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Abstract
Alweiss, Lovett, Wu, and Zhang introduced q-spread hypergraphs in their breakthrough work regarding
the sunflower conjecture, and since then q-spread hypergraphs have been used to give short proofs of sev-
eral outstanding problems in probabilistic combinatorics. A variant of q-spread hypergraphs was implicitly
used by Kahn, Narayanan, and Park to determine the threshold for when a square of a Hamiltonian cycle
appears in the random graph Gn,p. In this paper, we give a common generalization of the original notion of
q-spread hypergraphs and the variant used by Kahn, Narayanan, and Park.
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1. Introduction
This paper concerns hypergraphs, and throughout we allow our hypergraphs to have repeated
edges. If A is a set of vertices of a hypergraph H, we define the degree of A to be the number
of edges of H containing A, and we denote this quantity by dH(A), or simply by d(A) if H is
understood. We say that a hypergraph H is q-spread if it is non-empty and if d(A)≤ q|A||H| for
all sets of vertices A. A hypergraph is said to be r-bounded if each of its edges have size at most r
and it is r-uniform if all of its edges have size exactly r.

The notion of q-spread hypergraphs was introduced by Alweiss, Lovett, Wu, and Zhang [2]
where it was a key ingredient in their groundbreaking work which significantly improved upon
the bounds on the largest size of a set system that contains no sunflower. Their method was refined
by Frankston, Kahn, Narayanan, and Park [4] who proved the following.

Theorem 1.1 ([4]). There exists an absolute constant K0 such that the following holds. Let H be
an r-bounded q-spread hypergraph on V. If W is a set of size K0( log r)q|V| chosen uniformly at
random from V, then W contains an edge of H with probability tending to 1 as r tends towards
infinity.

This theorem was used in [4] to prove a number of remarkable results. In particular it resolved
a conjecture of Talagrand, and it also gave a much simpler solution to Shamir’s problem, which
had originally been solved by Johansson, Kahn, and Vu [6].

Kahn, Narayanan, and Park [7] used a variant of the method from [4] to show that for certain
q-spread hypergraphs, the conclusion of Theorem 1.1 holds for random setsW of size only Cq|V|.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant
No. DGE-1650112.
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They used this to determine the threshold for when a square of a Hamiltonian cycle appears in the
random graph Gn,p, which was a long-standing open problem.

In a talk, Narayanan asked if there was a “smoother” definition of spread hypergraphs which
interpolated between q-spread hypergraphs and hypergraphs like those in [7] where the log r term
of Theorem 1.1 can be dropped. The aim of this paper is to provide such a definition.

Definition 1.2. Let 0< q≤ 1 be a real number and r1 > · · ·> r� positive integers. We say that a
hypergraph H on V is (q; r1, . . . , r�)-spread if H is non-empty, r1-bounded, and if for all A⊆V
with d(A)> 0 and ri ≥ |A| ≥ ri+1 for some 1≤ i< �, we have for all j≥ ri+1 that

Mj(A) := |{S ∈H : |A∩ S| ≥ j}| ≤ qj|H|.
Roughly speaking, this condition says that every set A of ri vertices intersects few edges ofH in

more than ri+1 vertices.
As a warm-up, we show how this definition relates to the definition of being q-spread.

Proposition 1.3. We have the following.

(a) If H is (q; r1, . . . , r�, 1)-spread, then it is q-spread.
(b) If H is q-spread and r1-bounded, then it is (4q; r1, . . . , r�)-spread for any sequence of integers

ri satisfying ri > ri+1 ≥ 1
2 ri.

Proof. For (a), assume H is (q; r1, . . . , r�, 1)-spread and let r�+1 = 1. Let A be a set of vertices
of H. If A= ∅, then d(A)= |H| = q|A||H|, so we can assume A is non-empty. If d(A)= 0, then
trivially d(A)≤ q|A||H|, so we can assume d(A)> 0. This means |A| ≤ r1 since in particular H is
r1-bounded. Thus, there exists an integer 1≤ i≤ � such that ri ≥ |A| ≥ ri+1, so the hypothesis that
H is (q; r1, . . . , r�, 1)-spread and d(A)> 0 implies

d(A)≤M|A|(A)≤ q|A||H|,
proving thatH is q-spread.

