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Abstract Given a general polarizedK3 surface S⊂Pg of genus g≤ 14, we study projections S ↪→Pg ���P2

of minimal degree and their variational structure. In particular, we prove that the degree of irrationality
of all such surfaces is at most 4, and that for g = 7,8,9,11 there are no rational maps S ��� P2 of degree 3
induced by the primitive linear system. Our methods combine vector bundle techniques à la Lazarsfeld
with derived category tools and also make use of the rich theory of singular curves on K3 surfaces.

1. Introduction

Given an irreducible, projective variety X of dimension n, its degree of irrationality

irr(X) is the minimal degree of a rational dominant map X ��� Pn. This is a birational

invariant measuring how far X is from being rational, which in recent times has been
the object of a considerable amount of work; remarkable progress has been made for

hypersurfaces in projective space ([BDPE+17, CS20]), abelian varieties ([Che19, Mar22,

CMNP22]), hyperkähler varieties and their moduli spaces ([Voi22, ABL23a, ABL23b])
and some concrete examples ([GK19]). Nevertheless, the computation of irr(X) is still a

difficult problem for which very little is known in general if n≥ 2.
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A preliminary version of this problem consists of fixing a line bundle L ∈ Pic(X) and

considering the following invariant of the pair (X,L), closely related to the degree of

irrationality of X :

irrL(X) := min{deg(ϕV :X ��� Pn) |ϕV dominant defined by V ∈Gr(n+1,H0(L))}.

The degree of a dominant map ϕV : X ��� P(V ∨) = Pn has a natural interpretation
in terms of the kernel E∨ of the evaluation map V ⊗OX → L. Indeed, the inclusion

V ∨ ⊂ H0(E) describes the fibers of ϕV in a precise way (see Proposition 2.1 for the

surface case). The degree of ϕV turns out to be the difference between cn(E) and the
degree of the ‘cycle-theoretic base locus’ of sections of V ∨ ⊂H0(E). Note that the rational

map induced by V ∈Gr(n+1,H0(L)) is nothing but the composition

X ��� P(H0(L)∨) ��� P(V ∨),

where the second map is the projection from the linear space P
(
ker(H0(L)∨ → V ∨)

)
. In

the case of surfaces, the top Chern class c2(E) gives information on how secant is this

linear space with respect to X, whereas the ‘cycle-theoretic base locus’ says how tangent
is this linear space. If one is able to control these two invariants efficiently, then one can

infer on the projections of a given degree.

This approach has been exploited by the first author in [Mor23] in order to obtain new
upper bounds for the quantities irrL(X) and irr(X) for several examples of polarized

varieties (X,L). Among those examples, one finds polarized K3 surfaces (S,L) with

Pic(S) = Z ·L (see [Mor23, Theorem 1.1]). In that case the kernel bundle is moreover
stable, which allowed the first author to endow the following set of special maps with a

natural scheme structure:

W 2
d (S,L) := {V ∈Gr(3,H0(L)) | ϕV : S ��� P2 is gen. finite of degree ≤ d}.

The goal of this paper is to show how, in the case of K3 surfaces, a combination of

vector bundle techniques with tools coming from the derived category (mainly Bridgeland

stability and Fourier–Mukai theory) provides new insight into these problems.
More precisely, we examine in detail the invariants irrL(S) and W 2

irrL(S)(S,L) for

polarized K3 surfaces (S,L) of low genus g, under the assumption Pic(S) = Z ·L. This
question is already known for g≤ 6 (see [Mor23, Theorem 1.2]); as it will become apparent
in our arguments, the problem is substantially harder as long as g increases due to the

complexity of the potential cycle-theoretic base loci.

Since the picture is different depending on the parity of g, we will state our results

separately. For a polarized K3 surface (S,L) of odd genus g, let us denote by M the
moduli space of rank 2 stable vector bundles with c1 = L and minimal c2 = � g+3

2 	.

Theorem A. Let (S,L) be a very general polarized K3 surface of genus g.

(1) If g = 7, then irrL(S) = 4 and W 2
4 (S,L) is isomorphic to S×M.

(2) If g = 9, then irrL(S) = 4 and W 2
4 (S,L) has at least two irreducible components: a

three-dimensional one (isomorphic to a P1-bundle over M) and a two-dimensional

one (isomorphic to a nontrivial correspondence between S and M).
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(3) If g = 11, then irrL(S) = 4 and W 2
4 (S,L) has an irreducible component isomorphic

to M.

(4) If g = 13, then irrL(S)≤ 4 and W 2
4 (S,L) is at least one-dimensional.

For even genera, our results can be summarized as follows:

Theorem B. Let (S,L) be a polarized K3 surface of genus g, with Pic(S) = Z ·L.

(1) If g = 8, then irrL(S) = 4 and W 2
4 (S,L) has a component birational to a P3-bundle

over S.

(2) If g = 10, then irrL(S) ≤ 4 and W 2
4 (S,L) has at least two irreducible components:

a four-dimensional one (isomorphic to the Hilbert square S[2]) and a three-

dimensional one (isomorphic to P(E), where E is the stable spherical rank 2 vector
bundle with c2(E) = 6).

(3) If g = 12, then irrL(S) ≤ 4 and W 2
4 (S,L) has a unirational three-dimensional

component.

(4) If g = 14, then irrL(S)≤ 4 and W 2
4 (S,L) has an irreducible component isomorphic

to S.

Since upper bounds for the degree of irrationality specialize in families of regular

surfaces (see [CS20, Proposition C]), an immediate consequence of Theorem A and

Theorem B is:

Corollary C. Any polarized K3 surface of genus ≤ 14 has degree of irrationality ≤ 4.

Let us say a few words about the strategy of proof of Theorem A, which is the main

body of work. The first step is the construction of rational maps S ↪→ P(H0(L)∨) ��� P2 of

degree ≤ 4; by Proposition 2.1, this can be achieved by finding couples (E,ξ)∈M×S[ g−5
2 ]

such that h0(E ⊗Iξ) ≥ 3. Via the derived category approach, we determine the locus
of such couples, which leads to an explicit description of the corresponding irreducible

component of W 2
4 (S,L).

For instance, in genus 11 Bridgeland stability provides an isomorphism of Hilbert

schemes

γ :M[3] ∼=−→ S[3]

that, combined with Fourier–Mukai arguments, shows that

{(E,ξ) ∈M×S[3] | h0(E⊗Iξ)≥ 3}= {(E,γ(ηE)) | E ∈M}∼=M

(here ηE denotes the noncurvilinear element of M[3] supported at E ).

In the second step (for g = 7,9,11), we prove that there are no degree 3 maps; this

is divided into two substeps. One starts by discarding the existence of couples (E,ξ) ∈
M× S[ g−3

2 ] such that h0(E ⊗Iξ) ≥ 3, again via derived methods. Geometrically, this
means discarding the situation where the linear space we are projecting from is maximally

secant to S (i.e., the base locus has the highest possible length) and is tangent to S at
g−3
2 points. For instance, in genus g = 9, by (twisted) Fourier–Mukai theory the condition
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h0(E⊗Iξ)≥ 3 implies the existence of a rational curve in M with a triple point; coupled

with a result of Chen [Che02] on the singularities of rational curves on generalK3 surfaces,
this gives a contradiction.

Then one has to rule out all the cases where the ‘cycle-theoretic base locus’ is strictly

bigger than the ‘scheme-theoretic base locus’. This is a more special situation, in which

the linear space we are projecting from is maximally secant and the singularities of the
intersection with S are more complicated. In this case, we exploit systematically an ad

hoc lemma relating the ‘cycle-theoretic base locus’ with the image of V ∨⊗OS → E (c.f.

Lemma 2.4), which we combine with other vector bundle arguments.
It is worth mentioning that our results suggest several patterns for the behaviour of

irrL(S), as g varies; here, the efforts to describe W 2
irrL(S)(S,L) become crucial. We thus

expect these two invariants to be a potential source of new questions. Some of them are
gathered in a separate section at the end of the paper.

Nevertheless, it seems to us that a good understanding of this problem for arbitrary g

is not accessible without further improvement of our techniques. As mentioned above, the

reason is that the possible configurations of certain zero-dimensional subschemes become
more and more intricate. The case of genus 14 is somehow the first concrete realization of

this problem: maps of degree 4 necessarily have a ‘cycle-theoretic base locus’ bigger than

the ‘scheme-theoretic base locus’. In more geometric words, there is no codimension 3
linear subspace in P14 intersecting S along a subscheme of colength 18 and being tangent

to S at four distinct points.

Structure of the paper. We start with a section of preliminaries, where we recall
the kernel bundle approach to study linear systems (including Brill–Noether loci and

key lemmas involving the local structure of the base ideal), as well as some basics on

the derived category tools. Sections 3-6 deal with the cases of odd genus (namely with

the proof of Theorem A) and constitute the core of the paper. In Section 7, we treat
even genera (i.e., Theorem B). Finally, in Section 8 we raise several questions about the

behaviour of irrL(S) and W 2
irrL(S)(S,L) in arbitrary genus, based on our results for g≤ 14.

2. Preliminaries

Throughout this paper, we will work over the field of the complex numbers.

2.1. Projections of low degree

We fix a smooth polarized surface (S,L) with NS(S) =Z · [L]. We will study linear systems

V ∈Gr(3,H0(L)), via the associated kernel bundle. Namely, one can consider the vector

bundle E∨ sitting in an exact sequence

0 E∨ V ⊗OS L⊗I 0,ev

and let T := Spec(OS/I) denote the base locus of the rational map ϕV : S ��� P(V ∨).
Dualizing one gets an inclusion V ∨ ⊂H0(E) that allows to study the fibers of ϕV (note

that ϕV is dominant by the assumption NS(S) = Z · [L]). More precisely, the following

holds:
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Proposition 2.1 [Mor23, Section 2]. The morphism ϕ̃=ϕV |S\T :S\T →P(V ∨) satisfies:

(1) For every point p= [sp] ∈ P(V ∨), one has ϕ̃−1(p) =Z(sp)∩(S \T ) where sp ∈ V ∨ ⊂
H0(E).

(2) deg(ϕ) = c2(E)−deg
(⋂

s∈V ∨ Zcycle(s)
)
.

The first preliminary lemma tells us that the degree of the map cannot be too big with

respect to the colength of the base ideal I:

Lemma 2.2. Let (S,L) be a polarized surface and V ∈Gr(3,H0(L)) a linear system with

finite base locus Spec(OS/I). Then deg(ϕV )≥ L2− 4
3colength(I).

Proof. There is another standard way to compute the degree of the rational map ϕV , in
terms of Hilbert–Samuel multiplicities of I. The Hilbert–Samuel multiplicity of an ideal

sheaf I at a point p is defined as ep(I) := length(OS,p/(f,g)), where f,g ∈ I ⊗OS,p are

general elements. Then

deg(ϕV ) = L2−
∑
p∈S

ep(I).

Now, by [HMQS20, Proposition 5.7] ep(I)≤ 4
3colength(I,p) (notice that I ⊗OS,p has at

most three generators). The lemma follows.

This has the following important implication, if one wants to study maps of degree 3,4
in the primitive linear system of a K3 surface via the kernel bundle.

Corollary 2.3. If ϕV : S ��� P2 is a map of degree d with kernel bundle E∨, then

c2(E)≤ 1

4
(3d+L2).

In particular, for (S,L) a polarized K3 surface of genus g with Pic(S) = Z ·L: if d = 3

only the minimal c2 = � g+3
2 	 is possible, and if d= 4, only the two lowest c2 are possible.

Proof. The inequality follows from the previous lemma, together with the observation

that c2(E) = L2− colength(I). For the second part, observe that under the assumption

Pic(S) = Z ·L the kernel bundle E∨ is stable; otherwise, we would have OS ↪→E∨ which

contradicts the inclusion V ↪→ H0(L⊗I). Hence, by Mukai’s theory of stable vector
bundles on K3 surfaces ([Muk87, Corollary 2.5]) we have v(E)2 ≥−2 (see Subsection 2.3

for the definition of v(E)), which in this case reads as c2(E)≥ � g+3
2 	.

In other words: If S is a K3 surface with Pic(S) = Z ·L and ϕV is of degree 3, then
the base locus T has the highest possible length (i.e., the codimension 3 linear subspace

P
(
ker(H0(L)∨ → V ∨)

)
is maximally secant to S ).

