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Abstract. The properties of conservative dynamical systems of two or more degrees of freedom are re­
viewed. The transition from integrable to ergodic systems is described. Nonintegrability is due to the 
interaction of two, or more, resonances. Then one sees, on a surface of section, infinite types of islands 
of various orders, while the asymptotic curves from unstable invariant points intersect each other along 
homoclinic and heteroclinic points producing an apparent 'dissolution' of the invariant curves. A thresh­
old energy is defined separating near integrable systems from near ergodic ones. The possibility of real 
ergodicity for large enough energies is discussed. In the case of many degrees of freedom we also dis­
tinguish between integrable, ergodic, and intermediate cases. Among the latter are systems of particles 
interacting with Lennard-Jones interparticle potential. A threshold energy was derived, which is pro­
portional to the number of particles. Finally some recent results about the general three-body problem 
are described. One can extend the families of periodic orbits of the restricted problem to the general 
three-body problem. Many of these orbits are stable. An empirical study of orbits near the stable periodic 
orbits indicates the existence of 2 integrals of motion besides the energy. 

1. Introduction 

Ten years have passed since the first international Meeting in Stellar Dynamics, that 
took place in Thessaloniki, in 1964. During these ten years much progress has been 
made in several fields of Stellar Dynamics, which is reflected in the program of the 
present Meeting. 

In the area of the Integrals of Motion we have now a fairly complete understanding 
of the behavior of 2-dimensional conservative dynamical systems, e.g. the orbits of 
stars in the meridian plane of an axisymmetric galaxy, or in the plane of symmetry of 
a spiral galaxy. 

However we are still in the first steps towards an understanding of systems of many 
degrees of freedom. 

Today I will review shortly this general area, mentioning also some recent develop­
ments and applications. 

2. Two-Dimensional Systems 

The most simple nontrivial two-dimensional system is that of two coupled oscillators. 
E.g., the motion of a star in the meridian plane of an axisymmetric galaxy can be 
described by the Hamiltonian 

H = j(x2 + (Dlx2+y2 + a>ly2)+higher order terms, (1) 

where the y-axis is parallel to the axis of symmetry of the galaxy, while the negative 
x-axis intersects it perpendicularly. 
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Suppose now that there is another analytic integral 

<P = <P (x, y, x, y) = const, (2) 

besides H. Such a system is called 'integrable'. 
If we solve Equation (1) for y and insert this value in Equation (2) we have the equa­

tion of a surface 

0 [x, y, x, y(x, y, x)] = const (3) 

in the three-dimensional space (x, x, y). This surface is a torus, on which lies every 
orbit whose initial point is on it. 

Let us consider orbits with the same value of the Hamiltonian. By varying the 
constant (3) we find a family of tori, one inside the other. The innermost torus is 
reduced to a periodic orbit. 

Most of the properties of these tori are found if we take their intersections by a 
'surface of section', e.g. the plane y = 0. Each orbit is represented by an 'invariant 
curve' (Figure 1) on this surface of section, which contains the successive points of 
intersection (x, x) of the orbit by the plane y = 0. A periodic orbit is represented by a 
finite number of invariant points. In particular the point C in Figure 1 represents the 
'central' periodic orbit. 

Thus the existence of a second integral of motion implies the existence of invariant 
curves on the surface of section. 

If, on the other hand, we have numerical evidence that the successive points of inter­
section of many orbits lie on closed smooth curves, this is an indication (but not proof) 
of the existence of another integral of motion besides the Hamiltonian. 

One convenient way to study the Hamiltonian system (1) is by using the actions 

/ , = ^ - ( x 2 + «>?x2), I2=^-(y2 + o>ly2) (4) 
2(JO1 2a>2 

of the unperturbed problem (i.e. the quadratic part of the Hamiltonian (1)), and the 
corresponding angles. Then H is written 

H = (0,1, + co2I2 + £ /-I/2/-2/2 { c (^) 2 ) c o s K ^ + m2S2) + 

+ tt>)sin(m131+m2S2)}, (5) where 
n1-hn2^3, Wi^kwJ, n2^\m2\ and nx— m1=even, 
n2 — m2=even. 

