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Krivine’s Function Calculus and Bochner
Integration

V. G. Troitsky andM. S. Türer

Abstract. We prove that Krivine’s Function Calculus is compatible with integration. Let (Ω, Σ, µ) be
a ûnitemeasure space, X a Banach lattice, x ∈ Xn , and f ∶ Rn ×Ω → R a function such that f (⋅, ω) is
continuous and positively homogeneous for every ω ∈ Ω, and f (s, ⋅) is integrable for every s ∈ Rn . Put
F(s) = ∫ f (s, ω) dµ(ω) and deûne F(x) and f (x , ω) via Krivine’s Function Calculus. We prove that
under certain natural assumptions F(x) = ∫ f (x , ω) dµ(ω), where the right hand side is a Bochner
integral.

1 Motivation

In [Kal12], the author deûnes a real-valued function of two real or complex variables
via F(s, t) = ∫

2π
0 ∣ s+ e

iθ t∣ dθ . his is a positively homogeneous continuous function.
herefore, given two vectors u and v in a Banach lattice X, one may apply Krivine’s
Function Calculus to F and consider F(u, v) as an element of X. he author then
claims that

(1) F(u, v) = ∫
2π

0
∣u + e iθv∣ dθ ,

where the right hand side here is understood as a Bochner integral; this is used later
in [Kal12] to conclude that ∥F(u, v)∥ ⩽ ∫

2π
0 ∥u+ e

iθv∥ dθ because Bochner integrals
have this property: ∥∫ f ∥ ⩽ ∫ ∥ f ∥. A similar exposition is also found in [DGTJ84,
p. 146]. Unfortunately, neither [Kal12] nor [DGTJ84] includes a proof of (1). In this
note, we prove a general theorem which implies (1) as a special case.

2 Preliminaries

We start by reviewing the construction of Krivine’s Function Calculus on Banach lat-
tices; see [LT79, heorem 1.d.1] for details. For Banach lattice terminology, we refer
the reader to [AA02,AB06].
Fix n ∈ N. A function F∶Rn → R is said to be positively homogeneous if

F(λt1 , . . . , λtn) = λF(t1 , . . . , tn) for all t1 , . . . , tn ∈ R and λ ⩾ 0.
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Let Hn be the set of all continuous positively homogeneous functions from Rn to R.
Let Sn

∞ be the unit sphere of ℓn∞, that is,

Sn
∞ = {(t1 , . . . , tn) ∈ Rn

∶ max
i=1, . . . ,n

∣t i ∣ = 1}.

It can be easily veriûed that the restriction map F ↦ F∣Sn
∞

is a lattice isomorphism
from Hn onto C(Sn

∞). Hence, we can identify Hn with C(Sn
∞). For each i = 1, . . . , n,

the i-th coordinate projection π i ∶Rn → R clearly belongs to Hn .
Let X be a (real) Banach lattice and x = (x1 , . . . , xn) ∈ Xn . Let e ∈ X+ be such that

x1 , . . . , xn belong to Ie , the principal order ideal of e. For example, one could take
e = ∣x1∣ ∨ ⋅ ⋅ ⋅ ∨ ∣xn ∣. By Kakutani’s representation theorem, the ideal Ie equipped with
the norm

∥x∥e = inf{λ > 0 ∶ ∣x∣ ⩽ λe}

is lattice-isometric to C(K) for some compact Hausdorò K. Let F ∈ Hn . Interpreting
x1 , . . . , xn as elementsofC(K),we candeûne F(x1 , . . . , xn) inC(K) as a composition.
Wemay view it as an element of Ie and, therefore, of X;we also denote it by F̃ orΦ(F).
It may be shown that, as an element of X, it does not depend on the particular choice
of e. his results in a (unique) lattice homomorphism Φ∶Hn → X such that Φ(π i) =

x i . he map Φ will be referred to as Krivine’s function calculus. his construction
allows one to deûne expressions like (∑n

i=1∣x i ∣
p)

1
p for 0 < p < ∞ in every Banach

lattice X; this expression is understood as Φ(F) where F(t1 , . . . , tn) = (∑n
i=1∣t i ∣p)

1
p .