2.2. Brill–Noether loci

Let (S,L) be a polarized K3 surface of genus g (i.e., L2 = 2g−2), with Pic(S) = Z ·L. In
this subsection, we recall the construction of the Brill–Noether loci from [Mor23] and prove

some auxiliary lemmas that will be fundamental to study them from our perspective.
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The set-theoretic definition is the following:

W 2
d (S,L) := {V ∈Gr(3,H0(L)) | deg(ϕV )≤ d}.

Let us denote by M(2,L,g+1− c) the moduli space of stable rank 2 vector bundles

with Chern classes c1 = L and c2 = c (this notation is compatible with the Mukai vector

introduced in the next subsection). By Proposition 2.1 (and the fact that the kernel

bundle is stable, since Pic(S) = Z ·L) the above set-theoretic description is equivalent to

W 2
d (S,L) =

⊔
c

W 2
d (S,L)c,

where

W 2
d (S,L)c :=

{
(E,V ∨) | E ∈M(2,L,g+1− c),

V ∨ ∈Gr(3,H0(E)), deg

( ⋂
s∈V ∨

Zcycle(s)

)
≥ c−d

}
(note that the disjoint union is finite by Corollary 2.3).
With this second description, W 2

d (S,L) carries a natural scheme structure. Indeed,

for a fixed E ∈ M(2,L,g+1− c), one can show that deg(
⋂

s∈V ∨ Zcycle(s)) is an upper-

semicontinuous function of V ∨ ∈ Gr(3,H0(E)); a relative construction makes W 2
d (S,L)c

into a closed subset of the relative Grasmannian over M(2,L,g+ 1− c) (see [Mor23,
Section 2] for details).

We will consider these closed subsets with the reduced scheme structure.1

The stratification of the Brill–Noether locus W 2
d (S,L) via c2(E) distinguishes rational

maps by the length of the base locus (i.e., distinguishes the linear spaces we are projecting

from by how secant to S they are). For instance, for a K3 surface of genus 5 we have

W 2
4 (S,L) =W 2

4 (S,L)4�W 2
4 (S,L)5

∼=W 2
4 (S,L)4�S,

where W 2
4 (S,L)4 is the relative Grassmannian over M(2,L,2) (see [Mor23, Theorem 1.2]).

More interestingly, if one fixes the second Chern class there may be different components
according to the length of the base scheme of the sections of V ∨. Namely,

W 2
d (S,L)c =

⋃
m

W 2
d (S,L)c,m,

where

W 2
d (S,L)c,m = {(E,V ∨) ∈W 2

d (S,L)c | length(∩s∈V ∨Z(s))≥m}.

The length of
⋂

s∈V ∨ Z(s) can be seen as a measure of how tangent to S is the

linear space we are projecting from, whereas the difference deg
(⋂

s∈V ∨ Zcycle(s)
)
−

length
(⋂

s∈V ∨ Z(s)
)
is a measure of how singular this tangency is.

1This is slightly different to [Mor23], where these families are pushed forward to Gr(3,H0(L)) via

the injection induced by globalizing the maps Gr(3,H0(E))→Gr(3,H0(L)), V ∨ �→
∧2V ∨ = V .
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In the case where the finite subscheme
⋂

s∈V ∨ Z(s) is curvilinear (i.e., it lies on a smooth

curve contained in S ), we need the following lemma to study the relation between these

two invariants:

Lemma 2.4. Let E be a rank 2 vector bundle on S, and let V ∨ ∈ Gr(3,H0(E)).

Assume that ξ =
⋂

s∈V ∨ Z(s) is curvilinear of length m at a point p, and that the cycle⋂
s∈V ∨ Zcycle(s) has degree f ≥ m at p. Then there exist local coordinates x,y around p

and e1,e2 local generators of E at p such that the image of the map

V ∨⊗OS,p −→ Ep

is contained in (x,ym) ·e1+(x� f
m �,x� f−1

m �y,...,x� 1
m �yf−1,yf ) ·e2.

Proof. We choose the local coordinates x,y such that Iξ = (x,ym) locally at p. Given

e1,e2 local generators of E at p, let Ij be the monomial ideal generated by monomials
appearing in the j -th coordinate of sections of V ∨; we may choose e1,e2 so that x ∈ I1.
In this framework, three general elements s1,s2,s3 of V ∨ (giving a basis) have local

expressions

si = ((x−fi(y)) · ti(x,y),ui(x,y)),

where fi(y) ∈ (ym) and ti(x,y) ∈ O∗
S,p (by the implicit function theorem).

Of course, one has ui(fi(y),y) ∈ (yf ). Actually, since Zcycle(s1+λs2+μs3) has degree
≥ f at p, one has

u1(fλ,μ(y),y)+λu2(fλ,μ(y),y)+μu3(fλ,μ(y),y) ∈ (yf )

for every λ,μ and every expression (x− f1)t1+λ(x− f2)t2+μ(x− f3)t3 = (x− fλ,μ(y)) ·
tλ,μ(x,y) with fλ,μ ∈ (ym) and tλ,μ ∈ O∗

S,p.

This last condition implies that, after replacing e2 by an appropriate combination of
e1 and e2, one may assume that xkyl /∈ I2 as long as f > mk+ l. Therefore, for the new

choice of local generators one has I2 ⊂ (x� f
m �,x� f−1

m �y,...,x� 1
m �yf−1,yf ), which proves the

assertion.

The first natural step for constructing Brill–Noether loci is to understand whether the

cycle-theoretic and the scheme-theoretic intersection coincide. The following remark will
be useful:

Remark 2.5. Consider the cohomology jump loci

Rc,m := {(E,ξ) ∈M(2,L,g+1− c)×S[m] | h0(E⊗Iξ)≥ 3}

and the corresponding relative Grassmanian

Gc,m := {(E,ξ,V ∨) | (E,ξ) ∈R,, V
∨ ∈Gr(3,H0(E⊗Iξ))}.

Then the natural forgetful map ψc,m : Gc,m −→ W 2
c−m(S,L)c,m is an isomorphism

outside ψ−1
c,m(Im(ψc,m+1)). Indeed, there is a well-defined inverse morphism

(E,V ∨) 
→ (E,V ∨, ∩s∈V ∨ Z(s)) ∈ Gc,m
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precisely outside the image of ψc,m+1. In particular:

• If dim(Im(ψc,m+1))< dim(Im(ψc,m)) and Gc,m is smooth, then the singularities of
ψc,m(Gc,m) are contained in ψc,m+1(Gc,m+1) and ψc,m is birational.

• If Rc,m+1 is empty and Rc,m is irreducible, then ψc,m is an isomorphism onto its
image and Gc,m is isomorphic to an irreducible component of W 2

c−m(S,L).

We will mainly deal with the minimal second Chern class (i.e., c= � g+3
2 	); in that case,

we will just write Rm,Gm,ψm for simplicity.

To finish this subsection, let us point out an elementary lemma concerning the number

of local generators of an ideal sheaf:

Lemma 2.6. Let X be a variety, T ⊂ X a closed subscheme and p ∈ T a closed point.
Then dimCExt

1
OX

(OT ,k(p)) equals the minimal number of generators of IT/X at the

point p.

Proof. By applying the functor HomOX
(−,k(p)) to the short exact sequence

0−→ IT/X −→OX −→OT −→ 0,

we get an isomorphism HomOX
(IT/X,k(p)) ∼= Ext1OX

(OT ,k(p)). Now, the claim follows
from the adjunction HomOX

(IT/X,k(p)) ∼= Homk(IT/X ⊗ k(p),k(p)) and Nakayama’s

lemma.

2.3. Bridgeland stability on K3 surfaces

Let (S,L) be a polarized K3 surface. In this subsection, we review some basic facts on
the (α,β)-plane of Bridgeland stability conditions associated to L. For a more detailed

discussion, the reader may consult Bridgeland original work [Bri07, Bri08] or the recent

survey [MS21].
We will denote the Mukai vector of an object E ∈Db(S) by

v(E) = (v0(E),v1(E),v2(E)) := ch(E) ·
√

td(S) = (ch0(E), ch1(E), ch0(E)+ch2(E)).

This gives an element of Λ := Z⊕Pic(S)⊕Z, which is a lattice equipped with the pairing

〈v,w〉 :=−χ(v,w) = v1 ·w1−v0 ·w2−v2 ·w0.

Let us also recall that a class δ ∈ Λ is called spherical if δ2 =−2.
Given a coherent sheaf E ∈Coh(S), we define its slope by μL(E) = L·ch1(E)

L2·ch0(E) (with the

convention μL(E) = +∞ if ch0(E) = 0). This leads to the usual notion of μL-stability.

For a real number β ∈ R, we consider the full subcategories of Coh(S)

Tβ := {E ∈ Coh(S) | μL(Q)> β for all quotients E � Q}
Fβ := {E ∈ Coh(S) | μL(F )≤ β for all subsheaves F ↪→ E},

forming a torsion pair. The corresponding tilt gives a bounded t-structure on Db(S) with

heart

Cohβ(S) :=
{
E ∈Db(S) | H−1(E) ∈ Fβ, H0(E) ∈ Tβ, Hi(E) = 0 for i �= 0,−1

}
.
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Finally, for (α,β) ∈ R>0 ×R, let Zα,β : K0(D
b(S)) → C be the group homomorphism

given by

Zα,β(E) :=−
(
v2(E)−βL ·v1(E)+

(
β2

2
− α2

2

)
L2 ·v0(E)

)
+ i

(
L ·v1(E)−βL2 ·v0(E)

)
.

Now, we have all the ingredients to state a fundamental result of Bridgeland:

Theorem 2.7 [Bri08]. The pair σα,β := (Cohβ(S),Zα,β) is a Bridgeland stability
condition on Db(S) if, for every δ ∈ Λ spherical with �Zα,β(δ) = 0 and δ0 > 0, one has

�Zα,β(δ)> 0.

Remark 2.8. The associated region of stability conditions is thus an upper-half plane,
from which certain holes (corresponding to points (α,β) for which Zα,β(δ) = 0 for a

spherical class δ) have been removed. This can be visualized (for Picard rank 1) in [BB17,

Figure 1].

The fact that σα,β is a Bridgeland stability condition can be essentially summarized as
follows:

1. For every nonzero E ∈ Cohβ(S), one has the inequality �Zα,β(E) ≥ 0, and
�Zα,β(E)< 0 whenever �Zα,β(E) = 0.

2. Every object of Cohβ(S) admits a Harder–Narasimhan (HN for short) filtration,

with respect to the notion of stability defined by the tilt slope

να,β(E) :=

{
−�Zα,β(E)
	Zα,β(E) �Zα,β(E)> 0

+∞ �Zα,β(E) = 0.

It is worth mentioning that Bridgeland stability conditions can be deformed continu-
ously (more precisely, their set can be given the structure of a complex manifold), thanks

to a technical condition called the support property. While we refer the reader to [Bay19]

for details, here we content ourselves with one of the main applications: There is a locally
finite wall and chamber structure so that stability of objects remains unchanged along a

chamber.

A numerical wall for a class v ∈ Λ is the region of R>0×R determined by an equation
of the form να,β(v) = να,β(w), where w ∈ Λ is a class nonproportional to v. An actual

wall for v is a subset of a numerical wall, at which the set of semistable objects of class

v changes.

The structure of the walls in the (α,β)-plane admits the following description:

Proposition 2.9. Assume that Pic(S) = Z ·L, and let v ∈ Λ be any class.

(1) All numerical walls for v are either semicircles centered on the β-axis or lines
parallel to the α-axis.

(2) If v0 �= 0, there is a unique vertical wall with equation β = L·v1

L2·v0
. If v0 = 0, then

there is no vertical wall.
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(3) The curve Hv : να,β(v) = 0 intersects every semicircular wall at its top point. This

curve is an hyperbola (if v0 �= 0 and v2 > 0), a pair of lines (if v0 �= 0 and v2 = 0),

a parabola (if v2 < 0) or a single vertical line (if v0 = 0).

(4) If v2 ≥ 0, then all semicircular walls are strictly nested.

(5) If v2 < 0, then all walls intersect at the unique point (α,β) such that Zα,β(v) = 0.

One should note that numerical walls may cross holes of the (α,β)-plane; such a hole
may determine the end of an actual wall. Pictures illustrating Proposition 2.9 (including

this phenomenon) may be found in [MS21, Figures 1-3].

Using this structure of the walls, one can often understand how the stability of an
object varies along certain regions of the (α,β)-plane. This philosophy is specially well

suited for Gieseker semistable sheaves, thanks to the following result:

Proposition 2.10 [Bri08]. Let v ∈ Λ be a class with v0 > 0, and let β < L·v1

L2·v0
. Then an

object F ∈ Cohβ(S) of class v(F ) = v is σα,β-semistable for every α� 0 if, and only if,

F is a Gieseker semistable sheaf (with respect to L).

