

Krivine's Function Calculus and Bochner Integration

V. G. Troitsky and M. S. Türer

Abstract. We prove that Krivine's Function Calculus is compatible with integration. Let (Ω, Σ, μ) be a finite measure space, X a Banach lattice, $\mathbf{x} \in X^n$, and $f : \mathbb{R}^n \times \Omega \to \mathbb{R}$ a function such that $f(\cdot, \omega)$ is continuous and positively homogeneous for every $\omega \in \Omega$, and $f(\mathbf{s}, \cdot)$ is integrable for every $\mathbf{s} \in \mathbb{R}^n$. Put $F(\mathbf{s}) = \int f(\mathbf{s}, \omega) d\mu(\omega)$ and define $F(\mathbf{x})$ and $f(\mathbf{x}, \omega)$ via Krivine's Function Calculus. We prove that under certain natural assumptions $F(\mathbf{x}) = \int f(\mathbf{x}, \omega) d\mu(\omega)$, where the right hand side is a Bochner integral.

1 Motivation

In [Kal12], the author defines a real-valued function of two real or complex variables via $F(s, t) = \int_0^{2\pi} |s + e^{i\theta}t| d\theta$. This is a positively homogeneous continuous function. Therefore, given two vectors *u* and *v* in a Banach lattice *X*, one may apply Krivine's Function Calculus to *F* and consider F(u, v) as an element of *X*. The author then claims that

(1)
$$F(u,v) = \int_0^{2\pi} \left| u + e^{i\theta} v \right| d\theta,$$

where the right hand side here is understood as a Bochner integral; this is used later in [Kal12] to conclude that $||F(u,v)|| \leq \int_0^{2\pi} ||u+e^{i\theta}v|| d\theta$ because Bochner integrals have this property: $||\int f|| \leq \int ||f||$. A similar exposition is also found in [DGT]84, p. 146]. Unfortunately, neither [Kal12] nor [DGT]84] includes a proof of (1). In this note, we prove a general theorem which implies (1) as a special case.

2 Preliminaries

We start by reviewing the construction of Krivine's Function Calculus on Banach lattices; see [LT79, Theorem 1.d.1] for details. For Banach lattice terminology, we refer the reader to [AA02, AB06].

Fix $n \in \mathbb{N}$. A function $F: \mathbb{R}^n \to \mathbb{R}$ is said to be *positively homogeneous* if

 $F(\lambda t_1, \ldots, \lambda t_n) = \lambda F(t_1, \ldots, t_n)$ for all $t_1, \ldots, t_n \in \mathbb{R}$ and $\lambda \ge 0$.

Received by the editors December 26, 2017; revised April 9, 2018.

Published online on Cambridge Core April 22, 2019.

The first author was supported by an NSERC grant.

AMS subject classification: 46B42, 46A40.

Keywords: Banach lattice, function calculus, Bochner integral.

Let H_n be the set of all continuous positively homogeneous functions from \mathbb{R}^n to \mathbb{R} . Let S_{∞}^n be the unit sphere of ℓ_{∞}^n , that is,

$$S_{\infty}^{n} = \{(t_{1},...,t_{n}) \in \mathbb{R}^{n} : \max_{i=1,...,n} |t_{i}| = 1\}$$

It can be easily verified that the restriction map $F \mapsto F_{|S_{\infty}^n}$ is a lattice isomorphism from H_n onto $C(S_{\infty}^n)$. Hence, we can identify H_n with $C(S_{\infty}^n)$. For each i = 1, ..., n, the *i*-th coordinate projection $\pi_i : \mathbb{R}^n \to \mathbb{R}$ clearly belongs to H_n .

Let X be a (real) Banach lattice and $\mathbf{x} = (x_1, \ldots, x_n) \in X^n$. Let $e \in X_+$ be such that x_1, \ldots, x_n belong to I_e , the principal order ideal of e. For example, one could take $e = |x_1| \vee \cdots \vee |x_n|$. By Kakutani's representation theorem, the ideal I_e equipped with the norm

$$\|x\|_e = \inf\{\lambda > 0 : |x| \le \lambda e\}$$

is lattice-isometric to C(K) for some compact Hausdorff K. Let $F \in H_n$. Interpreting x_1, \ldots, x_n as elements of C(K), we can define $F(x_1, \ldots, x_n)$ in C(K) as a composition. We may view it as an element of I_e and, therefore, of X; we also denote it by \widetilde{F} or $\Phi(F)$. It may be shown that, as an element of X, it does not depend on the particular choice of *e*. This results in a (unique) lattice homomorphism $\Phi: H_n \to X$ such that $\Phi(\pi_i) = x_i$. The map Φ will be referred to as *Krivine's function calculus*. This construction allows one to define expressions like $(\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ for $0 in every Banach lattice X; this expression is understood as <math>\Phi(F)$ where $F(t_1, \ldots, t_n) = (\sum_{i=1}^n |t_i|^p)^{\frac{1}{p}}$. Furthermore,

