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Abstract. The dynamical system associated to the difference equation

k
A2xn= — sin(27rxn)

277

has been studied numerically by several authors. On the basis of numerical evidence,
they conclude that there exists a number fco = 0.97 such that there are homotopically
non-trivial invariant circles for |fe|s fco and there are none for \k\> k<>. In this note,
we give a simple rigorous proof that there are none for |fc|>|.

1. Introduction
We consider the space of mappings Z -> R: n *-* xn. We are interested in those
mappings which satisfy the equation A2xn = (fc/27r) sin (2irxn), where A2xn =
xn+1-2xn +xn_i. The following is a standard way of expressing solutions of this
difference equation as trajectories of a dynamical system. Let yn = xn — xn-x. For
solutions of the difference equation, we have

yn+\ = xn + l ~xn

yn+\-yn = (k/2ir) sin (27rxn),

which may be rewritten as

xn+x = xn +yn +(k/2ir) sin (2irxn)

yn+i=yn +(k/2ir) sin (2mcn).

The question which we wish to study may be posed most simply if we think of the
above equations as denning a mapping of the infinite cylinder. We let (x, y) denote
the coordinates for the infinite cylinder Tl xR = (R/Z) xU, where x is defined
modulo 1. We let

fk:T
lxR-*TlxR

be the mapping defined by fk(x, y) = (x\ y'), where

x' = x +y+(k/2<jr) sin (2TTX)

y' = y +(k/2ir) sin (2TTX).

By an invariant circle, we mean a subset X c T ' x R such that fkX = X and X is
homeomorphic to T'=IR/Z. A subset X c T ' x R which is homeomorphic to the
circle is homotopically non-trivial if and only if its projection on T1 is of degree
±1. Intuitively, this means it goes once around the annulus.
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Here is our main result:

THEOREM. If \k\ > f, then there are no homotopically non-trivial circles in Tl xR which
are invariant under fk.

J. Greene told me about this problem, and I have had several conversations with
him about it. He has done detailed numerical studies [7] of fk and found that there
is a number fco ~ 0.97 such that fk admits an invariant circle which is homotopically
non-trivial when |fc| < fc0 and there is none such when |fc| > fco. Several other authors
have come to the same conclusion on the basis of numerical studies ([2], [5], [8],
[12]). However, this conclusion has not yet been proved rigorously.

Our result is a very simple consequence of a theorem of G. D. Birkhoff ([4, § 3]
and [3, § 44]). M. Herman has recently given a more detailed account of Birkhoff's
result and related results [9].

Our method is the same as we used in [10]. However, because of the considerable
recent interest in the mapping fk, it seems to us worthwhile to publish our result.

2. Birkhoff's theorem
In this section we state the theorem of Birkhoff which we will use. We need the
following definition, both for the statement of Birkhoff's theorem, and to extend
Birkhoff's proof to the situation which we consider.

Definition. Consider a C1 embedded curve y: J -* Tl xR where / = (-oo, a), (-oo, a],
or (-oo, oo) and a eU. Suppose y(t)2^> -°°, as f-»—oo, where (x, y)2 = y, for xe T\
yeU. Let y':J^R2 denote the first derivative of y. We define Sy: J^U, called the
deviation of y' from the vertical, to be the unique continuous function which has the
following two properties:

(a) 8y(t) is congruent (mod27r) to the angle from the vertical vector (d/dy)yU)

to y'{t), where the counterclockwise direction is taken as the positive direction;
(b) given teJ such that y(s)2<y(t)2, for all s<t, we have -ir/2<8y(t)<ir/2.

We will sketch a proof of the existence and uniqueness of Sy in § 3, following a
method suggested to us by W. Thurston. Note that the existence and uniqueness of
Sy depends on the fact that y is embedded, i.e. y is one-to-one and y' never vanishes.
It is not enough to assume that y is immersed (i.e. y' never vanishes). We also need
the following:

Definition. Let g: Tx xR-» T' xR be a C1 diffeomorphism which maps each end of
T] xR to itself. We will say that g is tilted to the left (resp. right) if, for each vertical
line x = const, in Tl x|R, its image under g has everywhere positive (resp. negative)
deviation from the vertical.
Example 2.1. Let / i :R^R be a C1 mapping of period 1. Let g: T 'xIR^T'xR be
the mapping given by g(x, y) = (x', y') where

x' = x+y + h(x)
(1)

' = y + h(x)

This mapping is tilted to the right.
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The mapping fk which we discussed in the introduction is a special case of this
mapping g, corresponding to h(x) = (k/ltr) sin (2irx).

