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Abstract

Let G be a p-group of maximal class of order pn . It is shown that the order of the group of all
automorphisms of G centralizing the Frattini quotient takes the maximum value p2n−4 if and only if G
is metabelian. A structure theorem is proved for the Sylow p-subgroup, Autp(G), of the automorphism
group of G when G is metabelian. For p = 2, Aut2(G) is the full automorphism group of G. For p = 3,
we prove a structure theorem for the full automorphism group of G.
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1. Introduction

There have been a number of studies of the automorphism groups of p-groups
of maximal class (see for example, Baartmans and Woeppel [2], Juhász [8],
Malinowska [10], Caranti and Mattarei [4], Caranti and Scoppola [5]). These
concentrate mostly on small automorphism groups. In this paper we consider large
automorphism groups.

Let G be a p-group of maximal class of order pn and let 8 = 8(G) be the Frattini
subgroup of G. It is well known [7, Satz III.3.17] that the order of Aut8(G), the group
of all automorphisms of G centralizing G/8, divides p2n−4. Moreover, the order of
Autp(G), the Sylow p-subgroup of the automorphism group of G, divides p2n−3. In
Section 4 we prove that |Aut8(G)|, the order of Aut8(G), is p2n−4 if and only if G is
metabelian (Theorem 4.3).

Juhász [8, Theorem 2.3] proved that if G is a p-group of maximal class then
Aut8(G) is a split extension of Inn(G), the inner automorphism group of G. In
Section 3 we prove that when G is metabelian, a complement of Inn(G) in Aut8(G) is
almost homocyclic of rank p − 1; that is, it is a direct product of exactly p − 1 cyclic
groups of order pr or pr+1 for some nonnegative integer r (Theorem 3.3). Also we
give conditions on G for |Autp(G)| = p2n−3 (Corollary 3.8). In this case Autp(G)
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is a split extension of Aut8(G) by a cyclic group of order p (Theorem 3.10). For
p = 2, the automorphism group is a 2-group. In Section 5 we give a simple proof
for the structure theorem in this case (Theorem 5.9). It is straightforward to see that
when p is odd, the (full) automorphism group Aut(G) of G is a split extension of
Autp(G) by a subgroup of the direct product of two cyclic groups of order p − 1, see
[2, Section 1]. By using this result we prove a structure theorem for Aut(G) when
p = 3 (Theorem 5.8).

Throughout this paper the following notation is used. The terms of the lower and
the upper central series of G are denoted by γi (G) and ζi (G), respectively. The centre
of G is denoted by Z = Z(G). The nilpotency class of a group G is denoted by cl(G).
If α is an automorphism of G and x is an element of G, we write xα for the image of
x under α. The inner automorphism induced by the element g is denoted by σg . For a
normal subgroup N of G, we let AutN (G) denote the group of all automorphisms of
G centralizing G/N . Also Cn denotes the cyclic group of order n. All unexplained
notation is standard and follows that of [9].

2. Some basic results

In this section we give some basic results needed for the main results of the paper.
Let G be a p-group of maximal class and order pn (n ≥ 4), where p is a prime.

Following [9], we define the 2-step centralizer Ki in G to be the centralizer in G
of γi (G)/γi+2(G) for 2 ≤ i ≤ n − 2 and define Pi = Pi (G) by P0 = G, P1 = K2,
Pi = γi (G) for 2 ≤ i ≤ n. The degree of commutativity l = l(G) of G is defined to be
the maximum integer such that [Pi , Pj ] ≤ Pi+ j+l for all i, j ≥ 1 if P1 is not Abelian
and l = n − 3 if P1 is Abelian.

Take s ∈ G −
⋃n−2

i=2 Ki , s1 ∈ P1 − P2 and si = [si−1, s] for 2 ≤ i ≤ n − 1. It is
easily seen that {s, s1} is a generating set for G and Pi (G) = 〈si , . . . , sn−1〉 for
1 ≤ i ≤ n − 1.

For the rest of the section we fix the above notation and assume that n ≥ 4.

LEMMA 2.1 [9, Corollary 3.2.7]. Let G be a p-group of maximal class. The degree of
commutativity of G is positive if and only if the 2-step centralizers of G are all equal.

LEMMA 2.2 [7, Hilfssatz III. 14.13]. If G is a p-group of maximal class of order pn

and s /∈ Ki for 2 ≤ i ≤ n − 2, then CG(s) = 〈s〉Pn−1(G) and s p
∈ Pn−1.

LEMMA 2.3. Let G be a p-group of maximal class of order pn .
(i) If G has positive degree of commutativity, then s p

i si+p−1 ∈ Pi+p for i > 1.
(ii) If n > p + 1 then s p

1 sp ∈ Pp+1.
(iii) If y ∈ P2 then (sy)p

= s p.
(iv) If G is metabelian then G has positive degree of commutativity.

(v) If G is metabelian then s p
i s

(p
2)

i+1 · · · si+p−1 = 1 for 2 ≤ i ≤ n − 1.
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PROOF. Conclusions (i)–(iv) follow by [9, Propositions 3.3.8, 3.3.3, Lemma 3.3.7]

and [3, Corollary p. 59]. Conclusion (v) is obvious since (ssi )
p

= s ps p
i s

(p
2)

i+1
· · · si+p−1. 2

LEMMA 2.4 [3, Theorem 3.10]. If G is a metabelian p-group of maximal class of
order pn (n ≥ p + 1), then [P1(G), Pi (G)] ≤ Pn−p+i (G).

LEMMA 2.5. Let G be a metabelian p-group of maximal class of order pn .

(i) s pt

i = s(−1)t

i+(p−1)t x, where x ∈ Pi+(p−1)t+1 for i ≥ 2; so if s pt

i 6= 1 then

s pt

i ∈ Pi+(p−1)t − Pi+(p−1)t+1.

(ii) P pt

i ≤ Pi+(p−1)t for i ≥ 2.

PROOF.
(i) We use induction on t and Lemma 2.3(i).
(ii) This follows from (i). 2

LEMMA 2.6. Let G be a metabelian p-group of maximal class of order pn and m be
a positive integer.

(i) [s1, sm
] = sm

2 s
(m

2)
3 · · · s

(m
m)

m+1.
(ii) [sm

i , s1] = [si , s1]
m for i ≥ 2.

