, 
e.g., Brumberg, 1991) and the DSX formalism (Damour, Soffel, Xu, 1991, 1992, 
1993). The two reference systems needed to model the Earth rotation are the 
barycentric reference system of the solar system and the local geocentric reference 
system, where the influence of the external masses reduces to tidal effects. Each 
reference system is defined by the structure of its metric tensor. 

In the local geocentric reference system one can derive rotational equations of 
motion of the extended deformable arbitrarily-shaped Earth, which take the same 
form as in Newtonian physics 

where Sl is the post-Newtonian spin, and L% is the post-Newtonian tidal torque 
(Damour, Soffel, Xu, 1993; Klioner, 1996). Eq. (1) is sufficient to discuss precession 
and nutation of the spin. To consider precession and nutation of the angular velocity 
and figure axis, we need a relativistic definition of the tensor of inertia and angular 
velocity. A variety of theoretical approaches (from restricted rigid body models 
(Soffel, 1994) to relativistic Tisserand-like axes of deformable Earth (Klioner, 
1996)) lead to the same post-Newtonian definition of the tensor of inertia C^. The 
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spin can be then split into a product of the tensor of inertia and the corresponding 
angular velocity ul 

S{ = Ci:iuj. (2) 

The definition of angular velocity of a deformable Earth is not unique already 
in Newtonian mechanics (Tisserand axes, principal axes of inertia, etc.). This 
ambiguity is aggravated in general relativity by the ambiguity in the definition of 
the relativistic spin S\ 

There are three main observational consequences of general relativity in Earth 
rotation: (a) The kinematically nonrotating geocentric reference system used in 
practice rotates relative to a locally inertial reference system. This results in Coriolis 
and centrifugal forces in the right-hand side of (1) resulting in geodetic precession 
(~ 1.9" per century) and nutation (with a period of one year and an amplitude 
of 0.15 mas), (b) Explicit relativistic terms in Ll produce additional periodic 
relativistic effects amounting to ~ 1 microarcsecond (Bizouard, et ai, 1992). (c) 
The key relation of Newtonian mechanics 

(MI]) = (\ 6^ Css - Clj) (3) 
V /Newton V3 /Newton 

between the quadrupole moment of the gravitational field M*J and the tensor of 
inertia C*-7' is violated in general relativity. This means that Ji, derived from Mt J , 
cannot be easily related to the dynamical ellipticity H, which is derived from C%\ 
the effect being of order of 8J2/J2 ~ 10- 9 (Klioner, 1997). 
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