

A smoother notion of spread hypergraphs

Sam Spiro

Department of Mathematics, University of California San Diego, La Jolla, CA, USA E-mail: sspiro@ucsd.edu

(Received 4 January 2022; revised 12 November 2022; accepted 13 May 2023; first published online 8 June 2023)

Abstract

Alweiss, Lovett, Wu, and Zhang introduced *q*-spread hypergraphs in their breakthrough work regarding the sunflower conjecture, and since then *q*-spread hypergraphs have been used to give short proofs of several outstanding problems in probabilistic combinatorics. A variant of *q*-spread hypergraphs was implicitly used by Kahn, Narayanan, and Park to determine the threshold for when a square of a Hamiltonian cycle appears in the random graph $G_{n,p}$. In this paper, we give a common generalization of the original notion of *q*-spread hypergraphs and the variant used by Kahn, Narayanan, and Park.

Keywords: thresholds; hypergraphs; spread **2020 MSC Codes:** Primary: 05C80

1. Introduction

This paper concerns hypergraphs, and throughout we allow our hypergraphs to have repeated edges. If *A* is a set of vertices of a hypergraph *H*, we define the *degree of A* to be the number of edges of *H* containing *A*, and we denote this quantity by $d_H(A)$, or simply by $d(A)$ if *H* is understood. We say that a hypergraph *H* is *q-spread* if it is non-empty and if $d(A) \le q^{|A|} |\mathcal{H}|$ for all sets of vertices *A*. A hypergraph is said to be *r-bounded* if each of its edges have size at most *r* and it is *r-uniform* if all of its edges have size exactly *r*.

The notion of *q*-spread hypergraphs was introduced by Alweiss, Lovett, Wu, and Zhang [\[2\]](#page-9-0) where it was a key ingredient in their groundbreaking work which significantly improved upon the bounds on the largest size of a set system that contains no sunflower. Their method was refined by Frankston, Kahn, Narayanan, and Park [\[4\]](#page-9-1) who proved the following.

Theorem 1.1 ([\[4\]](#page-9-1)). *There exists an absolute constant* K_0 *such that the following holds. Let* H *be an r-bounded q-spread hypergraph on V. If W is a set of size K*0(log *r*)*q*|*V*| *chosen uniformly at random from V, then W contains an edge of H with probability tending to 1 as r tends towards infinity.*

This theorem was used in [\[4\]](#page-9-1) to prove a number of remarkable results. In particular it resolved a conjecture of Talagrand, and it also gave a much simpler solution to Shamir's problem, which had originally been solved by Johansson, Kahn, and Vu [\[6\]](#page-9-2).

Kahn, Narayanan, and Park [\[7\]](#page-9-3) used a variant of the method from [\[4\]](#page-9-1) to show that for certain *q*-spread hypergraphs, the conclusion of Theorem [1.1](#page-0-0) holds for random sets *W* of size only *Cq*|*V*|.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650112.

^C The Author(s), 2023. Published by Cambridge University Press.

They used this to determine the threshold for when a square of a Hamiltonian cycle appears in the random graph $G_{n,p}$, which was a long-standing open problem.

In a talk, Narayanan asked if there was a "smoother" definition of spread hypergraphs which interpolated between *q*-spread hypergraphs and hypergraphs like those in [\[7\]](#page-9-3) where the log *r* term of Theorem [1.1](#page-0-0) can be dropped. The aim of this paper is to provide such a definition.

Definition 1.2. Let $0 < q \le 1$ be a real number and $r_1 > \cdots > r_\ell$ positive integers. We say that a hypergraph *H* on *V* is $(q; r_1, \ldots, r_\ell)$ -spread if *H* is non-empty, r_1 -bounded, and if for all $A \subseteq V$ with $d(A) > 0$ and $r_i \ge |A| \ge r_{i+1}$ for some $1 \le i < \ell$, we have for all $j \ge r_{i+1}$ that

$$
M_j(A) := |\{S \in \mathcal{H} : |A \cap S| \geq j\}| \leq q^j |\mathcal{H}|.
$$

Roughly speaking, this condition says that every set A of r_i vertices intersects few edges of H in more than r_{i+1} vertices.

As a warm-up, we show how this definition relates to the definition of being *q*-spread.

Proposition 1.3. *We have the following.*

- (a) If H is $(q; r_1, \ldots, r_\ell, 1)$ -spread, then it is q-spread.
- (b) If $\mathcal H$ is q-spread and r_1 -bounded, then it is (4q; r_1,\ldots,r_ℓ)-spread for any sequence of integers r_i *satisfying* $r_i > r_{i+1} \geq \frac{1}{2}r_i$.

Proof. For (a), assume *H* is $(q; r_1, \ldots, r_\ell, 1)$ -spread and let $r_{\ell+1} = 1$. Let *A* be a set of vertices of *H*. If $A = \emptyset$, then $d(A) = |\mathcal{H}| = q^{|A|} |\mathcal{H}|$, so we can assume *A* is non-empty. If $d(A) = 0$, then trivially $d(A) \le q^{|A|} |\mathcal{H}|$, so we can assume $d(A) > 0$. This means $|A| \le r_1$ since in particular \mathcal{H} is *r*₁-bounded. Thus, there exists an integer $1 \le i \le \ell$ such that $r_i \ge |A| \ge r_{i+1}$, so the hypothesis that *H* is $(q; r_1, \ldots, r_\ell, 1)$ -spread and $d(A) > 0$ implies

$$
d(A) \leq M_{|A|}(A) \leq q^{|A|} |\mathcal{H}|,
$$

proving that *H* is *q*-spread.