(iii) [sm
i , s] = [si , s]m for i ≥ 2.

(iv) |s2| ≥ |s3| ≥ · · · ≥ |sn−1| and so exp(Pi ) = |si | for i ≥ 2.
(v) (s1si )

m
= sm

1 sm
i [si , s1] [si , s2

1 ] · · · [si , sm−1
1 ] for i ≥ 2.

LEMMA 2.7. Let G be a metabelian p-group of maximal class of order pn . Then

|si | =

{
p((n−i)/(p−1)), p − 1 | n − i,

p[(n−i)/(p−1)]+1, p − 1 - n − i,

for i ≥ 2.

PROOF. It is enough to prove that |sn−i(p−1)− j | = pi+1 for all i ≥ 0 and all 1 ≤ j
≤ p − 1. We use induction on i . It is easy to show that |sn− j | = p for 1 ≤ j ≤ p − 1,
by Lemma 2.3(i). Now the result follows from Lemmas 2.3(i), 2.6(iv) and 2.5. 2

LEMMA 2.8. Let G be a metabelian p-group of maximal class of order pn . Then

s
(pt

r )
ri−(r−1) ∈ Pi+2+t (p−1) when t ≥ 0, r ≥ 2 and i ≥ 3.

PROOF. Suppose that r = pwm, where (m, p) = 1 and w ≥ 0. So
(pt

r

)
= pt−wk,

where (k, p) = 1. Therefore s
(pt

r )
ri−(r−1) ∈ Pri−(r−1)+(t−w) (p−1) by Lemma 2.5(i). We

have the equality pw > w(p − 1) for w ≥ 0 and p ≥ 3. Hence, (i − 1) (r − 1)

≥ w(i − 1) (p − 1). Moreover, w(p − 1) (i − 1) ≥ 2w(p − 1) ≥ w(p − 1) + 2
when w > 0, and (i − 1) (r − 1) ≥ 2 when w = 0, completing the proof. 2
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LEMMA 2.9. Let G be a metabelian p-group of maximal class of order pn .

(i) Suppose that i ≥ 2 and 1 ≤ k ≤ p − 2. If s pt

i = s pm1 u1
i+1 · · · s pmk uk

i+k , where

(u j , p) = 1 and m j ≥ t − 1 for 1 ≤ j ≤ k, then s pt

i = 1.
(ii) 〈si 〉 ∩ 〈si+1, . . . , si+k〉 = 1 for i ≥ 2 and 1 ≤ k ≤ p − 2.
(iii) Pi = 〈si 〉 × 〈si+1〉 × · · · × 〈si+p−2〉 for i ≥ 2.
(iv) Suppose that n − r = (p − 1)k + j for 0 ≤ j ≤ p − 2, r ≥ 2. If j 6= 1, then

|Zsr | = |sr | and |Zsr | = |sr |/p if j = 1.
(v) Pi/Z ∼= 〈Zsi 〉 × · · · × 〈Zsi+p−2〉 for i ≥ 2.

PROOF. (i) We first note that if m j ≥ t for all j , 1 ≤ j ≤ k, then by Lemma 2.5(i)

s
pm j u j
i+ j ∈ Pi+t (p−1)+1 and so s pt

i = 1. Now suppose that j (1 ≤ j ≤ k) is the
least positive integer such that m j = t − 1, so m1, m2, . . . , m j−1 ≥ t . We

claim that s
pm j u j
i+ j = 1. Suppose that this is false; then by Lemma 2.5(i)

s
pm j u j
i+ j ∈ Pi+ j+(t−1) (p−1) − Pi+ j+(t−1) (p−1)+1. On the other hand, we see that

s pmr ur
r+i ∈ Pi+ j+(t−1) (p−1)+1 for 1 ≤ r ≤ k, r 6= j . Since j ≤ p − 2, we have

s pt

i ∈ Pi+ j+(t−1) (p−1)+1, which is impossible. Therefore, by the above note, the proof
is established.

(ii) We use induction on k. By Lemma 2.7, |si+ j | ≥ |si |/p for 1 ≤ j

≤ p − 2. For k = 1, we suppose that s pt

i ∈ 〈si 〉 ∩ 〈si+1〉. We may write s pt

i

= s pmu
i+1 , where (u, p) = 1. By considering the order of both sides we conclude

that m ≥ t − 1 so that s pt

i = 1 by (i). Now suppose that i ≥ 2 and the equality
holds for all positive integers less than k. If 〈si 〉 ∩ 〈si+1, . . . , si+k〉 6= 1 then we

may write s pt

i = s pm1 u1
i+1 · · · s pmk uk

i+k , where (u j , p) = 1 for 1 ≤ j ≤ k. Again by
considering the order of both sides and using the induction hypothesis we deduce that

|s pt

i | = max
{
|si+1|/pm1, . . . , |si+k |/pmk

}
. Hence m j ≥ t − 1 for 1 ≤ j ≤ k and

therefore the proof is completed by applying (i).
(iii) On setting Hi = 〈si , . . . , si+p−2〉 we see that Hi ≤ Pi ; also by (ii),

Hi ∼= 〈si 〉 × · · · × 〈si+p−2〉. Now by Lemma 2.7 we deduce that |Hi | = pn−i and
hence Hi = Pi , as required.

(iv) This is proved by Lemma 2.5(i).
(v) We may proceed as in (iii) above. 2

COROLLARY 2.10. Pi is an almost homocyclic p-group of rank p − 1 for i ≥ 2.

PROOF. This follows from Lemma 2.9(iii) and the fact that |Pi | = pn−i . Also we note
that elementary Abelian groups of order p, p2, . . . , p p−1 are almost homocyclic of
rank p − 1 with r = 0, by our definition in the introduction and for each n, d there is
exactly one almost homocyclic group of order pn and rank d . 2
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LEMMA 2.11. Let G be a group and x, y be elements of G. If [[x, y], x−1
] = 1 then

[x, y] = [y, x−1
].

