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ABSTRACT

Large scale, or '"glokal" stability of finite radius,ra-
zor thin disk of self-gravitating matter in presence of a ma-
ssive halo surrounding the disk is studied as an eigen-value
problem. Effect of the halo mass and size on the allowed glo-
bal spiral eigenmodes of the disk is discussed.

INTRODUCT ION

The density wave theory has been one of the most succes-
sful approach to explain the stability and spiral structure
of disk galaxies (Lin and Shu 1964; Lin, Yuan and Shu 1969).
In the conventional 'local' theory, spiral perturbations of

the form, ¢ = 7 exp{i(wt + kr + mO)} are assumed to exist with
the condition of tight winding, i.e., Jk| r >> 1; k being the
wvave number 2w /A , and a dispersion relation D(k,w) = 0 is -
obtained. Spiral patterns are termed as '"leading' or "trail-
ing" according as k > Oor k < 0. In the local analysis there
remained several difficulties, namely, (i) its validity for
tight spirals only, while in nature most galaxies exhibit ra-
ther open structures; (ii) existence of many free parameters;
(iii) no distinction between the leading and trailing types
of spiral patterns; and (iv) radial propagation of the spiral
density waves (Toomre 1969). Additionally, since gravitational
force is a long range one, a local analysis is not adequate
especially for perturbations having wavelengths comparable to
the characteristic dimensions of the system. Consequently, a
global or large scale stability analysis of self-gravitating
disks with appropriate boundary conditions is essential.
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GLOBAL STABILITY OF A SELF-GRAVITATING DISK - MATHEMATICAL
FORMULATION

In what follows, we use a fluid dynamical description of
model galaxy ~ in cylindrical coordinates, being the natural
coordinate system for describing flat disk configurations:

dg , 19 13 =

5t Y roar (Tow) + T (ov) =0 1)
bu , 2w, vau _vi_ _1lap ., 3w

ot ar r 30 r g ar ar (2)
v 3v. . Vv 3v . uv 1 3 1 3y

st tesr *rset T “rose T ra0 3)

where o(r,0,t), p(r,0,t), u(r,e,t), v(r,8,t) and y(r,0,t)
are surface density, thermal pressure, radial and azimuthal
velocities, and net gravitational potential, respectively.
Self-gravitational potential ¢ due to surface density distri-
bution of matter, o, on the flat disk is given by the Pois-
son's equation:

Vzw = 471G §(z)0o “4)

In order to close the system of equations, we use an equation
of state between pressure and density:

Y
p=co (3

Let us consider the equilibrium state, i.e., time inde-
pendent, axisymmetric disk having surface density ZI(r),and
thermal pressure P(r) with no radial flows, i.e., U(r) = 0.
The azimuthal velocity, V(r) = r2%; Q(r) being the angular
velocity, is then obtained from the radial component of the
momentum conservation equation (2):

-y _ _1dp ¥

r T dr = dr (6)

where Y¥(r) is the net gravitational potential at a point r
in the plane of the disk, and is given by:

Y(r)y = ¥y(r, z =0) + ¥, (r) + ¥, (r) )

where Wd is self-consistent gravitational potential of the

disk, and wb’wh
tions of the central bulge and the halo components,respectively.

are the external or fixed potential contribu-

152

https://doi.org/10.1017/50252921100066021 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066021

It is possible to obtain gravitational potential associ-
ated with a general surface density distribution of the form

(cf. Clutton~Brock 1972):
o(r,8,t) = I o (r) expli(wt + mO)] (8)
m=0

Corresponding gravitational potential is then

V(r,0,t,

where

z) = I Y (r,z) expli(wt + mB))] (9)
m=0

wm(r,z) = 271G { Am(x)Jm(xr)exp(-xlzl)dx 10)

Am(x) being the Hankel transform of om(r), such that

A (x) =

J; om(r)Jm(xr )r dr.

For a generalized density distribution, expanded in terms of
the Bessel's functions:

<«
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(11a)
= 0 ; r > Rd
one has
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where )‘j is the jth root of Jm(AR) = 0 (Yabushita 1969).