For (b), assume H is *q*-spread and r_1 -bounded. If *A* is any set of vertices of H , then for all $j \geq \frac{1}{2}|A|$ we have

$$
M_j(A) \le \sum_{B \subseteq A:|B|=j} d(B) \le 2^{|A|} \cdot q^j |\mathcal{H}| \le (4q)^j |\mathcal{H}|.
$$

In particular, if $r_i \ge |A| \ge r_{i+1}$, then this bound holds for any $j \ge r_{i+1}$ since $r_{i+1} \ge \frac{1}{2}r_i \ge \frac{1}{2}|A|$. We conclude that *H* is $(4q; r_1, \ldots, r_\ell)$ -spread.

We now state our main result for uniform hypergraphs, which says that a random set of size $C\ell q|V|$ will contain an edge of an r_1 -uniform $(q; r_1, \ldots, r_\ell, 1)$ -spread hypergraph with high probability as *Cl* tends towards infinity. An analogous result can be proven for non-uniform hypergraphs, but for ease of presentation we defer this result to Section [3.](#page-7-0)

Theorem 1.4. *There exists an absolute constant* K_0 *such that the following holds. Let* H *be an* r_1 *uniform* (*q*; *r*1, ... , *r*-, 1)*-spread hypergraph on V. If W is a set of size C*-*q*|*V*| *chosen uniformly at random from V with* $C \geq K_0$ *, then*

$$
\mathbb{P}[W \text{ contains an edge of } \mathcal{H}] \ge 1 - \frac{K_0}{C\ell}.
$$

We note that Theorem [1.4](#page-1-0) with $\ell = \Theta(\log r)$ together with Proposition [1.3\(](#page-1-1)b) implies Theorem [1.1](#page-0-0) for uniform H . In [\[7\]](#page-9-3), it is implicitly proven that the hypergraph H encoding squares of Hamiltonian cycles is a (2*n*)-uniform (*Cn*−1/2;2*n*, *C*0*n*1/2, 1)-spread hypergraph for some appropriate constants *C*, C_0 , so the $\ell = 2$ case of Theorem [1.4](#page-1-0) suffices to prove the main result of [\[7\]](#page-9-3). Thus, at least in the uniform case, Theorem [1.4](#page-1-0) provides an interpolation between

the results of [\[4,](#page-9-1) [7\]](#page-9-3). Theorem [1.4](#page-1-0) can also be used to recover results from very recent work of Espuny Díaz and Person [\[3\]](#page-9-4) who extended the results of [\[7\]](#page-9-3) to other spanning subgraphs¹ of $G_{n,p}$.

2. Proof of Theorem [1.4](#page-1-0)

Our approach borrows heavily from Kahn, Narayanan, and Park [\[7\]](#page-9-3). We break our proof into three parts: the main reduction lemma, auxiliary lemmas to deal with some special cases, and a final subsection proving the theorem.

We briefly sketch our approach for proving Theorem [1.4.](#page-1-0) Let $\mathcal H$ be a hypergraph with vertex set *V*. We first choose a random set $W_1 \subseteq V$ of size roughly $q|V|$. If W_1 contains an edge of H then we would be done, but most likely we will need to try and add in an additional random set *W*₂ of size $q|V|$ and repeat the process. In total then we are interested in finding the smallest I such that *W*₁ ∪ \cdots ∪ *W_I* contains an edge of *H* with relatively high probability. One way to guarantee that *I* is small would be if we had $|S \setminus W_1|$ small for most $S \in \mathcal{H}$ (i.e., most vertices of most edges $S \in \mathcal{H}$ are covered by W_1), and then that W_2 covered most of the vertices of most $S \setminus W_1$, and so on.

The condition that, say, $|S \setminus W_1|$ is small for most $S \in H$ turns out to be too strong a condition to impose. However, if H is sufficiently spread, then we can guarantee a weaker result: for most *S* ∈ *H*, there is an *S*['] ⊆ *S* ∪ *W*₁ such that $|S' \setminus W_1|$ is small. We can then discard *S* and focus only on *S* , and by iterating this repeatedly we obtain the desired result.

To be more precise, given a hypergraph *H*, we say that a pair of sets (*S*, *W*) is *k-good* if there exists $S' \in \mathcal{H}$ such that $S' \subseteq S \cup W$ and $|S' \setminus W| \leq k$, and we say that the pair is *k-bad* otherwise. We note for later that if (S, W) is *k*-bad with $S \cup W = Z$, then $(S, Z \setminus S)$ is also *k*-bad.

The next lemma shows that (*q*; *r*, *k*)-spread hypergraphs have few *k*-bad pairs with $S \in \mathcal{H}$ and *W* a set of size roughly *q*|*V*|. In the lemma statement we adopt the notation that $\begin{pmatrix} V \\ m \end{pmatrix}$ \int is the set of subsets of *V* of size *m*.

Lemma 2.1. Let H be an r-uniform n-vertex hypergraph on V which is $(q; r, k)$ -spread. Let $C \geq 4$ and define $p = Cq$. If $pn \geq 2r$ and $p \leq \frac{1}{2}$, then

$$
\left|\left\{(S, W): S \in \mathcal{H}, W \in \binom{V}{pn}, (S, W) \text{ is } k\text{-bad}\right\}\right| \leq 3(C/2)^{-k/2} |\mathcal{H}| \binom{n}{pn}.
$$

Proof. Throughout this lemma, we make frequent use of the identity

$$
\begin{pmatrix} a-c \\ b-c \end{pmatrix} / \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix} / \begin{pmatrix} a \\ c \end{pmatrix},
$$

which follows from the simple combinatorial identity $\binom{a}{b}\binom{b}{c}$ *c* $\begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} a-c \\ b-c \end{pmatrix}$ *b*−*c* `).

