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1. Introduction

Let K be a bounded, open convex set in euclidean »-space Rn, symmetric
in the origin 0. Further let I. be a lattice in Rn containing 0 and put

mt = infimum u( i = 1, 2, • • •, n;

extended over all positive real numbers «,- for which UfK contains i linearly
independent points of L. Denote the Jordan content of K by V{K) and the
determinant of L by d(L). Minkowski's second inequality in the geometry of
numbers states that

(1) mxmt • • • mnV{K) ^ 2nd(L).

Minkowski's original proof has been simplified by Weyl [6] and
Cassels [7] and a different proof has been given by Davenport [1].

Professor Mahler, during a seminar at Notre Dame University, suggested
to the authors that it would be worthwhile to reexamine these proofs with
a view to possible generalisations. Each author then gave a proof, one based
on Weyl's paper [6] and two on Davenport's [1]. These three proofs are
given here.

In Weyl's proof all considerations are made in the quotient space
determined by the lattice L. The aim of the first proof is to show that the
existence of the quotient space is needed only to deduce the so-called mono-
tone property, thus suggesting that the theorem is true for some point sets
other than lattices. Davenport's proof of (1) depends on certain functions
constructed in the course of the argument being continuous. He states
without proof that the construction can be made to ensure this. The third
proof here shows how this may be done. Earlier Siegel in lectures at New
York University gave without proof a method for making this construction.
The second proof shows that by working with iterated integrals instead of
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Jordan contents Davenport's proof can be made independent of this
continuity. Theorem A of this argument, a variant of the Minkowski-
Blichfeldt theorem, may have some independent interest.

2. Reduction of the problem

The following normalisation is common to all three proofs. It is well
known and easy to prove that there exist n linearly independent points
Fi> Pi-'' *> F* °f •£ s u c n *n a t Ft lies on the boundary of mtK for each
i — 1, 2, • • •, n. It is then possible to select a basis P l f P2, • • •, Pn of L so
that the linear space generated by the points Px, P2, • • •, Pt is the same
as that generated by Fx, F2, • • •, Ft, and the intersection of this linear
space with L is the ^-dimensional lattice £< generated by the points Plt

P2, • • •, Pt for i = 1, 2, • • •, n. Since the inequality (1) is invariant with
respect to the full linear group of transformations of Rn it follows that
without loss of generality L = Ln may be assumed to be the integral lattice
and Plt Ps, • • •, Pn the points given by

P, = (da, <5<2, • • •, <5,J i = 1, 2, • • •, n;

where d(f is the Kronecker delta.

3. First proof

Let C be a bounded Lebesgue measurable point set and S a discrete
point set in Rn. For s e S and a positive integer m the set of points contained
in C+s and exactly m—\ of the sets C+t, t e S—s, simultaneously is measur-
able with measure Mm say. Let k be the largest integer for which Mh is not
zero and put

D(C, S, s) = A

The affine invariance of Lebesgue measure implies that

(A) If x, y e Rn then D(C+x, S+y, s+y) = D(C, S, s);

(B) If T is a nonsingular linear transformation of Rn with determinant \T\
then

D(TC, TS, Ts) = ||r||D(C, S, s).

For i < n we convene that Rt is the subspace of Rn composed of those
points for which the last n—i coordinates vanish. Denote by C[xi+1, xi+2, • • •,
a;n] the section of C consisting of those points of C whose last n—i coordinates
have the fixed values xi+1, xi+i, • • •, xn respectively. Now if S C R{ then for
any point teS the section of C-\-t consisting of those points of C+2 whose
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last n—i coordinates have the fixed values x(+1, zi+i, • • • ,xn respectively
is given by C[xi+1, xt+2, • • •, xn]-\-t and therefore by Fubini's theorem

(C) If S C R t thenD(C,S,s) = /«„_,£) (C[a;m,xi+2, • • •,*„], S,s)dxt+1 •••dxn

where D(C[xi+1, • • •, xn], S, s) is understood to be the corresponding
function in Rt.

By (A) it follows that D(C, £,-, s) is independent of s so in this case
we write D(C,L{) in place of £>(C, JLj.s).