The most simple integrable case is one in which the angles are missing from the 
Hamiltonian (5); thus 

H = (o1I1+a>2I2+fl(Il912), (6) 

where fx is of degree three, or larger, in Jl^. This is what we call a 'normal form' of a 
Hamiltonian. 

In such a case lx and I2 are integrals of motion. 
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For a given value of H each value of Ix defines a corresponding torus. In particular 
the value Ix = 0 defines a periodic orbit. The angle along a torus is #2, while the angle 
around the torus is 9V These angles vary linearly in time with frequencies 

dH dH 
1 dli BI2 

therefore the orbits are quasi-periodic. 
The ratio of the frequencies (7) is called the rotation number 

tuj dH/dl, 
R o t = — = — - — - . 

m2 dH/dI2 

(7) 

(8) 

This is found empirically as the average angle between the successive intersections of 
an orbit, as seen from C, in units of 2n. Namely (Figure 1) 

Rot=lim 
fC2 + 2C3 + -

(9) 

Fig. 1. Invariant curves (schematically) around an invariant point, C, representing a periodic orbit. The 
successive points of intersection 1, 2, 3,. . . define empirically a 'rotation number' (see text). 

The rotation number is a function of H and Iv If the value of H is fixed it can be 
expressed as a function of x, along the x-axis (Figure 2). All orbits on the same torus 
have the same rotation number. 

If the rotation number is rational, say f, the orbit closes after three revolutions, 
therefore it is represented by three invariant points on the surface of section. The 
corresponding torus is filled with periodic orbits of the same type. Therefore all the 
points of the invariant curve are starting points of periodic orbits. 

A more complicated case is a Hamiltonian containing one trigonometric term, 
besides the terms with Il9 72; e.g. 

H = colI1 +co2I2+fl(Il, / 2 )+ / 2 3 ( / 1 , / 2 ) cos (3^ 1 -2^ 2 ) . (10) 
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This is also an integrable case. In fact the combination 

J23 = 2/1 + 3/2 (11) 

is an integral of motion. However the actions IUI2 are no more integrals of motion. 
In this case we find only two periodic orbits with rotation number wl/w2 =f, one 

Rot 

C X 
Fig. 2. The rotation number as a function of x (x is the intersection of an invariant curve by the x-axis) 

(schematically). 

stable and one unstable (Figure 3). The stable periodic orbit is represented by three 
invariant points on the surface of section, which are surrounded by sets of islands. 
The orbits represented by islands are called tube orbits. In phase space they lie on tori 
surrounding the stable resonant periodic orbits, i.e. these tori are like tubes closing 
after three revolutions. 

The outermost islands in Figure 3 go through the three invariant points, which 

Fig. 3. Regular invariant curves (closing around the central invariant point C) and islands. In the in­
tegrable case the outermost islands (separatrices, or asymptotic curves) join the unstable invariant points 

(schematically). 
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represent an unstable periodic orbit. These curves are called 'separatrices' as they 
separate the sets of islands from the regular invariant curves, which close around the 
central point C. They are also called 'asymptotic curves', because they represent orbits 
approaching asymptotically the unstable periodic orbits as f-»oo, or t-> — oo. 

The corresponding points of intersection of every asymptotic orbit also approach 
asymptotically the three unstable invariant points, as indicated by the arrows in 
Figure 3. 

The positions of the stable and unstable invariant points can be found approxi­
mately (for small energies) from Equation (8) applied to the 'unperturbed' Hamil-
tonian (6). We must notice here that Equation (8) may not have (real) solutions for Iv 

For a given ratio of the unperturbed frequencies col/a>2 (different from f) we do not 
have real solutions for small enough H. 

If we have a similar Hamiltonian 

H = a ) 1 / 1 +G) 2 / 2 +/ 1 ( / 1 , / 2 )+ / 2 5 ( / i , / 2 ) 0 0 8 ( 5 ^ - 2 ^ ) , (12) 

this is also integrable, but the integral is now 

J2 5 = 2/1 + 5/2 , (13) 

therefore quite different from the above integral (11). In the present case Rpt = f, 
therefore we have five sets of islands and the corresponding asymptotic curves. 