For $t < r$, define

$$
\mathcal{B}_t = \{ (S, W) : S \in \mathcal{H}, W \in {v \choose pn}, (S, W) \text{ is } k\text{-bad}, |S \cap W| = t \}.
$$

Observe that the quantity we wish to bound is $\sum_{t} |\mathcal{B}_t|$, so it suffices to bound each term of this sum. From now on, we fix some *t* and define

$$
w = pn - t.
$$

¹Somewhat more precisely, let *^H* be the hypergraph whose hyperedges consist of copies of *^F* in *Kn*. If *^F* has *^r* edges and maximum degree *d*, and if H is (q, α, δ) -superspread as defined in [\[3\]](#page-9-4), then one can show that H is $(C_q; r, C_1 r^{1-\alpha}, C_2 r^{1-2\alpha}, \ldots, C_{|1/\alpha|} r^{1-|1/\alpha|\alpha}, 1)$ -spread for some constants *C*, *C_i* which depend on *d*, δ. Indeed, when veri-fying Definition [1.2](#page-1-2) for $j \ge \delta k$, one can use a similar argument as in Proposition [1.3\(](#page-1-1)b) and the fact that *H* is *q*-spread. If $j < \delta k$, then the superspread condition together with Lemma 2.3 of [\[3\]](#page-9-4) can be used to give the result.

At this point, we need to count the number of elements in B_t , and there are several natural approaches that could be used. One way would be to first pick any $S \in \mathcal{H}$ and then count how many *W* satisfy $(S, W) \in \mathcal{B}_t$. Another approach would be to pick any set *Z* of size $r + w$ (which will be the size of *S*∪ *W* since $|S \cap W| = t$ and then bound how many *S*, $W \subseteq Z$ have $(S, W) \in \mathcal{B}_t$. For some pairs, the first approach is more efficient, and for others the second is. In particular, the second approach will be more effective whenever $Z = S \cup W$ contains few elements of \mathcal{B}_t .

With this in mind, we say that a set *Z* is *pathological* if

$$
|\{S \in \mathcal{H} : S \subseteq Z, (S, Z \setminus S) \text{ is } k\text{-bad}\}| > N,
$$

where

$$
N := (C/2)^{-k/2} |\mathcal{H}| {n-r \choose w} / {n \choose r+w} = (C/2)^{-k/2} |\mathcal{H}| {r+w \choose r} / {n \choose r},
$$

and we say that *Z* is *non-pathological* otherwise. We say that a pair (*S*, *W*) is *pathological* if the set *S* ∪ *W* is pathological and that (*S*, *W*) is *non-pathological* otherwise. -

Claim 2.2. *The number of* $(S, W) \in B_t$ *which are non-pathological is at most*

$$
\begin{pmatrix} n \\ r+w \end{pmatrix} N \begin{pmatrix} r \\ t \end{pmatrix} = (C/2)^{-k/2} |\mathcal{H}| \begin{pmatrix} r \\ t \end{pmatrix} \begin{pmatrix} n-r \\ w \end{pmatrix}.
$$

Proof. We identify each of the non-pathological pairs (S, W) by specifying $S \cup W$, then *S*, then *S* ∩ *W*.

Observe that *S* ∪ *W* is a non-pathological set of size $r + w$, and in particular there are at most $\binom{n}{r+w}$ ways to make this first choice. Fix such a non-pathological set *Z* of size $r + w$. As noted before the statement of Lemma [2.1,](#page-2-1) if (S, W) is k -bad with $S \cup W = Z$, then $(S, Z \setminus S)$ is also k -bad. Because *Z* is non-pathological, there are at most *N* choices for *S* such that $(S, Z \setminus S)$ is *k*-bad. Given *S*, there are at most $\binom{r}{t}$ choices for *S* ∩ *W*. Multiplying the number of choices at each step gives the stated result. \Box

Claim 2.3. *The number of* $(S, W) \in \mathcal{B}_t$ *which are pathological is at most*

$$
2(C/2)^{-k/2}|\mathcal{H}| \begin{pmatrix} r \\ t \end{pmatrix} \begin{pmatrix} n-r \\ w \end{pmatrix}
$$

Proof. We identify these pairs by first specifying *S* \in *H*, then *S* \cap *W*, then *W* \setminus *S*.

Note that *S* and *S* ∩ *W* can be specified in at most $|\mathcal{H}| \cdot {r \choose t}$ ways, and from now on we fix such a choice of *S* and *S* ∩ *W*. It remains to specify $W \setminus S$, which will be some element of $\binom{V\setminus S}{W}$ *w* \hat{P}). Thus it suffices to count the number of $W' \in \binom{V \setminus S}{W}$ *w* \hat{S} such that (S, W') is both *k*-bad and pathological.

For $W' \in \left(\begin{array}{c} V \setminus S \\ \ldots \end{array}\right)$ *w* , define

$$
\mathcal{S}(W') = |\{S' \in \mathcal{H} : S' \subseteq S \cup W', \ |S' \cap S| \ge k\}|.
$$

Observe that if (S, W') is *k*-bad, then every edge $S' \subseteq S \cup W'$ has $|S' \cap S| \ge k$ (since $|S' \cap S| \ge |S' \setminus S'|$ *W'* |), so the *W'* we wish to count satisfy

$$
\mathcal{S}(W') = |\{S' \in \mathcal{H} : S' \subseteq S \cup W'\}|.
$$

If (*S*, *W*) is pathological, then this latter set has size at least *N*. In total, if **W** is chosen uniformly at random from $\binom{V\setminus S}{W}$ *w* , then

$$
\mathbb{P}[(S, \mathbf{W}') \text{ is } k\text{-bad and pathological}] \leq \mathbb{P}[S(\mathbf{W}') \geq N] \leq \frac{\mathbb{E}[S(\mathbf{W}')]}{N},\tag{1}
$$

where this last step used Markov's inequality. It remains to upper bound $\mathbb{E}[\mathcal{S}(\mathbf{W}')]$.