We close this subsection with an elementary trick that will be applied several times:

Lemma 2.11. Assume Pic(S) = Z ·L. Let β0 = a
b ∈ Q with a,b coprime, and let E ∈

Cohβ0(S) be an object with (L · v1 − β0L
2 · v0)(E) = 1

bL
2. If E is σα0,β0

-semistable for

some α0 > 0, then E is σα,β0
-semistable for every α > 0.

2.4. Moduli spaces

Moduli spaces of Gieseker stable sheaves on K3 surfaces are well understood thanks to

the work of many authors after the pioneering work of Mukai ([Muk84]). In the more

general context of Bridgeland stability, the following result was established by Bayer–

Macr̀ı [BM14], building on previous work of Toda [Tod08]:

Theorem 2.12. Let v ∈ Λ be a primitive class, and let σα,β be a Bridgeland stability

condition lying in no actual wall for v. Then there exists a moduli space Mσα,β
(v) of σα,β-

stable objects of class v, which is a smooth projective hyperkähler variety of dimension

v2+2 (in particular, it is nonempty if and only v2 ≥−2).

We will be especially interested in the case of the Gieseker moduli space M :=
M(2,L, g−1

2 ), for (S,L) a polarized K3 surface of odd genus g with Pic(S) = Z ·L. This
is a K3 surface, and results of Mukai ([Muk87]) show that:

1. If g ≡ 3(mod 4), then M is a fine moduli space and Pic(M) = Z · L̂, where L̂ is a

polarization of genus g. Furthermore, the universal bundle E on S×M induces a

Fourier–Mukai equivalence ΦE : Db(S)→Db(M).

2. If g ≡ 1(mod 4), then M is a coarse moduli space and Pic(M) = Z · L̂, where L̂ is a

polarization of genus g+3
4 .

In the second case, there exists an open analytic cover {Ui}i∈I of M so that there exists

a local universal sheaf Ei on each S×Ui. Furthermore, there is a (nontrivial) Brauer class

https://doi.org/10.1017/S1474748024000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000525


On the degree of irrationality of low genus K3 surfaces 637

α ∈ Br(M) and isomorphisms ϕij : Ej |Ui∩Uj
→ Ei|Ui∩Uj

making ({Ei},{ϕij}) into an α-

twisted sheaf E on S×M. This was proved by Caldararu ([Cal00]). In analogy to the

classical (untwisted) case of fine moduli spaces, Caldararu also showed that E is the kernel
of a Fourier–Mukai equivalence

ΦE : Db(S)→Db(M,α),

where Db(M,α) is the bounded derived category of α-twisted coherent sheaves on M.

Write g = 4n− 3. As proved independently by Sawon ([Saw07]) and Markushevich
([Mar06]), one can use ΦE to define an isomorphism

S[n] ∼=−→M((0,L̂,k),α), ξ 
→R1ΦE(Iξ)

for some k ∈Z, where M((0,L̂,k),α) denotes the moduli space of stable α-twisted sheaves

on M with twisted Mukai vector (0,L̂,k) (see [HS05] for the construction of the twisted

Mukai vector depending on a B-field lift of α, and [Yos06] for the construction of moduli
spaces of stable twisted sheaves).

By composing the isomorphism above with the natural map

M((0,L̂,k),α)−→ Pn = P(H0(M,L̂))

sending (α-twisted) sheaves to their support, one gets a Lagrangian fibration π of S[n].
Since Brauer classes on curves can be trivialized, any element in M((0,L̂,k),α) can

be identified with an untwisted sheaf; this identification is not canonical, and hence

M((0,L̂,k),α) is not globally isomorphic to the Gieseker moduli space M(0,L̂,k) on M.
Nevertheless, by fixing a trivialization on any given curve C ∈ |L̂| = P(H0(M,L̂)), it

follows that the fiber π−1(C) is isomorphic to the compactified Jacobian JC parametrizing

rank 1, torsion-free sheaves on C of degree 0.

We can use these results to control the cohomology h1(S,E⊗Iξ) for E ∈M and ξ ∈S[n]:

Lemma 2.13. For the Lagrangian fibration π : S[n]
∼=−→M((0,L̂,k),α) −→ Pn = |L̂|, we

have:

(1) π sends ξ ∈ S[n] to the curve Cξ := {E ∈M|h1(E⊗Iξ)> 0} in the primitive linear
system of M.

(2) Given ξ ∈ S[n], let Lξ ∈ JCξ denote the corresponding element under any identifi-

cation π−1(Cξ) ∼= JCξ. Then for any E ∈ Cξ, the number h1(S,E⊗Iξ) equals the

minimal number of local generators of Lξ at the point E.
In particular, if multE(Cξ) =m, then h1(S,E⊗Iξ)≤m.

Proof. Since h2(E⊗Iξ) = 0 for every E ∈M and ξ ∈ S[n], we have an isomorphism

R1ΦE(Iξ)⊗k(E)
∼=−→H1(E⊗Iξ)

by cohomology and base change (which is still valid in the twisted setting, since it is a local

property). Only the last assertion is not an immediate consequence of this isomorphism.
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To complete the proof, note that all elements of JCξ are ideal sheaves, up to twist by a
line bundle (see, e.g., [D’S79, Proposition 3.2]). Since the curve Cξ is Gorenstein (it lies

on a smooth surface), the minimal number of generators of an ideal sheaf at a point is

bounded by the multiplicity of the curve at that point, which finishes the proof.

3. Genus 7

Let (S,L) be a polarized K3 surface of genus 7 (i.e., L2 = 12). The goal of this section is

to prove Theorem A.(1); hence, we will assume Pic(S) = Z ·L throughout the rest of this
section. The upper bound irrL(S) ≤ 4 was already obtained in [Mor23]; let us recall the

construction of rational dominant maps S ��� P2 of degree 4 given there.

We denote by M = M(2,L,3) the fine moduli space of stable rank 2 bundles with
c1(E) = L and c2(E) = 5. Any E ∈ M has h0(E) = 5, hence h0(E ⊗Ip) ≥ 3 for any

p ∈ S (an equality holds, actually). Then the three-dimensional subspace V ∨ =H0(E⊗
Ip)⊂H0(E) induces by duality an element V ∈Gr(3,H0(L)) such that deg(ϕV )≤ 4 (by

Proposition 2.1).

3.1. Discarding rational maps of degree 3

A sufficient condition for having a map S ��� P2 of degree 3 is h1(E⊗Iξ) ≥ 2 for some
ξ ∈ S[2] (i.e., h0(E⊗Iξ)≥ 3). We will prove, by means of Bridgeland stability, that such

a configuration is impossible.

Observe that h1(E⊗Iξ) = hom(Iξ,E∨[1]). Furthermore, Iξ ∈ Cohβ(S) for all β < 0 (it

is σα, −1
2

and σα, −1
3
-stable for every α by Lemma 2.11) and E∨[1]∈Cohβ(S) for all β ≥ −1

2

(it is σα,β-stable for all α as long as β = −1
3 ,−2

5 ,−3
7 by Lemma 2.11).

The numerical wall W = W (Iξ,E∨[1]) has equation 6(β2 +α2)+ 5β+1 = 0. Since it

intersects α= 0 at the points with β-coordinates −1
2 and −1

3 , it is clear that both Iξ and
E∨[1] are semistable along W.

Now, observe that any nonzero morphism Iξ → E∨[1] defines a short exact sequence

0→ F →Iξ → E∨[1]→ 0

in Cohβ(S) for all −1
2 ≤β < −1

3 (indeed, such a morphism corresponds to a stable extension

of sheaves 0→E∨ → F →Iξ → 0 with μL(F ) = −1
3 ). Moreover, F is σα,β-stable for all α

as long as β = −1
2 ,−2

5 ,−3
8 (again by Lemma 2.11). Since να,β(Iξ)> να,β(E

∨[1]) for (α,β)
inside W, it follows that Iξ gets destabilized along W.

The situation can be visualized in Figure 1. Note that W crosses the hole in the (α,β)-

plane corresponding to the spherical bundle G of Mukai vector v(G) = (5,− 2L,5). We
will denote by σ0 the Bridgeland stability condition W ∩{β = −3

7 }.

Lemma 3.1. Let F ∈M(3,−L,2) and E ∈M. Then:

(1) F is destabilized along W ∩{β < −2
5 }, and E∨[1] is destabilized along W ∩{β > −2

5 }.

(2) There is an isomorphism ϕ :M
∼=−→M(3,−L,2).
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Figure 1. Wall W and hyperbolas of related objects.

Proof. Let E ∈M. Note that G ∈ Cohβ(S) for all β < −2
5 , and it is σα,β-stable for all α

if β = −1
2 ,−3

7 ; in particular, G and E∨[1] are σ0-stable of the same slope. It follows that

hom(E∨[1],G) = 0 = hom(G,E∨[1]), which gives ext1(E∨[1],G) = 〈v(E∨[1],v(G)〉= 1.

Therefore, there is a (unique) nontrivial extension

0→G→ ϕ(E)→ E∨[1]→ 0, (3.1)

and ϕ(E) must be σ-semistable for σ ∈{β= −3
7 } above σ0. Otherwise, for a σ-destabilizing

subobject R ⊂ ϕ(E) the composition R ↪→ ϕ(E) � E∨[1] would be nonzero (since G is

σ-stable), and σ0-stability of E∨[1] would force R ∼= E∨[1], which splits the extension
(3.1).

By σ-stability of ϕ(E), it follows that ϕ(E) ∈M(3,−L,2), and since this construction

can be carried out in families2, the assignment ϕ is a morphism of schemes. Furthermore,
the sequence (3.1) destabilizes ϕ(E) along W ∩{β < −2

5 }: G and E∨[1] are the factor of

the HN filtration of ϕ(E) for stability conditions along β = −3
7 that are below σ0.

By rotating the distinguished triangle, we obtain a short exact sequence

0→ ϕ(E)→ E∨[1]→G[1]→ 0

in Cohβ(S) (−2
5 ≤ β < −1

3 ), which destabilizes E∨[1] along W ∩{β > −2
5 }. The HN factors

of E∨[1] for stability conditions just below W ∩{β = −3
8 } will be precisely ϕ(E) and G[1].

On the other hand, starting with F ∈M(3,−L,2), one can construct an element ψ(F )∈
M arising as the (unique) nontrivial extension

0→ F → ψ(F )∨[1]→G[1]→ 0

(for the uniqueness of such an extension, we use again the stability of F and G[1] along
β = −3

8 ). By rotating the triangle, we can destabilize F along W ∩{β < −2
5 }.

2Let E be a universal bundle on S×M, and let p,q denote the two projections of S×M onto S
and M. By cohomology and base change, q∗(p

∗G⊗E) is a line bundle whose fiber at E ∈M
is canonically identified with Ext1(E∨[1],G). For an appropriate choice of E , we may assume
q∗(p

∗G⊗E) ∼= OM; then we obtain a unique (up to constant) morphism E∨ → p∗G, which
globalizes the construction above.
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The morphisms ϕ and ψ are inverse to each other, as easily follows from the uniqueness
of the HN filtrations of E∨[1], ϕ(E), F and ψ(F )∨[1] just below W. This concludes the

proof.

Now, we can prove the desired cohomological bound:

Proposition 3.2. For all E ∈M and ξ ∈ S[2], the inequality h1(E⊗Iξ)≤ 1 holds.

Proof. Assume that h1(E⊗Iξ)≥ 1, that is, there exists a short exact sequence

0→ F →Iξ → E∨[1]→ 0

destabilizing Iξ along W (with F ∈M(3,−L,2)). Consider the short exact sequence

0→G→ F → ψ(F )∨[1]→ 0 (3.2)

destabilizing F along W ∩{β < −2
5 }, constructed in the proof of Lemma 3.1. Then the

HN factors of Iξ (for stability conditions just below σ0) are G and T, where T is the
extension of E∨[1] by ψ(F )∨[1] obtained as the image of Iξ under the induced map

Ext1(E∨[1],F )−→ Ext1(E∨[1],ψ(F )∨[1]).

If E �= ψ(F ), of course we have T = E∨[1]⊕ψ(F )∨[1]; otherwise, T is a nontrivial

extension. Indeed, if E = ψ(F ), then the above map of Ext-groups is an isomorphism (as

follows from the long exact sequence obtained by applying the functor Hom(E∨[1],−) to
the sequence (3.2)).