Furthermore,

(2) ∥F(x)∥ ⩽ ∥F∥C(Sn
∞
) ⋅ ∥

n
⋁
i=1
∣x i ∣∥ .

Let Ln be the sublattice of Hn or, equivalently, of C(Sn
∞), generated by the coor-

dinate projections π i as i = 1, . . . , n. It follows from the Stone–Weierstrass heorem
that Ln is dense in C(Sn

∞). It follows from Φ(π i) = x i that Φ(Ln) is the sublattice
generated by x1 , . . . , xn in X, hence RangeΦ is contained in the closed sublattice of X
generated by x1 , . . . , xn . It follows from, e.g., Exercise 8 on [AB06, p. 204] that this
sublattice is separable.

Let (Ω, Σ, µ) be a ûnitemeasure space and X a Banach space. A function f ∶Ω → X
is measurable if there is a sequence ( fn) of simple functions from Ω to X such that
limn∥ fn(ω)− f (ω)∥ = 0 almost everywhere. If, in addition, ∫ ∥ fn(ω)− f (ω)∥ dµ(ω)
→ 0 then f is Bochner integrable with ∫A f dµ = limn ∫A fn dµ for every measurable
setA. In the following theorem,we collect a few standard facts aboutBochner integral
for future reference; we refer the reader to [DU77, Chapter II] for proofs and further
details.

heorem 2.1 Let f ∶Ω → X.
(i) If f is the almost everywhere limit of a sequence ofmeasurable functions then f is

measurable.
(ii) If f is separable-valued and there is a norming set Γ ⊆ X∗ such that x∗ f is mea-

surable for every x∗ ∈ Γ then f is measurable.
(iii) Ameasurable function f is Bochner integrable if f ∥ f ∥ is integrable.
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(iv) If f (ω) = u(ω)x for some ûxed x ∈ X and u ∈ L1(µ) and for all ω then f is
measurable and Bochner integrable.

(v) If f is Bochner integrable and T ∶X → Y is a bounded operator from X to a Banach
space Y then T(∫ f dµ) = ∫ T f dµ.

3 Main theorem

hroughout the rest of the paper, we assume that (Ω, Σ, µ) is a ûnitemeasure space,
n ∈ N, and f ∶Rn × Ω → R is such that f (⋅,ω) is in Hn for every ω ∈ Ω and f (s, ⋅) is
integrable for every s ∈ Rn . For every s ∈ Rn , put F(s) = ∫ f (s,ω) dµ(ω). It is clear
that F is positively homogeneous.

Suppose, in addition, that F is continuous. Let X be a Banach lattice, x ∈ Xn , and
Φ∶Hn → X the corresponding function calculus. Since F ∈ Hn , F̃ = F(x) = Φ(F) is
deûned as an element of X. On the other hand, for every ω, the function s ∈ Rn ↦

f (s,ω) is in Hn , hence wemay applyΦ to it. We denote the resulting vector by f̃ (ω)
or f (x ,ω). his produces a function ω ∈ Ω ↦ f (x ,ω) ∈ X.

heorem 3.1 Suppose that F is continuous and the functionM(ω) ∶= ∥ f (⋅,ω)∥ C(Sn
∞
)

is integrable. hen f (x ,ω) isBochner integrable as a function ofω and F(x)= ∫ f (x ,ω)
dµ(ω), where the right hand side is a Bochner integral.

Proof Special case. Suppose that X = C(K) for some compact Hausdorò K. By
uniqueness of function calculus, Krivine’s function calculus Φ agrees with “point-
wise” function calculus. In particular,

F̃(k) = F(x1(k), . . . , xn(k)) and ( f̃ (ω))(k) = f (x1(k), . . . , xn(k),ω)

for all k ∈ K and ω ∈ Ω. We view f̃ as a function from Ω to C(K).
We are going to show that f̃ is Bochner integrable. It follows from f̃ (ω) ∈ RangeΦ

that f̃ a separable-valued function. For every k ∈ K, consider the point-evaluation
functional φk ∈ C(K)∗ given by φk(x) = x(k). hen