(2)
$$\|F(\boldsymbol{x})\| \leq \|F\|_{C(S_{\infty}^{n})} \cdot \|\bigvee_{i=1}^{n} |x_{i}|\|.$$

Let L_n be the sublattice of H_n or, equivalently, of $C(S_n^{\infty})$, generated by the coordinate projections π_i as i = 1, ..., n. It follows from the Stone–Weierstrass Theorem that L_n is dense in $C(S_{\infty}^n)$. It follows from $\Phi(\pi_i) = x_i$ that $\Phi(L_n)$ is the sublattice generated by $x_1, ..., x_n$ in X, hence Range Φ is contained in the closed sublattice of X generated by $x_1, ..., x_n$. It follows from, e.g., Exercise 8 on [AB06, p. 204] that this sublattice is separable.

Let (Ω, Σ, μ) be a finite measure space and *X* a Banach space. A function $f: \Omega \to X$ is *measurable* if there is a sequence (f_n) of simple functions from Ω to *X* such that $\lim_n ||f_n(\omega) - f(\omega)|| = 0$ almost everywhere. If, in addition, $\int ||f_n(\omega) - f(\omega)|| d\mu(\omega) \to 0$ then *f* is *Bochner integrable* with $\int_A f d\mu = \lim_n \int_A f_n d\mu$ for every measurable set *A*. In the following theorem, we collect a few standard facts about Bochner integral for future reference; we refer the reader to [DU77, Chapter II] for proofs and further details.

Theorem 2.1 Let $f: \Omega \to X$.

- (i) If *f* is the almost everywhere limit of a sequence of measurable functions then *f* is measurable.
- (ii) If f is separable-valued and there is a norming set $\Gamma \subseteq X^*$ such that $x^* f$ is measurable for every $x^* \in \Gamma$ then f is measurable.
- (iii) A measurable function f is Bochner integrable if f || f || is integrable.

Krivine's Function Calculus and Bochner Integration

- (iv) If $f(\omega) = u(\omega)x$ for some fixed $x \in X$ and $u \in L_1(\mu)$ and for all ω then f is measurable and Bochner integrable.
- (v) If f is Bochner integrable and $T: X \to Y$ is a bounded operator from X to a Banach space Y then $T(\int f d\mu) = \int T f d\mu$.

3 Main theorem

Throughout the rest of the paper, we assume that (Ω, Σ, μ) is a finite measure space, $n \in \mathbb{N}$, and $f: \mathbb{R}^n \times \Omega \to \mathbb{R}$ is such that $f(\cdot, \omega)$ is in H_n for every $\omega \in \Omega$ and $f(s, \cdot)$ is integrable for every $s \in \mathbb{R}^n$. For every $s \in \mathbb{R}^n$, put $F(s) = \int f(s, \omega) d\mu(\omega)$. It is clear that *F* is positively homogeneous.

Suppose, in addition, that *F* is continuous. Let *X* be a Banach lattice, $\mathbf{x} \in X^n$, and $\Phi: H_n \to X$ the corresponding function calculus. Since $F \in H_n$, $\tilde{F} = F(\mathbf{x}) = \Phi(F)$ is defined as an element of *X*. On the other hand, for every ω , the function $\mathbf{s} \in \mathbb{R}^n \mapsto f(\mathbf{s}, \omega)$ is in H_n , hence we may apply Φ to it. We denote the resulting vector by $\tilde{f}(\omega)$ or $f(\mathbf{x}, \omega)$. This produces a function $\omega \in \Omega \mapsto f(\mathbf{x}, \omega) \in X$.