For (b), assume H is q-spread and r1-bounded. If A is any set of vertices of H, then for all
j≥ 1

2 |A| we have
Mj(A)≤

∑
B⊆A:|B|=j

d(B)≤ 2|A| · qj|H| ≤ (4q)j|H|.

In particular, if ri ≥ |A| ≥ ri+1, then this bound holds for any j≥ ri+1 since ri+1 ≥ 1
2 ri ≥ 1

2 |A|. We
conclude thatH is (4q; r1, . . . , r�)-spread. �

We now state our main result for uniform hypergraphs, which says that a random set of
size C�q|V| will contain an edge of an r1-uniform (q; r1, . . . , r�, 1)-spread hypergraph with high
probability as C� tends towards infinity. An analogous result can be proven for non-uniform
hypergraphs, but for ease of presentation we defer this result to Section 3.

Theorem 1.4. There exists an absolute constant K0 such that the following holds. Let H be an r1-
uniform (q; r1, . . . , r�, 1)-spread hypergraph on V. If W is a set of size C�q|V| chosen uniformly at
random from V with C ≥K0, then

P[W contains an edge ofH]≥ 1− K0
C�

.

We note that Theorem 1.4 with �=�( log r) together with Proposition 1.3(b) implies
Theorem 1.1 for uniform H. In [7], it is implicitly proven that the hypergraph H encoding
squares of Hamiltonian cycles is a (2n)-uniform (Cn−1/2;2n, C0n1/2, 1)-spread hypergraph for
some appropriate constants C, C0, so the �= 2 case of Theorem 1.4 suffices to prove the main
result of [7]. Thus, at least in the uniform case, Theorem 1.4 provides an interpolation between
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the results of [4, 7]. Theorem 1.4 can also be used to recover results from very recent work of
Espuny Díaz and Person [3] who extended the results of [7] to other spanning subgraphs1 of Gn,p.

2. Proof of Theorem 1.4
Our approach borrows heavily from Kahn, Narayanan, and Park [7]. We break our proof into
three parts: the main reduction lemma, auxiliary lemmas to deal with some special cases, and a
final subsection proving the theorem.

2.1. The main lemma
We briefly sketch our approach for proving Theorem 1.4. Let H be a hypergraph with vertex set
V . We first choose a random set W1 ⊆V of size roughly q|V|. If W1 contains an edge of H then
we would be done, but most likely we will need to try and add in an additional random setW2 of
size q|V| and repeat the process. In total then we are interested in finding the smallest I such that
W1 ∪ · · · ∪WI contains an edge ofH with relatively high probability. One way to guarantee that
I is small would be if we had |S \W1| small for most S ∈H (i.e., most vertices of most edges S ∈H
are covered byW1), and then thatW2 covered most of the vertices of most S \W1, and so on.

The condition that, say, |S \W1| is small for most S ∈H turns out to be too strong a condition
to impose. However, if H is sufficiently spread, then we can guarantee a weaker result: for most
S ∈H, there is an S′ ⊆ S∪W1 such that |S′ \W1| is small. We can then discard S and focus only
on S′, and by iterating this repeatedly we obtain the desired result.

To be more precise, given a hypergraph H, we say that a pair of sets (S,W) is k-good if there
exists S′ ∈H such that S′ ⊆ S∪W and |S′ \W| ≤ k, and we say that the pair is k-bad otherwise.
We note for later that if (S,W) is k-bad with S∪W = Z, then (S, Z \ S) is also k-bad.

The next lemma shows that (q; r, k)-spread hypergraphs have few k-bad pairs with S ∈H and
W a set of size roughly q|V|. In the lemma statement we adopt the notation that

(
V
m

)
is the set of

subsets of V of sizem.

