
BULL. AUSTRAL. MATH. SOC. 26A39

VOL. 42 (1990) [517-524]

THE TOPOLOGY OF THE SPACE OF DENJOY
INTEGRABLE FUNCTIONS

CHEW TUAN SENG AND LEE PENG YEE

In this paper, the topology of the Denjoy space and characterisation of precompact
sets in the Denjoy space are given.

1. INTRODUCTION

Let D be the Denjoy space, that is, the space of all Denjoy integrable (in the
restricted sense) functions defined on a closed compact interval [a, b] of the real line
[8, p.30; 10, p.241]. It is well-known that the space D can be normed by

= s u p { l / o
111/111= sup |jf^ f(t)dt

Unfortunately, it is not complete under this norm and is of the first category [11].
Recently several convergence theorems, namely, the controlled convergence theorem,
the generalised mean convergence theorem and the generalised dominated convergence
theorem, have been proved for the space D, see [5, 6, 7, 8]. These convergence theo-
rems are in some sense better than the classical dominated convergence theorem. For
example, using the generalised mean convergence theorem, we may define the Denjoy
integral by means of a sequence of step functions [6; 8, p.58], and, as we shall see in
this paper, a topology by means of generalised mean convergence.

Let A = {Xi} be a sequence of closed subsets of [a, b] with Xi C Xi+i and
a, b £ Xi, for all i, and [a, b] = \J{ Xi. Let J be the family of all such A. For each
A £ J , let D(A) be the space of all Denjoy integrable functions defined on [a, b] such
that its primitive function is of bounded variation on each Xi. Clearly, D = (JA D(A).
In this paper, we shall show that each D(A) is a complete, separable, metrisable
locally convex space with a topology generated by generalised mean convergence. Some
applications on operators and characterisation of precompact sets in -D(A) are also
given.
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2. PRELIMINARIES

In this section, we state some known results which will be used later.

DEFINITION 2.1: [6; 7; 8, p.55]. A sequence of functions {/„} in the space D is
said to be generalised mean convergent if

(i) there exists a sequence of closed sets Xi such that [a, b] — \J{ Xi and for
every i and e > 0, there exists a natural number N such that for any
partial division P = {[it, v]} of [a, b] with all u,v € Xi, we have

(P)Xu,(Fn-Fm,[u,v])<e

whenever n,m ^ N, where S is over the division P, Fn is the primitive
of fn and w is the oscillation of Fn — Fm over [u, v].

(ii) the primitives Fn converge uniformly to F on [a, b].

REMARK 2.2: In the Definition 2.1, we may assume that A = {Xi} € J, that is,
a,b £ Xi and Xi C -X^+i, for all i, and use the following condition (ii)' instead of (i)
and (ii),

(ii)' the condition (ii) holds with u,v € Xi replaced by u or v 6 Xi and the
inequality replaced by

n(v) - Fm(v) - Fn(u) + Fm(u)\ < e.

It can be done since, in view of (ii), we may assume a,b € Xi, for all i. Then (i) holds
with u,v € Xi replaced by u or v G Xi for each t, see [8, p.54]. Furthermore, the
oscillation in the definition can be replaced by the difference, since Fn are continuous.

i
Therefore (i) holds with Xi replaced by \J Xn. Consequently, we may assume that

n=i
Xi C Xi+i, for all i.

In the Definition 2.1, we do not assume that {/n} is pointwise convergent; for this
condition see Remark 2.4.

THEOREM 2 . 3 . [7, Theorem 4; 8, p.55]. If {/„} in the space D is generalised
mean convergent, then there exist f € D and a pointwise convergent subsequence of
{fn} with the limit f. Furthermore,

, 6 , 6

Urn / fn{x)dx = / f(x)dx.

REMARK 2.4: The function F given in Definition 2.1 condition (ii), in fact, is
the primitive function of / , since F(x) = lim J* fn(t)dt = J* f(t)dt. Therefore,
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it is convenient to say that {/n} is generalised mean convergent to / , when {/„} is
generalised mean convergent; here it is understood that the primitive function of / is
F given in condition (ii) of Definition 2.1. Theorem 2.3 is a generalisation of the mean
convergence theorem for Lebesgue integrals. As in the case of Lebesgue integrals, the
sequence {/n} given in Theorem 2.3 does not necessarily converge to / pointwise.

Next, we shall consider "control-convergent" which is closely related to "generalised
mean convergent".

DEFINITION 2.5: [5; 8, p.36]. A sequence of functions {/„} in the space D is said
to be control-convergent to / if

(i) fn{
x) —* f{x) almost everywhere in [a, b] as n —• oo;

(ii) the primitives Fn of / „ are ACG* uniformly in n (for the definition of
ACG*,see [5; 8, p.29]);

(iii) the primitives Fn are equicontinuous on [o, b] (for this condition, see [7,
p.137; 8, Corollary 7.9, p.41]).