LEMMA 2.12. Let G be a metabelian p-group of maximal class of order pn . If
n ≥ 2p − 3, p ≥ 3 and m is a positive integer, then:
(i) [[s2, s1], s1] = z ∈ [Pp−1, P1] and [[si , s1], s1] = 1 for i ≥ 3, moreover z = 1 if

n ≥ 2p − 2;
(ii) [[si , s1]

m, s] = [si+1, s1]
m for i ≥ 2;

(iii) (s1s2)
m

= s1
ms2

m
[s2, s1]

(m
2)z(

m
3);

(iv) [sm
1 , s] = sm

2 [s2, s1]
(m

2)z(
m
3);

(v) [si , s1]
p

= 1 for i ≥ 2.

PROOF. (i) This follows from Lemma 2.4.
(ii) We use induction on m, the Witt identity, Lemma 2.11 and (i).
(iii)–(iv) We use induction on m, (i) and Lemma 2.6(ii).
(v) We have [si , s1] ∈ Pn−p+i by Lemma 2.4 and exp(Pn−p+i )|p by

Lemma 2.5(ii). 2

LEMMA 2.13. We have
∑m

k=u k
(k

u

)
= m

(m+1
u+1

)
−

(m+1
u+2

)
for all positive integers u

and m.

LEMMA 2.14. Let G be a metabelian p-group of maximal class of order pn . If

n ≥ 2p − 3 and p ≥ 3, then (ss1)
p

= s ps
(p

1)
1 · · · s

(p
p)

p [s1, sp−1].

PROOF. By using induction on m, Lemmas 2.13 and 2.12 we see that

(ss1)
m

= sms
(m

1)
1 · · · s

(m
m)

m [s2, s1]
b2 · · · [si , s1]

bi · · · [sm, s1]
bm zb3,

where bi =
∑m−1

k=i−1 k
( k

i−1

)
for i ≥ 2. Now we take m = p and observe that

[sp, s1] = 1 by Lemma 2.4. We have bi = (p − 1)
(p

i

)
−

( p
i+1

)
by Lemma 2.13, so p|bi

when i < p − 1 and bp−1 = p(p − 1) − 1. Therefore [si , s1]
bi = 1 for i < p − 1 and

[sp−1, s1]
bp−1 = [s1, sp−1] by Lemma 2.12(v). Also if p = 3, then by Lemma 2.12(i),

z = 1 since n ≥ 4; and if p > 3, then p|b3. Hence, zb3 = 1 since z ∈ Z(G). 2

In what follows we give a presentation for a metabelian p-group G of maximal
class of order pn (n ≥ 2p − 3). Suppose that k is the largest positive integer such
that [P1, P2] = Pk , so k ≥ n − p + 2 by Lemma 2.4. Therefore we may write
[s1, s2] = sa1

k sa2
k+1 · · · san−k

n−1 , where a1 6= 0 and o ≤ ai < p. Also, by Lemma 2.2,

s p
= sw

n−1 (0 ≤ w < p), and, by Lemma 2.3(v), s p
i s

(p
2)

i+1 · · · si+p−1 = 1 for i ≥ 2. Now

by Lemmas 2.14 and 2.4 we see that s
(p

1)
1 · · · s

(p
p)

p = sz
n−1 (0 ≤ z < p). So we have

proved the following theorem.
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THEOREM 2.15. Let G be a metabelian p-group of maximal class of order pn , p ≥ 3
and n ≥ 2p − 3. Then

G ∼= 〈s, s1, . . . , sn−1 | si = [si−1, s], [sn−1, s] = 1, [s1, s2] = sa1
k sa2

k+1 · · · san−k
n−1

[si , s j ] = 1, s p
= sw

n−1, s
(p

1)
1 · · · s

(p
p)

p = sz
n−1, s p

i s
(p

2)
i+1 · · · si+p−1 = 1〉,

where 2 ≤ i ≤ j ≤ n − 1, a1 6= 0, 0 ≤ a1, . . . , an−k < p, 0 ≤ z < p and 0 ≤ w < p.

3. AutPi (G) and Aut p(G)

In this section we prove a structure theorem for AutPi (G) (i ≥ 2) and Autp(G)

when G is a metabelian p-group of maximal class of order pn . We note that if
n ≤ 3 and G is not cyclic then Aut8(G) = Inn(G) and Autp(G) ∼= Aut8(G) o C p.
Moreover, when G is cyclic then Autp(G) = Aut8(G) ∼= C p. Therefore, in the rest of
this section we assume that n ≥ 4.

THEOREM 3.1 [6, Theorem 3.2]. Let G = 〈a, b〉 be a two-generated metabelian
group. Then the following are equivalent:
(i) for all u, v ∈ G ′ there is an automorphism of G that maps a to au and b to bv;
(ii) G is nilpotent.

By the above theorem we see that if G is a noncyclic metabelian p-group of
maximal class of order pn , then for any elements x, y ∈ G ′ there is an automorphism
that maps s to sx and s1 to s1 y, so |Aut8(G)| = p2n−4. Now we define αi , 2 ≤ i
≤ n − 1, by sαi = s and sαi

1 = s1si . Clearly, [αi , α j ] = 1. Also α2 = σs has order p.

LEMMA 3.2. Let G be a metabelian p-group of maximal class of order pn . Then
|αi | = |si | for i ≥ 3.

PROOF. We observe that (s1)
αm

i = s1sm
i s

(m
2)

2i−1 · · · s
(m

r )
ri−(r−1) · · · s

(m
m)

mi−(m−1) for every
positive integer m. On setting m = |si | = pt , we see that t ≥ ((n − i)/(p − 1))

by Lemma 2.7, so αm
i = 1 by Lemma 2.8. Also α

pk

i 6= 1 for pk < |si |;

otherwise s pk

i s
(pk

2 )
2i−1 · · · s

(pk
r )

ri−(r−1) · · · = 1. However, s pk

i ∈ Pi+k(p−1) − Pi+k(p−1)+1

by Lemma 2.5(i) and s
(pk

r )
ri−(r−1) ∈ Pi+k(p−1)+2 for 2 ≤ r ≤ m by Lemma 2.8, which

is impossible. 2

THEOREM 3.3. Let G be a metabelian p-group of maximal class of order pn . We set
Ai = 〈αi , . . . , αn−1〉 and Ii = {σg|g ∈ Pi−1} for 2 ≤ i ≤ n − 1.
(i) Aut8(G) = Inn(G) o A3, where A3 is an almost homocyclic p-group of

rank p − 1.
(ii) AutPi (G) = Ii o Ai for 2 ≤ i ≤ n − 1.
(iii) Ai ∼= Ii ∼= Pi is an almost homocyclic p-group of rank p − 1, having order pn−i

for i ≥ 3 and A2 � P2 when n > p + 1.
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PROOF. (i) By [8, Theorems 2.3, 4.3], Aut8(G) = Inn(G) o A3 and A3 ∼= P3, so A3
is almost homocyclic by Corollary 2.10.