Denote by II{ the set of all points (xlt • • •, xn) e Rn for which

0^xt<l 7 = 1, 2, ••-,{;

Thus IIt is a fundamental region of Rn modulo L(. Let C\Li denote the set
of all points of C reduced modulo Lf to i7,- and m{ClLt) its measure. A
fundamental principle of the geometry of numbers — the Minkowski-
Blichfeldt theorem — may be stated as

(D) £>(C,L<)=W(C/i<).

PROOF, tn points of C are congruent modulo Lt and congruent to no
other points of C if and only if each of the m points lies in that part of C which
is covered by exactly m—1 of the sets C-\-z, zeLf—0. Since this part of C
has measure weighted by the factor l/»t in D(C, Lt) the result follows.

It follows immediately that

(E) If Clt C2 are bounded Lebesgue measurable subsets of Rn such that
QCC-j then D{CltLi) ^Z»(C2,£,).

A subset X of Rn is said to be star with respect to a point x e X if
whenever y e X so is the complete line segment joining y to x contained in X.
The particular property of such sets required here is that if t ^ 1 then

XCtX+(x-tx)

that is to say tX may be translated into a position so as to cover X. We ob-
serve that a convex set is star with respect to any point in it. For a given
t ^ 1 denote by 7\ the linear transformation

T t i x x , x 2 , • • - , x n ) = ( t x x , t x 2 , ••-, t x ( , x i + 1 , • • - , x n )

and by K the convex body of the introduction. Then

and so (J'iK)\xi+1, • • •, xn] may be translated into a position in the same
section so as to contain K[xi+l, • • • ,*„ ] . Hence (A) and (E) imply

D(K[xi+1, • • -,xnl Lt) <: D((TtK)[xM, • • •,*„]. Lt)

and therefore also by (C)

(F) D(K,L{)£D(TtK,Lt).
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LEMMA 1. D{fK,Lt) ^ tn~'D(K, Lt),

PROOF. If T(n-*} denotes the transformation

J ^ - O f o , • • •, xn) = (xlt • • -,xit txi+l, • • -,txn)

then tK = J C - O T ^ and, using (B) and (F),

LEMMA 2. / / K contains no point of Ln—Lt then

D{\K. Ln) = D$K, Ln_x) = • • • = D&K, Lt).

PROOF. If xeLn—Lt then \K-\-x does not intersect \K for otherwise
the point x is in K. The lemma then follows from the definition of D(\K, X,).

The inequality (1) now follows quickly, for by the definition of m(+l

for i = 0, 1, • • •, n—1 no point of Ln—L{ lies in mi+1K whence by lemma 2,
, L(+1) = D(^mi+1K,L() and therefore also by lemma 1,

nK, Ln) = D{\mnK, L^) > - ^

4. Second proof

By the definition of mt, it is clear that if X is a point of Ln in WjiC then
xt = a;t+1 = • • • = xn = 0. By convexity and symmetry of K the following
three statements are equivalent:

(i) The sets ^tn(K, fym(K-\-A overlap;
(ii) \rnji. contains two points X, Y such that A = X—Y;
(iii) A lies in mfK.

In particular if \mtK has two points X, Y such that A = X—Y lies in
L n t h e n x t = y { , • • • , x n = y n .

In the rest of this proof we will assume that each function that appears
in any integral is nonnegative and is nonzero only in some bounded set,
not necessarily independent of the function. The symbol

will stand for the iterated Riemann integral

/*' J—&« • •
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We next prove a few almost obvious results about these integrals.

LEMMA 1. Suppose that I = /!?«, • • • ^oof(xn, • • • ,xl)dxl-• • dxt

1 ^ i 5S n exists. Then, given real numbers a1, • • •, ait

>HX*'" ' ' X t + V x*~a*'' ' •>x\-ax)Ax\ •••dxi.

PROOF. For i = 1 it follows from the definition and by induction for
* > 1.

LEMMA 2. Suppose that I = /!?„ • • • /^/(a;,,, • • •, xx)dxx • • • dxn exists.
Then for given numbers ax > 0, • • •, at> 0 the integral I (a) = Jf5» • • •

J - o o / K . * * •>*<+i. (xilai)>' • •> ixilai))dxi•••dXi exists and I(a) = ax• • • atl.