REMARK 2.6: As in Definition 2.1, the conditions (ii) and (iii) can be replaced by
the following condition:

(ii)' for every t and e > 0, there exists 6 > 0 such that

(P)£ \Fn(u, v)\ < e for all u

whenever (-P)E \v —u\ < 6, where P = {[«, w]} is a partial division of
[a, 6] with u or v £ Xi, Fn is the primitive of / „ , Fn(u, v) = Fn(v) —
Fn(u) and A = {Xi}€ J.

For condition (ii)', see [8, Lemma 6.4, p.27]. We say that {Fn} is AC*{Xi)
uniformly for each i if {Fn} satisfies (ii)'.

THEOREM 2 . 7 . [8, p.56, p.63]. If {/„} is control-convergent to f then {/„} is
generalised mean convergent to / . Conversely, if {/„} is generalised mean convergent
to f, then there is a subsequence {/n,«} of {/n} which is control-convergent to f.

In the above theorem, all fn and / lie in the same D(A). Therefore it is natural
and useful to consider a topology generated by generalised mean convergent or control-
convergent sequences in the space D(A).

3. THE TOPOLOGY

Let the space Z?(A) be fixed. Now we shall define an increasing sequence of norms
on 2?(A). Let A = {Xi} 6 J as in Section 1, and / 6 -D(A), then its primitive F is
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of bounded variation (in the restricted sense) on each Xt; thus ||/||^ < oo, for all t ,
where

||/||?=sup(P)E|F(u,«)|,
v

F(u, v) = F(v) — F(u) and P = {[u, v]} is any partial division of [a, b] with u or
v £ Xi, see [8, Lemma 6.15, p.32]. Each ||-H^ is a semi-norm, and the sequence of
semi-norms {||/||t- } with / € D(A) is increasing, for Xi C Xi+i for all i. Define

^ 1 ll/llf .

then ||-|| is an .F-norm and D(A) is a metrisable locally convex space generated by
the increasing sequence of norms {||-||,- }, see [3, pp.202-205]. More precisely,

U? = {/; H/llf < 2-'}, for i = 1,2, ...

forms a neighbourhood base of the origin. Note that J7t- D Ui+1, for all i. This type
of neighbourhood has been used in [9].

THEOREM 3 . 1 . A sequence {/n} is Cauchy (or convergent to f) in the space
£>(A) with the norm \\-\\ if and only if {/„} is Cauchy (or convergent to f) in D(A)
with the norm \\-\\i for each i.

PROOF: It follows from the fact that the neighbourhood | |/ | |A < 2~*, k > 1,
contains the neighourhood ||/||fc+i < 2~k~1 ; conversely, the neighbourhood ||/||m <
2~* contains the neighbourhood | | / | |A < 2~m-k-1; see [3, p.206]. D

THEOREM 3 . 2 . A sequence {/„} is ||-||A-convergent to f in £>(A) if and only
if {/„} is mean-convergent to f in -D(A).

PROOF: This follows from Theorem 3.1 and the definition of norm l]-^ . D

THEOREM 3 . 3 . (a) If {/„} is \\-\\A-convergent to f in D(A), then there is a
subsequence {/n,j} of {/n} which is control-convergent to f.

(b) If {/„} is control-convergent to f in £)(A), tAen {/„} is \\-\\ -convergent
tof.

PROOF: This follows from Theorems 2.7 and 3.2. D

THEOREM 3 . 4 . The space D{A) is complete under ||-||A.

PROOF: Let {/„} be a Cauchy sequence in D(A). Then, by Theorem 3.1, the

sequence {/„} is a Cauchy sequence under ||-||t- , for each i . Thus {/n} satisfies

condition (ii) ' of Remark 2.2, that is, the sequence {/„} is generalised mean convergent.
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In fact, by Remark 2.4, the sequence {/„} is generalised mean convergent to / , where
F(x) — lim Fn(x) is the primitive function of / . Consequently, by Theorem 3.1 and

n—>oo

the definition of ||.||f, we have ||/n - f\\A - . O a s n - » o o . D

THEOREM 3 . 5 . The space £>(A) is separable under ||-||A.

PROOF: Let / € -D(A). Then there exists a generalised mean convergent sequence
of step functions in -D(A) with the limit / , see [7, Theorem 5; 8, p.58]. Hence, by
Theorem 3.2, such a sequence of step functions is ||-|| -convergent to / in Z)(A). On
the other hand, it is well-known that the space L of all Lebesgue integrable functions
on [a, b] with the usual norm j|• ||x is separable. Furthermore, it is easy to check that
L C £>(A) for each A and | | / | | f < H/Hj for all / 6 L, A € J and i. Note that the
neighbourhood | | / | |A < 1/2*, contains the neighbourhood H/llf^j < l/2fc+1, see [3,
p.206]. Consequently, D(A) is separable. That is to say, the space of all step functions
with rational values and rational endpoints is dense in £>(A). U

4. LINEAR OPERATORS

In this section, let B denote a complete i^-space with F-norm ||-||B. We shall
consider ||-|| -continuous and control-continuous operators from D to B. The former is
defined by using the ||-|| -norm topology whereas the latter is defined by using control-
convergent sequences in D(A). Control-continuous operators have been extensively
discussed in [1; 2; 8, p.85]. In this section we shall prove that they are equivalent.
Hence we may apply basic theorems (for example, Banach-Steinhaus theorem) of linear
analysis for Banach spaces to control-continuous linear operators defined on the space
D. As a consequence, it provides alternative proofs for some of Sargent's results on
|||-|||-continuous linear functionals on the space D without resorting to the Sargent
space or what Sargent calls /3-space [11; 8, p.66].

