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Abstract

In a recent paper the authors proved a multiplier theorem for Hardy spaces H?(G),0 < p < 1,
defined on a locally compact Vilenkin group G. The assumptions on the multiplier were expressed
in terms of the “norms” of certain Herz spaces K(1/p — 1/r, r, p) with r restrictedto 1 <r < oo
and p < r. Inthe present paper we show how this restriction on r may be weakenedto p < r < 0.
Furthermore, we present two modifications of our main theorem and compare these with certain
results for multipliers on L? (R")-spaces, 1 < p < 00, due to Seeger and to Cowling, Fendler and
Fournier. We also discuss the sharpness of some of our results.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43 A 22; secondary 43 A
15,43 A 70.

1. Introduction

Throughout this paper G will denote a locally compact Vilenkin group, that is
to say, G is a locally compact Abelian topological group containing a strictly
decreasing sequence of open compact subgroups (G,)>, such that

(1) sup{order(G,/Gp1) i n € Z} < o0,

i)y UT,G.=Gand(>, G, = {0}

The dual group of G is denoted by I" and for each n € Z we set

I ={yel:yx)=1foralx e G,}.
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We choose Haar measures i« on G and A on I' such that u(Go) = A(I"y) = 1.
Then (u(G,))™' = A(T,)=m, for each n € Z. It is an easy consequence of
condition (i) for G that for every @ > 0 there exists a constant C > 0, C
depending only on «, such that for every k € Z, both

oo

(1.1) D (mp)™ < Clm)™,
j=k

and \

(12) D ) < Cmy)".
j=—00

The metric d on G x G defined by d(x,x) = 0 and d(x,y) = (m,)~! if
x —y € G,\G,4 generates the original topology on G. For x € G we set
x| = d(x,0). If A is any set then x4 will denote the characteristic function
of A. Also, foreachn € Z we set A, = m,xg,. It is easy to see that the
Fourier transform of A, is given by (A,)" = xr,. In [5] the definition and
a brief summary of the basic properties of the spaces of test functions . (G)
and distributions .#*'(G) are given. We now present the definition of the Herz
spaces and the Hardy spaces on G.

DEFINITION 1.1. Let @ € R and 0 < p, ¢ < 0o. A measurable function
f : G — C belongs to the Herz space K («, p, q) if

00 /q
If lk@p.a = (Z((mz)‘“llfo,\c,+. ||,,)4) < 00,

I=—00
with the usual modification if ¢ = oo.
DEFINITION 1.2. Let 0 < p < 1. A distribution f € .#’(G) belongs to

the Hardy space H?(G) if the function f* : G — C defined by f*(x) =
sup, | f * A;(x)] belongs to L?(G). We set || fllue = | f*lp-

DEFINITION 1.3. A functiona : G — Cisa (p,00) atom, 0 < p < 1, if
there exists a set I of the form x + G, such that (i) suppa C I, (i) |lalle <
(u(I)™YP = (m,)"/?, and (iii) [, a(x) du(x) = 0.

In [5] it was shown that the Hardy spaces H”(G) can also be characterized
in the usual way in terms of (p, o) atoms on G.
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The space of (Fourier) multipliers of H”(G) will be denoted by .# (H?);
thus ¢ € .# (H?) if ¢ € L>(T) and if there exists a constant C > 0 such that
forall f € H?(G) we have [[(¢f)"llu» < Clifllu». We mention here that in
order to show that a function ¢ € L>(T") belongs to .# (H?) it is sufficient
to show the existence of a constant C > 0 such that for all ¥ € Z and every
(p, 00) atom a with supp a C G, forsome n € Z and |la|l, < (m,)? we have
1(@e@)” llur = ()" * ally» < C, where ¢, = @xr,; see Remark (4.2) in [5]
for further details.

2. Multipliers on Hardy spaces H?(G)

Throughout this section we shall use the notation ¢, = ¢xr, and oF =
dXr..\r.» Where ¢ € L=(I") and k € Z.

Before stating the main result of the paper, Theorem 2.1, we first prove two
simple lemmas.