BIRKHOFFS THEOREM ([4, § 3], [3, § 44], and [9, Chap. I]). Let g:Tl xR-» Tl xR
be a C' diffeomorphism. Suppose that g preserves the area form dx dy, maps each end
ofT1 xR to itself, preserves orientation, and is tilted (either to the left or to the right).
Let U be an open subset o /T 'xR swell that gU = U, U is homeomorphic to T1 xR,
and T1 x(-oo, a]<= U<^Tl x(-oo, b),for some a<b, a,beU. Then the frontier of U
in T1 xR is the graph of a Lipschitz function fi: T*->U, i.e. U- U = {(x, fj,(x)): xe T1}.
Example 2.2. The mapping given by (1) satisfies all the conditions we imposed on
g in the above theorem.

Example 2.3. Let X<= T1 xIR be a homotopically non-trivial circle. One of the
components of the complement of X in T'xR satisfies the conditions we imposed
on U in the above theorem. This is a classical result in topology: it follows
immediately from the Schoenflies theorem. (Embed T1 xR as the annulus in the
plane.)

Remark From the last example, we obtain a corollary of Birkhoff's theorem: if X
is a g-invariant, homotopically non-trivial circle in T1 xR, then X is the graph of
a Lipschitz function fi,: T1 -» U.

There is a numerical invariant, called the flux, associated to a mapping g which
satisfies the conditions which we stated in the above theorem. When this invariant
is non-zero, Birkhoff's theorem is vacuously true.

Definition. Let g satisfy the conditions in Birkhoff's theorem. The flux C(g) is defined
to be

Area (gU\ U) - Area (U\gU),

where U is any open set in T1 xR such that T1 x(-oo, a]<= (/<=: J1 x(-oo, b), for
some a < b , a, ft e R.

From the fact that g is an area preserving homeomorphism of T1 xR which maps
each end to itself, it follows that C(g) is independent of U. Clearly, if there exists
U which satisfies the conditions which we imposed in our statement of Birkhoff's
theorem, then we may use it to compute C(g), and we obtain C(g) = 0. In other
words, if the flux is non-zero, there is no U which satisfies the conditions imposed
in Birkhoff's theorem. In this case, Birkhoff's theorem is vacuously true.

Example 2.4. Let g be the mapping given by (1). Then

C(g)= | h(x)dx.
o

IThis may be seen by taking the set U used in the definition of C(g) to be T x(-oo, 0).
In particular, C(fk) = 0, where/^ is the mapping defined in the introduction.
The hypotheses of the theorems in [4, § 3] and [3, § 44] are slightly different from
those in our version of Birkhoff's theorem. In fact, our version is not a consequence
of either of these results, but it may be proved in a similar way. A detailed proof
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of a version of Birkhoff's theorem which is very similar to ours is given in [9]. In
§ 4, we give a brief outline of Birkhoff's proof.

3. Existence and uniqueness of 8y

We assume that y satisfies the conditions stated in the definition in § 2. In view of
the fact that y( t)2 -* —<x> as t -* —oo, we have that there exists t0 e J such that
y(s)2< y(to)2, for 5< t0. Obviously, there is a unique continuous Sy satisfying (b)
for / = (oas well as (a) for all t. It is enough to show that given tt e J such that
y(s)2< y(ti)2, for all s<f,, we have -7r/2<5y(f , )< IT/2.

The proof of this was suggested to me by W. Thurston. It is crucial to use the
fact that y is embedded. For simplicity, we will suppose t0 < ' i ; the other case is
treated similarly.

Step 1. We reduce to the case when y is vertical in a neighbourhood of t0 and t,
and y(s)2^ y(ti)2 for i = 1,2. This may be done by deforming y in an arbitrarily
small neighbourhood of t0 and /,. In this case, what we must prove reduces to
Sy(tl)=0.

Step 2. Since y is vertical in a neighbourhood of t0 and y(s)2< y(to)2 for s < t0, we
may isotope T1 xR, leaving Tl X-[y(to)2-e, oo) pointwise fixed, so as to deform y
into a curve satisfying the condition that y\(-<x>, to + e] be vertical. Here, e is a
small positive number. The fact that this may be done is well known to differential
topologists and intuitively obvious. Obviously, we have Sy(tl) = O for the deformed
y if and only if we have it for the original y.

Step 3. Now y is vertical on (-oo, to + e] and in a neighbourhood of tu and
y(s)2< y(t,)2 for s < f,. Then

We may find an isotopy of T 'xR which preserves the ^-coordinate, which is a
rotation of constant speed in the x coordinate on Tl x[y(t{)2-e, oo), which is the
identity on Tl x(-oo, y(to)2 + e'], and such that at the end of the isotopy y(to)i =
•y(<i)i. Obviously, we have Sy(tl) = O for the deformed y if and only if we have it
for the original y.