Let

$$
m_j(S) = |\{S' \in \mathcal{H} : |S \cap S'| = j\}|,
$$

and observe that for any *S'* with $|S \cap S'| = j$, the number of $W' \in \binom{V \setminus S}{w}$ *w* with $S' \subseteq S \cup W'$ is exactly *n*−2*r*+*^j w*−*r*+*j* . With this we see that

$$
\mathbb{E}[\mathcal{S}(\mathbf{W}')] = \sum_{j \geq k} m_j(S) \frac{\binom{n-2r+j}{w-r+j}}{\binom{n-r}{w}} = \sum_{j \geq k} m_j(S) \frac{\binom{w}{r-j}}{\binom{n-r}{r-j}} = \frac{\binom{r+w}{r}}{\binom{n}{r}} \sum_{j \geq k} m_j(S) \frac{\binom{w}{r-j}}{\binom{n-r}{r-j}} \cdot \frac{\binom{n}{r+w}}{\binom{n-r}{w}}.
$$
(2)

Because *H* is $(q; r, k)$ -spread, we have for each $j \geq k$ in the sum that

$$
m_j(S) \le M_j(S) \le q^j |\mathcal{H}|. \tag{3}
$$

For integers *x*, *y*, define the falling factorial $(x)_y := x(x - 1) \cdots (x - y + 1)$. With this we have

$$
\frac{\binom{w}{r-j}}{\binom{n-r}{r-j}} \cdot \frac{\binom{n}{r+w}}{\binom{n-r}{w}} = \frac{(w)_{r-j}}{(n-r)_{r-j}} \cdot \frac{(n)_r}{(r+w)_r} \le \left(\frac{w}{n-r}\right)^{r-j} \cdot \left(\frac{n-r}{w}\right)^r = \left(\frac{w}{n-r}\right)^{-j} \le (Cq/2)^{-j},\tag{4}
$$

where the first inequality used $w \leq pn \leq \frac{1}{2}n \leq n-r$, and the second inequality used

$$
w = pn - t \ge pn - r \ge pn/2 = Cqn/2.
$$

Combining (2) , (3) , and (4) shows that

$$
\mathbb{E}[\mathcal{S}(\mathbf{W}')] \leq \frac{{\binom{r+w}{r}}}{{\binom{n}{r}}} |\mathcal{H}| (C/2)^{-k} \cdot \sum_{j \geq k} (C/2)^{k-j} \leq \frac{{\binom{r+w}{r}}}{{\binom{n}{r}}} |\mathcal{H}| (C/2)^{-k} \cdot 2,
$$

where this last step used $C \geq 4$. Plugging this into [\(1\)](#page-3-0) shows that the number of $W' \in \binom{V \setminus S}{W}$ *w*) such that (*S*, *W*) is *k*-bad and pathological is at most

$$
2(C/2)^{-k}|\mathcal{H}| \frac{{r+w \choose r}}{{n \choose r}N} \cdot {n-r \choose w} = 2(C/2)^{-k/2} \cdot {n-r \choose w}.
$$

Combining this with the fact that there were $|\mathcal{H}| \cdot {r \choose t}$ ways of choosing *S* and *S* ∩ *W* gives the claim. \Box

In total, $|\mathcal{B}_t|$ is at most the sum of the bounds from these two claims. Using this and $w = pn - t$ implies

$$
\sum_{t \le r} |\mathcal{B}_t| \le \sum_{t \le r} 3(C/2)^{-k/2} |\mathcal{H}| {r \choose t} {n-r \choose pn - t}
$$

$$
= 3(C/2)^{-k/2} |\mathcal{H}| {n \choose pn},
$$

giving the desired result.

2.2. Auxiliary lemmas To prove Theorem [1.4,](#page-1-0) we need to consider two special cases. The first is when *H* is *r*-uniform with *r* relatively small. In this case, the following lemma gives effective bounds.

Lemma 2.4 ([\[4\]](#page-9-1) Corollary 4.2). *Let* \mathcal{H} *be a q-spread r-bounded hypergraph on V and let* $\alpha \in (0, 1)$ *satisfy* $\alpha \geq 2rq$. If W is a set of size $\alpha|V|$ chosen uniformly at random from V, then the probability *that W does not contain an element of H is at most*

$$
2e^{-\alpha/(2rq)}.
$$

The other special case we consider is the following.

Lemma 2.5. Let H be an r-uniform (*q*; *r*, 1)*-spread hypergraph on V and* $\alpha \in (0, 1)$ *such that* $\alpha \ge$ 4*q. If W is a set of size* α|*V*| *chosen uniformly at random from V, then the probability that W does not contain an edge of H is at most*

$$
4q\alpha^{-1}+2e^{-\alpha|V|/4}.
$$

Proof. Let W' be a random set of V obtained by including each vertex independently and with probability $\alpha/2$. Let $X = |\{S \in \mathcal{H} : S \subseteq W'\}|$ and define $m_j(S)$ to be the number of $S' \in \mathcal{H}$ with $|S \cap$ $S' = j$. Note that $\mathbb{E}[X] = (\alpha/2)^r |\mathcal{H}|$ and that