(ii) We have |Ii | = pn−i for 2 ≤ i ≤ n − 1 and, by Theorem 3.1, |AutPi (G)|

= p2(n−i) for 2 ≤ i ≤ n − 1. Also An−1 < · · · < A3 < A2 implies that |Ai | ≥ pn−i .
Therefore by (i), |Ai | = pn−i and Ii ∩ Ai = 1 for 3 ≤ i ≤ n − 1. So it remains to
prove that I2 ∩ A2 = 1. Otherwise there exists an element g ∈ P1 − Z(G) such that
σg ∈ A2 and so [s, g] = 1. Hence by Lemma 2.2, g = si z for some 0 < i < p and

some z ∈ Z(G). Thus [s1, g] = [s1, si
] = si

2s
(i

2)
3 · · · s

(i
i)

i+1, by Lemma 2.6(i). It follows
that [s1, g] ∈ P2 − P3. Since g ∈ P1 and G has positive degree of commutativity, we
find that [s1, g] ∈ P3, which is a contradiction. Therefore, I2 ∩ A2 = 1.

(iii) We have |Ai | = pn−i by (ii). By [8, Theorem 4.3], Ai ∼= Pi for i ≥ 3 and so,
by Corollary 2.10, Ai is almost homocyclic. Now we prove that Ii ∼= Pi for i ≥ 3.
To see this we note that Ii ∼= Pi−1/Z . Also Pi−1/Z ∼= Pi by Lemma 2.9(v), (iv) and
Corollary 2.10 we have Ii ∼= Pi ∼= Ai for i ≥ 3. Finally, A2 = 〈α2〉A3 and α2 = σs .
Therefore A2 = 〈α2〉 × A3 since σs has order p. So for n > p + 1 the minimal number
of generators of P2 and A2 are different. 2

LEMMA 3.4. With the notation and assumption of Theorem 3.3, the following
inequalities hold for all positive integers m.
(i) [σst , αk] = σst+k−1 for 2 ≤ k ≤ n − 1 and 1 ≤ t ≤ n − 1.
(ii) [Ak, It ] = It+k−1 for 2 ≤ k, t ≤ n − 1.
(iii) [σsm

1
, αk] = σy , where y = sm

k x and x ∈ Pk+1 for k ≥ 2. Furthermore,
[σsm

i
, αk] = [σsi , αk]

m for i, k ≥ 2.
(iv) [σsi , αm

j ] = σy , where y = sm
i+ j−1x and x ∈ Pi+ j for i ≥ 1 and j ≥ 2.

(v) If i, j ≥ 2, (p, m j−1) = 1, m j−1 6= 0 and [σ
s

m j−1
j−1 s

m j
j ...

, αi ] = 1, then

j ≥ n − (i − 1).
(vi) If i, j ≥ 2, m j 6= 0, (p, m j ) = 1 and [α

mn−1
n−1 α

mn−2
n−2 · · · α

m j
j , σsi−1] = 1, then

j ≥ n − (i − 1).

PROOF.
(i) This is clear by σ

αk
st = σs

αk
t

.
(ii) This is obvious by (i).
(iii) We have [σsm

1
, αk] = σs−m

1 (s1sk)
m . The proof is completed by Lemma 2.6(v).

(iv) We use induction on m and (i).
(v) By (iii), (i) and the fact that G ′ is Abelian, s

m j−1
i+ j−2s

m j
i+ j−1 · · · ∈ Z(G) for j ≥ 3,

so i + j − 2 ≥ n − 1. If j = 2 then sm1
i xsm2

i+1sm3
i+2 · · · ∈ Z(G), where x ∈ Pi+1

therefore i ≥ n − 1, completing the proof.
(vi) We use (iv) and then proceed as in (v). 2

THEOREM 3.5. With the notation and assumption of Theorem 3.3, the following
results hold:
(i) γ j (AutPi (G)) = I(i−1) j+1 for i, j ≥ 2;
(ii) cl(AutP2(G)) = n − 2;
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(iii) if i ≥ 3 and n = (i − 1)c + r (0 ≤ r ≤ i − 2), then

cl(AutPi (G)) =

{
c − 1, 0 ≤ r ≤ 1,

c, 2 ≤ r ≤ i − 2;

(iv) AutPi (G) is Abelian if and only if i ≥ ((n + 1)/2);
(v) Z(AutPi (G)) = AutPn−(i−1)(G) for 2 ≤ i ≤ ((n + 1)/2);
(vi) ζ j (AutPi (G)) = AutPn−(i−1) j (G) for 2 ≤ i ≤ ((n + 1)/2) and 1 ≤ j

≤ ((n − i)/(i − 1)).

PROOF.
(i) We see that Ii = 〈σsi−1, . . . , σsn−2〉 and [Ii , σs1] ≤ Ii+1 for i ≥ 2. Then

Lemma 3.4(ii) implies that [Ai , Ii ] = I2i−1. Also by Theorem 3.3(ii), we deduce
that γ2(AutPi (G)) = I2(i−1)+1. Now by using induction on j and Lemma 3.4(ii)
the result is proved.

(ii) We have γ j (AutP2(G)) = I j+1 by (i). The result is immediate since In−1 6= 1
and In = 1.

(iii) This is evident from (i).
(iv) This is easily proved by considering (iii) and (i).
(v) It is obvious that AutPn−(i−1)(G) ≤ Z(AutPi (G)) by Theorem 3.3(ii) and 3.4(ii).

