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1. Introduction

Let K be a bounded, open convex set in euclidean #-space R,,, symmetric
in the origin 0. Further let L be a lattice in R, containing 0 and put

m; = infimum u; 1=12--",n

extended over all positive real numbers #, for which »,K contains ¢ linearly
independent points of L. Denote the Jordan content of K by V(K) and the
determinant of L by d(L). Minkowski’s second inequality in the geometry of
numbers states that

) mymy -+ - - m,V(K) < 27d(L).

Minkowski’s original proof has been simplified by Weyl [6] and
Cassels [7] and a different proof has been given by Davenport [1].

Professor Mahler, during a seminar at Notre Dame University, suggested
to the authors that it would be worthwhile to reexamine these proofs with
a view to possible generalisations. Each author then gave a proof, one based
on Weyl’s paper [6] and two on Davenport’s [1]. These three proofs are
given here.

In Weyl's proof all considerations are made in the quotient space
determined by the lattice L. The aim of the first proof is to show that the
existence of the quotient space is needed only to deduce the so-called mono-
tone property, thus suggesting that the theorem is true for some point sets
other than lattices. Davenport’s proof of (1) depends on certain functions
constructed in the course of the argument being continuous. He states
without proof that the construction can be made to ensure this. The third
proof here shows how this may be done. Earlier Siegel in lectures at New
York University gave without proof a method for making this construction.
The second proof shows that by working with iterated integrals instead of
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Jordan contents Davenport’s proof can be made independent of this
continuity. Theorem A of this argument, a variant of the Minkowski-
Blichfeldt theorem, may have some independent interest.

2. Reduction of the problem

The following normalisation is common to all three proofs. It is well
known and easy to prove that there exist # linearly independent points
F,, F,,---, F, of L such that F, lies on the boundary of m,K for each
i==1,2,+--,n Itis then possible to select a basis P, P,, -, P, of L so
that the linear space generated by the points P,, P,, - - -, P, is the same
as that generated by F;, F,, .-, F,;, and the intersection of this linear
space with L is the -dimensional lattice L, generated by the points P,
P, .-, P, fori=1,2,---,n Since the inequality (1) is invariant with
respect to the full linear group of transformations of R, it follows that
without loss of generality L == L_ may be assumed to be the integral lattice
and P,, P,, -, P, the points given by

P;=(6,-1,6,~2,'--,6;,,) 1=12,+,m

where §,; is the Kronecker delta.

3. First proof

Let C be a bounded Lebesgue measurable point set and S a discrete
point set in R,,. For s € S and a positive integer m the set of points contained
in C+s and exactly m—1 of the sets C+¢, £ € S—s, simultaneously is measur-
able with measure M,, say. Let £ be the largest integer for which M, is not
zero and put

D(C, S, s) = My+3My+-3M st - - - +3M,.

The affine invariance of Lebesgue measure implies that
(A) If ¢,y € R, then D(C4x, S+y, s+y) = D(C, S, s);

(B) If T is a nonsingular linear transformation of R, with determinant |T
then
D(TC, TS, Ts) = ||T||D(C, S, s).

For ¢ < n we convene that R, is the subspace of R, composed of those
points for which the last #—: coordinates vanish. Denote by Clz,,, ;0. *»
z,] the section of C consisting of those points of C whose last #—7 coordinates
have the fixed values z,,,, Z;,,, * * *, %, respectively. Now if S C R, then for
any point ¢ € S the section of C-4-£ consisting of those points of C+4-¢ whose
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last #—1% coordinates have the fixed values #;,;, #.4q, * * *, %, respectively
is given by Clz,,,, %4, ' *, 2,]+¢ and therefore by Fubini’s theorem
(C) i SCR, then D(C, S, S)—fa DC@1, Tiva, "+, %41, S, )2y, - -~ dae,,
where D(C[Z;41,***,%,],S,s) is understood to be the corresponding
function in R,.

By (A) it follows that D(C, L,, s) is independent of s so in this case
we write D(C, L,) in place of D(C, L;, s)

Denote by II, the set of all points (z,, -, #,) € R, for which

0§z,<1 7‘=1:2:"')1’)

Thus 11, is a fundamental region of R, modulo L,. Let C/L, denote the set
of all points of C reduced modulo L, to II; and m(C/L,) its measure. A
fundamental principle of the geometry of numbers — the Minkowski-
Blichfeldt theorem - may be stated as

D) D(C, L)) = m(C|L)).