In any case, since Hom(G,E∨[1]) = 0 (recall that G are E∨[1] are σ0-stable of the same

slope), we obtain that hom(Iξ,E∨[1]) = hom(T,E∨[1]) = 1.

Recall that the kernel bundle of any degree 3 map has c2 = 5 (Corollary 2.3). Hence,

the following lemma, together with Proposition 3.2, discards the existence of degree 3

maps and concludes the proof of the equality irrL(S) = 4:

Lemma 3.3. Let E ∈ M. Then there exists no V ∨ ∈ Gr(3,H0(E)) such that⋂
s∈V ∨ Zcycle(s) = 2p and

⋂
s∈V ∨ Z(s) = {p} (i.e., the intersection as zero cycles has

degree 2, whereas the schematic intersection of the zero loci of the sections is a reduced

point).

Proof. We argue by contradiction. Suppose that there exists V ∨ ∈Gr(3,H0(E)) such that⋂
s∈V ∨ Zcycle(s) = 2p and

⋂
s∈V ∨ Z(s) = {p}. According to Lemma 2.4, we can choose local

coordinates and local generators e1,e2 of E at p, such that the subsheaf E1 ⊂ E defined

by E1|S\p = E|S\p and E1 =mpe1+m2
pe2 in a neighborhood of p has V ∨ ⊂H0(E1), in

particular we get h0(E1) ≥ 3. Since the quotient E/E1 is a 4-dimensional vector space,

we get χ(E1) = 1 and hence h1(E1) = 2. Let us consider the double extension

0 O⊕2
S F E1 0.

It is easy to compute that h0(E1⊗k(p)) = 5 (E1 has xe1, ye1, x
2e2, xye2, y

2e2 as local

generators), hence F cannot be locally free at p. We get c2(F
∗∗)< c2(F ) = c2(E1) = 9. It
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suffices to prove that F ∗∗ must be stable since there exists no stable rank 4 vector bundle
with these invariants. To this end, consider the commutative diagram with exact rows

0 E∗
1 = E∨ V ⊗OS L

0 F ∗ W ⊗OS L

0 O⊕2
S O⊕2

S 0,

=

=

where V ∨ ∈ Gr(3,H0(E1)). The map W → H0(L) is injective; indeed, V → H0(L) is

injective (by stability of E ) and the extension defining F is nonsplit (none of the maps

OS → F in the definition of F split). It follows that H0(F ∗) = 0, which is enough to
conclude the stability of the kernel bundle F ∗ since Pic(S) =Z ·L (if T is a vector bundle

destabilizing F ∗, then T must be of the form O⊕rkT
S since T ↪→W ⊗OS , contradiction).

3.2. Determining W 2
4 (S,L)

In the notations of Remark 2.5, R2 is empty. Hence, ψ1 : S×M ∼= G1 → W 2
4 (S,L)5,1 is

an isomorphism. The following lemma shows that this is the unique component of the

Brill–Noether locus W 2
4 (S,L):

Lemma 3.4. If S ��� P2 is a rational map of degree 4, then the kernel bundle E has
c2(E) = 5.

Proof. By Corollary 2.3 the only other possibility is c2(E) = 6 and V ∨ ∈ Gr(3,H0(E))

with
⋂

s∈V ∨ Zcycle(s) of degree 2.
If

⋂
s∈V ∨ Z(s) is a reduced point, then by Lemma 2.4 in an appropriate trivialization

of E near p all sections s ∈ V ∨ are of the form s = ae1 + be2, with a ∈ mp \m2
p and

b ∈ m2
p. Since V =

∧2
V ∨, it follows that the base ideal I satisfies I ⊂ I3

p ; therefore,

colength(I) ≥ 7 (because I is generated by three elements). This implies that c2(E) =
L2− colength(I)≤ 5.

Hence, if c2(E) = 6, we must have h0(E⊗Iξ) ≥ 3 for some ξ ∈ S[2]. Consider now the

subsheaf E1 ⊂E generated by E⊗Iξ and Im(OS⊗H0(E)→E). The quotient E1/E⊗Iξ
is of length at most 2, since it is a principal Oξ-submodule in E/E⊗Iξ (it is generated

by a section in H0(E) \H0(E⊗Iξ)). This implies χ(E1) ≤ χ(E⊗Iξ)+2 = 2, and since

h0(E1) = 4, we obtain h1(E1)≥ 2. Now, the nontrivial extension

0 O⊕h1(E1)
S F E1 0

gives a stable torsion free sheaf F with Mukai vector v(F ) = (h1(E1)+2,L,2), which yields

a contradiction if h1(E1)≥ 2.
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3.3. An isomorphism of Hilbert schemes

Before we move to higher genera, let us use the framework provided by Bridgeland

stability to establish an isomorphism S[2] ∼=M[2] (already predicted by Yoshioka [Yos01]).

The arguments here will be useful in genus 11.

Proposition 3.5. The Hilbert schemes S[2] and M[2] are isomorphic.

Proof. Let us define a morphism γ :M[2] −→ S[2] as follows.
Given a reduced element of M[2], supported at two distinct E1,E2 ∈M, we consider

the object M fitting into an extension

0→G→M →E∨
1 [1]⊕E∨

2 [1]→ 0

such that the induced elements of Ext1(E∨
i [1],G) are nonzero. Due to the action of

automorphisms of E∨
1 [1]⊕E∨

2 [1], such an object M is unique up to isomorphism.

On the other hand, given a nonreduced element of M[2] supported at E ∈ M
with tangent direction T ∈ P(Ext1(E,E)), we consider the corresponding T̃ := T∨[1] ∈
P(Ext1(E∨[1],E∨[1])) and take the object M fitting into

0→G→M → T̃ → 0

such that the induced extension in Ext1(E∨[1],G) is nonzero. Again, such an object M is

unique up to isomorphism (due to the action of automorphisms of T̃ ).
Let us assume for a moment that, in both cases, the object M is of the form M = Iξ

for some ξ ∈ S[2] (we will prove it below). Then this rule defines the morphism γ, which

is injective on closed points (indeed, given M = Iξ in the image of γ, the corresponding

element of M[2] can be recovered from the last HN factor of M just below σ0). Therefore,
S[2] equals the image of γ (both M[2] and S[2] are projective of the same dimension).

Since γ is bijective on closed points and S[2] is normal, it follows that γ is an isomorphism.

Hence, it only remains to prove that the objects M constructed above are of the form
M = Iξ, ξ ∈ S[2]. Since there are no walls above W for the Mukai vector (1,0,− 1), it

suffices to check that M is σ′-semistable for some stability condition σ′ above W. We will

assume that M comes from a nonreduced element of M[2] (the reduced case being similar
but simpler).

Let σ′ be close enough to σ0 (above W ), and assume that M is not σ′-semistable. Since

M is σ0-semistable, any destabilizing subobject A⊂M is σ0-semistable of the same slope

as M.
The composition G ↪→M � M/A is either zero or injective since G is σ0-stable of the

same slope as M/A. In the first case, we have G ↪→A and hence A/G ↪→ T̃ . Consider the

composition A/G ↪→ T̃ � E∨[1]. By σ0-stability of E∨[1], this morphism is either zero or
surjective. If A/G→E∨[1] is zero then either A/G= 0 or A/G∼=E∨[1] = ker(T̃ �E∨[1])
(hence νσ′(A)< νσ′(M), contradiction); whereas if A/G ↪→ T̃ � E∨[1] is surjective, then
either A/G= T̃ (i.e., A=M , contradiction) or the extension 0→E∨[1]→ T̃ →E∨[1]→ 0
splits.

On the other hand, if G ↪→M/A is injective, one easily checks that A ↪→ T̃ . Now, we

consider the composition A ↪→ T̃ � E∨[1], which again will be either zero or surjective.
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If it is surjective, then either A ∼= T̃ (which splits 0 → G → M → T̃ → 0) or A ∼= E∨[1]
(which splits 0→ E∨[1]→ T̃ → E∨[1]→ 0). If A ↪→ T̃ � E∨[1] is zero, then A∼= E∨[1] =
ker(T̃ � E∨[1]) and the induced element in Ext1(E∨[1],G) is zero, which gives again a
contradiction.

Remark 3.6. Let E denote the universal vector bundle on S×M, and ΦE : Db(M)→
Db(S) the corresponding Fourier–Mukai equivalence. The isomorphism γ in Proposition
3.5 sends T ∈M[2] to the subscheme γ(T ) ∈ S[2] whose ideal sheaf sits in a distinguished

triangle 0→G→Iγ(T ) → ΦE(OT )
∨[1]→ 0.

4. Genus 9

Let (S,L) be a polarized K3 surface of genus 9 (i.e., L2 = 16) with Pic(S) = Z ·L.
Throughout this section, M will denote the Gieseker moduli space M(2,L,4).

We have irrL(S)≤ 5, as proved in [Mor23] by considering vector bundles E ∈M. Indeed,

h0(E⊗Ip) = 4 for every p ∈ S and, since c2(E) = 6, any three-dimensional vector space
V ∨ ⊂H0(E⊗Ip) produces a map ϕV : S ��� P2 of degree ≤ 5.

4.1. Constructing maps of degree 4 (I)

We start by constructing maps of degree 4, by considering pairs (E,ξ) ∈ M×S[2] such

that h1(E⊗Iξ)≥ 1 (i.e., h0(E⊗Iξ)≥ 3).
To this end, we consider the numerical wall W in the (α,β)-plane defined by the

Mukai vectors (−2,L,− 4) and (1,0,− 1). This wall intersects α = 0 at the points with

β-coordinates −1
2 and −1

4 ; in particular, for every ξ ∈ S[2] the ideal sheaf Iξ is semistable
along W, as an immediate application of Lemma 2.11. Furthermore, W crosses the

hole in the (α,β)-plane corresponding to the spherical bundle F with Mukai vector

v(F ) = (3,−L,3). Then:

1. If (E,ξ) ∈M×S[2] satisfies hom(Iξ,E∨[1]) = h1(E⊗Iξ)≥ 1, then any nonzero map

Iξ → E∨[1] defines a destabilizing short exact sequence

0→ F →Iξ → E∨[1]→ 0

for Iξ along W ∩ {β < −1
3 }. Moreover, since both F and E∨[1] are σ0-stable for

σ0 =W ∩{β = −2
5 } (this follows again from Lemma 2.11), the short exact sequence

above is the HN filtration of Iξ just below σ0. In particular, the morphism Iξ →E∨[1]
is unique (up to constant).

2. Conversely, it is easy to check that any nontrivial extension 0→ F →G→E∨[1]→ 0
of E∨[1] by F must be semistable above W. Therefore, G = Iξ for some ξ ∈ S[2],

since there are no actual walls for the Mukai vector (1,0,−1) above W.

According to the vanishings hom(F,E∨[1]) = 0 = hom(E∨[1],F ) (recall that F and
E∨[1] are σ0-stable of the same slope), we have

ext1(E∨[1],F ) = 〈v(E∨[1]),v(F )〉= 2.
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In other words, for a fixed E the isomorphism classes of such nontrivial extensions
are parametrized by a P1.

We can summarize this discussion as follows:

Proposition 4.1. The locus R2 = {(E,ξ) ∈ M×S[2] | h1(E⊗Iξ) ≥ 1} is a P1-bundle

over M, with a closed immersion R2 ↪→ S[2] defined by the second projection.

Let us also remark the following consequence of the above discussion:

Lemma 4.2. Let F be the spherical vector bundle with Mukai vector v(F ) = (3,−L,3).

Then for any ξ ∈ S[2], we have hom(F,Iξ)≤ 1.

Proof. This follows from the uniqueness of the HN filtration of Iξ just below σ0.

4.2. Discarding degree 3 maps

According to Proposition 2.1 and Corollary 2.3, a map S ��� P2 of degree 3 is equivalent
to a pair (E,V ∨) with E ∈M (i.e., c2(E) = 6, h0(E) = 6) and deg

(⋂
s∈V ∨ Zcycle(s)

)
= 3.

The base ideal I of such a map has

colength(I) = L2− c2(E) = 10.

Recall that Pic(M) = Z · L̂, where L̂ is a degree 4 polarization.

Lemma 4.3. There is an isomorphism

R3 = {(E,ξ) ∈M×S[3] | h1(E⊗Iξ)≥ 3}
∼= {(C,E,A) | C ∈ |L̂|,E ∈ C,A ∈ JC with h0(C,A⊗k(E))≥ 3}.