$$
\operatorname{Var}(X) \le (\alpha/2)^{2r} \sum_{S,S' \in \mathcal{H}, S \cap S' \neq \emptyset} (\alpha/2)^{-|S \cap S'|} = (\alpha/2)^{2r} \sum_{S \in \mathcal{H}} \sum_{j=1}^{r} (\alpha/2)^{-j} \cdot m_j(S)
$$

$$
\le (\alpha/2)^{2r} \sum_{S \in \mathcal{H}} \sum_{j=1}^{r} (\alpha/2)^{-j} \cdot q^{j} |\mathcal{H}| = (\alpha/2)^{2r} \sum_{j=1}^{r} (\alpha/2q)^{-j} |\mathcal{H}|^{2}
$$

$$
= \mathbb{E}[X]^{2} (\alpha/2q)^{-1} \sum_{j=1}^{r} (\alpha/2q)^{1-j} \le 4 \mathbb{E}[X]^{2} q \alpha^{-1},
$$

where the second inequality used that *H* being (*q*; *r*, 1)-spread implies $m_j(S) \le q^j |H|$ for all $S \in H$ and $j \ge 1$, and the last inequality used $\alpha/2q \ge 2$. By Chebyshev's inequality we have

$$
\mathbb{P}[X=0] \le \text{Var}(X)/\mathbb{E}[X]^2 \le 4q\alpha^{-1}.
$$

Lastly, observe that

$$
\mathbb{P}[W \text{ contains an edge of } \mathcal{H}] \ge \mathbb{P}[W' \text{ contains an edge of } \mathcal{H} \mid |W'| \le \alpha |V|]
$$

\n
$$
\ge \mathbb{P}[W' \text{ contains an edge of } \mathcal{H}] - \mathbb{P}[W' > \alpha |V|].
$$

By the Chernoff bound (see for example [\[1\]](#page-9-5)) we have $\mathbb{P}[|W'| > \alpha |V|] \leq 2e^{-\alpha |V|/4}$. Note that *W*¹ contains an edge of *H* precisely when *X* > 0, so the result follows from our analysis above. \Box

We conclude this subsection with a small observation.

Lemma 2.6. *If* H *is an r*₁*-uniform* (*q*; *r*₁, ..., *r*_{ℓ})*-spread hypergraph on V, then r*₁ \leq *eq*|*V*|*.*

Proof. Let $m = \max_{S \in \mathcal{H}} d(S)$, i.e. this is the maximum multiplicity of any edge in *H*. Then for any *S* ∈ *H* with *d*(*S*) = *m*, we have

$$
m = M_{r_1}(S) \le q^{r_1} |\mathcal{H}| \le q^{r_1} \cdot m {|\mathcal{V}| \choose r_1} \le m (eq |\mathcal{V}|/r_1)^{r_1},
$$

|*V*|

proving the result. \Box

2.3. Putting the pieces together We now prove a technical version of Theorem [1.4](#page-1-0) with more explicit quantitative bounds. Theorem [1.4](#page-1-0) will follow shortly (but not immediately) after proving this.

Theorem 2.7. Let H be an r_1 -uniform $(q; r_1, \ldots, r_\ell, 1)$ -spread hypergraph on V and let $C \geq 8$ *. If W is a set of size* 2*C*-*q*|*V*| *chosen uniformly at random from V, then*

$$
\mathbb{P}[W \text{ contains an edge of } \mathcal{H}] \ge 1 - 6\ell^2 (C/4)^{-r_{\ell}/2} - 40(C\ell)^{-1},\tag{5}
$$

and for any i with $4r_i \leq C\ell$ we have

$$
\mathbb{P}[W \text{ contains an edge of } \mathcal{H}] \ge 1 - 6\ell^2 (C/4)^{-r_i/2} - 2e^{-C\ell/4r_i}.
$$
 (6)

Proof. Define $p := Cq$ and $n := |V|$. We can assume $p \leq \frac{1}{2}$, as otherwise the result is trivial (since the set *W* in the hypothesis of the theorem has size at least $|V|$). Let $W_1, \ldots W_{\ell-1}$ be chosen independently and uniformly at random from $\binom{V}{p n}$. Throughout this proof we let $r_{\ell+1}=1$.

Let $H_1 = H$ and let $\phi_1 : H_1 \to H$ be the identity map. Inductively assume we have defined H_i and $\phi_i : \mathcal{H}_i \to \mathcal{H}$ for some $1 \leq i < \ell$. Let $\mathcal{H}'_i \subseteq \mathcal{H}_i$ be all the edges $S \in \mathcal{H}_i$ such that (S, W_i) is r_{i+1} good with respect to \mathcal{H}_i . Thus for each $S \in \mathcal{H}'_i$, there exists an $S' \in \mathcal{H}_i$ such that $S' \subseteq S \cup W_i$ and $|S' \setminus W_i| \leq r_{i+1}$. Choose such an *S'* for each $S \in \mathcal{H}'_i$ and let A_S be any subset of *S* of size exactly r_{i+1} that contains $S' \setminus W_i$ (noting that $S' \setminus W_i \subseteq S$ since $S' \subseteq S \cup W_i$). Finally, define $\mathcal{H}_{i+1} = \{A_S : S \in$ \mathcal{H}'_i and $\phi_{i+1} : \mathcal{H}_{i+1} \to \mathcal{H}$ by $\phi_{i+1}(A_S) = \phi_i(S)$.

Intuitively, $\phi_i(A)$ is meant to correspond to the "original" edge *S* \in *H* which generated *A*. More ecisely we have the following precisely, we have the following.

Claim 2.8. *For i* $\leq \ell$, *the maps* ϕ_i *are injective and* $A \subseteq \phi_i(A)$ *for all* $A \in \mathcal{H}_i$.