If ασg ∈ Z(AutPi (G)) for α ∈ Ai and g ∈ Pi−1, then we may write
g = s

m j−1
j−1 · · · smn−1

n−1 , where j ≥ i , m j−1 6= 0 and (m j−1, p) = 1. Also since

|Ar : Ar+1| = p for 2 ≤ r ≤ n − 2, we may write α = α
mr
r · · · α

mn−1
n−1 , where

r ≥ i , mr 6= 0 and (mr , p) = 1. Consequently [ασg, αi ] = 1 so [αi , σg] = 1.
Hence, j ≥ n − (i − 1) by Lemma 3.4(v). Therefore, σg ∈ Z(AutPi (G)), which
implies that [α, σsi−1] = 1. This shows that r ≥ n − (i − 1) by Lemma 3.4(vi),
completing the proof.

(vi) By (v) and Theorem 3.3(iii), |Z(AutPi (G))| = p2i−2 for any metabelian p-group
G of maximal class and order pn with i ≤ ((n + 1)/2). In what follows we
prove, by induction on j , that ζ j (AutPi (G)) = AutPn−(i−1) j (G). Suppose that the
equality holds for all positive integers less than j . We set H = Pn−(i−1) ( j−1)

and observe that

ζ j (AutPi (G))/ζ j−1(AutPi (G)) = Z(AutPi (G)/AutH (G)).

Also AutPi (G)/AutH (G) ↪→ AutPi /H (G/H). Since G/H is a metabelian
p-group of maximal class and Pi (G/H) = Pi (G)/H , we find that
|Z(AutPi /H (G/H))| = p2i−2. Then |AutPi /H (G/H)| = |AutPi (G)/AutH (G)|.
Hence |ζ j (AutPi (G))| = p2(i−1) j and AutPn−(i−1) j (G) ≤ ζ j (AutPi (G)), complet-
ing the proof. 2

In the rest of this section, we find a necessary and sufficient condition on G for
|Autp(G) : Aut8(G)| = p. We also give a structure theorem for Autp(G).
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THEOREM 3.6. Suppose that G is a metabelian p-group of maximal class of order
pn , where p ≥ 3 and n ≥ 2p − 3. Define the map γ by sγ

= ss1, sγ

1 = s1 and
sγ

i = [sγ

i−1, sγ
]. Then γ extends to an automorphism of G if and only if s p

= (ss1)
p

and [P1, Pp−1] = 1.

PROOF. This is obvious when (p, n) = (3, 4) so for the rest of the proof suppose that
(p, n) 6= (3, 4). We first note that if n ≥ 2p − 2, then sγ

i = si [si , s1]
i−1

[si−1, s1]
i−2

(2 ≤ i ≤ p − 1), sγ
p = sp[sp−1, s1]

p−2 and sγ

j = s j for j ≥ p + 1, by Lemmas 2.12
and 2.4. Now suppose that γ is an automorphism. According to Lemma 2.3(ii),
we have s p

1 sp ∈ Pp+1 so that [sp−1, s1] = 1 since (s p
1 sp)

γ
= s p

1 sp. Therefore,
[P1, Pp−1] = 1. On the other hand, s p

= sw
n−1 by Theorem 2.15 and hence

(s p)γ = (sw
n−1)

γ , which implies that s p
= (ss1)

p. Now suppose that s p
= (ss1)

p and
[P1, Pp−1] = 1. By using induction on i we may see that [P1, Pp−i ] ≤ Pn−(i−1)

(1 ≤ i ≤ p − 2). So by considering the presentation of G given in Theorem 2.15,
k ≥ n − p + 3 or equivalently k ≥ p + 1. Finally, we see that γ is an automorphism
of G by Lemma 2.12(i), (v). Now if n = 2p − 3, then clearly p ≥ 5 and so
sγ

i = si [si , s1]
i−1

[si−1, s1]
i−2z, where z = [[s2, s1], s1] and i ∈ {3, 4}. The value of

γ on si for i 6= 3, 4 is the same as above. Hence, by the same argument we may
conclude the result. 2

THEOREM 3.7. Let G be a metabelian p-group of maximal class of order pn . Then
|Autp(G) : Aut8(G)| = p if and only if there exists an automorphism of G that maps
s to ss1 and s1 to s1.

PROOF. If there exists an automorphism of G that maps s to ss1 and s1 to s1,
then |Autp(G) : Aut8(G)| = p. Assume that |Autp(G) : Aut8(G)| = p, so there
exists an automorphism α such that α /∈ Aut8(G). We have α ∈ AutP1

p (G) since

Aut(G)/AutP1(G) ↪→ Aut(G/P1). Hence we may write sα
= ssi

1x and sα
1 = s j+1

1 y,
where 0 ≤ i, j < p and x, y ∈ 8(G). We choose u and w in 8(G) such that
uα

= x and wα
= y. Then by Theorem 3.1 the map β defined by sβ

= su−1, sβ

1
= s1w

−1 is an automorphism of G lying in Aut8(G). On setting δ := βα, we have
δ ∈ Autp(G) − Aut8(G) and sδ

= ssi
1, sδ

1 = s j+1
1 . Now by considering the order of s1

and sδ
1 , we see that 1 ≤ j + 1 < p which implies that (s)δ

p−1
= sst

1, (s1)
δ p−1

= s1x1,
where t 6= 0 and (t, p) = 1, since δ p−1 /∈ Aut8(G) and x1 ∈ 8(G). Now by the
same argument as above we obtain an automorphism τ such that sτ

= sst
1, sτ

1 = s1

and τ ∈ Autp(G) − Aut8(G). So (s)τ
m

= ss1 and (s1)
τm

= s1, where m is a positive
integer satisfying tm ≡ 1 (mod |s1|). 2

COROLLARY 3.8. Let G be a metabelian p-group of maximal class of order
pn , where p ≥ 3 and n ≥ 2p − 3. Then |Autp(G) : Aut8(G)| = p if and only if
[P1, Pp−1] = 1 and s p

= (ss1)
p.
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LEMMA 3.9. Let G be a metabelian p-group of maximal class of order pn , where
p ≥ 3 and n ≥ 2p − 3. If there exists an automorphism γ that maps s to ss1 and s1 to
s1, then γ p

∈ Inn(G) and γ /∈ Inn(G).