Lemma 2.1. Let H be an r-uniform n-vertex hypergraph on V which is (q; r, k)-spread. Let C ≥ 4
and define p= Cq. If pn≥ 2r and p≤ 1

2 , then∣∣∣{(S,W) : S ∈H, W ∈
(V
pn

)
, (S,W) is k-bad

}∣∣∣ ≤ 3(C/2)−k/2|H|
( n
pn

)
.

Proof. Throughout this lemma, we make frequent use of the identity(a−c
b−c

)
/
(a
b

)
=

(
b
c

)
/
(a
c

)
,

which follows from the simple combinatorial identity
(a
b

) (
b
c

)
=

(a
c

) (a−c
b−c

)
.

For t ≤ r, define

Bt = {(S,W) : S ∈H, W ∈
( v
pn

)
, (S,W) is k-bad, |S∩W| = t}.

Observe that the quantity we wish to bound is
∑

t |Bt|, so it suffices to bound each term of this
sum. From now on, we fix some t and define

w= pn− t.

1Somewhat more precisely, let H be the hypergraph whose hyperedges consist of copies of F in Kn. If F has r
edges and maximum degree d, and if H is (q, α, δ)-superspread as defined in [3], then one can show that H is
(Cq; r, C1r1−α , C2r1−2α , . . . , C�1/α�r1−�1/α�α , 1)-spread for some constants C, Ci which depend on d, δ. Indeed, when veri-
fying Definition 1.2 for j≥ δk, one can use a similar argument as in Proposition 1.3(b) and the fact that H is q-spread. If
j< δk, then the superspread condition together with Lemma 2.3 of [3] can be used to give the result.
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At this point, we need to count the number of elements in Bt , and there are several natural
approaches that could be used. One way would be to first pick any S ∈H and then count how
many W satisfy (S,W) ∈ Bt . Another approach would be to pick any set Z of size r +w (which
will be the size of S∪W since |S∩W| = t) and then bound howmany S,W ⊆ Z have (S,W) ∈ Bt .
For some pairs, the first approach is more efficient, and for others the second is. In particular, the
second approach will be more effective whenever Z = S∪W contains few elements of Bt .

With this in mind, we say that a set Z is pathological if
|{S ∈H : S⊆ Z, (S, Z \ S) is k-bad}|>N,

where

N := (C/2)−k/2|H|
(
n−r
w

)
/
( n
r+w

)
= (C/2)−k/2|H|

(
r+w
r

)
/
(n
r

)
,

and we say that Z is non-pathological otherwise. We say that a pair (S,W) is pathological if the set
S∪W is pathological and that (S,W) is non-pathological otherwise. �
Claim 2.2. The number of (S,W) ∈ Bt which are non-pathological is at most( n

r+w

)
N

(r
t

)
= (C/2)−k/2|H|

(r
t

) (
n−r
w

)
.

Proof. We identify each of the non-pathological pairs (S,W) by specifying S∪W, then S, then
S∩W.

Observe that S∪W is a non-pathological set of size r +w, and in particular there are at most( n
r+w

)
ways to make this first choice. Fix such a non-pathological set Z of size r +w. As noted

before the statement of Lemma 2.1, if (S,W) is k-bad with S∪W = Z, then (S, Z \ S) is also k-bad.
Because Z is non-pathological, there are at mostN choices for S such that (S, Z \ S) is k-bad. Given
S, there are at most

(r
t

)
choices for S∩W. Multiplying the number of choices at each step gives

the stated result. �
Claim 2.3. The number of (S,W) ∈ Bt which are pathological is at most

2(C/2)−k/2|H|
(r
t

) (
n−r
w

)

Proof. We identify these pairs by first specifying S ∈H, then S∩W, thenW \ S.
Note that S and S∩W can be specified in at most |H| ·

(r
t

)
ways, and from now on we fix such

a choice of S and S∩W. It remains to specify W \ S, which will be some element of
(
V\S
w

)
. Thus

it suffices to count the number ofW′ ∈
(
V\S
w

)
such that (S,W′) is both k-bad and pathological.