LEMMA21.Let 0 < p < 1. Let f, g be measurable functions on G
such that supp g C G, for some n € Z and both f and g are constant on
the cosets of G, in G for some k > n. Then we have for every x € G,

|f % g(x)IP < (m)'"PIf1P x |g|7(x).

PROOF. Let {z, + G} denote the collection of different cosets of G in G,;
thus G, = |J, zo + G«. Forevery x € G we have

frg) =) flx—0g@®)du)

z2a+Gyi

=) flx —z.)8E) M)

Therefore,

| *gOIP <Y (m) "1 f (x — z)IPlgza)I”

. / £ G = DI lgO1F du(r)
G

= (m)' PIf17 % g7 (x).
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LEMMA 2.2. Let @ > 0, let p, r > 0 and let (a;)>,, be any sequence of real
numbers. Consider the following conditions :

2.1 sup(m)' =P (i((mk)"/""la,-lp)“)l/a < o,
p - ) .

(2.2) sup(my)'~? (;(Iaﬂ")“) < 00,

(2.3) sgp(mk)””“‘lakl < oo0.

Then

(i) For 0 < p <r, (2.1) is equivalent to (2.3).
(ii)) For 0 < p < 1,(2.2) is equivalent to (2.3).
(iii) Forp=1landl <r,(2.2) implies (2.1) and, hence, (2.3).

PROOF. (i) Clearly, (2.1) implies (2.3) for all p, r > 0. Conversely, if (2.3)
holds then there exists C > Osothatforall j € Z, |a;|? < C(m;)?~'. Therefore,
forO<p<r,

00 Ve oo 1/a
(mi)' =" (Z((m,-)”/"”lajl”)“) < Clmy)'="" (Z(m,)("/"”“) <cC,
j=k j=k

where the last inequality follows from (1.1).
(ii) Clearly, (2.2) implies (2.3) whenever p > 0. If (2.3) holds we see, like in

the proof of (i), that
00 e o0 1/a
(m)' =" (Z la,-l”“> < C(my)'™" (Z(m,-)"’-”“) <C,
j=k j=k

because p — 1 < 0.
(iii) For j > k and 1 < r we have (m;)!/"~! < (m)"/"~'. Thus, assuming
(2.2) with p = 1 we immediately obtain (2.1).

THEOREM 2.1. Let 0 < p < 1 and ¢ € L*=(I").
@Ifp<r<landif

00 (2—-py/2
1- - j 2/~
suP(mk) plr (Z((mj)p/r p”(¢])v"11’((1/1,_1/r,r_p)) /( p)) < 00,
k N
=k
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then p € A (H?).
b)If1 <r <ooand

0o (2-p)/2
1- j 2/(2-
Slip(mk) P (Z(||(¢j)v”’1)((1/,7_1/r,r,p)) / p)) < 00,
= -

then ¢ € A (HP).
PROOF. Let a be a (p, 00) atom with supp a C G, and
lalle < (G )™?

for some n € Z. Fixk € Z, let f = (¢a)” and f* = sup, | f * A;|. Then

118 = PGP du) + f (F () du(x)
G G\G,
= A+ B, say.

We have

p/2
A 5( (f*(x))zdu(x)) (G NP7 < ClfHIEmy)P* !
Gn
< ClgliZllaly(m)?*! < C,

because a is a (p, 00) atom and ¢ € L>®°(T"). To find a similar inequality for B
we first observe that Kitada proved in [3] that

1) <D 1) a0,

j=n

where a; = a * (A4, — Aj). Therefore,

n—1 o0
By Y [ 1) a0 duc.
G

k=—00 j=n k\GkH

In [3] Kitada also showed that for x € G\ G4 Withk < n — 1 we have

(¢’j)v xa;(x) = (¢j)vXGk\Gk+1 * a;(x),
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so that, after an application of Holder’s inequality, we obtain

oo n-—1 p/r
24 B<) Z( (@) X60\Guns *a,-(X)l’du(x)) w(G\Giar) T

j=nk= Gi\Git

(@) Now we assume that p < r < 1. Since supp ¢’ C I';,, we see that
(@)Y XGi\Gy,, 18 constant on the cosets of G, in G whenever k + 1 < Jj+ 1
Also, a; is constant on the cosets of G;,, in G and suppa; C G, for j > n.
Thus it follows from Lemma 2.1 that

