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Introduction

We are concerned with the flow of a viscous incompressible electrically
conducting fluid of constant properties past a semi-infinite rigid plate. The
governing boundary layer equations were derived by Greenspan and Carrier [2]
in 1959. Numerical solutions of these equations subject to different boundary
conditions have been considered by Stewartson and Wilson [5], Wilson [8], and
recently by Bramley [1]. In this paper, we consider boundary conditions cor-
responding to flow past a thin plate, and show that the system admits at least one
solution when a parameter is suitably restricted. The existence proof is a modi-
fication of methods used by Weyl [7], Serrin and McLeod [4], and Tarn [6].

The Boundary Value Problem

The boundary value problem to be considered is

(1') / " + / / " -700"= 0, y>0;

(2') 9"+efg'-ef'g=0, e > 0;

(3') /(O)=/'(O) = 0(O) = O,

(4') /'(<*>) = g'(oo) = 2.

We observe that the parameter y can be absorbed by writing h=^Jyg.
Instead of the above system, we consider the boundary value problem (BVP):

(1) / • + / / " - hh" = 0,

(2) h" + efh' - ef'h = 0,

(3) /(0) =/'(0) = /i(0) =0,

(4) f'(ao) = 2,h'{co)fi
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We replace (4) by the additional initial conditions

(5) f"(0) = P,h'(0)=«,

and consider the initial value problem (1), (2), (3) and (5). The existence of a
solution in a neighbourhood of x= 0 is guaranteed by the local existence theorem.
Further, if (1) and (2) are written as a first order system, it is readily seen that the
system is Lipschitzian as long a s / ' and h' remain uniformly bounded. In that case,
the solution of the initial value problem can be continued for all x. Our aim is to
show that there exists some (a,/?) for which the solution of (1), (2), (3) and (5) can
be continued and has the correct limiting behaviour as required by (4).

Preliminary Observations

Throughout this paper, the quantity xx is used as a generic symbol. Unless
specified explicitly, the x,'s used in different lemmas are unrelated. Further, in
considering the limit of a function/(x) as x tends to infinity, we shall simply write
lim/.

From the physics of the problem, we have the additional information that
the desired solution must be such tha t / ' and h' are positive. We shall therefore
limit our attention to the case of a, j3 > 0 only. For subsequent reference, the
initial values of/and h, and derivatives up to the fifth order as given in (3), (5)
and derived from (1), (2) are listed as follows:

/(0) =/ '(0) =0,/"(0)=/?,/"'(0)=/""(0) = 0,/"0) = -p2

h(0)= 0, fc'(0) = a, h"(0) = /T(0)=0, h""(0) =s<x0, hv(O) =0 .

We first observe that solutions of the initial value problem (1), (2), (3) and (5)
have the following property:

LEMMA 1. For a/? > 0, suppose f and h are solutions of (1), (2), (3) and (5),
then f" > 0, h">0 for x>0.

PROOF. We obtain on differentiating (2)

(6) h'" + sfh"-ef"h=0.

Suppose/" and h" do not remain positive, then either/" and h" vanish together,
or one vanishes before the other. If/" and h" vanish simultaneously at x0, say,
then it follows from the differential equations and the analyticity of the solutions
that fV)(x) = /i("'(x) = 0 for n ̂  2 in [x0,oo). Indeed, by extending the solution
to the left of x0, we see that / ( : )(x) = h("\x) = 0 for n ^ 2 in (0,oo), which
contradicts/"(0)= ft > 0. Hence/" and h" do not vanish simultaneously.

If/" vanishes before h", then there exists an x0 such that/"(x0) = 0; and
f"(x) > 0, h"(x) > 0 for 0 < x < x0. From (1), we have/"'(x0) = h(xo)h"(xo) > 0.
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which clearly contradicts the fact that/" > 0 in (0,x0). Hence/" does not vanish
before h". In the remaining case, a contradiction is obtained in the same way by
using (6).

It follows from Lemma 1 that, for a, j8 > 0, / , h, / ' , h', f" and h" are all
positive for x > 0. Hence, we have from (2)

f'h-fh'>0, x>0,

(7) ({-)'> 0, x>0,

which implies that the function f/h is monotonic increasing.

LEMMA 2. For s^l, if there exists an xt at which f'(xi)> k'(*i)> then
f'(x)>h'(x)for x>Xl.