Now, let

us consider stability of the disk against infi-

nitesimally small perturbations, E(r, 0,t)= Z (r)expli(wt+m6)},

153

https://doi.org/10.1017/50252921100066021 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066021

where 7, w = (mr,wi),m and Qp = -mr/m are the amplitude,fre-

quency, wave-number and the pattern-velocity of the perturba-
tion, respectively. The perturbation grows or damps exponen-
tially, or remains oscillatory according as wj < 0, > O or

= 0. Radial parts of the perturbations are expanded as follows
(cf. Ambastha and Verma, 1983)

o(r) = kio Cp ImAgr)s w(r) = kEO C¥m (™)
u(r) = i/2 kzo LA J o O T) + B I (Ar)]
v(r) = 1/2 kzo TA T 1) = B J (A )] 12)

These expansions are substituted in equations (1)-(4) after
linearization; then multiplied by suitable orthogonal funct-
ions and integrated over the plane of the disk in the inter-
val 0 < r <1, As a result, an infinite set of algebraic equ-
ations is derived which could more conveniently be expressed
in the form of an eigenvalue problem for the perturbations:

MZ = w2 (13)

where M is a 3« x 3~ matrix, non-symmetric in general and Z

is a column matrix constituted by the basis vectors G(r),ﬁ(r),
v(r). In general, the eigenvalue problem expressed in equat-
ion (13) cannot be solved analytically, hence, we have used a
numerical method involving elementary similarity transforma-
tion of a suitably truncated matrix M to evaluate the eigen-
values w and the corresponding eigenvectors Z.

GLOBAL STABILITY OF ONE COMPONENT DISKS

Self-consistent glohal stability analysis has been ear-
lier carried out by a number of workers for one-component,di-
fferentially rotating, finite radius flat disks model s(Hunter
1963, 1965; Bardeen 1975; Iye 1978; Aoki et al. 1979;Panna-
toni and Lau 1979; Ambastha and Varma 1983), In principle,the
eigen-value problem given by equation (13) admits an infinite,
discrete set of eigen frequencies comprising of both real and
complex-conjugate pairs. Large scale smooth spiral patterns
have been found associated with many of the complex eigemmodes,
i.e., spirals appear as self-excited, normal modes of oscilla-
tions in the plane of flat, differentially rotating disks.
Stability of both '"cold" as well as "hot" self-gravitating
disks have been examined against axisymmetric and nonaxisym-
metric perturbations with no restriction imposed on radial
wavelength A (r).
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In "cold'" or pressure-less disk models, spiral modes with
relatively smaller radial wavelengths are found to have much
larger growth-rates as compared to their pattern frequencies.
In other words, these modes with tight spiral arms are '"exp-
losively" unstable in cold disk models., As central condensa-
tion of the surface density is increased, growth-rates of
"explosive'" modes are found to increase further. On the con-
trary, these '"explosive' modes become less violent when ther-
mal energy or "hotness'" of the disk is enhanced instead of
the central condensation. Also, it is found that modes with
tighter spiral patterns are stabilized faster than the modes
having rather open spiral structures. However, large thermal
energies are required in order to completely suppress all
"explosive'" modes. It is also noticed that modes with regular
tightly wrapped spiral patterns become irregular as "hotness"
of the disk is increased. On the other hand, modes having
rather open '"leading'" spiral patterns are gradually turned
into smooth trailing patterns above a critical value of the
thermal energy. Of course, eventually no unstable modes sur-
vived, i.e., no spiral structures is allowed, when thermal
energy of the disk is made sufficiently large (Ambastha and
Varma 1983),

MULTI-COMPONENT SPIRAL GALAXY MODELS

It is well known that disk galaxies are complex astrono-
mical objects consisting of several components with widely
varying properties, such as, (i) a flat rotating disk compr-
ising of gas, dust, population I and II stars; (ii) central
spheroidal bulge which is made up mainly of population II
objects; and (iii) a large "invisikle'" halo surrounding the
disk and the bulge. Although the visible spiral structures
of a galaxy are characteristic feature displayed by the gas-
eous and young stellar population of the flat disk component,
their physical appearance seems to be governed by the size
and massiveness of the central bulge, which does not exhibit
spiral features itself (Freeman 1970). Apart from ignoring
the major components of real galactic systems, viz.,central
spheroidal "bulge™" and a "halo" around the disk, the one com-
ponent disk galaxy models suffer from the presence of explos-
ively unstable modes, and require considerably large thermal
energies in order to suppress these violent instabilities.It
has been earlier found by numerical simulations that inclu-
sion of a large halo enveloping the disk suppresses explosive
modes (Hohl 1976; Berman, Brownrigg and Hockney 1978), In
view of this, we have made a study on the large scale stabi-
lity and structure of finite disk including various aspects
of galactic composition. Ambastha and Varma (1982) have ear-
lier studied stability and spiral structures of a flat self-
gravitating disk under the influence of an external gravita-
tional force exerted by a fixed central bulge component.They
have examined properties of the global eigenmodes for various
ratios of the disk-to-bulge mass and radius.
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A massive halo, surrounding both the galactic disk and
the central bulge may also have a major influence on the dy-
namics and structures of the flat disk component. Presence
of a massive halo around our own Galaxy, the Milky Way, is
evidenced from the nearly flat rotational curve at large gal-
acto-centric distances (Rubin, Ford and Thonard 1978; Bosma
1978; Krumm and Salpeter 1979). It has been inferred that the
halo component of a galaxy could be around ten to twenty ti-
mes as massive as the disk (Bok 1981).