2.5)
. p/r p/r—1
B<cy S ((mj)‘ 7| 1@ Xonce | * Ia,-l’(x)du(x)) ()
j=nk=—00 G \Gi4
< CZ(m )PPy |7 Z G [CENPRYIN [
Jj= k=—00
Thus,

oo
-1 i
B <CY m)"  Ma P 1@ Iaporsrrm

j=n
o p/2 o 2-p)/2
2 - j 2/(2—
<cC (Z na,-u,> (Z((m,-y'/' I NRaspm1yrr ) m) .
j=n j=n

Since a; = a x (A;4; — A,;) implies that @; = dxr,,,\r,, we see that

o0 o0 o0

2 2 2/r—~1 1-2 A 2
D lal? < D Mg B@GanY " = m)"2 Y a1
j=n j=n j=n

< (mn)' " fall < (ma)¥r

Therefore, using the assumption of the theorem, we see that B < C and we may
conclude that ¢ € .# (H?).

(b) Next, assume that 1 < r < co. Applying Young’s inequality in inequality
(2.4) we see that

s> %

—_

n—

-1 i
k)p/r ” (¢1)VXGk\Gk+1 ”rp ”aj ”f

IIM
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< C Y Mg @) W asp-ryrnm

oo
j=n

00 P2/ o 2-p)/2
2 j P 2/(2-p)
<C (Z ||aj||1) (Z (1D W yp-1/rrp) )
j=n

j=n

o

2-p)/2
B . 2/2-p)
< C(m,,)l ? (Z (”(¢1)v ”11)((1/p—1/r,r,p)) ) :

j=n
Thus, by assumption, B < C and we may again conclude that ¢ € .# (H?).
Our first observation is that Theorem 2.1 combined with Lemma 2.2 im-
mediately implies Corollary 2.1 below. Corollaries 2.2 and 2.3 are simply

restatements of Theorem 2.1 incase p =1 <randincase 0 < p =r < 1,
respectively.

COROLLARY 2.1. Let0 < p < landp <r < oo. If ¢ € L*(I") and if

Sl:p(mk)l/p_l||(¢k)VI|K(1/p—l/r,r,p) < 00,
then ¢ € A (HP).

COROLLARY 2.2. If ¢ € L=(I") satisfies

oo
V12
Z ||(¢J)v||x(1—1/r.r,1) < 00

j=—o0

for somer > 1,then ¢ € .M (H').

COROLLARY 2.3. Let 0 < p < 1. If ¢ € L*®(T") and if

Y np) P @) 1) < o0,

j=—00

thenp € A (H?).

REMARK 1. Combining the techniques used in the proof of Theorem 2.1 with
those used to prove Theorem (4.7) in [5] we can actually show that under
the assumptions of Corollary 2.1 the function ¢ is a multiplier on the power-
weighted Hardy spaces H?(G) for « satisfying —1 + p/r < a < 0. Thus, we
can extend Corollary (4.8) in [S]from0 < p <land1 <r <ooto0 < p <1
and p <r.
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REMARK 2. Corollary 2.1 with 0 < p < 1 and r = 1 may be considered
as the analogue on G of Theorem 3a in [1], in which Baernstein and Sawyer
obtained a comparable result for multipliers on Hardy spaces defined on R".

We now turn to a discussion of the sharpness of the preceding corollaries. We
first consider Corollaries 2.1 and 2.2.