Proof. This claim trivially holds for $i = 1$. Inductively assume the result has been proved for 1, ..., *i*. Observe that in the process of generating \mathcal{H}_{i+1} , we have implicitly defined a bijection $\psi : \mathcal{H}'_i \to \mathcal{H}_{i+1}$ through the correspondence $\psi(S) = A_S$.

By construction of ϕ_{i+1} , we have $\phi_{i+1}(A) = \phi_i(\psi^{-1}(A))$, so ϕ_{i+1} is injective since ϕ_i was inductively assumed to be injective and ψ is a bijection. Also by construction we have $A \subseteq \psi^{-1}(A)$, and by the inductive hypothesis we have $\psi^{-1}(A) \subseteq \phi_i(\psi^{-1}(A)) = \phi_{i+1}(A)$. This completes the proof. $\hfill\Box$

For $i < l$, we say that W_i is *successful* if $|\mathcal{H}_{i+1}| \geq (1 - \frac{1}{2l})|\mathcal{H}_i|$. Note that $|\mathcal{H}_{i+1}| = |\mathcal{H}_i'|$, so this is equivalent to saying that the number of r_{i+1} -bad pairs (S, W_i) with $S \in \mathcal{H}_i$ is at most $\frac{1}{2\ell}|\mathcal{H}_i|$.

Claim 2.9. *For i* ≤ ℓ , *if* W_1, \ldots, W_{i-1} *are successful, then* \mathcal{H}_i *is* (2*q*; *r_i*, ..., *r*_{ℓ}, 1)*-spread.*

Proof. For a hypergraph \mathcal{H}' , we let $M_j(A; \mathcal{H}')$ denote the number of edges of \mathcal{H}' intersecting A in at least *j* vertices. By Claim [2.8,](#page-6-0) if $\{A_1, \ldots, A_t\}$ are the set of edges of \mathcal{H}_i which intersect some set *A* in at least *j* vertices, then $\{\phi_i(A_1), \ldots, \phi_i(A_t)\}\$ is a set of *t* distinct edges of *H* intersecting *A* in at least *j* vertices. Thus for all sets *A* and integers *j* we have $M_i(A; \mathcal{H}_i) \leq M_i(A; \mathcal{H})$.

If *A* is contained in an edge *A'* of H_i , then by Claim [2.8](#page-6-0) *A* is contained in the edge $\phi_i(A')$ of H . Thus $d_{\mathcal{H}_i}(A) > 0$ implies $d_{\mathcal{H}}(A) > 0$. By assumption of $\mathcal H$ being $(q, r_1, \ldots, r_\ell, 1)$ -spread, if A is a set with $r_i \ge |A| \ge r_{i'+1}$ for some integer *i*' such that $d_{\mathcal{H}_i}(A) > 0$, and if *j* is an integer satisfying $j \geq r_{i'+1}$, then our previous observations imply

$$
M_j(A; \mathcal{H}_i) \le M_j(A; \mathcal{H}) \le q^j |\mathcal{H}|.
$$
\n⁽⁷⁾

Because each of *W*1, ... , *Wi*[−]¹ were successful, we have

$$
|\mathcal{H}_i| \ge \left(1 - \frac{1}{2\ell}\right)^i |\mathcal{H}| \ge \left(1 - \frac{1}{2\ell}\right)^{\ell} |\mathcal{H}| \ge \frac{1}{2} |\mathcal{H}|,
$$

where in this last step we used that $(1 - 1/(2x))^x$ is an increasing function for $x \ge 1$. Plugging $|\mathcal{H}| \leq 2|\mathcal{H}_i|$ into [\(7\)](#page-6-1) shows that \mathcal{H}_i is (2*q*; $r_i, \ldots, r_\ell, 1$)-spread as desired.

Claim 2.10. *For* $i < \ell$,

 $\mathbb{P}[W_i$ is not successful $\mid W_1, \ldots, W_{i-1}$ are successful] ≤ 6 $\ell(C/4)^{-r_{i+1}/2}$.

Proof. By construction \mathcal{H}_i is r_i -uniform. Conditional on W_1, \ldots, W_{i-1} being successful, Claim [2.9](#page-6-2) implies that \mathcal{H}_i is in particular (2*q*; *r_i*, *r_{i+1}*)-spread. By hypothesis we have $p \leq \frac{1}{2}$ and $C/2 > 4$, and by Lemma [2.6](#page-5-0) applied to *H* we have $2r_i < pn$ since $C > 2e$. Thus we can apply Lemma [2.1](#page-2-1) to \mathcal{H}_i (using $C/2$ instead of *C*), which shows that the expected number of r_{i+1} -bad pairs (*S*, *W_i*) is at most 3(*C*/4)^{$-r_{i+1}/2$}| H_i |. By Markov's inequality, the probability of there being more than $\frac{1}{2\ell}$ |H_{*i*}| total r_{i+1} -bad pairs is at most 6 ℓ (*C*/4)^{−*r*_{*i*+1}/2}, giving the result. \Box

We are now ready to prove the result. Let *W* and *W'* be sets of size $2\ell pn$ and ℓpn chosen uniformly at random from *V*. Observe that for any $1 \le i \le \ell$, the probability of *W* containing an edge of H is at least the probability of $W_1 \cup \cdots \cup W_{i-1} \cup W'$ containing an edge of H , and this is at least the probability that *W*['] contains an edge of \mathcal{H}_i (since every edge of \mathcal{H}_i is an edge of \mathcal{H} after removing vertices that are in $W_1 \cup \cdots \cup W_{i-1}$, so it suffices to show that this latter probability is large for some *i*.