PROOF. For i = 1 by definition and for * > 1 by induction.

LEMMA 3. (i) / /

and

both exist then so does

and I = 1^1a.
(ii) If in (i), / ^ g for all points X then It g I2.

PROOF. Clear.

THEOREM A. Suppose that S is a bounded set in Rn. Let %(X) =
X(xn>' ">xi) oe its characteristic function. Suppose further that

I = f °° • • • f °° »(!)&, • • • dxn exists and I > 1.
J —OO J —00

Then the sets S-\-A, A e l overlap so that there exist points X, Y in S,
X^Y, such that X-Y = AeL.

PROOF. Suppose S lies in the box \xf\ sS k. Suppose further that the
sets S-|-J4, A e L do not overlap. For a fixed positive integer N consider the
set X of points A of L such that 1 ^ a( ^ N, i = 1, • • -, n. Define

Since the sets S+A do not overlap F(X) ^ 1 for all X. Since the sets lie
in the box B given by —h ^ xt < N+k, so F(X) = 0 if X £ B. By the
lemmas 1 and 3,
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(N+2k)« 2> f
J

/•oo

Ae£ J-oo

-if-
AeZj-oo

F[X)dx1 - •
—OO

J —00

/•oo

J —00

••«*»

i • • • dXn

so that

-u+w
By making N -> oo, we get / ^ 1 and the theorem follows.

LEMMA 4. It is possible to construct sets Kx, • • •, Kn such that
(1) Kt = \mxK,
(2) Kt C \miK
(3) / / X,YeK(

for i > 1 a«d a;, == y,, • • •, xn = yn then there exist points X', Y' in
such that X-Y = X'-Y' and
(4) / / Xi(%) ~ Xiixn>' "• xi) is &e characteristic function of Kt then

exists and

ifi=l

PROOF. Take Kx = ^n^K. To prove (4) we observe that Kx has volume
(hmi)"V{K) and since Kt is convex all its sections by hyperplanes of various
dimensions are convex and hence have volumes in their appropriate
dimensions. Therefore

so that Kx has the required properties.
Suppose that Kt, • • •, Kt_t (2 ^ i ^ ») have been constructed to satisfy

(1) through (4). For each point (0, 0, • • •, 0, x{, • • •, xn) of the projection
of }jmi__1K on xx = • • • = x{_1 = 0 choose a point
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Define !?< to be the set of points Y where

Vi = xi

m i

Vn =
mt-l

and X 6 X H .
Since X = (x,., • • •, * J and X = (yx, • • •, y^, »„•••,*„) lie in

^w^iiC which is convex so does Z = {X + (wj-i/w*,— lJ-SjItft^-Jw,. There-
fore Y = {mJm^JZ lies in i ^ K This proves (1) and (2) for Kt while (3)
is a direct consequence of the definition.

JIL,*'^" ' ' ' *' yi^yi'"' dy"
jZa

Xt-^irlyni'' '>arlyfyt-i-(a-l)<Pi-x(a~1yf'--,arlyn)

where a — {mtjmt_^), exists because if we write

Zfcn, '">xt)=JZo"' \ZoXi~^x*''' ''Xi> X{-1''' '•xJdxi''' dx<-i

then x exists by the induction hypothesis and equals

by lemma 1, so that by lemma 2,

Xi-ii^Vn, •••, a^yt, Vi-i, ••-, yl)dyl • - • dyn
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This proves the lemma.

PROOF OF MINKOWSKI'S INEQUALITY (1). Suppose that m1- • • mnV(K)
> 2n. Then by lemma 4

Vn = mx • • • mn2-"V(K) > 1,

and by theorem A there exist points X, Y in Kn such that 0 ^ X—Y e Ln.
Since Kn C \mnK this implies that xn = yn and by property (1) of the sets
•Kf.-KB-i contains points X™, Y*11 such that

X-Y = X™-Y™.

Since K9r.1Q\mn_lK this implies that a£-i = Vnli. *»' = Vn' and there
exist points Z«>, Y<2> in Kn_z with

X - Y = A"<2>-Y(!S).