φk( f̃ (ω)) = ( f̃ (ω))(k) = f (x1(k), . . . , xn(k),ω)

for every k ∈ K. By assumption, this function is integrable; in particular, it is measur-
able. Since the set {φk ∶ k ∈ K} is norming in C(K)∗,heorem 2.1(ii) yields that f̃ is
measurable.
Clearly, ∣ ( f̃ (ω))(k)∣ ⩽ M(ω) for every k ∈ K and ω ∈ Ω, so that ∥ f̃ (ω)∥C(K) ⩽

M(ω) for every ω. It follows that ∫ ∥ f̃ (ω)∥C(K) dµ(ω) exists and, therefore, f̃ is
Bochner integrable by heorem 2.1(iii).

Put h ∶= ∫ f̃ (ω) dµ(ω), where the right-hand side is a Bochner integral. Applying
heorem 2.1(v), we get

h(k) = φk(h) = ∫ φk( f̃ (ω)) dµ(ω) = ∫ f (x1(k), . . . , xn(k),ω) dµ(ω)

= F(x1(k), . . . , xn(k)) = F̃(k)

for every k ∈ K. It follows that ∫ f̃ (ω) dω = F̃.

665

https://doi.org/10.4153/S0008439518000036 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000036


V. G. Troitsky andM. S. Türer

General case. Let e = ∣x1∣ ∨ ⋅ ⋅ ⋅ ∨ ∣xn ∣. hen (Ie , ∥⋅∥e) is lattice-isometric to C(K)
for some compact Hausdorò K. Note also that ∣x∣ ⩽ ∥x∥e e for every x ∈ Ie ; this yields
∥x∥ ⩽ ∥x∥e∥e∥, hence the inclusion map T ∶ (Ie , ∥⋅∥e) → X is bounded. Identifying Ie
with C(K), wemay view T as a bounded lattice embedding from C(K) into X.
By the construction on Krivine’s Function Calculus, Φ actually acts into Ie , i.e.,

Φ = TΦ0, where Φ0 is the C(K)-valued function calculus. By the special case, we
know that ∫ f̃ (ω) dµ(ω) = F̃ in C(K). Applying T , we obtain the same identity in X
by heorem 2.1(v). ∎

Finally, we analyze whether any of the assumptions may be removed. Clearly, one
cannot remove the assumption that F is continuous; otherwise, F̃ would make no
sense. he following example shows that, in general, F need not be continuous.

Example 3.2 Let n = 2, let µ be a measure on N given by µ({k}) = 2−k . For
each k, we deûne fk = f (⋅, k) as follows. Note that it suõces to deûne fk on S2

∞. Let
Ik be the straight line segment connecting (1, 0) and (1, 2−k+1). Deûne fk so that it
vanishes on S2

∞ ∖ Ik , fk(1, 0) = fk(1, 2−k+1) = 0, fk(1, 2−k) = 2k , and is linear on
each half of Ik . hen fk ∈ H2 and F(s) is deûned for every s ∈ R2. It follows from
F(s) = ∑∞

k=1 2−k fk(s) that F(1, 0) = 0 and F(1, 2−k) ⩾ 2−k fk(1, 2−k) = 1, hence F is
discontinuous at (1, 0).

he assumption that M is integrable cannot be removed as well. Indeed, consider
the special case when X = C(Sn

∞) and x i = π i as i = 1, . . . , n. In this case, Φ is the
identity map and f̃ (ω) = f (⋅,ω). It follows from heorem 2.1(iii) that f̃ is Bochner
integrable iff ∥ f̃ ∥ is integrable iff M is integrable.
Finally, the assumption that f (⋅,ω) is in Hn for every ω may clearly be relaxed to

“for almost every ω”.

4 Direct proof

In the previous section, we presented a proof of heorem 3.1 using representation
theory. In this section, we present a direct proof. However, we impose an additional
assumption: we assume that f (⋅,ω) is continuous on Sn

∞ uniformly on ω, that is,

(3) for every ε > 0 there exists δ > 0 such that ∣ f (s,ω) − f (t ,ω)∣ < ε
for all s, t ∈ Sn

∞ and all ω ∈ Ω provided that ∥s − t∥∞ < δ.