PROOF. m points of C are congruent modulo L, and congruent to no
other points of C if and only if each of the m points lies in that part of C which
is covered by exactly m—1 of the sets C+z, z € L,—0. Since this part of C
has measure weighted by the factor 1/m in D(C L,) the result follows.

It follows immediately that

(E) If C,, C, are bounded Lebesgue measurable subsets of R, such that
C,CC, then D(C,,L,) < D(C,, L)).

A subset X of R, is said to be star with respect to a point z € X if
whenever ¥ € X so is the complete line segment joining y to  contained in X.
The particular property of such sets required here is that if # = 1 then

X CtX+ (z—tz)

that is to say ¢X may be translated into a position so as to cover X. We ob-
serve that a convex set is star with respect to any point in it. For a given
t =1 denote by T, the linear transformation

Ty@y, g, * *, Tp) = (1, I, * =, 12, Byyq, ** *5 )
and by K the convex body of the introduction. Then
Ty(K[@is1s***» 2l) = (TK) @41, -+ 0 2]

and so (T K)[%,,;, ', %,] may be translated into a position in the same
section so as to contain K{z,,,,---, #,]. Hence (A) and (E) imply

D(K[#41, -2 %4], L) S D((TK)[®ia, * * 2l Ly)
and therefore also by (C)
(¥) D(K,L,) = D(T.K, L,).
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LemMa 1. D(¢K,L,) = t**'D(K, L,).
Proor. If T™* denotes the transformation
Ty, o v, @,) = (e, * =) Tgp Mogpgs * * *» 12,)
then K = TW-9T,K and, using (B) and (F),
D@K,L,) =D(T"5T K, T"-9L) = ||T*9\D(T,K,L,) =t"~*D(K, L,).
LemmA 2. If K contains no point of L,—L, then
D@3K,L,)=D@EK,L,,)=--+=D@3K,L,).

ProoF. If ze L, —L, then 3K+ does not intersect 3K for otherwise
the point z is in K. The lemma then follows from the definition of D(}K, L,).

The inequality (1) now follows quickly, for by the definition of m,
fori=0,1,--+, n—1no point of L,—L, lies in m,,, K whence by lemma 2,
D(Em K, L) = D(3m, K, L,) and therefore also by lemma 1,

My

12 D(}m.K, L,) = D@m.K, Loy) 2 —2 D(4m, K, L, )

Mp—1

= (=) (2 s 2

My \My o 1
= MMy 1" m1(%)"V(K)-

4. Second proof

By the definition of m,, it is clear that if X is a point of L, in m,K then
X, = %,y =+ = &, = 0. By convexity and symmetry of K the following
three statements are equivalent:

(i) The sets im,K, im,K+A overlap;

(ii) 3m,K contains two points X,Y such that 4 = X—Y;

(iii) A lies in m, K.
In particular if m,K has two points X, Y such that 4 = X—Y lies in
L,thena;,=y,, - -, ¢, =1,.

In the rest of this proof we will assume that each function that appears
in any integral is nonnegative and is nonzero only in some bounded set,
not necessarily independent of the function. The symbol

[ [ Hn, o 2y - -

will stand for the iterated Riemann integral

[Zam |2 dwy e [T f@a, o 2y
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We next prove a few almost obvious results about these integrals.

LEMMA 1. Suppose that I = [2_ -+ (S f(x,, -, &) de, - - - da,
1 £ i = n exists. Then, given real numbers a,, - - -, a;,

oo )
I= J-—oo. o _"_mf(xnr X Xy, 0, xl_al)dxl e dxi'

ProoF. For 7 =1 it follows from the definition and by induction for
t> L

LeEMMA 2. Suppose that I = S+« [ f(x,, * * +, 2y)de, - - - dx,, exists.
Then for given numbers a; > 0,---,a,> 0 the integral I(a) = [Z, -
JZH @y Biga, (T4]a), o) (B1/4y)) Ay - - - dz, exists and [(a) =ay - - a,l.

ProoF. For 7 =1 by definition and for 7 > 1 by induction.

Lemma 8. (i) If

L=( "‘f_o;f(xm‘“»xx)d%“'d"’n

00

and
12=J’_°° "‘J:og(xm"'»%)dxl“'dxn

o]

both exist then so does
I=(".. f:o (f+g)de, - - - dz,

and I = I,+I,.
@i) It in (i), f < g for all points X then I, < 1I,.