In order to examine the influence of the halo component
on the dynamics and structure of the disk component, we con-
sider a razor thin disk with radius Ry of self-gravitating
matter (gas, dust and population I objects) baving a surface
density distribution od(r):

od(r) = con(Aor); r < Rd
14)

0 ; r >Ry

where o, is a constant and Rq is radius of the disk. Further,

we consider a spherical halo surrounding the disk having a
volume density given by:

L 1+ (r/Rh)zj"1 ; T <R

ph(r) h

= 0 . ;T > Rh (15)

where Pq is the central density and Rh is the core-radius of

the halo. The corresponding gravitational potential due to
the "fixed" halo mass is:

¥, (r) = -2nGoy R} 1nl1+r/R %) + 2R y/t)tan™ (/R )-2]  (16)

Ve define here dh = Mh(Rd)/(Md+ Mh) or § = Md/Mh and n = R,/
Rd which determine ratios of masses and sizes of the disk
and the halo.

Our main interest here is to understand influence of a
halo on the large scale stability of the self-gravitating
disk, hence for simplification we assume a 'cold' or pressu-
reless disk. Effect of thermal pressure on the global modes
has been investigated earlier (Ambastha and Varma 1983,Aoki
et al, 1979). By carrying out a normal mode analysis describ-
ed earlier, we find that a number of unstable modes are allo-
wed as in previous investigations. Unstable eigemmodes of the
disk in presence of fixed halo potential for various values
of & keeping n constant are shown in Figure (1). One finds
that some of the eigemmodes are still "explosive'", as in one-
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Figure 1: Growth-rates w; are plotted against frequency Wy
for the unstable eigenmmodes of the disk as the
disk-to-halo mass ratio, 8§ is decreased. The core-
radius of the halo, is kept the same,
component 'cold' disks, when the hlo is not sufficiently

massive as compared to the disk. Fowever,

when the halo mass

is increased to around 4-~-5 times the disk mass, almost no un-

stable modes are allowed,

i.e.,

spiral patterns are permissible.

no large scale or "global"

Figure 2 shows the unstable eigemmodes for a fixed disk-

to~halo mass ratio,

8 =

0.25, but increasing values of core-

radius of the halo component. One finds here that for a halo
no explosive modes

around 4 times more massive than the disk,
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allowed even when the core radius of halo is zero. Moreover,
as the core-radius of the halo is increased, many of the un-
statle modes got stablized and eventually only a single un-

statle mode survived for n > 1.
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Tigure 2: Growth-rates mi against frequency wr for unstable

eigemmodes of the disk as the ratio of the core-
radius of the halo to the radius of the disk is
increased. The halo mass is four times the disk
mass,

Figure 3 shows eigen-patterns associated with some un-
stable modes for cSn = 0,9and n = 0.5 and 1.0, In the first

case, there is an irregular spiral structure with rapid vari-
ation in amplitude along the spiral. However, smooth spiral
structure is obtained when the halo core-radius is equal to
or greater than the disk radius (see also Figure 4).
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Figure 3: Eigen-patterns associated with bi-symmetric (m = 2)
surface density perturbations for selected eigen-
modes. The halo mass is nine times the disk mask
n=0.5and 1.0.
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Tigqure 4: Eigen-patterns associated with bi-symmetric (@m=2)
surface density perturbation for the unstable mode
at n = 50 and rSn = 0.95.
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CONCLUSION

Earlier studies have shown that unreasonably large ther -
mal pressures, such that the thermal energy of the disk is
comparable to its rotational energy, are required in order to
stablize the disk against all unstable global modes (Ostriker
and Peebles 1973, Ambastha and Varma 1983). Further, it is
rather difficult to construct kinematically stable disk models
with a reasonable pressure distribution when there is no halo
prresent. Glohal modes of oscillations tend to grow explosively
in a model disk galaxies in a few rotational periods unless
there exists a massive halo. On the other hand, it is found
here that very large and massive halo tends to prohibit spi-
ral structures in the disk. It is also found that while cold
disks without halo mostly allowed "leading'" spiral patterns,
smooth "trailing" patterns are allowed when there is a halo
around the cold disk.
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