In particular, if (S,L) is very general among K3 surfaces of genus 9, we have h1(E⊗Iξ)≤
2 for every (E,ξ) ∈M×S[3].

Proof. The isomorphism is just a reformulation of Lemma 2.13. For the second part,
observe that the nonemptiness of R3 implies that some plane quartic of the linear system

|L̂| has a triple point, hence it is rational. If (S,L) is very general, then (M,L̂) must

be very general among quartic surfaces; but in that case a theorem of Chen [Che02]
ensures that all the rational curves in the linear system |L̂| must be nodal, which gives a

contradiction.

Remark 4.4. On the other hand, if Pic(S) =Z ·L and there is a curve with a triple point
in |L̂|, then the above discussion immediately yields W 2

3 (S,L) �= ∅. It would be interesting

to know whether such K3 surfaces may exist.

We are left to rule out the situation where the schematic intersection ξ :=
⋂

s∈V ∨ Z(s) is

of length ≤ 2 and
⋂

s∈V ∨ Zcycle(s) is of degree 3. First let us slightly simplify the situation:

Lemma 4.5. Under these assumptions, ξ is of length 2 and reduced.

Proof. If ξ is a reduced point p, then by Lemma 2.4 we have sp ∈mp ·e1+m3
p ·e2 for the

local equations of s∈ V ∨ in an appropriate trivialization Ep
∼= e1 ·OS,p⊕e2 ·OS,p. In view
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of the isomorphism V ∼=
∧2

V ∨, it follows that the base ideal I satisfies I ⊗OS,p ⊂m4
p

locally at p; this implies that the degree of the map is ≤ L2−16 = 0, contradiction.
Now, assume that ξ is not reduced, locally of the form (x,y2) at p = Supp(ξ). In

that case, by Lemma 2.4 we have sp ∈ (x,y2) · e1 + (x2,xy,y3) · e2 for all s ∈ V ∨ in an

appropriate trivialization Ep
∼= e1 · OS,p ⊕ e2 · OS,p of E near p. By the isomorphism

V ∼=
∧2

V ∨, it follows that the base ideal I satisfies I⊗ÔS,p ⊂ (x3,x2y,xy3,y5) locally at p.

Furthermore, since I has at most three local generators at p, we obtain colength(I)≥ 11,

contradiction.

We are now ready to prove:

Corollary 4.6. If (S,L) is a very general polarized K3 surface of genus 9, then
irrL(S) = 4.

Proof. In view of Lemma 4.3 and Lemma 4.5, the only possibility for a degree 3 map is

that
⋂

s∈V ∨ Z(s) is reduced, consisting of two distinct points p,q, and
⋂

s∈V ∨ Zcycle(s) =

2p+q. A new application of Lemma 2.4 yields V ∼=
∧2

V ∨ ⊂H0(L⊗I3
p ⊗I2

q ). We deduce

h1(L⊗I3
p ⊗I2

q ) = 2, hence we may consider the stable extension

0 O⊕2
S G L⊗I3

p ⊗I2
q 0.

It is easy to see that G is not locally free at p (G has rank 3, whereas L⊗I3
p ⊗I2

q has

four local generators). Hence, G ⊂ G∗∗ is a nontrivial subsheaf, in particular c2(G
∗∗) <

c2(G) = 9, whereas on the other hand we have c2(G
∗∗) ≥ 8 since G∗∗ is stable (stability

follows from the fact that G∗ is a kernel bundle, with a proof similar to the stability of

F ∗ in the proof of Lemma 3.3). This forces G∗∗ to be the spherical vector bundle with

v(G∗∗) = (3,L,3).

Moreover, G∗∗ fits in a commutative diagram with exact rows and columns

0 0

0 O⊕2
S G L⊗I3

p ⊗I2
q 0

0 O⊕2
S G∗∗ L⊗J 0

k(p) k(p)

0 0,

=

=

where J is an ideal of colength 8 such that J /I3
p ⊗I2

q
∼= k(p), hence it must have 3

local generators at both p and q. This implies that the map O⊕2
S → G∗∗ vanishes at p
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and q, hence h0(G∗∗ ⊗Ip,q) ≥ 2 which is a contradiction to Lemma 4.2. The proof is

complete.

4.3. Constructing maps of degree 4 (II)

Here, we are going to present another construction of degree 4 maps, eventually leading

to an irreducible component of W 2
4 (S,L) which is different from the P1-bundle R2 over

M that we described in subsection 4.1.

The idea is the following: given a nonreduced ξ ∈ S[2] (supported at p ∈ S) and E ∈M
such that h1(E⊗Iξ) = 1, we want to find suitable local generators e1,e2 of E around
p such that the subsheaf Ẽ ⊂ E locally defined as mpe1+m2

pe2 (and coinciding with E

elsewhere) has 3 global sections. One would expect the base locus of
∧2

H0(E⊗Iξ) to be

I2
ξ at p, whereas the base locus of

∧2
H0(Ẽ) is locally contained in m3

p. Hence, the two

constructions should produce different rational maps, as we will indeed check.

Let us denote by πM : M×S[2] → M the canonical projection, by S
[2]
nred ⊂ S[2] the

divisor of nonreduced subschemes and by πS : M× S
[2]
nred → S the map sending a

nonreduced subscheme to its support. Finally, for any E ∈ M let us denote by P1
E the

immersion P1
E = P

(
Ext1(E∨[1],F )

)
↪→ S[2] (recall Proposition 4.1).

We need a preliminary lemma on the divisor

R2 = {(E,ξ) ∈M×S[2] | h1(E⊗Iξ)≥ 1}=
⋃

E∈M
P1
E ↪→ S[2]

constructed in Proposition 4.1.

Lemma 4.7. The intersection

{(E,ξ) ∈M×S[2] | ξ is nonreduced and h1(E⊗Iξ) = 1}

of R2 with the divisor S
[2]
nred of nonreduced subschemes is two-dimensional (and not

empty). Furthermore, there is an irreducible component WS ⊂ R2 ∩S
[2]
nred such that the

two projections πM :WS →M and πS :WS → S are surjective.

Proof. First, let us show that R2 �⊂ S
[2]
nred. Assume the contrary. If πS(P

1
E) is a point for

every E ∈M, then we get an injective map M→ S which is a contradiction. Otherwise,

πS(P
1
E) defines a rational curve on S moving with E, contradicting the rigidity of rational

curves on S.

Now, let us show that the intersection is nonempty (then it will be automatically two-

dimensional). For the general E ∈M, consider the degree 2 map DE → P1
E , where

DE := {(ξ,p) ∈ P1
E ×S | p ∈ supp(ξ)}.

We claim that this degree 2 map must have a branch point. If DE is irreducible, this

follows from Hurwitz formula. Otherwise, DE consists of two rational components; thus
the image of the natural map DE → S produces two rational curves on S. Since rational

curves on S are rigid, it follows that this image (moving E ) is a fixed curve C with (at

most) two rational components. But the locus of length 2 subschemes supported at C
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is two-dimensional, hence R2 can’t be contained in this locus (recall that R2 is three-

dimensional), which gives the contradiction.

Now, consider a component WS ⊂ R2∩S
[2]
nred such that the projection πM :WS →M

is surjective. This exists, since we just proved that DE is irreducible for E ∈M general

(hence P1
E contains a nonreduced subscheme). The general fiber of the map πS :WS → S

consists of nonreduced subschemes supported at a general point p, hence it is contained
in a rational curve. We deduce that if the general fiber of πS is positive-dimensional, then

WS is covered by rational curves (the fibers of πS); hence, M is covered by rational curves

(recall that WS →M is dominant), contradiction. It follows that WS → S is surjective,
as desired.

Now, we give the new construction of rational maps of degree 4:

Lemma 4.8. There is a morphism WS →W 2
4 (S,L) generically finite onto its image.

Proof. For any (nonreduced) ξ ∈WS , we have an associated E with h1(E⊗Iξ) = 1. We

may consider the extension

0−→ E∨ −→ F −→ Iξ −→ 0

and the subsheaf E1 := Im(F∨ →E)⊂E. By numerical reasons, we get length(E/E1) =

c2(F
∨)− c2(E) = 2, and also E⊗Iξ ⊂ E1; indeed, by applying the functor Hom(−,OS)

to the sequence above we get that E1 is the kernel of E →Ext1(Iξ,OS) =Oξ. Moreover, if
p= supp(ξ), then E1⊗k(p) is three-dimensional since E1 is a quotient of a rank 3 locally

free sheaf. It is then easy to deduce that (E1)p = e1 · OS,p+ e2 · Iξ for some e1,e2 local

generators of Ep.
Note that h1(E1) = 1 (since h1(F∨) = h2(F∨) = 0). It follows that the subsheaf Ẽ ⊂E1

defined as Ẽp = e1 ·mp + e2 ·m2
p around p (and Ẽq = Eq for q �= p) satisfies h1(Ẽ) ≥ 1

(since Ẽ ⊂ E1). Actually, a quick numerical check gives h1(Ẽ) = 1 and χ(Ẽ) = 2, hence

h0(Ẽ) = 3. The subspace H0(Ẽ) ⊂ H0(E) induces a map of degree ≤ 4 by Proposition

2.1 (all sections are vanishing with order 2 at p).
The corresponding morphism WS → W 2

4 (S,L) has image of dimension 2, since πM :

WS →M is surjective and equals the composition

WS −→W 2
4 (S,L)6 −→M,

where W 2
4 (S,L)6 parametrizes maps of degree ≤ 4 having kernel bundle with c2 = 6

(this is the notation in the preliminaries), and the right arrow is the forgetful map

(E,V ∨) 
→ E.

Now, we show that the image of WS → W 2
4 (S,L) is not contained in R2 ⊂ W 2

4 (S,L).
Namely, the above construction really yields new maps of degree 4:

Proposition 4.9. The locus Im(WS)⊂W 2
4 (S,L) is not contained in R2 ⊂W 2

4 (S,L).

Proof. Recall that a rational map S ��� P2 induced by the primitive linear system

is completely determined by the couple (E,V ∨). We have (E,V ∨) ∈ R2 if and only if
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V ∨ =H0(E⊗Iζ) for some ζ ∈ S[2]. Assume that H0(Ẽ) =H0(E⊗Iζ), where (following

the notation of Lemma 4.8) Ẽ is constructed from a nonreduced ξ ∈WS .
If ζ is reduced, then all sections of H0(E⊗Iζ) vanish with order 2 at the point where

ξ is supported. Hence,
⋂

s∈V ∨ Zcycle(s) is of degree ≥ 3, which by Proposition 2.1 implies

that (E,V ∨) ∈W 2
3 (S,L), in contradiction to Corollary 4.6.

Now, suppose that ζ is nonreduced. We get that ζ is supported at the point p where
Ẽ is not locally free. This implies that all the sections in V ∨ are locally contained in the

subsheaf e1 · Iζ +e2 ·m2
p of E ; in particular, we get h0(E⊗I2

p)≥ 2. In order to finish the

proof, it suffices to prove the following claim: For a general point p ∈ S, there is no vector
bundle Ep ∈M such that h0(Ep⊗I2

p) = h1(Ep⊗I2
p) = 2.

Observe that such a bundle Ep ∈M is a singular point of the curve

CI2
p
= {E ∈M | h1(E⊗I2

p)≥ 1},

which has arithmetic genus 3 (recall Lemma 2.13). Therefore, if the claim is false one

can consider the rational map S ��� M sending a general p ∈ S to the unique singular
point of CI2

p
(note that if CI2

p
has at least two singular points for every p ∈ S, then

{CI2
p
}p∈S defines a two-dimensional family of curves on M with geometric genus ≤ 1,

contradiction). This rational map actually extends to a morphism S → M; indeed, the
finite birational morphism

{(p,E) ∈ S×M | h0(E⊗I2
p)≥ 2} −→ S

must be an isomorphism, by normality of S. Now, the morphism S → M is étale by

Hurwitz formula, which contradicts the fact that M is simply connected. This finishes

the proof.

5. Genus 11

Let (S,L) be a polarized K3 surface of genus 11 with Pic(S) ∼= Z ·L, and let M denote

the (fine) moduli space M(2,L,5). Any E ∈M has h0(E) = 7 and c2(E) = 7. For every

ξ ∈ S[2], considering H0(E⊗Iξ)⊂H0(E) one can construct maps S ��� P2 of degree ≤ 5.
In particular, W 2

5 (S,L) has (a birational copy of) S[2]×M as a component. Its singular

locus determines the component of W 2
4 (S,L) that we will describe; see Remark 2.5.