Theorem 3.1 Suppose that *F* is continuous and the function $M(\omega) := \|f(\cdot, \omega)\|_{C(S_{\infty}^{n})}$ is integrable. Then $f(\mathbf{x}, \omega)$ is Bochner integrable as a function of ω and $F(\mathbf{x}) = \int f(\mathbf{x}, \omega) d\mu(\omega)$, where the right hand side is a Bochner integral.

Proof Special case. Suppose that X = C(K) for some compact Hausdorff K. By uniqueness of function calculus, Krivine's function calculus Φ agrees with "pointwise" function calculus. In particular,

$$\widetilde{F}(k) = F(x_1(k), \dots, x_n(k))$$
 and $(\widetilde{f}(\omega))(k) = f(x_1(k), \dots, x_n(k), \omega)$

for all $k \in K$ and $\omega \in \Omega$. We view \tilde{f} as a function from Ω to C(K).

We are going to show that \tilde{f} is Bochner integrable. It follows from $\tilde{f}(\omega) \in \text{Range } \Phi$ that \tilde{f} a separable-valued function. For every $k \in K$, consider the point-evaluation functional $\varphi_k \in C(K)^*$ given by $\varphi_k(x) = x(k)$. Then

$$\varphi_k(\tilde{f}(\omega)) = (\tilde{f}(\omega))(k) = f(x_1(k), \dots, x_n(k), \omega)$$

for every $k \in K$. By assumption, this function is integrable; in particular, it is measurable. Since the set $\{\varphi_k : k \in K\}$ is norming in $C(K)^*$, Theorem 2.1(ii) yields that \tilde{f} is measurable.

Clearly, $|(\tilde{f}(\omega))(k)| \leq M(\omega)$ for every $k \in K$ and $\omega \in \Omega$, so that $||\tilde{f}(\omega)||_{C(K)} \leq M(\omega)$ for every ω . It follows that $\int ||\tilde{f}(\omega)||_{C(K)} d\mu(\omega)$ exists and, therefore, \tilde{f} is Bochner integrable by Theorem 2.1(iii).

Put $h := \int \tilde{f}(\omega) d\mu(\omega)$, where the right-hand side is a Bochner integral. Applying Theorem 2.1(v), we get

$$h(k) = \varphi_k(h) = \int \varphi_k(\tilde{f}(\omega)) d\mu(\omega) = \int f(x_1(k), \dots, x_n(k), \omega) d\mu(\omega)$$
$$= F(x_1(k), \dots, x_n(k)) = \widetilde{F}(k)$$

for every $k \in K$. It follows that $\int \tilde{f}(\omega) d\omega = \tilde{F}$.

General case. Let $e = |x_1| \lor \cdots \lor |x_n|$. Then $(I_e, \|\cdot\|_e)$ is lattice-isometric to C(K) for some compact Hausdorff K. Note also that $|x| \le \|x\|_e e$ for every $x \in I_e$; this yields $\|x\| \le \|x\|_e \|e\|$, hence the inclusion map $T: (I_e, \|\cdot\|_e) \to X$ is bounded. Identifying I_e with C(K), we may view T as a bounded lattice embedding from C(K) into X.

By the construction on Krivine's Function Calculus, Φ actually acts into I_e , *i.e.*, $\Phi = T\Phi_0$, where Φ_0 is the C(K)-valued function calculus. By the special case, we know that $\int \tilde{f}(\omega) d\mu(\omega) = \tilde{F}$ in C(K). Applying *T*, we obtain the same identity in *X* by Theorem 2.1(v).

Finally, we analyze whether any of the assumptions may be removed. Clearly, one cannot remove the assumption that F is continuous; otherwise, \tilde{F} would make no sense. The following example shows that, in general, F need not be continuous.

Example 3.2 Let n = 2, let μ be a measure on \mathbb{N} given by $\mu(\{k\}) = 2^{-k}$. For each k, we define $f_k = f(\cdot, k)$ as follows. Note that it suffices to define f_k on S^2_{∞} . Let I_k be the straight line segment connecting (1, 0) and $(1, 2^{-k+1})$. Define f_k so that it vanishes on $S^2_{\infty} \setminus I_k$, $f_k(1, 0) = f_k(1, 2^{-k+1}) = 0$, $f_k(1, 2^{-k}) = 2^k$, and is linear on each half of I_k . Then $f_k \in H_2$ and F(s) is defined for every $s \in \mathbb{R}^2$. It follows from $F(s) = \sum_{k=1}^{\infty} 2^{-k} f_k(s)$ that F(1, 0) = 0 and $F(1, 2^{-k}) \ge 2^{-k} f_k(1, 2^{-k}) = 1$, hence F is discontinuous at (1, 0).