In heorem 3.1, we assumed that F was continuous and M was integrable. Now
these two conditions are satisûed automatically. In order to see that F is continuous,
ûx ε > 0; let δ be as in (3), then

(4) ∣F(s) − F(t)∣ ⩽ ∫ ∣ f (s,ω) − f (t ,ω)∣ dµ(ω) < εµ(Ω)

whenever s, t ∈ Sn
∞ with ∥s− t∥∞ < δ. he proof of integrability ofM will be included

in the proof of the theorem.

heorem 4.1 Suppose that f (⋅,ω) is continuous on Sn
∞ uniformly on ω. hen f (x ,ω)

is Bochner integrable as a function of ω and F(x) = ∫ f (x ,ω) dµ(ω).
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Proof Without loss of generality, by scaling µ and x,wemay assume that µ is a prob-
ability measure and ∥⋁n

i=1∣x i ∣∥ = 1; this will simplify computations. In particular, (2)
becomes ∥H(x)∥ ⩽ ∥H∥C(Sn

∞
) for every H ∈ C(Sn

∞). Note also that x in the theorem
is a “fake” variable as x is ûxed. It may bemore accurate to write F̃ and f̃ (ω) instead
of F(x) and f (x ,ω), respectively. Hence, we need to prove that f̃ as a function from
Ω to X is Bochner integrable and its Bochner integral is F̃.
Fix ε > 0. Let δ be as in (3). It follows from (4) that

(5) ∣F(s) − F(t)∣ < ε whenever s, t ∈ Sn
∞ with ∥s − t∥∞ < δ.

Each of the 2n faces of Sn
∞ is a translate of the (n − 1)-dimensional unit cube Bn−1

∞ .
Partition each of these faces into (n − 1)-dimensional cubes of diameter less than δ,
where the diameter is computed with respect to the ∥⋅∥∞-metric. Partition each of
these cubes into simplices. herefore, there exists a partition of the entire Sn

∞ into
ûnitelymany simplices of diameter less than δ. Denote the vertices of these simplices
by s1 , . . . , sm . hus,we have produced a triangularization of Sn

∞ with nodes s1 , . . . , sm .
Let a ∈ Rm . Deûne a function L∶ Sn

∞ → R by setting L(s j) = a j as j = 1, . . . ,m and
then extending it to eachof the simplices linearly; this can be done because everypoint
in a simplex can be written in a unique way as a convex combination of the vertices
of the simplex. Wewrite L = Ta. his gives rise to a linear operator T ∶Rm → C(Sn

∞).
For each j = 1, . . . ,m, let e j be the j-th unit vector in Rm ; put d j = Te j . Clearly,

(6) Ta =
m

∑
j=1
a jd j for every a ∈ Rm .

Let H ∈ C(Sn
∞). Let L = Ta where a j = H(s j). hen L agreeswith H at s1 , . . . , sm .

We write L = SH; this deûnes a linear operator S∶C(Sn
∞) → C(Sn

∞). Clearly, this is a
linear contraction.

Suppose that H ∈ C(Sn
∞) is such that ∣H(s) − H(t)∣ < ε whenever ∥s − t∥∞ < δ.

Let L = SH. We claim that ∥L − H∥ C(Sn
∞
) < ε. Indeed, ûx s ∈ Sn

∞. Let s j1 , . . . , s jn

be the vertices of a simplex in the triangularization of Sn
∞ that contains s. hen s can

be written as a convex combination s = ∑n
k=1 λks jk . Note that ∥s − s jk∥∞ < δ for all

j = 1, . . . , n. It follows that

∣L(s) −H(s)∣ = ∣
n

∑
k=1

λkL(s jk) −
n

∑
k=1

λkH(s)∣ ⩽
n

∑
j=1

λk ∣H(s jk) −H(s)∣ < ε.

his proves the claim.
Let G = SF. hen (5) and the preceding observation yield ∥G − F∥C(Sn

∞
) < ε, so

(7) ∥G(x) − F(x)∥ < ε.