ProoF. Clear.

THEOREM A. Suppose that S is a bounded set in R,. Let x(X) =
2(@,, - - -, 2,) be its characteristic function. Suppose further that

I=J':°...ﬁ°mx(x)dx1...dx” exists and I > 1.

Then the sets S+A, AeL overlap so that there exist points X,Y in S,
XY, such that X—Y = AelL.

ProoF. Suppose S lies in the box |z, < k. Suppose further that the
sets S+A4, A € L do not overlap. For a fixed positive integer N consider the
set 2 of points 4 of L such that 1 £ a4, <N, ¢ =1, -+, n. Define

F(X) = 3 y(X—4)

Since the sets S+4 do not overlap F(X) < 1 for all X. Since the sets lie
in the box B given by —& < 2, < N+k, so F(X) =0 if X ¢ B. By the
lemmas 1 and 3,
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(N4-2k)" ;f F(X)dz, - - de,
00 - -0 -
=3 [ ax—ayan, s,
AeZ /-0 —o0

s [ [ e s,

AcZ
= (N+1)*I
so that

I

(N 28\ "
N+1) '
By making N — o0, we get I <1 and the theorem follows.

LemMA 4. It is possible to construct sets Ky, - « -, K, such that
() K, = }mK,
(2) K;C{mK
B)If X,YeK,
for i>1and 2, =y, -+, 2, =y, then there exist points X', Y' in K,
such that X—Y = X'—Y’' and
(4) If 2X) = xil>,, + -+, x,) is the chavacteristic function of K, then

V,= :0 . J'_‘:o 2u@n, oy Ay - -
exists and

(3m)"V(K) ifi=1

V, = m, \ "1
! (——L ) Ve, ifi>1
My,

Proor. Take K; = im, K. To prove (4) we observe that K, has volume
(3m,)"V (K) and since K, is convex all its sections by hyperplanes of various
dimensions are convex and hence have volumes in their appropriate
dimensions. Therefore

Gm) V() = V() = [T - [T 2(X)dzy -+ - dz,
= J’:odx” .t: .. J’:o (X)day - dwy =
= [ dv, [ dwpy- - [7 a(X)iz, =V,

so that K, has the required properties.

Suppose that K, » - -, K;_; (2 = 7 = n) have been constructed to satisfy
(1) through (4). For each point (0,0,--+,0,2,, -+, ,) of the projection
of 3m, K on z, = +++ =z, ;= 0 choose a point
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(‘Pl(xtr T ZL) ‘Pi—l(xi' T ), Xy, 0, xn) of %mi—lK'

Define K, to be the set of points Y where

m
h=2+ ( : ”‘1) ACPRRRN N
i1
m
Ya =%+ ( : _1) Pa(@y, -+ 0, )
M1

m
Yie1 = Ziq + (m ! —1) Pia (@i, 000, )

i1
m;
Y= z;
MMy
m,
Yn = T,
Mg

and XeK, ,.

Since X = (#,,--,z,) and X = (py,"**, @iy, i, * "+, 2,) lie in
4m, K which is convex so does Z = {X+ (m_yjm;—1)X}\m,_y/m,. There-
fore Y = (m,/m,_;)Z lies in m,K. This proves (1) and (2) for K, while (3)
is a direct consequence of the definition.

V=7 - j 2elynr =+ Y)Yy - Ay
= f_:o ) e lt—l(a‘lym a7y, Y a—(@—)e (@Y, 0, a7hy,)
cah— @) (@Y, o0, aty,))dyy o dy,
where a = (m,/m,_,), exists because if we write
2@ 3, _J T J‘:o Lit@r ooy Ty By, v vy @) ity + o+ ATy
then y exists by the induction hypothesis and equals

J.:o T I:o X1 (Znr o0 T Ty — (@)@ @72y, - -0, a702,), -
z,—(a—1)g, (a2, -+ -, a7 z,)) dwy -+ - dzyy
by lemma 1, so that by lemma 2,
V= J’°° o ,J'“; 210070, " 07 Y Yits 0 Y)Yy Y

___an_¢+1J' J'°° Y@y @y, oy @) dy - - - day

= gty
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This proves the lemma.

PrOOF OF MINKOWSKI'S INEQUALITY (1). Suppose that m, » - - m,V (K)
> 2%, Then by lemma 4

Vo= m,2-V(K) > 1,
and by theorem A there exist points X, Yin K, such that 0 4 X—-Y eL,.