ForW′ ∈
(
V\S
w

)
, define

S(W′)= |{S′ ∈H : S′ ⊆ S∪W′, |S′ ∩ S| ≥ k}|.
Observe that if (S,W′) is k-bad, then every edge S′ ⊆ S∪W′ has |S′ ∩ S| ≥ k (since |S′ ∩ S| ≥ |S′ \
W′|), so theW′ we wish to count satisfy

S(W′)= |{S′ ∈H : S′ ⊆ S∪W′}|.
If (S,W′) is pathological, then this latter set has size at least N. In total, ifW′ is chosen uniformly
at random from

(
V\S
w

)
, then

P[(S,W′) is k-bad and pathological]≤ P[S(W′)≥N]≤ E[S(W′)]
N

, (1)

where this last step used Markov’s inequality. It remains to upper bound E[S(W′)].
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Let

mj(S)= |{S′ ∈H : |S∩ S′| = j}|,

and observe that for any S′ with |S∩ S′| = j, the number ofW′ ∈
(
V\S
w

)
with S′ ⊆ S∪W′ is exactly(n−2r+j

w−r+j

)
. With this we see that

E[S(W′)]=
∑
j≥k

mj(S)

(n−2r+j
w−r+j

)
(
n−r
w

) =
∑
j≥k

mj(S)

( w
r−j

)
(n−r
r−j

) =
(
r+w
r

)
(n
r

) ∑
j≥k

mj(S)

( w
r−j

)
(n−r
r−j

) ·
( n
r+w

)
(
n−r
w

) . (2)

BecauseH is (q; r, k)-spread, we have for each j≥ k in the sum that

mj(S)≤Mj(S)≤ qj|H|. (3)

For integers x, y, define the falling factorial (x)y := x(x− 1) · · · (x− y+ 1). With this we have
( w
r−j

)
(n−r
r−j

) ·
( n
r+w

)
(
n−r
w

) = (w)r−j

(n− r)r−j
· (n)r
(r +w)r

≤
(

w
n− r

)r−j
·
(
n− r
w

)r
=

(
w

n− r

)−j
≤ (Cq/2)−j,

(4)

where the first inequality used w≤ pn≤ 1
2n≤ n− r, and the second inequality used

w= pn− t ≥ pn− r ≥ pn/2= Cqn/2.

Combining (2), (3), and (4) shows that

E[S(W′)]≤
(
r+w
r

)
(n
r

) |H|(C/2)−k ·
∑
j≥k

(C/2)k−j ≤
(
r+w
r

)
(n
r

) |H|(C/2)−k · 2,

where this last step used C ≥ 4. Plugging this into (1) shows that the number ofW′ ∈
(
V\S
w

)
such

that (S,W′) is k-bad and pathological is at most

2(C/2)−k|H|
(
r+w
r

)
(n
r

)
N

·
(
n−r
w

)
= 2(C/2)−k/2 ·

(
n−r
w

)
.

Combining this with the fact that there were |H| ·
(r
t

)
ways of choosing S and S∩W gives the

claim. �
In total, |Bt| is at most the sum of the bounds from these two claims. Using this and w= pn− t

implies
∑
t≤r

|Bt| ≤
∑
t≤r

3(C/2)−k/2|H|
(r
t

)( n−r
pn−t

)

= 3(C/2)−k/2|H|
( n
pn

)
,

giving the desired result.
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2.2. Auxiliary lemmas
To prove Theorem 1.4, we need to consider two special cases. The first is when H is r-uniform
with r relatively small. In this case, the following lemma gives effective bounds.

Lemma 2.4 ([4] Corollary 4.2). LetH be a q-spread r-bounded hypergraph on V and let α ∈ (0, 1)
satisfy α ≥ 2rq. If W is a set of size α|V| chosen uniformly at random from V, then the probability
that W does not contain an element ofH is at most

2e−α/(2rq).
The other special case we consider is the following.