Now let us introduce a more general Hamiltonian with two, or more, trigonometric 
terms of different type, e.g. 

H = colI1+(o2I2+f1(Il9I2)+f23{I1J2) cos(3S1-292) + 
+/2s(/i,/2) 008(53,-23,). (14) 

This Hamiltonian has some common characteristics with both Hamiltonians (10) and 
(12). 

If a)1/(o2 is different from f and f, for small enough energies no resonant periodic 
orbits appear at all. For larger energies both types of periodic orbits appear (3-periodic 
and 5-periodic), one type first and the other later (for somewhat larger H) depending 
on the value of col/co2. The corresponding sets of islands are then well separated by 
'regular' invariant curves (Figure 4). These sets of islands are approximately described 
by the Hamiltonians (10) and (12) respectively. 

However, for even larger energies, the islands of the Hamiltonians (10) and (12) 
overlap. Then some invariant curves of the Hamiltonian (14) are not closed any more, 
but form very complicated patterns. The successive points of intersection seem 
scattered at random (Figure 5). In such cases we speak about 'dissolution' of invariant 
curves. 

This 'interaction of resonances' appears even for energies much smaller than that 
needed for overlapping of the original resonances. Its effects are the following: 

(a) Whenever the rotation number of the unperturbed Hamiltonian (6) is rational 
there is no more an infinity of periodic orbits, but only two periodic orbits, one stable 
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and one unstable. The stable orbit is represented by a number of invariant points 
surrounded by islands (see, e.g., the 7 islands of Figure 4). 

(b) We can define a new rotation number around each stable invariant point. When 
this new rotation number is rational we have second order islands around the main 
islands (Figure 4). In the same way we have third order islands, etc. 

Fig. 4. Interaction of two resonances (schematically). Although the sets of 3 and 5 islands are separated 
by invariant curves closing around the central invariant point C, secondary islands are formed around 
the origin (e.g. 7 islands), and around the 3 main islands (e.g. 4 islands). Furthermore the asymptotic 

curves intersect each other an infinite number of times at homoclinic points. 

(c) The asymptotic curves emanating from the invariant points of the same unstable 
periodic orbit do not join, any more, the successive invariant points, but intersect each 
other along an infinity of points, which are called 'homoclinic points' (Figure 4) 
(Poincare, 1899). Such points generate doubly asymptotic orbits, approaching the 
same periodic orbit asymptotically, as r->oo, and r-> — oo. 

(d) At the same time the asymptotic curves from one invariant point intersect the 
asymptotic curves from invariant points of different multiplicities. Such points of 
intersection are called 'heteroclinic points' (Poincare, 1899). The corresponding orbits 
are asymptotic to two different periodic orbits as r-» oo and f-> — oo. 

Heteroclinic points in our Galaxy were found by Martinet (1974). 
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An indication that the appearance of heteroclinic points is quite general is the fact 
that the rotation curves calculated empirically show discontinuities near the unstable 
periodic orbits (Figure 6) (Contopoulos, 1967). The rotation number changes abruptly 
in a small region near an unstable point and at the boundaries of the regions of islands. 
In these regions there is an infinity of resonances, which interact with each other. 

Fig. 5. The 'dissolution' of invariant curves appears first near the unstable invariant points, where the 
asymptotic curves form an intricate net. For larger energies the region of dissolution increases. 

A proof that an infinity of heteroclinic orbits follows the appearance of homoclinic 
points was given recently by Moser (1973). 

The above four effects are the basic characteristics of nonintegrability. The most 
conspicuous, however, is the fourth characteristic, which shows clearly the interaction 
of resonances. It is obvious that in any region that we have interaction of resonances 
we cannot define closed invariant curves. 