5.1. Constructing maps of degree 4

Our first goal is to construct rational maps of degree 4 (and to determine the component

of W 2
4 (S,L) obtained from this construction). We can do this thanks to:

Proposition 5.1. For every E ∈ M, there exists a unique ξ ∈ S[3] such that

h1(E ⊗ Iξ) ≥ 2. In particular, W 2
4 (S,L) admits an irreducible component isomorphic

to M.

The arguments for proving this proposition rely on Bridgeland stability. Along the

proof, we will determine several explicit isomorphisms between moduli spaces of Gieseker
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stable sheaves on S and punctual Hilbert schemes on M. In particular, we will construct
an isomorphism

M[3] ∼=−→M(1,0,−2) = S[3].

Under this isomorphism, the unique ξ ∈ S[3] such that h1(E⊗Iξ)≥ 2 corresponds to the

unique noncurvilinear element of M[3] which is supported on E.
Consider ξ ∈ S[3] and E ∈ M. The numerical wall W defined by E∨[1] and Iξ has

endpoints β = −1
2 and β = −2

5 . Since Iξ (resp. E∨[1]) is σα, −1
2
-stable (resp. σα, −2

5
-stable)

for every α> 0 by Lemma 2.11, it follows that both Iξ and E∨[1] are semistable along W.
Furthermore, there is a hole along W created by the spherical bundle G with v(G) =

(7,− 3L,13) (so that W =W (Iξ,E∨[1]) =W (G,E∨[1])). Finally, we also note that both

E∨[1] and G are σα, −4
9
-stable for every α > 0; we will write σ0 :=W ∩{β = −4

9 }.
As usual, any nonzero morphism Iξ →E∨[1] is a surjection in Cohβ(S) (−1

2 ≤ β < −1
3 ),

defining a destabilization of Iξ along W. In order to understand the possible number of

morphisms Iξ →E∨[1], we also need to control the possible HN filtrations of Iξ below W.

As in genus 7, we achieve this by establishing several isomorphisms of (Hilbert schemes
of) moduli spaces. For instance, the same arguments as in Lemma 3.1 prove:

Lemma 5.2. There is an isomorphism M
∼=−→M(5,−2L,8) sending a bundle E ∈M to

the (unique up to isomorphism) sheaf P fitting in a nontrivial extension

0→G→ P →E∨[1]→ 0.

The inverse is obtained by sending P ∈M(5,−2L,8) to (the shift of the derived dual of)

its last HN factor for stability conditions just below σ0.

Remark 5.3. By rotating the distinguished triangle, 0→ P →E∨[1]→G[1]→ 0 defines

a destabilization of E∨[1] along W ∩{β > −3
7 }.

With similar arguments to those of Proposition 3.5, one obtains:

Lemma 5.4. There is an isomorphism M[2]
∼=−→M(3,−L,3).

Finally, one more step in this construction yields our desired isomorphism of Hilbert

schemes:

Lemma 5.5. There is an isomorphism γ :M[3]
∼=−→M(1,0,−2) = S[3].

Proof. The proof is similar to that of Proposition 3.5. We define the morphism γ as

follows.

Given a reduced element of M[3], supported at E1,E2,E3 ∈M, we consider the object
M fitting into an extension

0→G→M → E∨
1 [1]⊕E∨

2 [1]⊕E∨
3 [1]→ 0

such that the induced elements in Ext1(E∨
i [1],G) are nonzero. Such an M is unique up

to isomorphism (due to the action of automorphisms of E∨
1 [1]⊕E∨

2 [1]⊕E∨
3 [1]), and of

https://doi.org/10.1017/S1474748024000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000525


650 F. Moretti and A. Rojas

the form M = Iξ for some ξ ∈ S[3] (indeed M is semistable above σ0, by arguing as in
Proposition 3.5).

If our element of M[3] consists of a tangent direction T ∈ P(Ext1(E1,E1)) at E1 and a

reduced point E2, we consider T̃ := T∨[1] ∈ P(Ext1(E∨
1 [1],E

∨
1 [1])) and take the object M

fitting into

0→G→M → T̃ ⊕E∨
2 [1]→ 0

such that the induced elements in Ext1(E∨
1 [1],G) and Ext1(E∨

2 [1],G) (the former via the

map Ext1(T̃ ⊕E∨
2 [1],G)→Ext1(T̃ ,G)→Ext1(E∨

1 [1],G)) are nonzero. Again, M is unique

up to isomorphism and of the form M = Iξ for some ξ ∈ S[3].
Finally, given a tangent direction T ∈ P(Ext1(E∨[1],E∨[1])) at E ∈ M, it is well

known that all elements of M[3] supported at E and containing T are parametrized by

P(Ext1(T,E)). Given such a Q ∈ P(Ext1(T,E)), consider the corresponding Q̃ :=Q∨[1] ∈
P(Ext1(E∨[1],T∨[1])) and take the object M sitting in an extension

0→G→M → Q̃→ 0

such that the induced element in Ext1(E∨[1],G) (via the map Ext1(Q̃,G) →
Ext1(T∨[1],G)→Ext1(E∨[1],G)) is nonzero. Again, M is unique and of the form M = Iξ,
for some ξ ∈ S[3].
The morphism γ is injective on closed points, and hence, arguing as in the proof of

Proposition 3.5, we obtain that γ is an isomorphism.

Now, we have all the ingredients to prove Proposition 5.1:

Proof of Proposition 5.1. Given ξ ∈ S[3] and E′ ∈ M, we want to determine the

number hom(Iξ,E′∨[1]) = h1(E′⊗Iξ). To this end, we consider the HN filtration

0→G→Iξ → F → 0

of Iξ for stability conditions just below σ0, established in Lemma 5.5. The object F

is nothing but F = ΦE(Oγ−1(ξ))
∨[1], where ΦE : Db(M) → Db(S) is the Fourier–Mukai

equivalence with kernel the universal bundle E on S×M.
Due to the vanishing Hom(G,E′∨[1]) = 0, we have equalities

HomDb(S)(Iξ,E′∨[1]) = HomDb(S)(F,E
′∨[1]) =

= HomDb(S)(ΦE(Oγ−1(ξ))
∨[1],ΦE(k(E

′))∨[1]) = HomDb(M)(k(E
′),Oγ−1(ξ)).

If E′ /∈ suppγ−1(ξ), it immediately follows that hom(Iξ,E′∨[1]) = 0.

On the other hand, if E′ ∈ suppγ−1(ξ), then the equality

hom(k(E′),Oγ−1(ξ)) = ext1(k(E′),Oγ−1(ξ))−1 = ext1(Oγ−1(ξ),k(E
′))−1

holds; indeed, it is a consequence of the equalities ext2(k(E′),Oγ−1(ξ)) =

hom(Oγ−1(ξ),k(E
′)) = 1 and χ(k(E′),Oγ−1(ξ)) = 0.
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Therefore, by applying Lemma 2.6 we obtain

hom(Iξ,E′∨[1]) =

{
1 if γ−1(ξ) is curvilinear at E′

2 if γ−1(ξ) is not curvilinear at E′.

In particular, for a given E ∈M, there exists a unique ξ ∈ S[3] such that h1(E⊗Iξ) = 2;

it is nothing but the image under γ of the unique noncurvilinear length 3 subscheme
supported at E ∈M. This concludes the proof of the proposition.

5.2. Discarding maps of degree 3 (I)

In view of Corollary 2.3, every degree 3 map S ��� P2 arises from V ∨ ∈ Gr(3,H0(E)),

where E ∈ M and deg
(⋂

s∈V ∨ Zcycle(s)
)
= 4. In this subsection, we discard the case

where the schematic intersection
⋂

s∈V ∨ Z(s) is of length 4, by means of the following:

Proposition 5.6. For all E ∈M and ξ ∈ S[4], the inequality h0(E⊗Iξ)≤ 2 holds.

In order to prove this result, we perform a Bridgeland analysis which has many

symmetries with that of the previous subsection. In this case, the numerical wall W

defined by E∨ and Iξ has endpoints β = −3
5 and β = −1

2 . Any nonzero morphism E∨ →Iξ
is an injection in Cohβ(S) (−3

5 ≤ β < −1
2 ), which destabilizes Iξ along W .

The wall W has a hole created by the spherical bundle G with v(G) = (7, − 4L,23).

Moreover, E∨,G[1] ∈ Coh
−5
9 (S) are σα, −5

9
-stable for every α > 0; let us write σ0 :=W ∩

{β = −5
9 }.

Again, by exploiting the σ0-stability of E∨ and G[1] and the fact that ext1(G[1],E∨)= 1,

one can construct several isomorphisms of (Hilbert schemes of) moduli spaces:

Lemma 5.7. Let σ′ be a stability condition above W , close enough to σ0. Then there are

isomorphisms:

(1) M(2,−L,5)
∼=−→Mσ′(−5,3L,−18).

(2) M(2,−L,5)[2]
∼=−→Mσ′(−3,2L,−13).

(3) M(2,−L,5)[3]
∼=−→Mσ′(−1,L,−8).

(4) γ :M(2,−L,5)[4]
∼=−→Mσ′(1,0,−3) = S[4].

Proof. The arguments are similar to those of the previous subsection. For instance, in

(1) one sends M ∈ M(2, −L,5) to the isomorphism class of the object P sitting in a

nontrivial extension 0→M → P →G[1]→ 0.

Remark 5.8. Let (S,L) be a polarized K3 surface of genus g, Pic(S) = Z ·L. The

isomorphisms of Hilbert schemes S[2] ∼=M(2,L,3)[2] (in genus 7) and S[3] ∼=M(2,L,5)[3],
S[4] ∼= M(2,L,5)[4] (in genus 11) can be generalized, with similar arguments, to the

following statement: If g = 4n−1, then there are isomorphisms S[n] ∼=M(2,L,2n−1)[n],

S[n+1] ∼=M(2,L,2n−1)[n+1].
This can be thought of as a reinterpretation, in terms of Bridgeland stability, of an

isomorphism of moduli spaces of sheaves on S and a Fourier–Mukai partner, which is due

to Yoshioka and holds in broader generality ([Yos01, Theorem 7.6]).
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Now, we can prove Proposition 5.6 with similar arguments to those of Proposition 5.1:

Proof of Proposition 5.6. Given ξ ∈ S[4] and E′ ∈ M, we want to determine the
number hom(E′∨,Iξ) = h0(E′⊗Iξ). We will use the isomorphism γ of the previous lemma,

together with the fact that E′∨ ∈M(2,−L,5). Consider the HN filtration

0→ F →Iξ →G[1]→ 0

of Iξ for stability conditions just below σ0; the factor F is determined by γ−1(ξ). Indeed,
one has F =ΦE(Oγ−1(ξ)), where E denotes the universal bundle on S×M(2,−L,5) and

ΦE : Db(M(2,−L,5))→Db(S) is the corresponding Fourier–Mukai equivalence.

Due to the vanishing Hom(E′∨,G[1]) = 0, we have

HomDb(S)(E
′∨,Iξ) = HomDb(S)(E

′∨,F ) = HomDb(S)(ΦE(k(E
′∨),ΦE(Oγ−1(ξ))) =

= HomDb(M(2,−L,5))(k(E
′∨),Oγ−1(ξ)).

If E′∨ /∈ suppγ−1(ξ), the vanishing hom(E′∨,Iξ) = 0 follows.

On the other hand, if E′∨ ∈ suppγ−1(ξ), we have the equality

hom(k(E′∨),Oγ−1(ξ)) = ext1(k(E′∨),Oγ−1(ξ))−1 = ext1(Oγ−1(ξ),k(E
′∨))−1

(following from ext2(k(E′∨),Oγ−1(ξ)) = hom(Oγ−1(ξ),k(E
′∨)) = 1 and χ(k(E′∨),

Oγ−1(ξ)) = 0). Therefore, by applying Lemma 2.6 we deduce that

hom(E′∨,Iξ) =
{
1 if γ−1(ξ) is of complete intersection at E′∨

2 if γ−1(ξ) is not of complete intersection at E′∨

which finishes the proof.

Furthermore, the analysis performed in the proof of Proposition 5.6 yields the following:

Corollary 5.9. Let E ∈M. Then:

(1) The jump locus {ξ ∈ S[4] | h0(E⊗Iξ)≥ 2} is isomorphic to BlE(M).