PROOF. We have [P1, Pp−1] = 1 by Theorem 3.6 so z = [[s2, s1], s1]

= 1, by Lemma 2.12(i). On setting g = s
(p

2)
1 s

(p
3)

2 · · · s
(p

p)
p−1, we have [g, s]

= s
(p

2)
2 [s2, s1]

(m
2)s

(p
3)

3 · · · s
(p

p)
p , where m =

(p
2

)
since G ′ is Abelian, and by

Lemmas 2.12(iv) and 2.6(iii). Also [s2, s1]
(m

2) = 1 by Lemma 2.12(v). According

to Lemma 2.14 and Theorem 3.6, s
(p

1)
1 · · · s

(p
p)

p = 1 and hence [s, g] = s p
1 . Moreover,

[g, s1] = 1 by Lemmas 2.6(ii), 2.12(v) and Theorem 3.6. Therefore, γ p
= σg and

obviously γ is not an inner automorphism. 2

THEOREM 3.10. Let G be a metabelian p-group of maximal class of order pn , where
p ≥ 3 and n ≥ 2p − 3. If |Autp(G) : Aut8(G)| = p then Autp(G) = Aut8(G) o C p.

PROOF. By Theorem 3.7, γ is an automorphism; and by Lemma 3.9, γ p
∈ Inn(G).

Now following the proof of [8, Proposition 4.1], G can be embedded in a p-group
H of maximal class of order pn+1 and Pi (H) = Pi−1(G) for 3 ≤ i ≤ n. We now
choose t ∈ H such that t /∈ P1(H) ∪ G. But H has positive degree of commutativity
by [9, Theorem 3.3.5] and so we deduce that t p

∈ Pn(H), by Lemmas 2.1 and 2.2. Let
α be the restriction of σt to G; then α has order p since Z(G) = Pn(H). We have
α /∈ Aut8(G), for otherwise [G, t] ≤ 8(G) = P2(G) = P3(H). However, H = 〈G, t〉
would imply that [H, t] ≤ P3(H) or equivalently t ∈ P2(H), which is impossible.
Therefore Autp(G) = Aut8(G) o 〈α〉, which yields the proof. 2

REMARK. Let G be a p-group of maximal class having order pn . In [8, Theorem 4.2]
Juhász proves that if G can be embedded in a p-group of maximal class, then
|Autp(G) : Aut8(G)| = p. We note that the converse of this result is also true when G
is metabelian with n ≥ 2p − 3. Consider the map γ defined by sγ

= ss1 and sγ

1 = s1.
Then γ is an automorphism with γ p

∈ Inn(G) by Theorem 3.7 and Lemma 3.9. Now
since γ satisfies the conditions of [8, Proposition 4.1], G can be embedded in a p-
group of maximal class. Notice that our Corollary 3.8 gives another necessary and
sufficient condition on G for |Autp(G) : Aut8(G)| = p. Juhász also proves that if
G/Pp+1(G) cannot be embedded in a p-group of maximal class and G has positive
degree of commutativity, then Autp(G) = Aut8(G). In particular, if G is metabelian,
then |Autp(G)| = p2n−4. Finally, we note that the above embedding conditions given
by Juhász do not cover the whole class of p-groups of maximal class. The following
example provides an infinite class of metabelian p-groups of maximal class which do
not satisfy these conditions.
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EXAMPLE. Suppose that

G ∼= 〈s, s1, . . . , sn−1 | si = [si−1, s], [sn−1, s] = 1, [s1, s2] = 1, [si , s j ] = 1

s p
= 1, s

(p
1)

1 · · · s
(p

p)
p = sn−1, s p

i s
(p

2)
i+1 · · · si+p−1 = 1〉,

where 2 ≤ i ≤ j ≤ n − 1, n ≥ 2p − 3 and p ≥ 3. Then G is a p-group of maximal
class and order pn , which cannot be embedded in a p-group of maximal class.
However, G/Pp+1(G) can be embedded in a p-group of maximal class.

To prove this, we see that any element g of G may be written as g = sr sr1
1 · · · srn−1

n−1 ,
where 0 ≤ r, r1, . . . , rn−1 < p. Also γi (G) = 〈si , . . . , sn−1〉, 2 ≤ i ≤ n − 1, implies
that cl(G) = n − 1 and |G| = pn . By Corollary 3.8, |Autp(G) : Aut8(G)| 6= p since
s p

6= (ss1)
p. Therefore, by [8, Theorem 4.2], G cannot be embedded in a p-group of

maximal class. Now by adding the relations sp+1 = · · · = sn−1 = 1 to those of G, we

find a presentation for G/Pp+1(G) in which the relation s
(p

1)
1 · · · s

(p
p)

p = 1 holds. On
setting H = G/Pp+1(G), we see that the map γ defined by sγ

= ss1 and sγ

1 = s1 is an
automorphism of H fixing si , 2 ≤ i ≤ p. By considering the presentation of H , it is

easily seen that γ p
= σg , where g = s

(p
2)

1 · · · s
(p

p)
p−1. Hence, by [8, Proposition 4.1], H

can be embedded in a p-group of maximal class.

4. The order of Aut8(G)

In this section we prove that for a noncyclic p-group G of maximal class of order
pn , |Aut8(G)| = p2n−4 if and only if G is metabelian. This is evident for the case
where p = 2. Therefore, for the rest of the section we assume that p is an odd prime
and n ≥ 4.

We first give some elementary lemmas.

LEMMA 4.1. Let G be a p-group of maximal class and order pn . If
[P2(G), P2(G)] ≤ Z(G), then [s−1

i , s] = s−1
i+1[si+1, si ] (i ≥ 2).

PROOF. This is immediate by [si s
−1
i , s] = 1. 2

LEMMA 4.2. Let G be a p-group of maximal class and order pn , [Pr+1, Pr+1] = 1
and [sr , sr+1] = z ∈ Z(G) for some r ≥ 2. Then:
(i) [sr , si ] = 1 for i ≥ r + 2;
(ii) [sr+1, sr−1] = [sr−1, s−1

r+1];
(iii) [[sr−1, sr ], s] = [s, [sr , sr−1]];
(iv) if [sr−1, sr ] = sak

k sak+1
k+1 · · · san−1

n−1 for k ≥ r + 2 then [sr−1, sr+1]

= sak
k+1 · · · san−2

n−1 z−1.