On the other hand even in nonintegrable systems there are closed invariant curves. 
Moser (1962) and Arnold (1963) proved rigorously the existence of invariant surfaces 
in phase space for small enough energies (or, what is equivalent, small enough 
perturbations). Their intersections by a surface of section are closed invariant curves 
around the stable invariant points. If the energy is small enough, the set of regular 
invariant curves has almost the totality of measure, although between any two 
invariant curves there are regions containing islands and nets of intersecting asympto­
tic curves. 

In practical applications we find empirically that good invariant curves exist in 
most problems of actual interest, even for large enough energies. 
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Whenever the Hamiltonian is given in the form (1), or (5), the higher order terms are 
small for small energies. Thus the resonance effects are small, except if the ratio a>i/co2 
is exactly rational. One can perform canonical transformations of variables that bring 
the Hamiltonian in a normal form (Whittaker, 1904; Birkhoff, 1927) i.e. H is expressed 

+ 2A\ 

/ y |_ 
c x 

Fig. 6. The discontinuities of the rotation curve near the unstable invariant points ( + ) indicate that we 
have interaction of several neighboring resonances. The corresponding asymptotic curves intersect each 

other along heteroclinic points. 

as a function of the new actions 7U J2 only. Thus we have an integral of the form 

I1=Il-hhigher order terms, (15) 

besides the Hamiltonian, where the higher order terms are series in the original 
variables. A similar integral was developed in Stellar Dynamics, where it is known as a 
'third' integral (Contopoulos, 1960). 

The series (15) in general diverges; however, it represents asymptotically the regular 
invariant surfaces, whose existence was proved by Moser and Arnold. 

On the other hand such a series is not applicable near resonances, because it con­
tains an infinity of terms with small divisors of the form (mco^ —nco2). These small 
divisors are responsible for the appearance of islands on the surface of section. 
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Near each resonance one can construct a different form of the 'third' integral. E.g., if 
the rotation number is near f, we can find an integral 

t/23 = 2J1+3J2 + higher order terms. (16) 

Such a form is applicable also away from all resonances. Near a different resonance 
a different integral is needed. A computer program, developed a few years ago 
(Contopoulos, 1966), calculates the algebraic form of the third integral near every 
resonance of interest, or away from all resonances, for any Hamiltonian of the form (1), 
or (5). 

If the Hamiltonian contains more than one type of resonant terms (i.e. terms with 
more than one value of n/rri) the formal integral (15) contains an infinity of small 
divisor terms, that do not appear in the Hamiltonian (5). This explains why in Figure 4 
we see 7 islands (and, in fact, one finds infinite types of resonant islands) although the 
Hamiltonian contains only terms of multiplicity 3 and 5. 

The resonance effects become larger as the value of the Hamiltonian increases. It 
was found (Contopoulos, 1967) that if the ratio a>J(o2 is near the integer n/m (i.e., if the 
difference \((ol/o)2) — (n/m)\ is smaller than a quantity of 0(H) we find m islands. The 
area covered by these islands is of the order of if(n+m_4)/4. At the same time Equation 
(8) gives approximately the positions of the various islands. Therefore the theory of 
the 'third' integral allows the calculation of the value of H for which two nearby 
resonances interact, and produce a 'dissolution' of invariant curves. 

This interaction, and the corresponding dissolution, become much stronger for 
larger H. This is more marked if the interacting resonances correspond to relatively 
large m and n. Therefore there is a kind of threshold energy, Hd, above which the 
dissolution is very conspicuous. In specific problems we can plot the proportion of the 

ID 

q 

.5 

0 .06 .12 I I .18 

Fig. 7. The proportion, q, of the space covered by good invariant curves vs. the energy, H, in a case 
studied by Henon and Heiles (1964). The transition from near integrability to near ergodicity 

is rather abrupt. 
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surface of section covered with good invariant curves versus the energy. Thus we find 
a curve like the one of Figure 7. We see that the transition from cases with very small 
dissolution to cases where the dissolution is practically complete is rather abrupt. 