(2) Under this isomorphism, every ξ ∈S[4] in the exceptional divisor of BlE(M) satisfies

h0(E′⊗Iξ) = 0 for all E′ ∈M\{E}.

5.3. Discarding maps of degree 3 (II)

In this subsection, we complete the proof of the emptiness of W 2
3 (S,L). Assume given a

map φV : S ��� P2 of degree 3, defined by V ∨ ∈Gr(3,H0(E)) for E ∈M. The base ideal I
of the linear system V ⊂H0(L) has colength L2−c2(E) = 13, and deg

(⋂
s∈V ∨ Zcycle(s)

)
=

4; according to Proposition 5.6, the schematic intersection ξ :=
⋂

s∈V ∨ Z(s) must be of

length ≤ 3.

Lemma 5.10. Under these assumptions, the schematic intersection ξ has length 3.

Proof. If ξ consists of a reduced point p ∈ S, then by Lemma 2.4 there is a local

trivialization Ep
∼= e1 · OS,p ⊕ e2 · OS,p of E near p such that sp ∈ mpe1 +m4

pe2 for
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every s ∈ V ∨. This implies I ⊂ I5
p and hence colength(I) ≥ colength(I5

p) = 15, which

is a contradiction.
Assume now that ξ is of length 2, supported at two distinct points p and q. If⋂
s∈V ∨ Zcycle(s) = 2p+2q, then by Lemma 2.4 one has sp ∈mpe1+m2

pe2 for all s ∈ V ∨,
in an appropriate trivialization of E near p; therefore, I ⊂ I3

p , and since I has (at

most) three local generators at p, it follows that colength(I,p) ≥ 7. Similarly, we have
colength(I,q)≥ 7, hence colength(I)≥ 14 which is impossible.

On the other hand, if
⋂

s∈V ∨ Zcycle(s) = 3p+ q, a similar use of Lemma 2.4 yields

I ⊂ I4
p ∩I2

q ; since I has three generators at p, we have colength(I,p)≥ 12 and therefore
colength(I)≥ colength(I,p)+colength(I,q)≥ 15, contradiction.

It only remains to discard the situation where ξ is nonreduced of length 2, supported

at a point p. In this case, by Lemma 2.4 we can find (in appropriate local coordinates)
generators e1,e2 of E around p such that sp ∈ (x,y2)e1+(x2,xy2,y4)e2 for every s ∈ V ∨.
Under the isomorphism V ∼=

∧2
V ∨, this implies that I ⊂ (x3,x2y2,xy4,y6) locally at p;

since I has at most three generators at p, it follows that colength(I,p)≥ 14, which gives

a contradiction.

Apart from having a schematic intersection ξ =
⋂

s∈V ∨ Z(s) of length 3, we can reduce

to a more concrete situation:

Lemma 5.11. Let p ∈ S be the point where cycle(ξ) and
⋂

s∈V ∨ Zcycle(s) differ. Then ξ
is reduced at p.

Proof. Let us first show that ξ is curvilinear. Assume for the sake of a contradiction that

ξ is not curvilinear, namely Iξ = I2
p . Since h0(E⊗Iξ) ≥ 3, we have h1(E⊗Iξ) ≥ 2 and

we can consider a stable sheaf F arising as a double extension

0−→O⊕2
S −→ F −→ E⊗I2

p −→ 0.

Note that v(F ) = (4,L,1). Since E⊗I2
p ⊗k(p) is a six-dimensional (E⊗I2

p has six local

generators at p), it follows that the minimal number of generators of F at p is at least
six. This implies that the reflexive hull F ∗∗ of F has Mukai vector v(F ∗∗) = (4,L,k) with

k ≥ 3, hence v(F ∗∗)2 ≤−4 which contradicts the stability of F ∗∗.
Now, we only need to rule out the scenario where ξ is of the form (x,ym) locally at p for

m ∈ {2,3}. In that case, by Lemma 2.4 we have sp ∈ (x,ym) ·e1+(x2,xy,ym+1) ·e2 for all
s∈V ∨ in an appropriate trivialization Ep

∼= e1 ·OS,p⊕e2 ·OS,p. In view of the isomorphism

V ∼=
∧2

V ∨, it follows that the base ideal I satisfies I ⊗ ÔS,p ⊂ (x3,x2y,xym+1,y2m+1)

locally at p; furthermore, recall that I has at most three local generators at p.
For m= 3, this implies that colength(I,p)≥ 14, which is a contradiction.

For m = 2, this implies that colength(I,p) ≥ 11. If q �= p is the other point where ξ

is supported, then colength(I,q) ≥ 3; hence, colength(I) ≥ 14, and again we obtain a
contradiction.

The last ingredient we need to derive a contradiction from this situation is the following

lemma:
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Lemma 5.12. Let ξ ∈ S[3] be a length 3 subscheme, which is reduced at p ∈ S. Then the
locus

Cp,ξ := {E′ ∈M | ∃s ∈H0(E′⊗Iξ)\{0} such that Z(s) has length ≥ 2 at p}

describes a curve in the linear system |L̂|, where Pic(M) = Z · L̂.

Proof. Let us denote by ζ the (length 2) residual subscheme of p in ξ. Let E be a universal

bundle on S×M, defining a Fourier–Mukai equivalence Φ̃E := ΦS→M
E : Db(S)→Db(M).

The first observation is that, for an appropriate choice of E (obtained by twisting E
with the pullback of a line bundle on M), we have R0Φ̃E(Iξ)∼=OM. This can be deduced
from the following facts:

• v(Φ̃E(Iξ)) = (1,0,−2) (see, e.g., [Yos01, Lemma 7.2] or [Mac17, Proposition 15]).

• R1Φ̃E(Iξ) = Ext2(Oγ−1(ξ),OM), where γ : M[3] → S[3] is the isomorphism of
Lemma 5.5. Indeed, to prove this equality one simply applies the Fourier-Mukai
functor Φ̃E to the distinguished triangle

0→G→Iξ → ΦM→S
E (Oγ−1(ξ))

∨[1]→ 0

(see the proof of Proposition 5.1), and uses that ΦM→S
E (·∨)∨ is the quasi-inverse

of Φ̃E .

The unique (up to constant) global section of R0Φ̃E(Iξ) ∼= OM restricts, at a point

E′ ∈M\γ−1(ξ), to the unique section of H0(S,E′⊗Iξ). We will denote by s̃ ∈H0(S×
M,π∗

1(Iξ)⊗E) the corresponding section, where π1 : S×M→ S is the first projection.

Locally, at a point E′ ∈ M, the locus Cp,ξ is given as follows. Fix x,y local analytic

coordinates of S around p, z,w local coordinates of M around E′ and a local trivialization
of E around (p,E′) ∈ S×M. Then s̃ has a local expression

(a1(z,w) ·x+ b1(z,w) ·y+O(x,y)2,a2(z,w) ·x+ b2(z,w) ·y+O(x,y)2)

and Cp,ξ is locally given by the equation a1b2−a2b1 = 0.

To determine the class of the curve Cp,ξ, we pick a basis w1,w2 of the tangent space
TpS at p. For i= 1,2, the section s̃ gives rise to a section

s̃i ∈H0(S×M,π∗
1

(
Iξ/(Iζ ⊗I[wi])

)
⊗E) =H0(M,R0Φ̃E

(
Iξ/(Iζ ⊗I[wi])

)
).

Now, observe that Iξ/(Iζ ⊗I[wi]) is isomorphic (as an OS-module) to the skyscraper

sheaf k(p); this isomorphism is canonical (up to constant), defined via wi. We obtain an

isomorphism

R0Φ̃E
(
Iξ/(Iζ ⊗I[wi])

) ∼=R0Φ̃E (k(p)) = Φ̃E(k(p)) = Ep

given by wi, where Ep ∼= E|{p}×M is the vector bundle on M defined by the point p ∈ S.

The curve Cp,ξ is then defined as the zero locus of s̃1∧ s̃2 ∈H0(
∧2 Ep). Since v(Ep) =

(2,L̂,5) (see again [Mac17, Proposition 15])), we have
∧2 Ep = L̂ and the assertion follows.
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Now, we can conclude the proof of the nonexistence of degree 3 maps. For this last
argument, the assumption Pic(S) = Z ·L is not enough; we will also assume that (S,L) is

general among K3 surfaces of Picard rank 1.

Proposition 5.13. If (S,L) is general among K3 surfaces of Picard rank 1, then there

exists no V ∨ ∈ Gr(3,H0(E)) such that
⋂

s∈V ∨ Zcycle(s) = 2p+ q+ r (with p �= q,r) and⋂
s∈V ∨ Z(s) is of length 3 and reduced at p.

Proof. We argue by contradiction. As in the proof of Lemma 5.12, we denote by ζ the

(length 2) residual subscheme of p in
⋂

s∈V ∨ Z(s); in the notations of the statement, we
have ζ = q+ r with q,r two (possibly infinitely near) points.

First, notice that for any length 2 subscheme η ∈ P(TpS) nonreduced at p, the

inequality h0(E⊗Iη∪ζ) ≥ 2 holds; this follows from Lemma 2.4. Hence, the subschemes
{η∪ ζ | η ∈ P(TpS)} describe a smooth rational curve in the jump locus BlE(M) ⊂ S[4]

of Corollary 5.9. We claim that this curve is the exceptional divisor in BlE(M); in

particular, by Corollary 5.9.(2) this will imply that h0(Ẽ⊗Iη∪ζ) = 0 for any η ∈ P(TpS)
and Ẽ ∈M\ {E}.
In order to prove the claim, assume that the curve is not the exceptional divisor. Then

its image R in M is a rational curve, describing a component of the curve

Cp,ξ := {E′ ∈M | ∃s ∈H0(E′⊗Iξ)\{0} such that Z(s) has length ≥ 2 at p}.

The curve Cp,ξ lies in the primitive linear system |L̂| of M by Lemma 5.12, hence R =

Cp,ξ ∈ |L̂| and pa(R) = 11. This yields a contradiction since on the one hand R can only

be singular at E ∈ M, whereas on the other hand every rational curve in |L̂| is nodal
under our generality assumptions on (S,L) (hence on (M,L̂)) by Chen’s result [Che02].

Now, we start the analysis. Under our hypotheses, we get V =
∧2

V ∨ ⊂H0(L⊗I3
p⊗I2

ζ ).

Given z,w local coordinates at p, consider for every λ ∈ C the colength 4 ideal Jλ :=
(z(z+λw),w(z+λw),w3)⊃ I3

p . Since V ⊂H0(L⊗Jλ⊗I2
ζ ), we get h1(L⊗Jλ⊗I2

ζ )≥ 1.

Given λ∈C, we consider any nontrivial extension Ẽλ of L⊗Jλ⊗I2
ζ by OS and complete

it to a commutative diagram with exact rows and columns:

0 0

0 OS Ẽλ L⊗Jλ⊗I2
ζ 0

0 OS Ẽ∗∗
λ Ẽ∗∗

λ /OS = L⊗IZ(s′λ)
0

Ẽ∗∗
λ /Ẽλ IZ(s′λ)

/Jλ⊗I2
ζ 0

0 0

sλ

=

s′λ

=

https://doi.org/10.1017/S1474748024000525 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000525


656 F. Moretti and A. Rojas

Here, sλ denotes the section in H0(Ẽλ) induced by the extension, and s′λ is the section

corresponding to sλ under the inclusion H0(Ẽλ)⊂H0(Ẽ∗∗
λ ). Now, observe that Z(s′λ) is

of local complete intersection at every point; this implies that Z(s′λ) has length ≤ 7 (here

we use that any local complete intersection ideal sheaf containing I2
ζ has colength ≤ 4).

On the other hand, by stability of E∗∗
λ we have 7≤ c2(E

∗∗
λ ) = lengthZ(s′λ).

Therefore, we deduce that Z(s′λ) has length 7 and Zcycle(s
′
λ)= 3p+2q+2r. In particular,

s′λ vanishes at ηλ∪ζ for a certain ηλ ∈P(TpS); it follows from the observation in the second

paragraph of this proof that E∗∗
λ = E (and hence s′λ ∈ V ∨ =H0(E⊗Ip∪ζ)).