Step 4. Now y is vertical on (-oo, to + e] and in a neighbourhood of tu we have
y(s)2<y(tl)2foT 5< tx, and y(fo)i = r(*i)i- There exist circles C,, C2 on T1 xRsuch
that

C,nimage y=y(to + e),

C2nimagey=y(tl-e),

and
C^C2 = 0.

We may find an isotopy of T1 xR which is the identity outside the annulus bounded
by C\ and C2 such that at the end of the isotopy y is vertical on (-oo, tx +e]. Again,
the fact that this may be done is well known to differential topologists and intuitively
obvious. Obviously, the deformed y satisfies 5y(f,) = 0 and this implies the same
equality for the original y. •
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4. Proof of BirkhofjT s theorem
We give a brief sketch, following Birkhoff's ideas closely. We say a point x in U is
positively (resp. negatively) accessible if there is an embedded curve y:(—ao, a]-* U
satisfying y(/)2-» -co, as t-* -co, and having positive (resp. negative) deviation from
the vertical, such that y{a) = x. We let VV+ (resp. W_) denote the set of points in
U which are positively (resp. negatively) accessible.

We will prove Birkhoff's theorem in the case that g is tilted to the right. Obviously,
the case when g is tilted to the left can be reduced to this case, by replacing g by g~\

In the case g is tilted to the right, it is easily checked that g( WLn[ / )c W_ and
g~'( W+ n ( / ) c W+. From this, it follows that W_ = U = W+, in view of the following
facts: g is area preserving and there exist a < b such that

r ' x ( - o o , a ] c W.nUn W+c W_u t / u W+c T1 x(-oo, ft].

From the fact that W_ = U= W+, it follows that for each xe T1, there exists axeR
such that

£/ n (x x R) = x x (-00, ax).

The proof of this is similar to the proof in § 3; it is mentioned in Birkhoff's papers
and also in Herman's notes [9].

If u :R-»R is a C1 function we let <f>u: T
x xR-> T1 xR be the diffeomorphism

Let gu = <l>ug<t>Zl- Then $„£/ is invariant for gu. If w is sufficiently close to 0 in the
Whitney C ' topology, then gu is tilted to the same side as g. Hence <j>uU satisfies
the condition that for each xeT\ there exists a u x eR such that

<j>uUn(x xR) = x x(-co, a,^).

Since this is true for any u i n a C ' sufficiently small neighbourhood of 0, it follows
that the frontier of U is the graph of a Lipschitz function, as asserted in Birkhoff's
theorem. •

5. The generating function
Let g be the mapping of example 2.1. By example 2.4, the flux C(g) is Ĵ  h(x) dx.
Since Birkhoff's theorem is vacuously true when C(g) ^ 0, we will suppose that
Jo h(x) dx = 0. We let H be an indefinite integral of h. Since Ĵ  h(x) dx = 0, we have
that H is periodic of period 1.

What is known in classical mechanics as the generating function for g is defined
by

The equation (1) of example (2.1) is equivalent to

dG(x, x')

dG(x, x')
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Now suppose g admits a homotopically non-trivial circle X. In view of Birkhoff's
theorem and the remark following example 2.3, X is the graph of a Lipschitz function
fx : T1 -*• R. Therefore, there exists a homeomorphism g0: T

1 -> IR such that

g(x, fi(x)) = (go(x), fi(go(x))).

Since g maps each end of T1 xR to itself, it maps each complementary component
of X into itself. Moreover, g is orientation preserving, so g0 is orientation preserving.
From equation (2), we get

^-[G(x,x) + G(x,x')l = 0, (3)
aX

where x = go '(*)> *' = goO)-

6. Proof of the theorem
We continue with the notations of the previous section. Since go = /io'g/u.o, where
/i0 = (1, M) -Tl -* graph /A, and /J.O and g are Lipschitz, it follows that g0 is Lipschitz.
Likewise go1 = /to'g~Vo is Lipschitz. Obviously, a Lipschitz function is absolutely
continuous, so we may apply the classical theorem in Lebesgue theory which asserts
that an absolutely continuous function is differentiable almost everywhere and the
indefinite integral of its derivative is the original function (up to a constant). This
theorem is stated and proved in [13, 11.7].

Hence, we may differentiate (3), obtaining

+
dx dx

where h' is the derivative of h. Equation (4) is valid wherever dgo(x)/dx and
dgE'(x)/dx are defined. So, it is valid almost everywhere.

Let L be the larger of the Lipschitz constants of g0 and go', i.e.