The assumption that M is integrable cannot be removed as well. Indeed, consider the special case when $X = C(S_{\infty}^n)$ and $x_i = \pi_i$ as i = 1, ..., n. In this case, Φ is the identity map and $\tilde{f}(\omega) = f(\cdot, \omega)$. It follows from Theorem 2.1(iii) that \tilde{f} is Bochner integrable iff $||\tilde{f}||$ is integrable iff M is integrable.

Finally, the assumption that $f(\cdot, \omega)$ is in H_n for every ω may clearly be relaxed to "for almost every ω ".

4 Direct proof

In the previous section, we presented a proof of Theorem 3.1 using representation theory. In this section, we present a direct proof. However, we impose an additional assumption: we assume that $f(\cdot, \omega)$ is continuous on S_{∞}^{n} uniformly on ω , that is,

(3) for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(s, \omega) - f(t, \omega)| < \varepsilon$ for all $s, t \in S_{\infty}^{n}$ and all $\omega \in \Omega$ provided that $||s - t||_{\infty} < \delta$.

In Theorem 3.1, we assumed that *F* was continuous and *M* was integrable. Now these two conditions are satisfied automatically. In order to see that *F* is continuous, fix $\varepsilon > 0$; let δ be as in (3), then

(4)
$$|F(\mathbf{s}) - F(\mathbf{t})| \leq \int |f(\mathbf{s}, \omega) - f(\mathbf{t}, \omega)| d\mu(\omega) < \varepsilon \mu(\Omega)$$

whenever $s, t \in S_{\infty}^{n}$ with $||s - t||_{\infty} < \delta$. The proof of integrability of *M* will be included in the proof of the theorem.

Theorem 4.1 Suppose that $f(\cdot, \omega)$ is continuous on S_{∞}^n uniformly on ω . Then $f(\mathbf{x}, \omega)$ is Bochner integrable as a function of ω and $F(\mathbf{x}) = \int f(\mathbf{x}, \omega) d\mu(\omega)$.

Proof Without loss of generality, by scaling μ and \mathbf{x} , we may assume that μ is a probability measure and $\|\bigvee_{i=1}^{n}|x_i|\| = 1$; this will simplify computations. In particular, (2) becomes $\|H(\mathbf{x})\| \leq \|H\|_{C(S_{\infty}^n)}$ for every $H \in C(S_{\infty}^n)$. Note also that \mathbf{x} in the theorem is a "fake" variable as \mathbf{x} is fixed. It may be more accurate to write \tilde{F} and $\tilde{f}(\omega)$ instead of $F(\mathbf{x})$ and $f(\mathbf{x}, \omega)$, respectively. Hence, we need to prove that \tilde{f} as a function from Ω to X is Bochner integrable and its Bochner integral is \tilde{F} .

Fix $\varepsilon > 0$. Let δ be as in (3). It follows from (4) that

(5)
$$|F(s) - F(t)| < \varepsilon$$
 whenever $s, t \in S_{\infty}^{n}$ with $||s - t||_{\infty} < \delta$

Each of the 2n faces of S_{∞}^n is a translate of the (n-1)-dimensional unit cube B_{∞}^{n-1} . Partition each of these faces into (n-1)-dimensional cubes of diameter less than δ , where the diameter is computed with respect to the $\|\cdot\|_{\infty}$ -metric. Partition each of these cubes into simplices. Therefore, there exists a partition of the entire S_{∞}^n into finitely many simplices of diameter less than δ . Denote the vertices of these simplices by s_1, \ldots, s_m . Thus, we have produced a triangularization of S_{∞}^n with nodes s_1, \ldots, s_m .