THEOREM 2.2. (a) Let 0 < p < land p < r < o0. There exists ¢ € L*(T")
such that

1/p—1 k
Sup(mk) /e ”(¢ )v”K(l/p—-l/r,r,q) < 00
k

foreveryq > pand ¢ ¢ # (HP).
(b)Let 1 < r < o0. There exists ¢ € L") such that

2.6) D M) Naryrrg < 00

j=—00
foreveryq > land ¢ ¢ A (H").
PROOF. For part (a) we may use the example described in the proof of The-
orem (4.9) in [5]. A careful reading of this proof shows that the restriction 1 < r

in that theorem can be relaxed to p < r. To prove (b), choose a sequence (&,)$°
with each &, = +1 such that

i & (1 _ M(G—l+1))
1=1 ! /‘L(G—I)
converges. Define ¢ : I' — C by
V() =Y al " M )(Forp — Fo) (),
=1

where F, = (xg,)" = ML) 'xr,. If y ¢ Ty then ¥ (y) = 0, whereas if
y € I'_yy1 \ I'_; for some k£ > 1 then

[y (P < lek™ AT ) AT )7

+1 D @l AT (M) ™ = @)™

I=k+1
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Thus, € L>®(I') N LY(T"). Next, choose y, € I''\I'g and define ¢ : T — C
by ¢(¥) = ¥ (y — y1). Then ¢ € L*(I') N L}(T") and supp ¢ C I';\Iy so that
¢! = ¢ and ¢’/ = O for j # 1. Furthermore,

¢"(x) = Y&l ML) (X6 1, — X6 )N (X)
=1
and for any ¢ > 1 and any r with 1 < r < oo we have

16" W%t jrray = 2 (@) AT D XG0 — Xaoi i)'

Mg

~
1

1

] (m_l)(l/r—l-H—l/r)q < 00.

gk

=
]

Thus (2.6) holds. Moreover,

1

I¢¥ 1l = Y I AT DG 111) — (G ) = 00

=1

that is ¢¥ ¢ L!'(G). Next, if we define g : G — C by g(x) = A (x) — Ag(x)
then g is a multiple of a (1, 0o) atom so that g € H'(G). Also, § = Xri\r, and
this implies that (¢2)¥ = ¢ with ¢¥ ¢ H!(G). This proves that ¢ ¢ .# (H").

In the following theorem we consider the sharpness of Corollary 2.3.

THEOREM 2.3. For every p with0 < p < 1 and every q with2p/(2 — p) <
q < oo there exists ¢ € L*(I") such that

(i) 27 oo (m) P I @)V 11,)? < oo,
() o ¢ .4 (H).

PROOF. For each j € N decompose G, into the mutually disjoint cosets of
G; in Gy, say,

G() - ij,i + Gj.
i=l1

Define g; : G — C by

m, m .
gi(x) = Z ( r: Xbj 4Gy — Xb,;,'+G,-) (x).

i=1 J

https://doi.org/10.1017/51446788700034042 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034042

296 C. W. Onneweer and T. S. Quek [10]

Clearly, supp g; C Go, [, &(x)du(x) = 0 and ||g;ll, < P'/?, where P =
sup;(m;.1/m;). Moreover, since

m; - 1
@.7) &) ) = 3y B —(xry = xn) @),
i=1 j
we see that supp (g;)" C I'; 14 \I';. Next, for each n € N define h, : G — Cby
ha(x) =) g(x).
j=1

Then supp h, C Go, [, ha(x)du(x) = 0 and ||h,l; < P'2n'/?. Thus h, is a
multiple of a (p, 2) atom and ||A,||yz» < P'*n'/2,

We now turn to the definition of the function ¢ € L*(I") satisfying conditions
(i) and (ii). For each j € N choose an element z; € G_;\G_,;, and define
fi:G—> Cby

_f;(x) = j_a(mj+1XZj+Gj+1 - ijZ/+Gj)(x)’

where o = 3((2 = p)/2p + 1/q). Then | f;ll, < Cj~(m;)'~"/? and
(2.8) ") =i~y @) xry, = xn) ),

so that supp (/)" C T4 \T'; and || fllo < j ™ < 1. Define ¢ : T' — C by
()= (£) ).
j=1

Clearly, ¢ € L"), ¢’ =0for j <0and ¢/ = (fj)" for j > 1; moreover, ¢
satisfies condition (i). Furthermore, for eachn € N and x € G we have

(@ (h)")" (x) = (Z(fm Z(g,-)A) (x)
j=1 j=1
=) _(fi *g)).
j=1

Thus, (¢(h,)")" € LY(G), and it follows immediately from (2.7) and (2.8) that
forevery j > 1,