Lemma 2.5. Let H be an r-uniform (q; r, 1)-spread hypergraph on V and α ∈ (0, 1) such that α ≥
4q. If W is a set of size α|V| chosen uniformly at random from V, then the probability that W does
not contain an edge ofH is at most

4qα−1 + 2e−α|V|/4.
Proof. Let W′ be a random set of V obtained by including each vertex independently and with
probability α/2. Let X = |{S ∈H : S⊆W′}| and definemj(S) to be the number of S′ ∈H with |S∩
S′| = j. Note that E[X]= (α/2)r|H| and that

Var(X)≤ (α/2)2r
∑

S,S′∈H, S∩S′ =∅
(α/2)−|S∩S′| = (α/2)2r

∑
S∈H

r∑
j=1

(α/2)−j ·mj(S)

≤ (α/2)2r
∑
S∈H

r∑
j=1

(α/2)−j · qj|H| = (α/2)2r
r∑

j=1
(α/2q)−j|H|2

=E[X]2(α/2q)−1
r∑

j=1
(α/2q)1−j ≤ 4E[X]2qα−1,

where the second inequality used thatH being (q; r, 1)-spread implies mj(S)≤ qj|H| for all S ∈H
and j≥ 1, and the last inequality used α/2q≥ 2. By Chebyshev’s inequality we have

P[X = 0]≤Var(X)/E[X]2 ≤ 4qα−1.

Lastly, observe that

P[W contains an edge ofH]≥ P[W′ contains an edge ofH
∣∣|W′| ≤ α|V|]

≥ P[W′ contains an edge ofH]− P[W′ >α|V|].
By the Chernoff bound (see for example [1]) we have P[|W′|>α|V|]≤ 2e−α|V|/4. Note that W′
contains an edge ofH precisely when X> 0, so the result follows from our analysis above. �

We conclude this subsection with a small observation.

Lemma 2.6. IfH is an r1-uniform (q; r1, . . . , r�)-spread hypergraph on V, then r1 ≤ eq|V|.
Proof. Letm=maxS∈H d(S), i.e. this is the maximummultiplicity of any edge inH. Then for any
S ∈H with d(S)=m, we have

m=Mr1 (S)≤ qr1 |H| ≤ qr1 ·m
(|V|
r1

)
≤m(eq|V|/r1)r1 ,

proving the result. �
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2.3. Putting the pieces together
We now prove a technical version of Theorem 1.4 with more explicit quantitative bounds.
Theorem 1.4 will follow shortly (but not immediately) after proving this.

Theorem 2.7. Let H be an r1-uniform (q; r1, . . . , r�, 1)-spread hypergraph on V and let C ≥ 8. If
W is a set of size 2C�q|V| chosen uniformly at random from V, then

P[W contains an edge ofH]≥ 1− 6�2(C/4)−r�/2 − 40(C�)−1, (5)
and for any i with 4ri ≤ C� we have

P[W contains an edge ofH]≥ 1− 6�2(C/4)−ri/2 − 2e−C�/4ri . (6)

Proof. Define p := Cq and n := |V|. We can assume p≤ 1
2 , as otherwise the result is trivial (since

the set W in the hypothesis of the theorem has size at least |V|). Let W1, . . .W�−1 be chosen
independently and uniformly at random from

(V
pn

)
. Throughout this proof we let r�+1 = 1.

Let H1 =H and let φ1 :H1 →H be the identity map. Inductively assume we have defined Hi
and φi :Hi →H for some 1≤ i< �. Let H′i ⊆Hi be all the edges S ∈Hi such that (S,Wi) is ri+1-
good with respect to Hi. Thus for each S ∈H′i, there exists an S′ ∈Hi such that S′ ⊆ S∪Wi and
|S′ \Wi| ≤ ri+1. Choose such an S′ for each S ∈H′i and let AS be any subset of S of size exactly ri+1
that contains S′ \Wi (noting that S′ \Wi ⊆ S since S′ ⊆ S∪Wi). Finally, define Hi+1 = {AS : S ∈
H′i} and φi+1 :Hi+1 →H by φi+1(AS)= φi(S).