By Proposition [1.3\(](#page-1-1)a) and Claim [2.9,](#page-6-2) the hypergraph \mathcal{H}_i will be (2*q*)-spread if W_1, \ldots, W_{i-1} are all successful. If *i* is such that $C\ell \geq 4r_i$, then by Claim [2.10](#page-7-1) and Lemma [2.4](#page-5-1) the probability that W_1, \ldots, W_{i-1} are all successful and W' contains an edge of \mathcal{H}_i is at least

$$
1-6\ell^2(C/4)^{-r_i/2}-2e^{-C\ell/4r_i},
$$

giving (6) .

Alternatively, the probability that W' contains an edge of \mathcal{H}_{ℓ} can be computed using Lemma [2.5,](#page-5-2) which gives that the probability of success is at least

$$
1-6\ell^2(C/4)^{-r_{\ell}/2}-16(C\ell)^{-1}-2e^{-C\ell qn/4}.
$$

Using $qn \ge e^{-1}r_1 \ge 1/3$ from Lemma [2.6](#page-5-0) together with $e^{-x} \le x^{-1}$ gives [\(5\)](#page-6-4) as desired. We now use this to prove Theorem [1.4.](#page-1-0)

Proof of Theorem [1.4.](#page-1-0) There exists a large constant *K'* such that if $r_{\ell} \ge K' \log(\ell + 1)$, then the result follows from [\(5\)](#page-6-4). If this does not hold and if $r_1 > K' \log(\ell + 1)$, then there exists some *I* ≥ 2 such that $r_{I-1} > K'$ log ($\ell + 1$) ≥ r_I . If $r_I = K'$ log ($\ell + 1$), then the result follows from [\(6\)](#page-6-3) with $i = I$ provided C is sufficiently large in terms of K' . Otherwise we define a new sequence of integers $r'_{1}, \ldots, r'_{\ell+1}$ with $r'_{i} = r_{i}$ for $i < I$, $r'_{I} = K' \log(\ell+1)$, and $r'_{i} = r_{i-1}$ for $i > I$. It is not hard to see that *H* is $(q; r_1', \ldots, r'_{\ell+1}, 1)$ -spread, so the result follows³ from [\(6\)](#page-6-3) with $i = I$.

It remains to deal with the case $r_1 \le K' \log{(\ell+1)}$. Because $\ell \le r_1,$ this can only hold if $r_1 \le K''$ for some large constant *K*["]. In this case we can apply Lemma [2.4](#page-5-1) to give the desired result by choosing K_0 sufficiently large in terms of K'' . The contract of the contract of \Box

3. Concluding remarks

With a very similar proof one can prove the following non-uniform analog of Theorem [1.4.](#page-1-0)

Theorem 3.1. *Let* H *be a* (q ; $r_1, \ldots, r_\ell, 1$ *)-spread hypergraph on V and define* $s = \min_{S \in \mathcal{H}} |S|$ *. Assume that there exists a K such that* $r_1 \leq Kq|V|$, and such that for all i with $r_i > s$ we have $\log r_i \leq$ *Kr*_{i+1}. Then there exists a constant K_0 depending only on K such that if $r_\ell \leq \max\{s, K_0 \log{(\ell+1)}\}$ and C \geq K_0 , then a set W of size $C\ell q|V|$ chosen uniformly at random from V satisfies

$$
\mathbb{P}[W \text{ contains an edge of } \mathcal{H}] \ge 1 - \frac{K_0}{C\ell}.
$$

²We consider log ($\ell + 1$) as opposed to log (ℓ) to guarantee that this is a positive number for all $\ell \geq 1$.

³The bound of [\(6\)](#page-6-3) now uses $\ell + 1$ instead of ℓ throughout because we are working with the r' _i sequence, but this does not affect the final result.

Observe that if H is r_1 -uniform then this reduces to Theorem [1.4](#page-1-0) with the additional constraint that $r_1 \leq Kq|V|$ for some *K*. By Lemma [2.6,](#page-5-0) this extra condition is always satisfied for uniform hypergraphs with $K = e$. We note that Theorem [3.1](#page-7-4) together with Proposition [1.3\(](#page-1-1)b) implies Theorem [1.1.](#page-0-0) We briefly describe the details on how to prove this.

Sketch of Proof. We first adjust the statement and proof of Lemma [2.1](#page-2-1) to allow *^H* to be *^r*bounded. To do this, we partition *H* into the uniform hypergraphs $\mathcal{H}_{r'} = \{S \in \mathcal{H} : |S| = r'\}$, and word for word the exact same proof^{[4](#page-8-0)} as before shows that the number of *k*-bad pairs using $S \in \mathcal{H}^1$ is at most 3(*C*/2)^{−k/2}|H| ${n \choose pn}$. We then add these bounds over all *r'* to get the same bound as in

Lemma [2.1](#page-2-1) multiplied by an extra factor of *r*. With regards to the other lemmas, one no longer needs Lemma [2.6](#page-5-0) due to the $r_1 < Kq|V|$ hypothesis, and Lemmas [2.4](#page-5-1) and [2.5](#page-5-2) are fine as is (in particular, Lemma [2.5](#page-5-2) still requires *H* to be uniform).

For the main part of the proof, instead of choosing *AS* to be a subset of *S* of size exactly *ri*, we choose it to have size at most r_i and at least min $\{r_i, s\}$. With this \mathcal{H}_i will be uniform if $r_i \leq s$, and otherwise when we apply the non-uniform version of Lemma [2.1](#page-2-1) our error term will have an extra factor of $r_i \leq e^{Kr_{i+1}}$, with this inequality holding by our hypothesis for $r_i > s$. This term will be insignificant compared to $(C/2)^{-r_{i+1}/2}$ provided *C* is large in terms of *K*.