Thus we can state the following. For energies H much smaller than the threshold 
energy, Hd, the system behaves like an integrable one. In such a case we have practi­
cally only regular invariant curves (closing around the central invariant point) and, 
possibly, one main set of islands, corresponding to one particular resonant term in 
the Hamiltonian, if a>1/a>2 is near a rational number n/m. 

The islands corresponding to other resonances are very small and in many problems 
they may be disregarded. In fact coJ(o2 can be approximated by an infinity of rationals 
n/m, but for most of them n and m are large, therefore the corresponding islands are 
extremely small. 

On the other hand for energies much larger than Hd there are practically no closed 
invariant curves at all and the system is almost ergodic. This means that most orbits 
approach arbitrarily closely the greatest majority of points on the surface of constant 
energy. The points of intersection are scattered in a random way on the surface of 
section. 

The remaining problem is whether real ergodicity is ever reached, or whether there 
remain always small regions covered with closed invariant curves. 

In particular we can check if all periodic orbits are unstable, because otherwise the 
system cannot be ergodic. 

The study of highly perturbed dynamical systems (for large H) indicates the fol­
lowing (Contopoulos, 1970). If we calculate the stability index (the trace of the 
monodromy matrix) of various families of periodic orbits as a function of H we find 
curves like those of Figure 8. Every particular family becomes eventually unstable, 

Hai Ha2 Hcu Ha4 HOOD Hbo H b Hb«> 

Fig. 8. Stability diagram (trace vs. energy) of some families of periodic orbits (schematically). If the trace 
is between 0 and 4 the orbits are stable, otherwise unstable. The orbits of the same group of families (a, 
or b) can be transformed to each other continuously by varying the energy H. However two different 

groups are quite independent. 

but a new stable family starts whenever the characteristic curve crosses the boundary 
of the stable region at an angle (not perpendicularly), e.g. at the points HaU Ha2,.... 
However the range of values of energy for which these new families remain stable is 
smaller and smaller. Thus it seems that the total range of stability of the group of 
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families generated from the original one (the one that appears also for H = 0) is finite. 
Beyond the limit HaaD all the families of this type become unstable. 

However there are new families independent of the above, which appear only 
beyond a certain minimum value of H = Hb0. The corresponding characteristic curve 
intersects the boundary of the stability region in Figure 8 perpendicularly, generating 
two families of periodic orbits, one stable and one unstable. The stable family becomes 
again unstable at Hbl, generating a new stable family, etc. 

There is again a limit, Hba0, beyond which all the families of this type are unstable. 
The situation reminds the spectrum of a star, with groups of lines, like the Lyman and 
Balmer series. 

The question remains open whether there is an upper limit of the values Hfl00, Hboo,... 
beyond which all periodic orbits are unstable. In such a case systems with large enough 
energy would be probably genuinely ergodic. However, for large enough H usually 
most orbits are escaping. 

If, on the other hand, there exist always stable families, for all H, there are always 
small islands of stability and there is never real ergodicity. In such a case the regions of 
stability would be extremely small for large enough H, therefore we may speak of 
'practical ergodicity' in the sense that every orbit can approach any point on the energy 
surface to a distance ^ <5, where S is a small, but not arbitrarily small number. 

There are further problems of interest concerning systems that are ergodic or 
'practically ergodic'. One question is how long does it take for an initial distribution 
to get randomized It is known that orbits starting along an asymptotic curve from 
an unstable periodic orbit deviate exponentially, like eXt. However the parameter X 
differs from one orbit to the other. In many cases we define an average value 1 em­
pirically, by calculating several orbits. However a similar system with different energy 
may have a smaller or large X, therefore it may reach randomness slower or faster than 
the first, although both systems are ergodic. 

These examples indicate that we have to be particularly careful in applying the 
methods of statistical mechanics in particular systems. Because (a) the system may be 
integrable or approximately integrable, in which case the assumption of equal a 
priori probability has to be applied to a space of fewer dimensions than the energy 
surface, and (b) even if the system is ergodic, or very nearly ergodic, the time needed 
for a particular quantity to get randomized may be long, or it may depend on the initial 
distribution. 