Similarly, for everyω ∈ Ω, apply S to f (⋅,ω) and denote the resulting function g(⋅,ω).
In particular, g(s j ,ω) = f (s j ,ω) for every ω ∈ Ω and every j = 1, . . . ,m. It follows
also that

∥ f (⋅,ω) − g(⋅,ω)∥ C(Sn
∞
) < ε
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for every ω, and therefore

(8) ∥ f̃ (ω) − g̃(ω)∥ = ∥ f (x ,ω) − g(x ,ω)∥ < ε,

where g̃(ω) = g(x ,ω) is the image under Φ of the function s ∈ Sn
∞ ↦ g(s,ω). Note

that

(9) G(s j) = F(s j) = ∫ f (s j ,ω) dµ(ω) = ∫ g(s j ,ω) dµ(ω)

for every j = 1, . . . ,m. Since G = SF = Ta where a j = F(s j) = G(s j) as j = 1, . . . ,m,
it follows from (6) that

(10) G =
m

∑
j=1

G(s j)d j .

Similarly, for every ω ∈ Ω, we have

(11) g(⋅,ω) =
m

∑
j=1

g(s j ,ω)d j .

Applying Φ to (10) and (11), we obtain G̃ = G(x) = ∑ j=1 G(s j)d j(x) and

g̃(ω) = g(x ,ω) =
m

∑
j=1

g(s j ,ω)d j(x) =
m

∑
j=1
f (s j ,ω)d j(x).

Together with heorem 2.1(iv), this yields that g̃ is measurable and Bochner inte-
grable. It now follows from (9) and (10) that

(12) G(x) =∑
j=1

G(s j)d j(x) =
m

∑
j=1
(∫ g(s j ,ω)dµ(ω)) d j(x)

= ∫ (
m

∑
j=1

g(s j ,ω)d j(x)) dµ(ω) = ∫ g(x ,ω) dµ(ω).

Wewill show next that f̃ is Bochner integrable. It follows from (8) and the fact that
ε is arbitrary that f̃ can be approximated almost everywhere (actually, everywhere)
by measurable functions; hence f̃ is measurable by heorem 2.1(i). Next, we claim
that there exists λ ∈ R+ such that ∣ f (s,ω) − f (1,ω)∣ ⩽ λ for all s ∈ Sn

∞ and all ω ∈ Ω.
Here 1 = (1, . . . , 1). Indeed, let s ∈ Sn

∞ and ω ∈ Ω. Find j1 , . . . , j l such that s j1 = 1, s jk
and s jk+1 belong to the same simplex as k = 1, . . . , l − 1, and s j l is a vertex of a simplex
containing s. It follows that

∣ f (s,ω) − f (1,ω)∣ ⩽ ∣ f (s,ω) − f (s j l ,ω)∣ +
l−1

∑
k=1
∣ f (s jk+1 ,ω) − f (s jk ,ω)∣ ⩽ lε ⩽ mε.

his proves the claim, with λ = mε. It follows that

∥ f̃ (ω)∥ ⩽ ∥ f (⋅,ω)∥ C(Sn
∞
) = sup

s∈Sn
∞

∣ f (s,ω)∣ ⩽ ∣ f (1,ω)∣ + λ.
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Since ∣ f (1,ω)∣ + λ is an integrable function of ω, we conclude that ∥ f̃ ∥ is integrable,
hence f̃ is Bochner integrable by heorem 2.1(iii). It now follows from (8) that

(13) ∥∫ f (x ,ω) dµ(ω) − ∫ g(x ,ω) dµ(ω)∥

⩽ ∫ ∥ f (x ,ω) − g(x ,ω)∥ dµ(ω) < ε.

Finally, combining (7), (12), and (13), we get

∥F(x) − ∫ f (x ,ω) dµ(ω)∥ < 2ε.

Since ε > 0 is arbitrary, this proves the theorem. ∎

Some of thework on this paperwas done during a visit of the second author to the
University of Alberta. We would like to thank the referee whose helpful remarks and
suggestions considerably improved this paper.
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