Repeating this argument a number of times we obtain points X*, Y* in
\mxK such that X-Y = X*-Y*. But Z* -Y* einimpUes that X* = Y*
and X—Y = 0, which is a contradiction. This proves the theorem.

5. Third proof

In view of the fact that the Jordan content of K and the successive
minima m1, • • •, tnn are continuous functions of K it is only necessary to
prove the inequality for strictly convex bodies K. Thus it is assumed that
from now on K is strictly convex.

As with Davenport (1) this proof depends upon the inductive construc-
tion of sets Klt ' • • ,Kn so that Kt has the following properties

(1) Kt is a bounded Jordan measurable open star body symmetric in
the origin;

{2)KtC\mtK;

(3) KtnRfC \mtK for j = 1, 2, • • •, i-l;

( \n-«+I

— I V{K^) if .' ̂  2;
mi-\l

(5) ViKJ = $YmlV(K).
(6) No two translates of Kt by points of Ln have a point in common.

Putting Kt = \mxK properties (1) — (6) are satisfied for i = 1. Assuming
that K( has been constructed to satisfy (1) —(6) define Ki+1 as follows.

Let X e Rn. Since K is strictly convex the linear manifold X-{-Rt

contains a unique point, f(X) say, that is closest to the origin in the metric
determined by K. If the coordinates of X are xx, • • •, xn then the coordinates
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of f(X) are independent of xlt • • '.a;, and continuous functions of xi+1,
• •', xn. Moreover as if is star and symmetric in the origin so

f(tX) = tf{X) for all real t.

Any point of Rn can now be written in the form

where A e Rt and A, f(X) are uniquely determined. Define Kt+1 to be the
set of all points

for which A+f(X) eKf. It remains to verify that Ki+l has properties

Let PeKi+1 so that P = A + (mi+1[mi)f(X) where A+f(X)eKi.
Since Kt is star and symmetric in the origin it follows that tA -\-tf{X) e K,
for \t\ ̂  1. Therefore also

t+i

and Ki+1 is star and symmetric the origin. As f(X) is continuous in each of its
coordinates so Ki+l is open and Jordan measurable and so satisfies (1).
Also A -\-f{X) eKtC \rnji and therefore by construction f(X) e Jwfi?.
By the convexity of \m€K it follows that

£L\ {A+f(X)) + ( l - £*-) f(X)
i.e.

hence

and Kt satisfies (2).
By construction Ki+1 n Rf = Ktn Rt for ; = 1, 2, • • •, * so that

Ki+1 satisfies (3).
By Fubini's theorem Ki+1 has the same Jordan content as the point

set obtained from if, by dilating the last n—i coordinates by the factor
mt+dm<- Hence

and Kf+1 has property (4).
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Property (5) refers only to the case * = I so it remains to verify (6).
If two translates of Ki+1 by points of Ln have a point in common then
there exist a pair of points X, Y say in Ki+1 such that X—YeKi+1. Since
Ki+l C \miJrXK it follows that X-Y e L( C Rt. Now

X = A + p*s) f(Z), Y = B+ p*s) f(Z>)

where A, B e Rt and

A+f(Z) eKt. B+f(Z')

As X-Y e Rt so f{Z) = f{Z') and
X-Y = A-B= (A+f(Z))-(B+f(Z')). Thus there are two distinct

points of K( whose difference is in L n and therefore two translates of Kt

by Ln have a point in common which is impossible. Ki+l therefore has
properties (1) —(6).

The sets Kx, • • •, Kn having been constructed property (6) implies that

V(K.) ^ 1

or mlm2 • • • mnV{K) ^ 2" which completes the proof.
The above construction of Kn raises the question whether a convex

centrally symmetric body exists with properties similar to (1)—(6). Further
if Ct denotes the set of points in Rt that are a distance mt from the origin in
the metric determined by K and if D denotes the set of all points that are
closer to the origin than to any point of U"-i^< then it can be shown that
D is an open star body symmetric in the origin the translates of which by
points of Ln do not intersect. This raises the question of whether the content
of D is large enough, i.e. at least as large as V(Kn), to produce another
proof of the inequality.
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