Since K, C im, K this implies that z, = y, and by property (1) of the sets
K,, K,_; contains points X}, Y1 such that

XY = X0_yw,

Since K, ,C3m, K this implies that «{), =y, 21 = ¢!} and there
exist points X®, Y® in K,_, with

X—-Y =X_Y®,
Repeating this argument a number of times we obtain points X*, Y* in

$m, K such that X—Y = X*—Y*. But X*—Y*eL,implies that X* = Y*
and XY = 0, which is a contradiction. This proves the theorem.

5. Third proof

In view of the fact that the Jordan content of K and the successive
minima m,, - - -, m, are continuous functions of K it is only necessary to
prove the inequality for strictly convex bodies K. Thus it is assumed that
from now on K is strictly convex.

As with Davenport (1) this proof depends upon the inductive construc-
tion of sets K, * - +, K,, so that K, has the following properties

(1) K, is a bounded Jordan measurable open star body symmetric in
the origin;
8) Kya R, CimK for j=1,2,---,i—1;

L\ n—i+l
W VE) = () VR iz
;1

(6) V(&) = (3)"mlV (K).

(6) No two translates of K, by points of L, have a point in common.
Putting K, = 3m, K properties (1)— (6) are satisfied for ¢ = 1. Assuming

that K, has been constructed to satisfy (1)—(8) define K, as follows.
Let X e R,. Since K is strictly convex the linear manifold X+ R,

contains a unique point, /(X) say, that is closest to the origin in the metric

determined by K. If the coordinates of X are x,, -+, x, then the coordinates
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of f(X) are independent of z,,+--, »; and continuous functions of z,,,,
-+, 2,. Moreover as K is star and symmetric in the origin so

f(tX) = tf(X) for all real &

Any point of R, can now be written in the form
A+{(X)

where 4 € R; and 4, f(X) are uniquely determined. Define K, to be the
set of all points

A+ (’”7) #(X)

for which A+4f(X) e K,. It remains to verify that K, has properties
(1)—(8).

Let PeK,,, so that P=A4(m,,/m)}{X) where A+/(X)eK,.
Since K, is star and symmetric in the origin it follows that 4 +#/(X) e K;
for || = 1. Therefore also

14 + (m‘“) H(X) = tPeK,,,
m,

and K, is star and symmetric the origin. As /(X is continuous in each of its

coordinates so K,,; is open and Jordan measurable and so satisfies (1).

Also A+f(X) eK,C}m,K and therefore by construction /(X) e m K.

By the convexity of }m K it follows that

(,Z;) (A+/X)) + (1— 1::1) HX) € im,K
ie.
() 4-+10) < pmek
hence

4+ (’—:%l) HX) edm K

and K, satisfies (2).

By construction K, nR;=K,n R, for §=1,2,---,4 so that
K,,, satisfies (3).

By Fubini’s theorem K,,, has the same Jordan content as the point
set obtained from K, by dilating the last #—¢ coordinates by the factor
M,y /m,. Hence

V(K 1) = (”::1)”

and K,,, has property (4).

"y,
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Property (5) refers only to the case 7 = 1 so it remains to verify (6).
If two translates of K,,; by points of L, have a point in common then
there exist a pair of points X,Y say in K, , such that X—Y eK,,,. Since
K, Cim, K it follows that X—Y e L, C R,. Now

X=A+ ('%3) HZ), Y=B+ (m—“) 12’

my
where 4, Be R; and
A+f(Z)eK,, B+f(Z')eK,.

As X—Y eR,; so {(Z) = f(Z’) and

X—-Y =A—B= (A+{(Z))—(B+/(Z')). Thus there are two distinct
points of K, whose difference is in L, and therefore two translates of K,
by L, have a point in common which is impossible. K,,, therefore has
properties (1) (6).

The sets K, * - -, K,, having been constructed property (6) implies that

V(K,) <1

or mymy - -+ m,V(K) < 2" which completes the proof.

The above construction of K, raises the question whether a convex
centrally symmetric body exists with properties similar to (1)—(6). Further
if C, denotes the set of points in R, that are a distance m, from the origin in
the metric determined by K and if D denotes the set of all points that are
closer to the origin than to any point of {J}., C, then it can be shown that
D is an open star body symmetric in the origin the translates of which by
points of L, do not intersect. This raises the question of whether the content
of D is large enough, i.e. at least as large as V(K,), to produce another
proof of the inequality.
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