If $r_\ell \leq K' \log{(\ell+1)}$ for some large K' depending on K , then as in the proof of Theorem [1.4](#page-1-0) we can assume $r_I = K' \log(\ell + 1)$ for some *I* and conclude the result as before. Otherwise $r_{\ell} \leq s$ by hypothesis, so \mathcal{H}_ℓ will be uniform and we can apply Lemma [2.5](#page-5-2) to conclude the result. \Box

Another extension can be made by not requiring the same "level of spreadness" throughout *H*.

Definition 3.2. Let $0 < q_1, \ldots, q_{\ell-1} \leq 1$ be real numbers and $r_1 > \cdots > r_{\ell}$ positive integers. We say that a hypergraph H on V is $(q_1, \ldots, q_{\ell-1}; r_1, \ldots, r_{\ell})$ -spread if H is non-empty, r_1 -bounded, and if for all $A \subseteq V$ with $d(A) > 0$ and $r_i \ge |A| \ge r_{i+1}$ for some $1 \le i < \ell$, we have for all $j \ge r_{i+1}$ that

$$
M_j(A) := |\{S \in \mathcal{H} : |A \cap S| \geq j\}| \leq q_i^j |\mathcal{H}|.
$$

Different levels of spread was also considered in [\[2\]](#page-9-0). Here, one can prove the following.

Theorem 3.3. Let H be a $(q_1, \ldots, q_\ell; r_1, \ldots, r_\ell, 1)$ -spread hypergraph on V and define $s =$ $\min_{S \in \mathcal{H}} |S|$. Assume that there exists a K such that for all i we have $r_i \leq K q_i |V|$, and that for all *i* with $r_i > s$ we have $\log r_i \leq Kr_{i+1}$. Then there exists a constant K_0 depending only on K such that *if* $r_\ell \leq \max\{s,K_0\log{(\ell+1)}\}$ *and if* $C \geq K_0$ *, then a set W of size* $C \sum q_i|V|$ *chosen uniformly at random from V satisfies*

$$
\mathbb{P}[W \text{ contains an edge of } \mathcal{H}] \ge 1 - \frac{K_0 \log (\ell + 1)}{CL},
$$

where $L := \sum_i q_i / \max_i q_i$.

Note that $\sum q_i \leq \ell \max q_i$, so we have $L \leq \ell$ with equality if $q_i = q_j$ for all *i*, *j*.

Sketch of Proof. We now choose our random sets W_i to have sizes $Cq_i|V|$ and W' to have size $C \sum q_i|V| = C(L \cdot \max q_i)|V|$. With this any of the H_i could be at worst (2 max q_i)-spread if each \mathcal{H}_i was successful, so in this case when we apply Lemma [2.4](#page-5-1) with *W'* we end up getting a probability of roughly 1 − *e*−*CL*/*ri* of containing an edge. From this quantity, we should subtract roughly $\ell^2 C^{-r_i}$, since this is the probability that some \mathcal{H}_i is unsuccessful. If $r_i = K' \log(\ell + 1)$ for some large constant *K'* then this gives the desired bound. Otherwise by using the same logic as in the

⁴The $\mathcal{H}_{r'}$ hypergraphs may not be spread, but they still have the property that $m_j(S) \le q^j |\mathcal{H}|$ for all $S \in \mathcal{H}_{r'} \subseteq \mathcal{H}$, and this is the only point in the proof where we used that *H* is spread.

proof of Theorem [1.4](#page-1-0) we can assume $r_{\ell} > K' \log(\ell + 1)$ and apply Lemma [2.5](#page-5-2) to \mathcal{H}_{ℓ} to get a probability of roughly $1 - (CL)^{-1}$, which also gives the result after subtracting $\ell^2 C^{-r_{\ell}}$ to account for some \mathcal{H}_{i} ^t being unsuccessful.

Lastly, we note that Frieze and Marbach [\[5\]](#page-9-6) recently developed a variant of Theorem [1.1](#page-0-0) for rainbow structures in hypergraphs. We suspect that straightforward generalizations of our proofs and those of [\[5\]](#page-9-6) should give an analog of Theorem [1.4](#page-1-0) (as well as Theorems [3.1](#page-7-4) and [3.3\)](#page-8-1) for the rainbow setting.

Acknowledgments

We thank Bhargav Narayanan for looking over an earlier draft.

References

- [1] Alon, N. and Spencer, J. H. (2004) *The Probabilistic Method*. John Wiley & Sons.
- [2] Alweiss, R., Lovett, S., Wu, K. and Zhang, J. (2020) Improved bounds for the sunflower lemma. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*, pp. 624–630.
- [3] Espuny Díaz, A. and Person, Y. (2021) Spanning *F*-cyles in random graphs. *arXiv preprint arXiv:* [2106.10023.](https://arxiv.org/abs/2106.10023)
- [4] Frankston, K., Kahn, J., Narayanan, B. and Park, J. (2021) Thresholds versus fractional expectation-thresholds. *Ann. Math.* **194**(2) 475–495.
- [5] Frieze, A. and Marbach, T. G. (2021) Rainbow thresholds. *arXiv preprint arXiv:* [2104.05629.](https://arxiv.org/abs/2104.05629)
- [6] Johansson, A., Kahn, J. and Vu, V. (2008) Factors in random graphs. *Random Struct. Algorithms* **33**(1) 1–28.
- [7] Kahn, J., Narayanan, B. and Park, J. (2021) The threshold for the square of a hamilton cycle. *Proc. Am. Math. Soc.* **149**(8) 3201–3208.

Cite this article: Spiro S (2023). A smoother notion of spread hypergraphs. *Combinatorics, Probability and Computing* **32**, 809–818. <https://doi.org/10.1017/S0963548323000202>