PROOF.
(i) We use induction on i (i ≥ r + 2) and the Witt identity.
(ii) This follows from Lemma 2.11.
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(iii) This is easily seen from Lemma 2.11 and the fact that [sr , sr−1] ∈ Pr+1.
(iv) We have [sr−1, sr+1]s

−1
r+1 = s−sr−1

r+1 = [s, sr ]
sr−1 = [ssr−1, ssr−1

r ] = [s[s, sr−1],

sr [sr , sr−1]] = [ss−1
r , sr [sr , sr−1]] = [s, sr [sr , sr−1]]

s−1
r by (i) and the fact

that [sr , sr−1] ∈ Pr+2. So [sr−1, sr+1]s
−1
r+1 = [s, [sr , sr−1]] [s, sr ]

s−1
r . Now

by (iii), [sr−1, sr+1] = [[sr−1, sr ], s]z−1 since [sr , sr+1] = z, which completes
the proof. 2

THEOREM 4.3. Let G be a p-group of maximal class of order pn , where n is a positive
integer. Then |Aut8(G)| = p2n−4 if and only if G is metabelian.

PROOF. If G is metabelian, then by Theorem 3.1, |Aut8(G)| = p2n−4. Now suppose
that |Aut8(G)| = p2n−4. By induction on |G| we prove that G is metabelian. If
|G| = p4 then [P2(G), P2(G)] ≤ P4(G) = 1 and obviously G is metabelian. Suppose
that |G| ≥ p5 and the theorem is true for each p-group of order less than |G|. We have
|AutZ (G)| = p2 by [1, Theorem 1] and the fact that G has no nontrivial Abelian direct
factor. Also we have

Aut8(G)/AutZ (G) ↪→ Aut8(G/Z)(G/Z).

It follows that |Aut8(G/Z)(G/Z)| = p2(n−1)−4. Now the group G/Z is metabelian by
the induction hypothesis, so [P2(G), P2(G)] ≤ Z(G). By the way of contradiction
suppose that P2(G) is not Abelian. Let r be the largest positive integer such
that [Pr (G), Pr (G)] 6= 1, so [Pr+1(G), Pr+1(G)] = 1. We may write [sr , sr+1] = z
∈ Z(G) and so, by Lemma 4.2(i), z 6= 1. Now the map α defined by sα

= s and
sα

1 = s1s−1
2 is an automorphism of G since |Aut8(G)| = p2n−4. By Lemma 4.1

and using induction on i , we deduce that sα
i = si s

−1
i+1[si+1, si ] (i ≥ 2). Therefore,

sα
r = sr s−1

r+1z−1 and sα
k = sks−1

k+1 (k ≥ r + 1). Also [Pr (G), Pr−1(G)] ≤ P2r (G) when
2r ≤ n − 1, since G/Z has positive degree of commutativity. However, 2r ≤ n − 1
always holds, for otherwise [Pr (G), Pr+1(G)] ≤ P2r+1(G) = 1 would imply that
[sr , sr+1] = 1, a contradiction. Hence, [Pr (G), Pr−1(G)] ≤ Pr+2(G). Therefore,
we may write [sr−1, sr ] = sak

k sak+1
k+1 · · · san−1

n−1 when (k ≥ r + 2). Now since α is
an automorphism of G, we have [sα

r−1, sα
r ] = (sα

k )ak · · · (sα
n−1)

an−1 . Moreover,
[sα

r−1, sα
r ] = [sr+1, sr−1] [sr−1, sr ]z by Lemma 4.2(i) and (ii). Also

(sα
k )ak · · · (sα

n−1)
an−1 = [sr−1, sr ]([sr−1, sr+1]z)

−1
= [sr−1, sr ] [sr+1, sr−1]z

−1,

by Lemma 4.2(iv), from which we conclude that z2
= 1, which is impossible. 2

5. A structure theorem for Aut(G) when p = 2, 3

Let G be a 3-group of maximal class of order 3n . As in Section 3, it is an easy matter
to find Aut(G) when n ≤ 3. Therefore, for the rest of this section we assume that n ≥ 4.
When n = 4, G is metabelian; and for n ≥ 5, G has degree of commutativity n − 4 by
[3, Theorem 3.13] and so is metabelian.
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We deduce the following theorem from Blackburn’s observation [3, p. 88] which
gives us a presentation for G.

THEOREM 5.1. If G is a 3-group of maximal class of order 3n , then

G ∼= 〈s, s1, . . . , sn−1 | si = [si−1, s], [sn−1, s] = 1, [s1, s2] = sa
n−1

s3
= sb

n−1, s3
1s3

2s3 = sc
n−1, s3

i s3
i+1si+2 = 1〉,

where a, b, c ∈ {0, 1, 2} and 2 ≤ i ≤ n − 1. For n > 4 there exist three groups which
possess no Abelian maximal subgroup, given by c = 0, a = 1 and b = 0, 1, 2. If n is
even and n ≥ 4, there exist four groups with an abelian maximal subgroup, given by
a = b = 0, c = 1, 2 or a = c = 0, b = 0, 1. If n is odd and n > 4 then there exist three
groups with an Abelian maximal subgroup, given by a = b = 0, c = 1 or a = c = 0,
b = 0, 1.

By Theorem 3.3 and Corollary 2.10 we obtain the following corollary.

COROLLARY 5.2. If G is a 3-group of maximal of order 3n , then Aut8(G)

= Inn(G) o A, where A is an Abelian subgroup of Aut(G). Moreover, A ∼= C3m

× C3m when n = 2m + 3 (m ≥ 1) and A ∼= C3m × C3m+1 when n = 2m + 4 (m ≥ 0).

COROLLARY 5.3. Let G be a 3-group of maximal class of order 3n . Then |Aut3(G) :

Aut8(G)| = 3 if and only if P1 is Abelian and (ss1)
3
= s3; in this case Aut3(G)

∼= Aut8(G) o C3.

PROOF. This follows from Corollary 3.8 and Theorem 3.10. 2

Now our aim is to find a structure theorem for Aut2(G), the Sylow 2-subgroup of
Aut(G). Since P1(G) and P2(G) are characteristic subgroups of G, G/P2 and P1/P2
are invariant under Aut2(G). So by Maschke’s theorem there exists s ∈ G − P1 such
that G/P2 = P1/P2 ⊕ 〈P2, s〉/P2 and 〈P2, s〉/P2 is invariant under Aut2(G). In the
rest of this section s will be as above. Therefore, if α ∈ Aut2(G) then sα

= si x and
sα

1 = s j
1 y, where x, y ∈ P2 and i, j ∈ {1, −1}.