PROOF. Since h'(0) =a> / ' (0 ) = 0, the hypothesis f'(x1)>h'{xl) implies
there is an x0 <xt at which f'(x0) = h'(x0). Suppose the lemma is false; then
there exists an x2 > xt such that f'(x2) = /i'(x2). Further, there exists an x,
x0 < x < x2, at which f"(x) - h"(x) = 0 and

Subtracting (6) from (1), we have at Jc:

Hence, for e < 1, it follows that h(x) —f(x) ^ 0. Since/' > h' for x ^Lx < x2

we have /(x2) > h(x2). It then follows from (2) that h"(x2) < 0, which clearly
contradicts Lemma 1. Hence we have/ '> h' for x > xt.

For e = 1, we obtain again by subtracting (6) from (1)

(f"-hm)+{f+h){f"-h") = Q>,

from which follows

(/" - h") =» )8exp [ - £ (/+ h)dt j > 0.

Hence there is no x at which/" — h" = 0. Again we conclude / ' > h' for x > xt.
No analogous statement can be made for s> 1. Indeed, we observe that if

( / ' ~h') vanishes at x0 and x2, then from (8) we have

and hence from (l),/'"(x) ^0 . We shall make use of this observation in the next
section.

We now want to show that, for y >1 , no solution to the boundary value
problem exists. This non-existence result has been shown by Reuter and Stewartson
[3]. It is included here for the sake of completeness, and because it motivates the
approach used in the existence proof,

t
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LEMMA 3. Ify>\, the BVP has no solution for s > 0.

PROOF. Suppose to the contrary that a solution exists; then we have lim
f 1-r = —r— < 1, and lim h" = lim/" = 0. Now since h > / i n a neighbourhood of

x = 0, we have either (i) h = / a t some x0, or (ii) h >/for all x. If (i) occurs, then
since fjh is an increasing function, we have//n>l for x> x0, contradicting the
condition that limf/h = 1 /^/y < 1. If (ii) occurs, then by subtracting (1) from (6),
and using h > / , we readily obtain

(hm -D + (l+e)(hh" -//")> 0.

Hence, it follows from (1)

(/," _/-) + (i + e)/» > o,
and so

h"r+ef>0,

for all x > 0. Integrating, we have

which clearly contradicts lim / i"=lim/"=0. Hence, the BVP has no solution
for £>0, y > 1.

The proof of Lemma 3 suggests that for a solution of the BVP to exist, it is
necessary to have/> h at some x. Further, the observation made following the
proof of Lemma 2 shows that for s > 1, it is possible to have/" ^ 0, which is
obviously an undesirable feature, bearing in mind the fact that / " is related to the
vorticity of the fluid, and we expect the vorticity to decay, that i s / " <0. We are
thus led to consider only situations in which/"< 0, a condition that is guaranteed
when a and /? satisfy a certain relation to be defined in the next section.

The Existence Proof

The proof is greatly simplified by the following transformation. Suppose
[/(x),/i(x)] is a solution pair of (1), (2) and (3). Then for any positive k, [kf(kx),
kh(kx)~] is also a solution pair. This transformation is well known in the existence
proof for the Blasius equation [7]. If the prime is now used to denote dif-
ferentiation with respect to kx, then equations (1) and (2) and the initial condition
(3) remain invariant. The first derivatives df/dx and dhjdx transform to
k2 df(kx)/d(kx) and k2 dh{kx) /d(kx). The freedom gained by introducing k can now
be used to fix one of the two parameters h'(0) = a; /"(0)= J?. The problem is
thus reduced to showing that for a fixed a, the initial value problem (1), (2), (3)
and (5) has a solution such that/ ' and h' tend to finite constants, and that there is
some fl* for which /'(oo)//i'(°o) = 1/V?» when y is restricted to some interval.
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Suppose for /?=/?*,/'(oo) = c, then by choosing k2 = 2/c we have the required
conditions df(co)jdx = 2 and dh(co)/dx =2y/y. In the following, we suppose
this transformation has been made, and we take h'(0) = l. We then proceed to
show that there is an open set S of values of /? for which/'(oo)//i'(oo) is a con-
tinuous function of jS and it maps S into the half line (<50(e), oo) where 50(E) > 1.
This implies that there exists a positive number ^yo(e) = l/(50(e) such that for
0< y < y0, the BVP has at least one solution. The existence proof is established
by proving a series of lemmas, the contents of which also exhibit some salient
features of the solution curves.

LEMMA 4. There is a non-empty open set S of values of JS such that for
fieS, there is a point x^ at which f{x0)>h(xfi), andf" < Ofor xe(0,Xp].

PROOF. We have/"(0) = j?,/"(0) =/""(0)= 0 and/"(O) = -p2, so that / - is
negative in a right neighbourhood of x = 0.