Let $\mathbf{a} \in \mathbb{R}^m$. Define a function $L: S_{\infty}^n \to \mathbb{R}$ by setting $L(\mathbf{s}_j) = a_j$ as j = 1, ..., m and then extending it to each of the simplices linearly; this can be done because every point in a simplex can be written in a unique way as a convex combination of the vertices of the simplex. We write $L = T\mathbf{a}$. This gives rise to a linear operator $T: \mathbb{R}^m \to C(S_{\infty}^n)$. For each j = 1, ..., m, let e_j be the *j*-th unit vector in \mathbb{R}^m ; put $d_j = Te_j$. Clearly,

(6)
$$T\boldsymbol{a} = \sum_{j=1}^{m} a_j d_j \quad \text{for every } \boldsymbol{a} \in \mathbb{R}^m.$$

Let $H \in C(S_{\infty}^{n})$. Let L = Ta where $a_{j} = H(s_{j})$. Then L agrees with H at s_{1}, \ldots, s_{m} . We write L = SH; this defines a linear operator $S: C(S_{\infty}^{n}) \to C(S_{\infty}^{n})$. Clearly, this is a linear contraction.

Suppose that $H \in C(S_{\infty}^{n})$ is such that $|H(s) - H(t)| < \varepsilon$ whenever $||s - t||_{\infty} < \delta$. Let L = SH. We claim that $||L - H||_{C(S_{\infty}^{n})} < \varepsilon$. Indeed, fix $s \in S_{\infty}^{n}$. Let $s_{j_{1}}, \ldots, s_{j_{n}}$ be the vertices of a simplex in the triangularization of S_{∞}^{n} that contains s. Then s can be written as a convex combination $s = \sum_{k=1}^{n} \lambda_{k} s_{j_{k}}$. Note that $||s - s_{j_{k}}||_{\infty} < \delta$ for all $j = 1, \ldots, n$. It follows that

$$\left|L(\boldsymbol{s})-H(\boldsymbol{s})\right| = \left|\sum_{k=1}^{n} \lambda_k L(\boldsymbol{s}_{j_k}) - \sum_{k=1}^{n} \lambda_k H(\boldsymbol{s})\right| \leq \sum_{j=1}^{n} \lambda_k \left|H(\boldsymbol{s}_{j_k})-H(\boldsymbol{s})\right| < \varepsilon.$$

This proves the claim.

Let *G* = *SF*. Then (5) and the preceding observation yield $||G - F||_{C(S_{\infty}^{n})} < \varepsilon$, so

(7)
$$\left\| G(\boldsymbol{x}) - F(\boldsymbol{x}) \right\| < \varepsilon.$$

Similarly, for every $\omega \in \Omega$, apply *S* to $f(\cdot, \omega)$ and denote the resulting function $g(\cdot, \omega)$. In particular, $g(s_j, \omega) = f(s_j, \omega)$ for every $\omega \in \Omega$ and every j = 1, ..., m. It follows also that

$$\left\|f(\cdot,\omega)-g(\cdot,\omega)\right\|_{C(S^n_{\infty})}<\varepsilon$$

V. G. Troitsky and M. S. Türer

for every ω , and therefore

(8)
$$\left\|\tilde{f}(\omega)-\tilde{g}(\omega)\right\|=\left\|f(\boldsymbol{x},\omega)-g(\boldsymbol{x},\omega)\right\|<\varepsilon,$$

where $\tilde{g}(\omega) = g(\mathbf{x}, \omega)$ is the image under Φ of the function $\mathbf{s} \in S_{\infty}^{n} \mapsto g(\mathbf{s}, \omega)$. Note that

(9)
$$G(\mathbf{s}_j) = F(\mathbf{s}_j) = \int f(\mathbf{s}_j, \omega) \, d\mu(\omega) = \int g(\mathbf{s}_j, \omega) \, d\mu(\omega)$$

for every j = 1, ..., m. Since G = SF = Ta where $a_j = F(s_j) = G(s_j)$ as j = 1, ..., m, it follows from (6) that

(10)
$$G = \sum_{j=1}^{m} G(\boldsymbol{s}_j) d_j.$$

Similarly, for every $\omega \in \Omega$, we have

(11)
$$g(\cdot,\omega) = \sum_{j=1}^{m} g(s_j,\omega) d_j.$$

Applying Φ to (10) and (11), we obtain $\widetilde{G} = G(\mathbf{x}) = \sum_{j=1}^{j} G(\mathbf{s}_j) d_j(\mathbf{x})$ and

$$\tilde{g}(\omega) = g(\boldsymbol{x}, \omega) = \sum_{j=1}^{m} g(\boldsymbol{s}_{j}, \omega) d_{j}(\boldsymbol{x}) = \sum_{j=1}^{m} f(\boldsymbol{s}_{j}, \omega) d_{j}(\boldsymbol{x}).$$