The next lemma follows at once from Theorem 5.1.

LEMMA 5.4. Let G be a 3-group of maximal class of order 3n . By considering
the presentation of G we define the maps β j , j ∈ {1, 2, 3}, by sβ1 = s, sβ1

1 = s−1
1 ,

sβ2 = s−1, sβ2
1 = s1, sβ3 = s−1, sβ3

1 = s−1
1 . Then:

(i) β1 is an automorphism of G if and only if P1 is Abelian and s3
= 1;

(ii) β2 is an automorphism of G if and only if either n is odd and s3
1s3

2s3 = 1, or n is
even, P1 is Abelian and s3

= 1;
(iii) β3 is an automorphism of G if n is even.

LEMMA 5.5. Let G be a p-group of maximal class of order pn having positive degree
of commutativity. If P1 is not Abelian then neither is any maximal subgroup of G.
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PROOF. We have n > 4 by Theorem 5.1. By way of contradiction, let M be an
Abelian maximal subgroup of G. Then M = 〈8(G), y〉, where y ∈ G − P1. So
CG(y) = 〈y〉Pn−1 and y p

∈ Pn−1 by Lemmas 2.2 and 2.1. However, 8(G) ≤ CG(y)

implies that |CG(y)| ≥ p3, which is impossible. 2

Now by the fact that Aut(G) ∼= Aut3(G) o H , where H ≤ C2 × C2, we prove the
following theorem.

THEOREM 5.6. Let G be a 3-group of maximal class of order 3n .
(i) If P1 is not Abelian, then Aut2(G) ∼= C2.
(ii) If P1 is Abelian and (ss1)

3
= s3, then Aut2(G) ∼= C2 × C2 when |s| = 3 and

Aut2(G) ∼= C2 when |s| = 9.
(iii) If P1 is Abelian and (ss1)

3
6= s3, then Aut2(G) ∼= C2 × C2 when n is even and

Aut2(G) ∼= C2 when n is odd.

PROOF. (i) According to Theorem 5.1 and Lemmas 5.4 and 5.5, Aut2(G) = 〈β2〉 if n
is odd and Aut2(G) = 〈β3〉 if n is even.

(ii) By Lemma 5.4, we have Aut2(G) = 〈β1〉 × 〈β2〉 when |s| = 3. Now if |s| = 9,
by Lemma 5.4, we have Aut2(G) = 〈β2〉 or Aut2(G) = 〈β3〉 depending on the parity
of n.

(iii) By considering Theorem 5.1, we see that b = 0 and so Aut2(G) = 〈β1〉 × 〈β2〉

by Lemma 5.4, when n is even. Now if n is odd, by Theorem 5.1 and Lemma 5.4, we
have Aut2(G) = 〈β1〉. 2

LEMMA 5.7. Let G be a 3-group of maximal class of order 3n . Then every element
out of P1 has order 3 or 9. Furthermore, when P1 is Abelian, all elements out of P1
have the same order if and only if (ss1)

3
= s3.

PROOF. According to Lemma 2.2, every element out of P1 has order 3 or 9. We have
(ss1)

3
= s3s3

1s3
2s3 when P1 is Abelian. If (ss1)

3
= s3 then c = 0 by Theorem 5.1. Also

any element out of P1 has the form st st1
1 · · · stn−1

n−1, where 0 < t < 3 and 0 ≤ ti < 3.

Therefore by [3, Equation 40] (st st1
1 · · · stn−1

n−1)
3
= s3t , completing the proof. Now

suppose that all elements out of P1 have the same order. If c = 0 then (ss1)
3
= s3,

and if c 6= 0 then b = 0 or equivalently s3
= 1 by Theorem 5.1. Hence (ss1)

3
= 1,

as desired. 2

THEOREM 5.8. Let G be a 3-group of maximal class of order 3n . If G has no Abelian
maximal subgroup, then Aut(G) ∼= Aut8(G) o C2. If G has an Abelian maximal
subgroup, then P1 is Abelian and every element out of P1 has order 3 or 9.
(i) If all elements out of P1 have order 3 then

Aut(G) ∼= (Aut8(G) o C3) o (C2 × C2),

and if all elements out of P1 have order 9 then

Aut(G) ∼= (Aut8(G) o C3) o C2.
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(ii) Suppose that elements out of P1 do not have the same order. If n is even then
Aut(G) ∼= Aut8(G) o (C2 × C2), and if n is odd then

Aut(G) ∼= Aut8(G) o C2.

PROOF. This is a straightforward consequence of the lemmas above. 2

Now if G is a 2-group of maximal class, we may deduce some parts of the
following theorem from the result of Section 3; however, there is also a simple proof
as shown below.

THEOREM 5.9. Let G be a 2-group of maximal class of order 2n (n ≥ 3). If G is
the dihedral group of order 2n or the quaternion group of order 2n , then Aut8(G)
∼= Inn(G) o C2n−3 and Aut(G) ∼= Aut8(G) o C2. If G is the semi-dihedral group of
order 2n , then Aut(G) = Aut8(G) ∼= Inn(G) o C2n−3 .

PROOF. We know that

D2n ∼= 〈x, y | x2n−1
= y2

= (xy)2
= 1〉,

Q2n ∼= 〈x, y | x2n−2
= y2, y−1xy = x−1, x2n−1

= 1〉 and

SD2n ∼= 〈x, y | x2n−1
= y2

= 1, y−1xy = x−1+2n−2
〉.

If G is D2n or Q2n , then there are automorphisms α, β, γ and δ defined by xα
= x−1,

yα
= y, xβ

= x , yβ
= x2 y, xγ

= x5, yγ
= y and xδ

= x−1, yδ
= x−1 y. It is then easy

to check that Inn(G) = 〈α, β〉, |γ | = 2n−3, δ /∈ Aut8(G) and |δ| = 2. If G = SD2n ,
there are automorphisms α, β and γ defined by xα

= x−1+2n−2
, yα

= y, xβ
= x ,

yβ
= x−2+2n−2

y and xγ
= x5, yγ

= y. Hence Inn(G) = 〈α, β〉 and |γ | = 2n−3 and
the rest is clear. 2
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