Intuitively, φi(A) is meant to correspond to the “original” edge S ∈H which generated A. More
precisely, we have the following. �
Claim 2.8. For i≤ �, the maps φi are injective and A⊆ φi(A) for all A ∈Hi.

Proof. This claim trivially holds for i= 1. Inductively assume the result has been proved for
1, . . . , i. Observe that in the process of generating Hi+1, we have implicitly defined a bijection
ψ :H′i →Hi+1 through the correspondence ψ(S)=AS.

By construction of φi+1, we have φi+1(A)= φi(ψ−1(A)), so φi+1 is injective since φi was induc-
tively assumed to be injective and ψ is a bijection. Also by construction we have A⊆ψ−1(A),
and by the inductive hypothesis we have ψ−1(A)⊆ φi(ψ−1(A))= φi+1(A). This completes the
proof. �

For i< �, we say thatWi is successful if |Hi+1| ≥ (1− 1
2� )|Hi|. Note that |Hi+1| = |Hi′|, so this

is equivalent to saying that the number of ri+1-bad pairs (S,Wi) with S ∈Hi is at most 1
2� |Hi|.

Claim 2.9. For i≤ �, if W1, . . . ,Wi−1 are successful, thenHi is (2q; ri, . . . , r�, 1)-spread.

Proof. For a hypergraphH′, we letMj(A;H′) denote the number of edges ofH′ intersecting A in
at least j vertices. By Claim 2.8, if {A1, . . . ,At} are the set of edges ofHi which intersect some set
A in at least j vertices, then {φi(A1), . . . , φi(At)} is a set of t distinct edges ofH intersecting A in at
least j vertices. Thus for all sets A and integers j we haveMj(A;Hi)≤Mj(A;H).

If A is contained in an edge A′ ofHi, then by Claim 2.8 A is contained in the edge φi(A′) ofH.
Thus dHi(A)> 0 implies dH(A)> 0. By assumption of H being (q; r1, . . . , r�, 1)-spread, if A is a
set with ri′ ≥ |A| ≥ ri′+1 for some integer i′ such that dHi(A)> 0, and if j is an integer satisfying
j≥ ri′+1, then our previous observations imply

Mj(A;Hi)≤Mj(A;H)≤ qj|H|. (7)
Because each ofW1, . . . ,Wi−1 were successful, we have

|Hi| ≥
(
1− 1

2�

)i
|H| ≥

(
1− 1

2�

)�
|H| ≥ 1

2
|H|,

where in this last step we used that (1− 1/(2x))x is an increasing function for x≥ 1. Plugging
|H| ≤ 2|Hi| into (7) shows thatHi is (2q; ri, . . . , r�, 1)-spread as desired. �
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Claim 2.10. For i< �,
P[Wi is not successful | W1, . . . ,Wi−1 are successful]≤ 6�(C/4)−ri+1/2.

Proof. By construction Hi is ri-uniform. Conditional on W1, . . . ,Wi−1 being successful,
Claim 2.9 implies that Hi is in particular (2q; ri, ri+1)-spread. By hypothesis we have p≤ 1

2 and
C/2≥ 4, and by Lemma 2.6 applied to H we have 2ri ≤ pn since C ≥ 2e. Thus we can apply
Lemma 2.1 to Hi (using C/2 instead of C), which shows that the expected number of ri+1-bad
pairs (S,Wi) is at most 3(C/4)−ri+1/2|Hi|. By Markov’s inequality, the probability of there being
more than 1

2� |Hi| total ri+1-bad pairs is at most 6�(C/4)−ri+1/2, giving the result. �
We are now ready to prove the result. Let W and W′ be sets of size 2�pn and �pn chosen

uniformly at random from V . Observe that for any 1≤ i≤ �, the probability of W containing an
edge ofH is at least the probability ofW1 ∪ · · · ∪Wi−1 ∪W′ containing an edge ofH, and this is
at least the probability thatW′ contains an edge ofHi (since every edge ofHi is an edge ofH after
removing vertices that are inW1 ∪ · · · ∪Wi−1), so it suffices to show that this latter probability is
large for some i.