- = [ m; 1
(f.‘) * g])(x) = j Z <—’;1L_X2j+bj,i+cj+1 - XZj+bj,,'+Gj> (x)'

i=l1 ]
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Finally, assume ¢ € .# (H?). Then there exists C > 0 so that

Cllralze = 1@ R N = lRIDYI;

> Xn:j_apﬂ (Zj + U(bj,i + Gj)) = ij—ap
=1 i=1 =1
> Cn'™?,

that is, ||A,|lz» > Cn'/P~*. Since ¢ > 2p/(2 — p) implies 1/p —a > 1/2,
we have a contradiction of the inequality |jA,||z» < P"Y?n'/2. This shows that
¢ ¢ # (H?), which completes the proof of Theorem 2.3.

REMARK 3. In Section 4 of [4] it was shown that if ¢ € L°°(I") satisfies
S @)Yl < oo then ¢ € .# (H'), and that there exists ¢ € L>®(I")
such that sup; [|(¢/)"|l; < oo and ¢ ¢ .# (H'). Clearly, the case p = 1 of
Corollary 2.3 and of Theorem 2.3 sharpen these results from [4].

In view of the fact that condition (i) in Theorem 2.3 is not sufficient to
guarantee that ¢ € # (HP) it is of some interest to determine what kind
of additional condition would be sufficient to obtain H”(G)-multipliers. The
following theorem gives one type of solution for this problem.

THEOREM 2.4. Let 0 < p < 1. Let ¢ € L>(T) satisfy

> (mp) P I@) 1) < o0

j=—00
for some q with2p /(2 — p) < q < oc. Define B by B =2pq/((2— p)g —2p)
(ifqg =occwetake B =2p/(2—p),ifq = 2p/(2 — p) we take B = oc).
Let (a;)®, € I°(Z) and define ¢ : T — C by ¥ (y) = T2 a;¢’(y). Then
Y e A (HP).

PROOF. We have

oo

1/p-1 j 2p/Q2—p)
3 () W)
J=—o0
) 2p/(2-p)q o0 1-2p/(2—p)q
1/p-1 j 2 2-p)-2
= E ((m;) ' (@) 11,,)* Z|aj|m/(q( p)=2p)
j=—00 =00
< 0.
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Thus it follows from Corollary 2.4 that ¢ € .# (H?).

We explicitly state the most interesting case of Theorem 2.4, namely the case
when g = o0.

COROLLARY 2.4. Let 0 < p < 1. Let ¢ € L¥(T") satisfy

sup(m;)"* ()", < o0
J

and let ()=, € I?P/P(Z). If ¢ = 3.7 a;¢’ then € M (HP).

REMARK 4. Corollary 2.4 is an extension to H”-spaces, 0 < p < 1, (and on
locally compact Vilenkin groups instead of on R") of Theorem 2 in [2], in which
a similar result was obtained for multipliers on L?(R")-spaces, 1 < p < 00.

In the next theorem we show, at least for the case p = 1, the sharpness of
Corollary 2.4.

THEOREM 2.5. Let (a;)*, € [®(Z)\I*(Z). Then there exists ¢ € L)
such that sup; [|(¢’)"|l, < ccand ¥ =3 _o;¢) ¢ M (H').

PROOF. We consider the case when Y °|o;|*> = oco. Then there exists a
sequence ()3 in /2(N) such that }_7° |a;jA;| = 0o. Assume |oA;| > 0. We
define a sequence (N,)g° inductively. Let Ny = 1 and, assuming N, € N has
been defined, define N,,; € N so that N;,; > N, and

Niyi

D leyrl > 2 eyl
Jj=Ni+1
Next, for each j € N choose a character y; € I';,\I'; and define ¢ : I' - Cby

d() =D (A_)N"y — 1),
=1

J

where, for n € Z, we set
A (x) = (M(Gn\Gn+1))_lXG,,\G,,H(x)-

Then ¢ € L®([) and (¢/)V(x) = 0if j < 1 and (¢/)V(x) = vi(x0)A_;j(x) if
Jj = 1. Clearly, sup; [[(¢/)"[l; = 1.

https://doi.org/10.1017/51446788700034042 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034042

[13] Multipliers for Hardy spaces 299

Next, for k € N define g, : ' — C by

Nen

&(y) = Z )var_N,()/ - }’j)-

J=Ni+1

If hy = (g;)" then

Nt

h(x) = Y Ay (DA (x)

J=Ni+1
and we have [ h;(x)du(x) = 0 and

Nit1

el =Y 1A 1Pm_y,.