As long as / " < 0, we have / / " > hh", f"< 0, a n d / < fix2/2. Since h" > 0
h'(0)=l implies h> x, it follows that h" < fi2x/2, and hence we have

* < *

Now, from f"+ff"> 0, we readily obtain

and from (6), we have

h" = eexPr-er7^1 ffhexp \e f fdu\dt

< efi \ hdt
Jo

< 2

Hence, we have

(9) f"-h">

Clearly, P(x; fi,e) is positive in a right neighbourhood of x = 0, in which/" < 0.
We write u = fix3 /6, and consider
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Let J = (0,w*) be the maximal open interval in which P(u; p,e)>0. Then by
using e~" > ( 1 - u), it is clear that u* is greater than the zero of

which is clearly less than u = 1 . Since u* > u for 0 < u < 1, u* is in turn greater
than the zero of

which is

where

In terms of x, we have P(x; /?g) > 0 for x s J = (0,x*), where

x*> x = { — | N*.

Since

it is readily verified that

For x e J, we obtain by integrating (9)

— x.

Using P(x; ft, e) > 0 for x e J, we have

5
/ - ft >~24 e/fo

At x = x, we have

5ej8 / 6 \ . . 2 ej3 / 6 \ . . 3 / 6 \ * . ,5ej8 / 6 \ 4 /
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Since No = 0(1 IP*), it is clear that R(P,E) >0 for 0 sufficiently large. In fact, if
we choose /? so that

-720 \j) No [j

/(jc) — h{x) will be positive. The inequality (11) implies

30(24) I 2 r / 1 \*
j lU + J

Using (1 + l/3s)* < 1 +(l/3e)*, we can simplify the above to

P-'

so that p is in S if P~2i p0. Hence S is non-empty as claimed.
Since the solution of the initial value problem depends continuously on

h'(0) and/"(0), the set 5 is open.

LEMMA 5. / " >h" for all xifs=l and f" > h" for all x ife > 1 and fie S.

PROOF. The first part of the lemma is simply a restatement of what has been
proved in the last part of Lemma 2. For e > 1 and peS, since/"(0) = /? > 0 and
h"(0)=0, it is clear that/" - h" >0 in a right neighbourhood of x = 0. Suppose
Xj is the first zero of/" -h". Then it is clear t h a t / ^ x j - /i"'(*i) S 0. From (8)
we have h(Xi) ̂ / (xx). But p e S implies that there exists an x2 such that /(x2)
= h(x2) and that / " < 0 for 0 < x ^ x2. If x2 ^ x1; we have /"(xx) < 0. It then
follows from (1) that /(x t) > h(xi), contradicting the supposition that h(xt)
^/(xj ) . If x2 <xu then since f/h is increasing, we have/(xx) >h(x1). Again,
the same contradiction results. Hence/"—h" must remain positive for all x.

LEMMA 6. If s < 1, and PeS, then f" ~h" vanishes at only one point and
then remains negative.

PROOF. Suppose to the contrary that/" > h" for all x. Then from (1) we have

(12) r + ff"<hf".

Since PeS, let x0 be the first zero of/(x)—h(x). Integrating (12), and using the
fact that/"(x0) < P and///i > 1 for x > x0, we have

/"(x) <Pexp F - f ( / - h)dt\.

In the same manner, we have

h"(x)>h"(xo)exp\-£r {f-

https://doi.org/10.1017/S1446788700013288 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013288


380 H. P. Heinig and K. K. Tam [8]

Hence/" > h" implies

P > h"(x0) exp [(1 - a) J V - h)dt j ,

which clearly is impossible since h"(x0) > 0 and / - h > 0 for x > x0. Hence
/ " — h" must vanish at some point. Let xl be the first zero of/" — h". Clearly, we

^ ) - hm{x{) ^ 0. By subtracting (6) from (1), we have

(13) (/" - h") + (/+ h)(f"=h") = ( Y -

If / " ( x j = /i"(xi), the above equation implies f(x1) = h^xj = 0. It then
follows from (8) that/(xx) = fc(xi); and for fieS,/"(XJKO, which contadicts
/"(Xl) =0.. Hence, we must h a v e / " ^ ) < /J"(XX). Now (13) implies h^xj < 0
and (8) implies/(xx) > /i(xt). If/" - h" vanishes at a second point, say x2, then
fm(x2) - h'\x2) S 0, and it follows from (8) that ft(x2)^/(x2). This is impossible
since//A is an increasing function. Hence h">f" for x> xt.

We now use Lemmas 5 and 6 to obtain some further results regarding the
properties of the solutions of the initial value problem when /? e S.

LEMMA 7. For [SeS,f' and h' tend to finite limits; and f" < 0 for all x.