Together with Theorem 2.1(iv), this yields that \tilde{g} is measurable and Bochner integrable. It now follows from (9) and (10) that

(12)
$$G(\mathbf{x}) = \sum_{j=1}^{m} G(\mathbf{s}_j) d_j(\mathbf{x}) = \sum_{j=1}^{m} \left(\int g(\mathbf{s}_j, \omega) d\mu(\omega) \right) d_j(\mathbf{x})$$
$$= \int \left(\sum_{j=1}^{m} g(\mathbf{s}_j, \omega) d_j(\mathbf{x}) \right) d\mu(\omega) = \int g(\mathbf{x}, \omega) d\mu(\omega).$$

We will show next that \tilde{f} is Bochner integrable. It follows from (8) and the fact that ε is arbitrary that \tilde{f} can be approximated almost everywhere (actually, everywhere) by measurable functions; hence \tilde{f} is measurable by Theorem 2.1(i). Next, we claim that there exists $\lambda \in \mathbb{R}_+$ such that $|f(s, \omega) - f(1, \omega)| \le \lambda$ for all $s \in S_{\infty}^n$ and all $\omega \in \Omega$. Here $\mathbf{1} = (1, ..., 1)$. Indeed, let $s \in S_{\infty}^n$ and $\omega \in \Omega$. Find $j_1, ..., j_l$ such that $s_{j_1} = \mathbf{1}, s_{j_k}$ and $s_{j_{k+1}}$ belong to the same simplex as k = 1, ..., l - 1, and s_{j_l} is a vertex of a simplex containing s. It follows that

$$\left|f(\boldsymbol{s},\omega)-f(\boldsymbol{1},\omega)\right| \leq \left|f(\boldsymbol{s},\omega)-f(\boldsymbol{s}_{j_{l}},\omega)\right| + \sum_{k=1}^{l-1} \left|f(\boldsymbol{s}_{j_{k+1}},\omega)-f(\boldsymbol{s}_{j_{k}},\omega)\right| \leq l\varepsilon \leq m\varepsilon.$$

This proves the claim, with $\lambda = m\varepsilon$. It follows that

$$\left\|\tilde{f}(\omega)\right\| \leq \left\|f(\cdot,\omega)\right\|_{C(S^n_{\infty})} = \sup_{\boldsymbol{s}\in S^n_{\infty}} \left|f(\boldsymbol{s},\omega)\right| \leq \left|f(\boldsymbol{1},\omega)\right| + \lambda.$$

Since $|f(\mathbf{1}, \omega)| + \lambda$ is an integrable function of ω , we conclude that $\|\tilde{f}\|$ is integrable, hence \tilde{f} is Bochner integrable by Theorem 2.1(iii). It now follows from (8) that

(13)
$$\left\| \int f(\mathbf{x},\omega) \, d\mu(\omega) - \int g(\mathbf{x},\omega) \, d\mu(\omega) \right\| \\ \leq \int \left\| f(\mathbf{x},\omega) - g(\mathbf{x},\omega) \right\| \, d\mu(\omega) < \varepsilon.$$

Finally, combining (7), (12), and (13), we get

$$\left\|F(\boldsymbol{x})-\int f(\boldsymbol{x},\omega)\,d\mu(\omega)\right\|<2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this proves the theorem.

Some of the work on this paper was done during a visit of the second author to the University of Alberta. We would like to thank the referee whose helpful remarks and suggestions considerably improved this paper.

References

- [AA02] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory. Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, RI, 2002.
- [AB06] C. D. Aliprantis and O. Burkinshaw, Positive operators. Springer, Dordrecht, 2006. Reprint of the 1985 original.
- [DGTJ84] W. J. Davis, D. J. H. Garling, and N. Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces. J. Funct. Anal. 55(1984), no. 1, 110–150.
- [DU77] J. Diestel and J. J. Uhl Jr., *Vector measures*. Mathematical Surveys, 15, American Mathematical Society, Providence, RI, 1977.
- [Kal12] N. J. Kalton, Hermitian operators on complex Banach lattices and a problem of Garth Dales. J. Lond. Math. Soc. (2) 86(2012), no. 3, 641–656.
- [LT79] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin, 1979.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2GI, Canada

e-mail: troitsky@ualberta.ca

Department of Mathematics and Computer Science, İstanbul Kültür University, Bakırköy 34156, İstanbul, Turkey

e-mail: m.turer@iku.edu.tr