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A GENERALIZATION OF THE MAPPING DEGREE 

D. G. BOURGIN 

For the single-valued case the notion of degree has been given recent expres­
sion by papers of Dold [5] for the finite dimensional case, and by Leray-
Schauder [8] for the locally convex linear topological space. Klee [7] has 
removed this restriction by use of shrinkable in place of convex neighborhoods 
with the central role filled by a form of (2.15) below. For set-valued maps a 
modern formulation is, for instance, to be found in Gorniewicz-Granas [6]. 
These contributions relate the degree to the Lefschetz number, and the set-
valued maps are required to map points into acyclic sets; that is to say, into 
''swollen points". The degree formulation presented here is valid for non-
acyclic maps, and in general cannot be related to a Lefschetz number. 

1. Preliminaries. The results obtained are new even for the finite dimen­
sional situation. For simplicity of exposition we assume E is a Banach space 
and denote the origin by 6. In view of the maintenance of (2.15) in [7] it seems 
likely that our conclusions will extend to paracompact linear topological spaces. 
An upper semi-continuous (use) map F takes points into closed sets and F"1 (K) 
= {x\F(x) r\ K 7e- 0} for a closed set K is closed. Since the spaces involved are 
linear T2, the use condition is equivalent to the closure of the graph of F. Let 
D be the closure of a convex open set in E. Write 

DN = D r\ EN 

where EN is an iV-dimensional subspace of E and, as is well-known, EN can 
be assumed Euclidean. A dot will indicate boundaries. Thus D is the boundary 
of D and 

DN = D C\ EN. 

Then DN and DN are topologically an iV-disk and an N — 1 sphere, SN~1
f 

respectively. Let 

F : D-+E 

be compact in the sense that the closure of Im F, indicated by the notation 
F(D) = C, is compact. We use the symbols FN = F\DN, FN = F\DN. The 
graph of F is 

T{F) = {(x, y)\y G F(x), x G D) C D X C. 

Similarly T(FN) and T(FN) are the correspondents with D replaced by DN 

and by Ï)N respectively. 
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We assume the cohomology groups are Alexander-Spanier reduced groups 
with integer coefficients. The singular sets are defined by 

<rr = \x\HrF{x) ^ 0} 
and 

(1.01) a = U crr. 
r 

The effective bound for non-acyclicity is 

(1.02) p = 1 + sup r {r + dim ar\ar =£ 0}, 

where dim <rr is the maximum covering dimension (by finite covers, though 
this is not significant) of subsets of ar closed in D. 

Our analysis is restricted to the following transformations: 

Definition (1.1). The transformation F on D to E is admissible if 
(1.11) F is upper semi continuous and compact; 
(1.12) F is fixed point free on t>\ 
(1.13) p < o o ; o - G £ s , 5 < o o . 
(1.14) If x 6 a then H*F(x) is finitely generated. 
An admissible homotopy h : D X I —» £ satisfies (1.11), . . . , (1.14) with 

F, D and D replaced by h, D X I and Z) X I respectively. 

Evidently admissibility implies (1.11), . . . (1.14) are valid also for FN, DN, 
EN replacing F, D, E. In the sequel, F invariably designates an admissible 
transformation. Despite this, to make this work available for easy referencing, 
the hypotheses of some key theorems emphasize the fact by repeating this 
admissibility restriction. 

We shall rely heavily on the following theorem. 

THEOREM 1.2. Let FN be the restriction to DN of an admissible transformation. 
Let p(q) project the graph T(FN) to DN(lm FN). Then 

(1.21) p* : HN-^(DN) - ^ ^ - ^ ( / V ) 

is an isomorphism for N — 1 > p , (and FN* exists for N — 1 > p) and 

(1.22) HmY(FN) « Ofor m ^ N - 1 > p . 

Moreover, (1.21) and (1.22) remain valid if an admissible homotopy, h, replaces 
F and hN, t>N X / replace FN, DN, 

This result can be derived as a consequence of [9] once it is established that 
p is closed, but this is obvious here when it is recognized that T (FN) is compact 
as a consequence of (1.11) and the compactness of L)N X C. (cf. [1; 2; 3]). 