By Proposition 1.3(a) and Claim 2.9, the hypergraph Hi will be (2q)-spread if W1, . . . ,Wi−1
are all successful. If i is such that C�≥ 4ri, then by Claim 2.10 and Lemma 2.4 the probability that
W1, . . . ,Wi−1 are all successful andW′ contains an edge ofHi is at least

1− 6�2(C/4)−ri/2 − 2e−C�/4ri ,
giving (6).

Alternatively, the probability that W′ contains an edge of H� can be computed using
Lemma 2.5, which gives that the probability of success is at least

1− 6�2(C/4)−r�/2 − 16(C�)−1 − 2e−C�qn/4.
Using qn≥ e−1r1 ≥ 1/3 from Lemma 2.6 together with e−x ≤ x−1 gives (5) as desired.

We now use this to prove Theorem 1.4.

Proof of Theorem 1.4. There exists a large constant K ′ such that if2 r� ≥K ′ log (�+ 1), then the
result follows from (5). If this does not hold and if r1 >K ′ log (�+ 1), then there exists some
I ≥ 2 such that rI−1 >K ′ log (�+ 1)≥ rI . If rI =K ′ log (�+ 1), then the result follows from (6)
with i= I provided C is sufficiently large in terms of K ′. Otherwise we define a new sequence of
integers r′1, . . . , r′�+1 with r′i = ri for i< I, r′I =K ′ log (�+ 1), and r′i = ri−1 for i> I. It is not
hard to see thatH is (q; r1′, . . . , r′�+1, 1)-spread, so the result follows3 from (6) with i= I.

It remains to deal with the case r1 ≤K ′ log (�+ 1). Because �≤ r1, this can only hold if r1 ≤K ′′
for some large constant K ′′. In this case we can apply Lemma 2.4 to give the desired result by
choosing K0 sufficiently large in terms of K ′′. �

3. Concluding remarks
With a very similar proof one can prove the following non-uniform analog of Theorem 1.4.

Theorem 3.1. Let H be a (q; r1, . . . , r�, 1)-spread hypergraph on V and define s=minS∈H |S|.
Assume that there exists a K such that r1 ≤Kq|V|, and such that for all i with ri > s we have log ri ≤
Kri+1. Then there exists a constant K0 depending only on K such that if r� ≤max{s,K0 log (�+ 1)}
and C ≥K0, then a set W of size C�q|V| chosen uniformly at random from V satisfies

P[W contains an edge ofH]≥ 1− K0
C�

.

2We consider log (�+ 1) as opposed to log (�) to guarantee that this is a positive number for all �≥ 1.
3The bound of (6) now uses �+ 1 instead of � throughout because we are working with the r′ i sequence, but this does not

affect the final result.
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Observe that if H is r1-uniform then this reduces to Theorem 1.4 with the additional con-
straint that r1 ≤Kq|V| for some K. By Lemma 2.6, this extra condition is always satisfied for
uniform hypergraphs with K = e. We note that Theorem 3.1 together with Proposition 1.3(b)
implies Theorem 1.1. We briefly describe the details on how to prove this.

Sketch of Proof. We first adjust the statement and proof of Lemma 2.1 to allow H to be r-
bounded. To do this, we partition H into the uniform hypergraphs Hr′ = {S ∈H : |S| = r′}, and
word for word the exact same proof4 as before shows that the number of k-bad pairs using S ∈Hr′
is at most 3(C/2)−k/2|H|

( n
pn

)
. We then add these bounds over all r′ to get the same bound as in

Lemma 2.1 multiplied by an extra factor of r. With regards to the other lemmas, one no longer
needs Lemma 2.6 due to the r1 ≤Kq|V| hypothesis, and Lemmas 2.4 and 2.5 are fine as is (in
particular, Lemma 2.5 still requiresH to be uniform).