Such problems are of even greater interest in cases of many degrees of freedom. 
Further reviews of the problems connected with the transition from integrable to 

ergodic systems are given by Walker and Ford (1969), Chirikov (1971), Galgani and 
Scotti (1972), Ford (1973), and Contopoulos (1973). 

3. Many Degrees of Freedom 

In the case of many degrees of freedom we can also divide the systems into integrable, 
ergodic, and intermediate. 
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3.1 . INTEGRABLE SYSTEMS 

A trivial example is a set of n uncoupled oscillators. A nontrivial case is the Toda 
lattice. This is a set of particles, xh on a string, attracted by its neighbours according 
to the law 

/i = exp[ - (x i -x I . _ 1 ) ] . 

Therefore we have 

*i =ft~fi+i= exp[- (x t -x ( _ J ] - e x p [ - ( x i + l - x £ ) ] . 

This example is extremely interesting because it seems of a quite general type. One 
might think that such a force law is so different from the linear law that characterizes 
the uncoupled oscillators, that one should expect ergodicity. However, Henon (1974a) 
proved rigorously that this system is integrable. 

3.2. ERGODIC SYSTEMS 

Sinai (1970) proved rigorously that the hard sphere gas is ergodic. In this case the 
orbits are straight lines until a collision occurs, when we have perfect reflectioa This 
result of Sinai is particularly important and it provides a rigorous foundation of 
statistical mechanics, at least for the hard sphere gas. It looks probable that it is also 
valid in cases of purely repulsive forces. However it is doubtful whether it applies in 
cases where we have attractive forces, or if the forces are attractive for large distances 
and repulsive for small distances. 

3.3. INTERMEDIATE 

A well known intermediate case is the celebrated Fermi-Pasta-Ulam problem (1955). 
This is the case of N particles on a string attracted with non linear forces 

ft= - ^ 2 ( ^ - ^ - i ) - a ( ^ - ^ - i ) 2 -

This problem can be reduced, by a linear transformation of variables, to a set of N 
coupled oscillators. Fermi, Pasta and Ulam expected that, if one mode is excited 
initially, the energy would be shared by all modes because of the non-linearity. How­
ever, it was found, by numerical experiments, that only a few modes shared part of the 
energy. The exchange of energy between the various modes took place in an almost 
periodic way. Therefore the system was definitely not ergodic. 

A great literature has developed following this unexpected result. Among other 
developments I should mention the representation of a continuous string (i.e. the case 
when the number N tends to infinity) by a Kortewert-de Vries equation by Kruskal 
and Zabusky, which led to the idea of solitons (Zabusky, 1967). One important 
result in this area was the discovery of an infinity of conserved quantities for this 
problem (Miura, Gardner and Kruskal 1968). Recently Zakharov and Faddeev (1972) 
proved that the Kortewert-de Vries equation can be considered as an integrable 
problem of infinite degrees of freedom and this explains the conservation laws of 
Kruskal and his associates. 
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Many numerical experiments were made in the case of N finite with different laws 
of attraction, and different energies. In general, it was found that there is a threshold 
of energy, above which the behavior of the system is ergodic. 

In particular many numerical experiments were made with a Lennard-Jones inter-
particle potential 

—m'-m 
where x = xI —x,_ l9 and s is the depth of the potential well, i.e. the escape energy from 
the minimum of potential. 

The force is attractive for large distances, while it is repulsive for small enough 
distances. This potential is assumed to govern the interaction of molecules in a fluid or 
in a solid, therefore it is of particular interest in physics. Stoddard and Ford (1973) 
studied this problem numerically in cases of rather large energies and found practically 
complete stochasticity. However, Galgani and Scotti (1972) found that if the energy is 
small enough there is no stochasticity at all, but the problem is governed by N 
integrals of motion. 