DEFINITION 4.1: Let P: D -> B. Then P is said to be ||-||A-continuous if for
each A £ J, P: D(A) -> B is ||-||A-continuous, that is, | |P(/n) - P{f)\\B -» 0 as
ll/n-/||A^0.

DEFINITION 4.2: Let P: D -> B. Then P is said to be control-continuous if
ll^C/n) ~ -P(/)HB ~* 0 whenever {/„} is control-convergent to / .

THEOREM 4 . 3 . Let P: D -> B. Then P is \\-\\^-continuous if and only if P is
control-continuous.

PROOF: The necessity follows from Theorem 3.3(b). For sufficiency, let P be
control-continuous and {/n} be ||-|| -convergent to / . Then, by Theorem 3.3(a),
for every subsequence of {/n}, there exists a sub—subsequence {fn(i,j)} such that
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| |P(/n(t,j)) — P(f)||B —> 0 as n(i,j) -* oo. By reductio ad absurdum,

\\P(fn) - P(f)\\B -» 0 as n -» oo. Hence P is ||.||A-continuous. D

THEOREM 4 . 4 . (Banach-Steinhaus theorem). Let Pn be a sequence of control-
continuous linear operators from D to B. If

Urn P n ( / ) = P{f) for every f€D

then P is control-continuous.

PROOF: This follows from Theorem 4.3 and the classical Banach-Steinhaus theo-
rem. D

REMARK 4.5: Sargent has proved Theorem 4.4 for |||-|||-continuous linear operators
by using the theory of the Sargent space [11]. However, it has been shown that on the
space D, a linear functional is || | • | ||-continuous if and only if it is control—continuous [8,
p.103]. Thus Theorem 4.4 holds for |||-|||-continuous linear functionals. This provides
an alternative proof of Sargent's result on |||-|||-continuous functionals without resorting
to the Sargent space [11]. Recall that the norm |||-||| is denned in Section 1.

5. PRECOMPACT SETS IN D(A)

In this section, we shall consider the space -D(A) with F-norm ||-||A topology.
A subset A of D(A) is said to be precompact if the closure of A in .D(A) is

compact. As Z?(A) is a complete metric space, the following three conditions are
equivalent: (i) A is precompact; (ii) A is totally bounded, that is, A has a finite e-net
for every e > 0; (iii) every sequence in A contains a convergent subsequence with limit
in D(A), see [3, p.26].

Now we shall characterise precompact subsets of £)(A). Recall that A = {Xj} €
J.

THEOREM 5 . 1 . Let A C -D(A). Then A is precompact if and only if (i) A
is precompact in measure, that is, every sequence in A contains a subsequence which
converges in measure to a function f in £)(A); (ii) A is AC(Xi) uniformly for each
i, where A = {X{} € J, that is, for every i and e > 0, tiere exists 6 > 0 such that

(P)2 \F(u, v)\<e for all feA

whenever (-P)S \v - u\ < 6, where P = {[u, v]} is a partial division of [a, 6] with u or
v € Xi and F is the primitive of f.

PROOF: (=>) If A is precompact, then every sequence in A contains a ||-|| -
convergent subsequence with limit / in D(A). By Theorem 3.3 (a), there exists a
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subsequence which is pointwise convergent to / almost everywhere. Thus A is pre-

compact in measure. If A is precompact, then A is totally bounded, that is, for every

e > 0, A has a finite e-net under the norm ||-| |A. By Theorem 3.1, A has a finite

e-net under the norm ||-||{ , for each i. Hence for every t and e > 0, there exists a

finite sequence gn, n = 1, 2, . . . , q such that for every / G A, there exists g± with

| | / — gj\\f^ < e. Hence A is AC*(Xi) uniformly, in view of the following inequality,

(P)E \F(«, , ) | < ||/ - ffi||f + (P)E |G?,-(«, v)\

where Gj is the primitive of gj and P = {[it, v]} is a partial division of [a, b] with u

or v in X{.

(«=) This follows from Remark 2.6 and Theorem 3.3 (b).

We remark that if A = {X<} and each Xf = [a, b], then J5(A) = L. Hence a
criterion for precompactness in the space L in [4, p.3] is a special case of Theorem 5.1.
The criterion for the space L is systematically used in the study of completely contin-
uous operators in [4]. The similar criterion (Theorem 5.1) for the space .D(A) may be
used in the study of operators in the space D, which will be elaborated elsewhere. U
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