T f |go(*)-go(*')| |go'(*)-go'(*')!L = maxS sup ; -. , sup ; ;,
I \x-x\ \x-x\ I

We have that dgo(x)/dx and dgo
l(x)/dx are non-negative, since g0 and g0' are

orientation preserving. In view of the definition of L, it then follows that

dx
J „ , (5)

, dg0 (x)
L < — <L.

dx

Let m = min h', M = max h'. From (4) and (5), we get

2L"'<2 + m. (6)

In particular,

m>-2. (7)
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Since (7) was derived under the sole assumption that g admits a homotopically
non-trivial invariant circle, it is a necessary condition for the existence of a homotopi-
cally non-trivial invariant circle. We may obtain another necessary condition, as
follows.

From the definition of L and the theory of [13, 11.7], we get

L = max! ess.sup. —-—, ess.sup. — \. (8)
L dx dx )

Here ess.sup. means 'essential supremum', in the sense of measure theory. Since
dgo(x)/dx, dgo\x)/dx are derivatives of Lipschitz functions, the essential supremum
of each of them is the same as the supremum over the set where it is defined.

From (4), (5), and (8), we get
L" '+L<2 + M. (9)

Since the function L~x +L is a monotone increasing function for L> 1, (6) and (9)
give

Here we are using the fact that m<0, since h is periodic.
In the case g=fk, we have h(x) = (k/2ir) sin {2TTX), so M = |fc|, m = —|fc|.

Inequalities (7) and (10) imply

|fc|<|. (11)

Since (11) was derived under the assumption of the existence of a homotopically
non-trivial circle, this finishes the proof. •

7. Addition remarks
(1) The above text is the preprint [11] with only minor changes. Since I wrote it,

Fathi [6] has given another detailed proof of Herman's version [9] of Birkhofi's
theorem.

(2) Aubry, Le Daeron, and Andre have proved a necessary criterion for the
existence of invariant circles [1]. It appears that their result together with, perhaps
lengthy, numerical calculations imply the main result of this paper.

(3) Let g be a mapping of the type given in example 2.1. Equation (3) is equivalent
to

gol(x)+go(x) = 2x + h(x).

Conversely, if there is a mapping g0: U -* U which is strictly increasing and satisfies
go(x +1) = go(x) +1 and the above equation, then g has a homotopically non-trivial
invariant circle, which is the graph of the function

li(x) = Gl(x,g0(x)),

where G, = dG(x, x')/dx. This observation is due to M. Herman who used it in his
lectures in Brazil in the summer of 1981 to construct a remarkable example where
g is of class C3~e and has a non transitive invariant circle with irrational rotation
number. (See [9, chap. III]).
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(4) The proof given above shows that if g has a homotopically non-trivial invariant
circle, then (7) and (10) are satisfied. In my graduate course in the spring of 1983,
I raised the question of whether the hypothesis that g has a homotopically non-trivial
invariant circle implies any further conditions on m and M. Rafael Llave answered
this question: he showed that for any m<0 and any M > 0 satisfying (7) and (10),
there exists g which has a homotopically non-trivial invariant circle and which
satisfies m = min h, M = max h. His proof is given in the appendix.

(5) The referee has pointed out that the inequalities of § 6 are contained in [9,
chaps. II and III] and that the example of the appendix is contained in [9, chap.
III. 9], where it was used to settle a different question. He comments that these
inequalities and examples were discussed by M. Herman in various lectures given
since 1980 in Palaiseau, Zurich, Rio, . . . .

APPENDIX

R. Llave

THEOREM. Let m < 0 < M be two real numbers satisfying (7) and (10). Then there
exist two C°° functions g0, h: U -* R such that g0 is increasing, go(x +1) = go(x) +1,

go\x)+go(x) = 2x + h(x), (Al)

and

max h'(x) = M, min h'(x) = m (A2)

Proof. Since -2 < m < 0, there exists / such that

Let go be the piecewise linear function defined in [0,1] satisfying

go(0)=0

g'0(x) = 2/(2 + m), * 6 [ 0 , / / 2 ] u ( l - / / 2 , l ] ;

go(x) = (2 + m)/2, xe(l/2, 1-//2).

Then go(l) = 1, so g0 can be extended to all of R so as to satisfy go(x +1) = go(x) +1.
Let h be defined by (Al). Then

m = minh'(x), M, = max h'(x), (A3)

where M, is defined by the equation

See figure 1.

We can round the corners of g0 so as to get infinitely differentiable functions g0

and h (again defined by (Al)) such that (A3) holds. Finally, by altering g0 in an
arbitrarily small interval, so as to increase its derivative there, we can arrange that
max h'(x) = M and all the other conditions of the theorem hold as well, since
M>M,, by (10). •
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FIGURE 1
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