Their study consists of two parts. First they calculated formal integrals of motion for 
systems of N-degrees of freedom and checked numerically how well they are conserved 
if they are truncated after the terms of a given degree. For this purpose they extended 
to many degrees of freedom the method of Contopoulos (1966) to calculate the 'third 
integral' in a two-dimensional system, by performing algebraic manipulations with 
the help of a computer. Their first results derived for systems of 4 degrees of freedom 
are very encouraging. In fact for small enough energies the N integrals are conserved 
better and better as higher and higher order terms are added in their expressions. On 
the other hand for large energies the numerical values of the truncated formulas vary 
considerably, and do not improve by adding higher order terms. This indicates that 
the system is then ergodic rather than integrable. 

The second method is purely numericaL They find the deviations of two systems 
which are very close to each other initially. This deviation is linear in time if the energy 
is small enough, while it is exponential if we go beyond a certain threshold. The 
transition is rather abrupt, and allows to define a threshold energy, Hd. 

The most important result of Galgani and Scotti is the dependence of the threshold 
energy on the number of degrees of freedom, N. The function HJN runs as shown in 
Figure 9. 

For N = 2 it seems that Hd is infinite. The system behaves as integrable, even for 
large energies. For AT=4 we have HJN~4 but as N increases HJN tends to 1 in the 
particular units used. It is remarkable that the value HJN remains near 1 even if N 
becomes as larger as 500. 

If this result is valid also when JV-*oo (and, in my opinion, the fact that HJN~1 
from N = 8 to N = 500 is a very good indication for that) then we can derive many 
interesting conclusions. In particular one can define a zero-point energy, which is 
usually considered as a pure quantum-mechanical effect. This allows one to derive a 
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classical analogue of Planck's law, as it was first done by Einstein and Stern (1913). 
Galgani has drawn some far reaching, but very interesting conclusions concerning a 
classical foundation of quantum mechanics from these studies. 

N 

10 50 100 500 f\| 

Fig. 9. The ratio HJN (transition energy divided by the number of particles) as a function N for a 
Lennard-Jones interparticle potential (after Galgani and Scotti). 

Another problem of more than two degrees of freedom, where new important results 
have been found quite recently, is the general three body problem. I will report here 
on some recent work by Hadjidemetriou in Thessaloniki. Hadjidemetriou uses a 
rotating frame of reference, whose origin is the center of mass of the bodies mx and m2, 
while the x-axis contains always these two bodies; thus the planar three-body problem 
is reduced to a system of three degrees of freedom, with coordinates x1? x3, y3. Then it 
is proved that all families of periodic orbits of the restricted three-body problem can be 
extended to the general three-body problem. 

The theoretical proof was implemented by numerical calculations for increasing 
values of the mass of the third body. Eventually families of periodic orbits were found 
for three equal masses. A study of the stability of these orbits indicates that there may 
be some rather open triple systems, which are stable. Similar results were found by 
Henon (1974b). 

Further, Hadjidemetriou studied the behavior of non periodic orbits in the vicinity 
of stable periodic orbits. At every intersection of an orbit by the plane y3=0 the values 
of xl5 xl9 x3, x3, >>3 were calculated. If there are two more integrals of motion besides 
the energy, one can eliminate two of these quantities and find the equation of an 
invariant surface in a reduced three-dimensional space, say (x1,x1,x3). This corre­
sponds to an invariant curve on a surface of section in the 2-dimensional case. 

The successive points on the invariant surface can be joined by a continuous curve. 
The projection of such a curve on the plane (xu xx) is given in Figure 10. One can then 
define three mean periods. The first, Pi, is the period between two successive inter­
sections with the plane y3=0. The second, P2~50Pl, is the period of one loop in 
Figure 10, while the third, P3, of the order of some 100 P2, is the period needed for the 
loops to complete a libration, or rotation. It is remarkable that the 3 periods above are 
of quite different orders of magnitude. 
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The loops of Figure 10 were drawn empirically by joining the projections of the 
successive points of intersection of an orbit by the surface .y3 = 0. The fact that these 
loops are smooth curves indicates the existence of two integrals of motion besides the 
energy in the general three body problem. 

0.90 0.95 100 1.05 
Fig. 10. Projection on the plane (JC2, x j of the curve joining the successive intersections of an orbit by 

the surface y3 = 0. Only the 1st, 16th and 27th loops are marked, and the 10 first points on the 1st loop 
(after Hadjidemetriou). 