For the main part of the proof, instead of choosing AS to be a subset of S of size exactly ri, we
choose it to have size at most ri and at least min{ri, s}. With this Hi will be uniform if ri ≤ s, and
otherwise when we apply the non-uniform version of Lemma 2.1 our error term will have an extra
factor of ri ≤ eKri+1 , with this inequality holding by our hypothesis for ri > s. This term will be
insignificant compared to (C/2)−ri+1/2 provided C is large in terms of K.

If r� ≤K ′ log (�+ 1) for some large K ′ depending on K, then as in the proof of Theorem 1.4 we
can assume rI =K ′ log (�+ 1) for some I and conclude the result as before. Otherwise r� ≤ s by
hypothesis, soH� will be uniform and we can apply Lemma 2.5 to conclude the result. �

Another extension can be made by not requiring the same “level of spreadness” throughoutH.

Definition 3.2. Let 0< q1, . . . , q�−1 ≤ 1 be real numbers and r1 > · · ·> r� positive integers. We
say that a hypergraphH on V is (q1, . . . , q�−1; r1, . . . , r�)-spread ifH is non-empty, r1-bounded,
and if for all A⊆V with d(A)> 0 and ri ≥ |A| ≥ ri+1 for some 1≤ i< �, we have for all j≥ ri+1
that

Mj(A) := |{S ∈H : |A∩ S| ≥ j}| ≤ qji|H|.
Different levels of spread was also considered in [2]. Here, one can prove the following.

Theorem 3.3. Let H be a (q1, . . . , q�; r1, . . . , r�, 1)-spread hypergraph on V and define s=
minS∈H |S|. Assume that there exists a K such that for all i we have ri ≤Kqi|V|, and that for all
i with ri > s we have log ri ≤Kri+1. Then there exists a constant K0 depending only on K such that
if r� ≤max{s,K0 log (�+ 1)} and if C ≥K0, then a set W of size C

∑
qi|V| chosen uniformly at

random from V satisfies

P[W contains an edge of H]≥ 1− K0 log (�+ 1)
CL

,

where L := ∑
i qi/maxi qi.

Note that
∑

qi ≤ �max qi, so we have L≤ � with equality if qi = qj for all i, j.

Sketch of Proof. We now choose our random sets Wi to have sizes Cqi|V| and W′ to have size
C

∑
qi|V| = C(L ·max qi)|V|. With this any of theHi could be at worst (2 max qi)-spread if each

Hi′ was successful, so in this case when we apply Lemma 2.4 withW′ we end up getting a proba-
bility of roughly 1− e−CL/ri of containing an edge. From this quantity, we should subtract roughly
�2C−ri , since this is the probability that some Hi′ is unsuccessful. If ri =K ′ log (�+ 1) for some
large constant K ′ then this gives the desired bound. Otherwise by using the same logic as in the

4The Hr′ hypergraphs may not be spread, but they still have the property that mj(S)≤ qj|H| for all S ∈Hr′ ⊆H, and this
is the only point in the proof where we used thatH is spread.
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proof of Theorem 1.4 we can assume r� >K ′ log (�+ 1) and apply Lemma 2.5 toH� to get a prob-
ability of roughly 1− (CL)−1, which also gives the result after subtracting �2C−r� to account for
someHi′ being unsuccessful. �

Lastly, we note that Frieze and Marbach [5] recently developed a variant of Theorem 1.1 for
rainbow structures in hypergraphs. We suspect that straightforward generalizations of our proofs
and those of [5] should give an analog of Theorem 1.4 (as well as Theorems 3.1 and 3.3) for the
rainbow setting.
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