PROOF. We have shown in Lemma 5 that for e ̂  1, / " > h" for all x if ft e S.
Hence, we have / " + ( / - h)f"< 0, and

Since/— h > 0 ultimately,/" ultimately tends to zero exponentially and hence/"
is integrable. That/" > h" implies h" is also integrable.

For e < 1, and fie S, we have seen in Lemma 6 that there is an xt at which
/ " = h", and /(x) > h(x), h"(x) >/"(x) for x > x,. Hence we have

h" + efh" <sh"h, x > x t ;

and

h" < /i"(x,) exp [ -

which implies that h", and hence/", are integrable. Hence both/ ' and h' tend to
finite constants as x tends to infinity.

To show that/" < 0, suppose the contrary is true. Then there exists an x2 at
which/"'(x2)=0 and/""(x2)^0. By definition, fieS implies that /" (x)<0 for
xe(0,Xp]. Since/"(x2)= 0, we must have x2 > xp. That/(x^) > ^(x^) and///i is
increasing then imply/(x2) > h(x2).
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Now/*"(x2)= 0 and h"(x2) > 0 imply that at x2, we have

^ = a n d >

We have from (1)

(14) / " " +ff" +f'f" = hh" + h'h".

Substituting hm = e(f"h -fh") in (14), we readily obtain

/""(*2K r

so that/""(x2) < 0, contradicting the condition that/""(x2)^ 0. Hence we have
/ " < 0 for all x.

It then remains to show that/'(oo)/fc'(oo) is a continuous function of /?, and
that there is a y0 < 1 such that for a given y < yo»t r i e r e is a t least one /? for which

y. We proceed by first proving the following lemma.

LEMMA 8. /'(oo)//i'(°°) is a continuous function of p.

PROOF. We observe that for fieS,f and h both tend to linear functions of x,
and so

f(x)_f'(co)

Hence, it suffices to show/(oo)//i(oo) is a continuous function of p.
Now from (2), a simple manipulation gives

"if
8 Jo

IT*-

Regardless of the value of e, it is clear from Lemma 7 that h" < p. For /? in any

open set 05o>/?i)> w e n a v e

(15) -S^r<A-W
v ' s h2(x) e x2

Now n(x) is clearly integrable in any open interval (a, oo) for a > 0. Hence
/(oo)//i(oo) is a continuous function of /?.

We now complete the existence proof by showing that there is at least one p
for which/'(oo)//i'(oo) = ^/l /y, for a given y < y0 < 1.

We first obtain upper and lower bounds for/(oo)/ft(oo) as follows:
We have

h" ,
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P B T* dt
< + j

From /'" + / / " > 0, and h" < ef'h + efh', we readily obtain

f> px2/2 exp [ - JJ/A] and h < x exp [e

These inequalities hold for all x > 0. Hence, we have

Further, for PeS, we have/< j8x2/2, so that

The right side of the above inequality has the maximum value [/?2/4e(l + e)]*,
and since fjh is an increasing function, we have

L 4<1 + £)J •*(00)

Hence,/(CO)//J(OO) becomes unbounded as /? tends to infinity; but for any
it is bounded from above by P(% + 1 /s). In particular, for p = po = 75^/37/4, we
have

fc(oo) " 4

That/(oo)//i(oo) depends continuously on P implies that its value ranges over
($, oo) where S < <50(e). Hence for any y in 0 < y < yo(e) s [1/<5O(£)]2> there is at
least one P e S for which

/(oo) ^ / ' ( o o ) _ 1
/t(oo) ft'(oo) r '

Since <50(
E)> 1, it is clear that the value yo(a) obtained is less than unity, and that

it is less than the "true" value of y below which a solution can exist because of
the rough approximations used.

Concluding Remarks

We first sum up the results in the main theorem:

THEOREM. The boundary value problem has at least one solution for
0 < y <y0, where
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We next observe that when a solution to the BVP exists, then/and g can be
expected to have the same displacement thickness, as defined below. We have
seen from Lemma 1 that h', and hence g', has no stationary value. Hence if a
solution exists, g' must tend to 2 from below. We define

G(x)= {\g'-2)dt,
Jo

and we expect

lim f (g' - 2)dt = G(oo) = - K,
x-»oo J o

where 0 < K < oo is the displacement thickness for g. Substituting g = 2x + G
into (2'), we have

G" + e/G' = e/'G + 2zxf - 2sf.

We expect G' to tend to zero sufficiently fast so that lim*.^ (G" + e/G') = 0.
Hence, if/~ 2x — Ku where K1 is the displacement thickness for/, it follows
from l i m ^ (f'G + 2xf - 2/) = 0 that Kt = K.

Lastly, we mention that the thick plate problem where the initial condition
/j(0) = 0 is replaced by h'(0) = 0 can be handled in the same manner.
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