In one particular case it was found that the curve on the plane (xl5 x t) is closed, i.e. 
successive loops coincide. This phenomenon is not well understood. It means either 
that the libration period, P3 , is extremely large, or that there are four integrals of 
motion in this special problem, which is rather improbable. 

The above phenomena appear whenever the third body is far from the two other 
bodies. If the distance of the third body is small the successive points of intersection 
are no more on smooth loops. However in many cases the orbits do not escape to 
infinity, although the energy integral does not provide such a restriction. On the other 
hand orbits far away from periodic orbits eventually escape. 

The fact that no escape appears for a large set of orbits and for long times indicates 
that no Arnold diffusion (Arnold and Avez, 1967) is operative in these systems, or 
that its time scale is very large. 

An extension of this study to systems of more than three bodies has already started 
in Thessaloniki. This research opens important new possibilities for the general N-
body problem. By studying the stable families of periodic orbits one will be able 
to separate the regions of stability in each case. In such regions one has to take into 
account the effects of 3 N integrals of motion, instead of the 10 classical ones. This will 
allow a better statistical treatment of AT-body systems. 

I cannot make many predictions about the future developments in these very 
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interesting areas of many degrees of freedom. But I can be sure of one thing. That they 
will keep us busy for the whole next decade. 
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DISCUSSION 
Miller: In these solutions of the three-body problem, if you somehow bound the relevant part of the 
phase space, what fraction of that part is filled with these 'non-ergodic' orbits ? 

Contopoulos: It is still too early to give numerical results. My impression is that the set of bounded 
orbits is small. However as this set is not infinitesimal one cannot be sure what will be the final evolution 
of a particular triple system by taking initial conditions at random. This is why Dr Hadjidemetriou started 
a systematic exploration of the regions of stability. 

Lecar: Is there an analog to the triangular points in the problem with three equal masses ? 
Contopoulos: Yes. Motions near the triangular equilibrium points in the planar general three body 

problem have been studied already (see e.g., Siegel, C. L. and Moser, J. K.: 1971, Lectures on Celestial 
Mechanics, Springer, Berlin, p. 113). 

Lynden-Bell: With such widely different periods involved as 1, 50 and 500 are not the apparent integrals 
directly related to the adiabatic invariants ? 

Contopoulos: Yes. I believe that the new integrals are, in fact, to be considered as adiabatic invariants. 
Froeschle: I ask further explanations about the appearance of 'wild behaviour' in the model used by 

Galgani and Scotti. 
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Scotti: The threshold turns out to be one only because of the particular units employed. 
Galgani: I think the question of Dr Froeschle will be answered by the following clarification. The 

figure discussed here refers to a class of computations with a fixed kind of initial conditions, for example 
equipartition of energy among the normal modes and phases zero. Then the unique remaining parameter 
is the value of the energy, which just appears in Figure 7 as abscissa (what is reported in ordinate has 
already been said). 

I would like to add now some considerations. Obviously a graph as the one referred to above should 
be given for all classes of initial conditions, which is a formidable problem, actually that of exploring a 
surface of IN— 1 dimensions if N is the number of particles. In this connection I can only say that many 
classes of initial conditions have been considered and in all of them the threshold was well defined and 
did not apparently vary from case to case. This, I believe, gives meaning and support to the statement 
that there is something as a threshold energy which is proportional to N. Naturally we expect that the 
situation be much more complicated and even we attach great importance, from the point of view of 
principle, to the circumstance, that the statement given above should not be taken literally. Indeed the 
presence of nonstochastic regions on every energy surface is of fundamental importance in determining 
the statistics, i.e. the dynamically correct invariant measure, on the stochastic region. But this, I hope, 
is work for the near future, while the rough statement given above was directed to disprove the often 
expressed opinion that the Kolmogorov-Arnold-Moser theorem guaranteeing the existence of invariant 
tori, or, as we say, of ordered motions, should be of no interest for physical systems of many degrees 
of freedom. 
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