J=Ni+1

Also, since supp h, C G_y,, we see that
N 1A < (mon) 2R3

Therefore,

o 1/2
0 - 1RO < (Z |A,-|2) :
j=1

Consequently 4, isa (1, 2, 1) molecule centered at 0 € G (see [4] for a definition
of (1,2, 1) molecules on G); this implies that &, € H'(G) and that there exists
a constant C; > 0, C, independent of &, so that || [l < Ci (37 A1)V

Now define ¢ : I' - Cby ¥ = Y 7" o;¢/ and assume that Y € .# (H").
Then there exists a constant C, > 0 so that for every h € H!(G) we have
I h)Y | < Cllhllg. Choose ko € N so that

- 12
2ot oy A | = 2C,C, (Z |)"j|2) .

1

Now
. Nig+1
Whi) () = D ohy(x)A_(x)
j=Nk0+1
and we see that
Nk0+1
MW h) e = 1WA I = Y lahil = 2Callhillan,
j=Nk0+l
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a contradiction. Thus we have shown that v ¢ .# (H').

Finally, if Z:; la;|> = oo, then except for some minor changes, an argument
like the preceding one leads again to functions ¢ and y with the required
properties. This completes the proof of Theorem 2.5.

As our final result we present a theorem whose proof is a minor variation of
the proof of Theorem 2.1. We then briefly indicate how this theorem is related
to a result of Seeger in [6] about multipliers for L? (R")-spaces.

THEOREM 2.6. Let O < p < 1. Assume ¢ € L>*(I") satisfies
w .
sup D (m)7 (@) X6, 1) P < o0
=k

Then ¢ € A (HP).

PROOF. We use the same notation as in the proof of Theorem 2.1(a) and we
consider the case » = p. Then A < C and we have, according to (2.5),

(o] n—1
B <CY (m)'lal? > 1) eI’
=—00

j=n

=C > (m)' g 211@) xe\6, lIp

j=n
2-p)/2

© PI2 1
<C (Z lla; Hf,) (Z((mj)l_pll(¢j)VXG\Gn“Z)z/(z_p)) <C.
j=n j=n
Thus ¢ € .# (HP).

COROLLARY 2.5. Let 0 < p < 1 and ¢ € L=(T"). If there exists € > 0 such
that for every n € 7,
sup(m,)** 7 1(¢))" xara, I, < Cm,)",
J
then ¢ € A (HP).

PROOF. For each n € Z we have

oo o0
D () PTH@) X6, 1) TP < Clmy )PPy (my) o210 < C,

Jj=n j=n
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by inequality (1.1), because €2p/(2 — p) > 0. Thus we may conclude that
¢ € A (HP).

REMARK 3. In [6, Theorem 1] Seeger used a restriction on

2.9 sup [(pm (1)) Xixizw 1

>0

to prove that certain m € L*(R") are multipliers for L?(R"), 1 < p < oo, see
{6, Section 1] for details. On G the analogue of (2.9) is

sup ”(¢j)VXG\G,, Hli-

Thus, Corollary 2.5 may be considered as a version on locally compact Vilenkin
groups G of an extension to Hardy spaces H?,0 < p < 1, of Seeger’s multiplier
theorem for L”(R")-spaces, 1 < p < oo.

CONCLUDING REMARK. At various places throughout this paper we have com-
pared our results to certain multiplier theorems for Lebesgue or Hardy spaces
defined on R". The results presented here raise obvious questions and conjec-
tures for possible additional multiplier theorems for the H?(R")-spaces. We
intend to report on some of these questions elsewhere.
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