Moreover, for any λ �= μ and any choice of extensions, the corresponding sections s′λ,s
′
μ

are not proportional since they vanish at a different subscheme at p. Indeed, any colength

3 complete intersection ideal containing Jλ must be of the form (z+λw+ εw2,w3) for

some ε.
Hence, varying sλ algebraically with λ (and taking closure), we can construct an

effective divisor C ⊂ P(V ∨) of sections whose zero loci are supported in {p,q,r}.
Now, recall that, if T denotes the base locus of the rational map S ��� P(V ∨), then the

fiber of S \T −→ P(V ∨) over [s] ∈ P(V ∨) is given by Z(s)∩ (S \T ) (see Proposition 2.1).
It follows that the morphism factors through

S \T −→ P(V ∨)\C;

in particular, we have a generically finite morphism from S minus a finite set of points
to an affine variety, which is a contradiction.

6. Genus 13

In this section, we study a very general polarized K3 surface (S,L) of genus 13 (which

in particular implies Pic(S) = Z ·L). In [Mor23], it was proven that irrL(S) ≤ 6. We are
going to improve this bound to irrL(S) ≤ 4 by showing that W 2

4 (S,L) has a component

of positive dimension.

In this case, the moduli space of vector bundles with minimal c2 = 8 is M=M(2,L,6)
and can be endowed with a primitive polarization L̂ of genus 4. Note that, since (S,L) is

very general, (M,L̂) is also very general among theK3 surfaces of genus 4. This enables us

to apply a result of Galati–Knutsen ([GK13, Proposition 2.2]), which asserts the existence

of (finitely many) curves C1,...,CN ∈ |L̂| with a triple point.
Again, by Chen’s results [Che02] on rational curves, the curves Ci have geometric

genus 1 and have the triple point as only singularity. Let us denote by νi : C̃i → Ci the

normalization of Ci.

Proposition 6.1. Let (S,L) be a very general K3 surface of genus 13, and let

C1, . . . ,CN ∈ |L̂| be the elliptic curves with a triple point. Then there are nonconstant

morphisms

C̃i −→W 2
4 (S,L)

(i = 1,...,N) with pairwise disjoint images. In particular, irrL(S) ≤ 4 and

dim(W 2
4 (S,L))≥ 1.
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Proof. Let Ei ∈M be the triple point of the elliptic curve Ci. The pushforward of any
line bundle on C̃i produces a rank 1, torsion-free sheaf on Ci, with three generators at

the singular point Ei ∈ Ci. We thus have a (noncanonical) closed immersion

C̃i
∼= JC̃i ↪→ JCi,

where JCi denotes the compactified Jacobian of Ci (see [Bea99, Lemma 3.1]) whose image
is contained in the locus of torsion-free sheaves with three generators at the triple point.

On the other hand, Ci is the unique curve with a triple point at Ei (indeed one can

derive a numerical contradiction from h1(M,L̂⊗IEi
)≥ 3 by considering successive stable

extensions). Thus, Lemma 2.13 provides an isomorphism

{A ∈ JCi | h0(Ci,A⊗k(Ei)) = 3} ∼= {ξ ∈ S[4] | h1(S,Ei⊗Iξ) = 3}.

All in all, we obtain a morphism C̃i → W 2
4 (S,L) (after sending ξ 
→ (Ei,H

0(Ei ⊗Iξ))).
This morphism is not constant (otherwise the sections of H0(E⊗Iξ) would vanish at

infinitely many points). Finally, since the vector bundles Ei are pairwise distinct (recall
that there is a unique curve with a triple point at Ei), the images of all these morphisms

are pairwise disjoint.

Remark 6.2. If one can prove that h0(E⊗Iζ) ≤ 2 for all ζ ∈ S[5], then the map C̃i →
W 2

4 (S,L) would be a closed immersion (see also Remark 2.5).

7. Even genera

The goal of this section is to prove Theorem B. This result wants to be a motivation for
future work towards a more complete statement. Many proofs are similar (or considerably

simpler) to the odd genera case, hence we will provide fewer details.

As usual, (S,L) will denote a polarized K3 surface with Pic(S) = Z ·L.

7.1. Genus 8

Assume that the polarization has genus 8 (i.e., L2 = 14). Then irrL(S)≤ 4, as proved in

[Mor23]. Indeed, let E denote the stable vector bundle with v(E) = (2,L,4). It satisfies

h0(E) = 6 and c2(E) = 5. Then for every point p ∈ S, we have h0(E⊗Ip) = 4, and any

V ∨ ∈Gr(3,H0(E⊗Ip)) defines a rational dominant map ϕV : S ��� P2 of degree ≤ 4.
In other words, we obtain an irreducible component of W 2

4 (S,L) as the projectivization

of a rank 4 vector bundle on S.

In order to determine the equality irrL(S) = 4, we note that according to Corollary 2.3,
degree 3 maps correspond to V ∨ ∈Gr(3,H0(E)) such that

⋂
s∈V ∨ Zcycle(s) is of degree 2.

The case where the schematic intersection
⋂

s∈V ∨ Z(s) is of length 2 is discarded by the

following:

Lemma 7.1. For every ξ ∈ S[2], the vanishing h1(E⊗Iξ) = 0 holds.

Proof. We use Bridgeland stability. Both Iξ and E∨[1] are σα,− 1
3
-stable objects for every

α > 0, as a consequence of Lemma 2.11 (and the fact that there are no rank 3 spherical
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classes). In addition, one easily checks that the numerical wall W (Iξ,E∨[1]) intersects the
vertical line β = −1

3 ; for the corresponding stability condition σ0, both Iξ and E∨[1] are
σ0-stable objects of the same slope, hence 0 = hom(Iξ,E∨[1]) = h1(E⊗Iξ).

On the other hand, if the schematic intersection is a reduced point, then an argument

analogous to that of Lemma 3.3 yields a contradiction again. This proves the equality
irrL(S) = 4.

7.2. Genus 10

Assume now that L is a polarization of genus 10 (i.e., L2 = 18). Let E denote the stable
vector bundle with v(E) = (2,L,5) (which satisfies h0(E) = 7, c2(E) = 6).

The interesting point for this genus is that W 2
4 (S,L) is not irreducible:

Lemma 7.2. W 2
4 (S,L) has a component isomorphic to the Hilbert square S[2], and a

component isomorphic to P(E).

Proof. The component isomorphic to S[2] is elementary to construct: For any ξ ∈ S[2],

the vector space H0(E⊗Iξ) has dimension ≥ 3 and hence induces a map of degree ≤ 4
by Proposition 2.1. The fact that the map S[2] → W 2

4 (S,L) is an isomorphism onto its

image follows from Remark 2.5 together with the remark below the proof of this lemma.

For the second component, pick [w] ∈ P(E), namely [w] ∈ P(E/E⊗Ip) for some p ∈ S.
Consider the subsheaf Ew ⊂ E such that Ew|S\p ∼= E|S\p, and Ew =mp ·w+m2

pE in a

neighborhood of p. It is easy to check that h0(Ew) = 3 and that every section in H0(Ew)⊂
H0(E) vanishes with order ≥ 2 at p. Thus, by Proposition 2.1, H0(Ew) defines a map of

degree ≤ 4.

Remark 7.3. Any map of degree 3 is given by V ∨ ∈ Gr(3,H0(E)) such that⋂
s∈V ∨ Zcycle(s) has degree 3.

1. Bridgeland stability easily gives h1(E⊗Iξ) ≤ 1 (hence h0(E⊗Iξ) ≤ 2) for any ξ ∈
S[3]. Indeed, a nonzero morphism Iξ →E∨[1] determines the HN filtration of Iξ for
suitable stability conditions. This discards the case where

⋂
s∈V ∨ Z(s) has length 3.

2. If
⋂

s∈V ∨ Z(s) is a reduced point p ∈ S, then for an appropriate trivialization Ep
∼=

e1 ·OS,p⊕e2 ·OS,p of E near p, the subsheaf E1 ⊂E defined by E1 =mp ·e1+m3
p ·e2

satisfies h0(E1)≥ 3 (hence h1(E1)≥ 3). The triple extension

0→O⊕3
S → F → E1 → 0

is stable of rank 5: Since E1 has six local generators at p, it follows that v(F ∗∗) =
(5,L,k) for some k ≥ 2.

If k≥ 3, this contradicts the stability of F ∗∗. For k= 2, we have that F has exactly
6 local generators at p, which implies h0(F ∗∗ ⊗Ip) ≥ 2 (hence h1(F ∗∗ ⊗Ip) ≥ 1).

This easily contradicts the fact that F ∗∗ is spherical.

The configuration that is hard to exclude is that of a length 2 schematic intersection.

Such cases are parametrized by a component of the intersection P(E)∩S[2] of the two loci
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described in Lemma 7.2 (it coincides with the intersection along the locus of nonreduced

subschemes).

7.3. Genus 12 and 14

In this section, we consider analogous statements for K3 surfaces of genus 12 and 14. In
the case of genus 14, the desired component was already described in [Mor23, Theorem

2.4]. For genus 12, the following improves the estimate given in [Mor23]:

Proposition 7.4. If (S,L) is a polarized K3 surface of genus 12 with Pic(S) = Z ·L,
then W 2

4 (S,L) has a unirational 3-dimensional component. In particular, irrL(S)≤ 4.

Proof. This can be proved via Bridgeland stability, similarly to other genera. Consider the

spherical stable vector bundle E with v(E) = (2,L,6) (so that c2(E) = 7 and h0(E) = 8).

If ξ ∈ S[3], any nonzero morphism Iξ → E∨[1] defines a short exact sequence

0→ F →Iξ → E∨[1]→ 0

(for F the stable bundle with v(F ) = (3, −L,4)) destabilizing Iξ along a certain wall

W. This is the HN filtration of Iξ just below σ0 := W ∩ {β = −2
5 } (by σ0-stability of

F and E∨[1]), hence the morphism Iξ → E∨[1] is unique (up to constant). It follows
that the jump locus R3 = {ξ ∈ S[3]|h1(E⊗Iξ) = 1} equals P(Ext1(E∨[1],F )) = P3; for

each ξ in this jump locus, H0(E ⊗Iξ) defines a map of degree ≤ 4. Hence, we get a

morphism P3 → W 2
4 (S,L). This map is finite onto its image. Otherwise, we would get

H0(E ⊗Iξt) constant for a one-dimensional family of ξt ∈ R3. This would imply that
3 = h0(E⊗

⋂
Iξt) = h0(E⊗Iζ) = 3 for some ζ ∈ S[4] noncurvilinear, thus inducing a map

S ��� P2 of degree 2, contradiction.

8. Final questions and comments

Throughout this section, we denote by (Sg,L) a very general polarized K3 surface of

genus g.
Even though Theorem A and Theorem B are still far from providing a complete

description of the number irrL(Sg) for arbitrary g, they motivate several questions that

may deserve some attention. The first natural question is to complete the picture in even
genera:

Question 8.1. Is irrL(Sg) = 4 for g = 10,12,13,14? Are there genera g ≥ 15 for which the
equality irrL(Sg) = 4 holds?

Aside from the independent interest of the Brill–Noether loci, our description seems to

indicate that the locus of maps of minimal degree is an essential invariant to understand

how irrL(Sg) varies with g. It is tempting to propose the following:

Question 8.2. Is it true that either irrL(Sg+2) = irrL(Sg)+1, or irrL(Sg+2) = irrL(Sg)

and dimW 2
irrL(Sg+2)

= dimW 2
irrL(Sg)

−1?
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An affirmative answer would imply an affirmative answer to the following question,
which is nothing but a weak version of a conjecture in [BDPE+17]:

Question 8.3. Does one have irrL(Sg)→∞ as g →∞?

Actually, [BDPE+17, Conjecture 4.2] predicts something stronger: irr(Sg) → ∞ as

g → ∞. The degree of irrationality of K3 surfaces was indeed our original motivation.
Therefore, it is natural to ask:

Question 8.4. Does the equality irr(Sg) = irrL(Sg) hold for every g?

It is worth mentioning that the analogous question is true for hypersurfaces of large
degree in projective space ([BDPE+17]), and it seems an interesting problem for (1,d)-

polarized abelian surfaces (for suitable d).

All of these questions concern the invariant irrL(Sg), but also many questions arise
about the Brill–Noether loci, with special focus on W 2

irrL(Sg)
(Sg,L); apart from their

dimension, one could ask about other aspects of their geometry (irreducible components,

singular locus), Torelli-type questions (e.g., for which g is (Sg,L) determined by

W 2
irrL(Sg)

(Sg,L)), etc.
In particular, in view of Remark 2.5 it is tempting to draw some parallels about the

singularities of the Brill–Noether loci for general K3 surfaces with the classical case of

curves. As Remark 2.5 suggests, this principle should hold for those components arising
as cohomology jump loci. The picture in general seems to be quite complicated to have

a comprehensive understanding.
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