2. Basic considerations. It is understood throughout this paper that the 
total singular set cr (cf. (1.01) is contained in Es where S is minimal and finite. 
Let R = max(5, p + 2) and 

(2.11) EBDES. 
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We make immediate use of (1.12); write 

(2.12) / = 1 - F 

where 1 is the identity map. Since F is use and F(D) is compact, f(D) is closed 
and is disjunct from 6. Accordingly there is a symmetric convex open set U 
about 6 for which 

(2.13) f(D) C\U = 0. 

By compactness, F{D) admits a finite cover 

a = {xt+ U\xt G F(D)}. 

Choose for EN the linear extension of {xt} and ER whence 

(2.14) ENDER. 

Let QN be a continuous map of F{D) into EN for which 

(2.15) z = QNz + u, u £ U. 

Indeed one such map is obtained by starting with a partition of the identity, 
{iTi}, subordinate to a. Define QN by 

(2.16) Q** = 2>« (*)*«. 

That (2.15) is valid follows from the trivial observation that for z G F(D) 

(2.17) z = ! > * (z)z. 

If z 6 xt + U, Ti (z) = 0. Hence combining (2.16) and (2.17), z — QN{z) is 
evidently the barycenter of vectors z — xt in the convex set U and therefore 
lies in U. 

In the sequel we shall use the notation QN for any continuous map of F(D) to 
EN satisfying (2.15). Moreover we tacitly assume that every EN entering our 
results satisfies (2.14). 

We introduce the notation 

IN = liv "~ QNFNI JN = JN\DN> 

In order to define a cohomology homomorphism induced by fN we use a repre­
sentation of QNFNI namely 

(2.18) 

DN 

where PNUN) are the obvious projections of V(FN). 
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Remark. It might appear simpler to analyze QNFN by using T(QNFN) and 
the corresponding projections p' and q' on Ï)N and on QNFN(DN) C EN 

respectively. However, since the singular set for QNFN may be quite different 
from that for F, this alternative approach would involve serious irrelevant 
difficulties. 

Formally, 

(2.19) fN = (pN - QNqN)pN~l : DN -> EN. 

We designate the map in the parenthesis by TN. Its domain is Y(FN). Accord­
ingly, fN = TNpN~l\DN. Write also 

fN = TN\Y(FN). 

To simplify notation we write JN*,PN* and TN* for homomorphisms on the 
N — 1 dimensional cohomology groups. Then 

LEMMA 2.20. For admissible F (when (2.14) is satisfied), 

is a homomorphism on HN~1(SN~l X K) to HN~1DN for K a closed segment of 
the reals. 

We show first TN applied to T(FN) does not cover 0N G EN. Otherwise 
x = QNy for some x Ç DN and y G F\x). Thus x —y £ f(D), yet y — Qniy) G 
U in contradiction with (2.13). Since V (FN) is closed in Ï)N X C, it is compact. 
Hence TNT(FN) is compact. Accordingly the image of tN is bounded and is 
disjunct from a sufficiently small disk about dN. It is therefore contained in 
SN~l X K, the annulus with coordinates (x, s), for x G .S^ - 1 and s £ K, the 
closed interval from e to ikf for some e and M ^ e > 0. Since N è P + 2, Theorem 
(1.2) asserts ĴV-* is a n isomorphism on HN~10N) to HN~1T(FN). The assertion 
of the lemma follows. 

The deformation retraction r oî Sm X K to Sm induces an isomorphism on 
the corresponding cohomology groups which will be denoted by r* (instead of 
rm*). 

3. The degree. We introduce a degree definition dependent on the key 
sequence, 

(3.1) ^ a r - i ^ - i ) r* , H t f - i ( 5 v - i x K) Jj^ HN-I T {PN) 

where, F is of course admissible and in view of (2.14), Theorem 1.2 ensures the 
existence of pN*_1. 
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Definition 3.2. Let deg denote the usual degree of a homomorphism on 
HM(SM) to HM(SM). 

This is defined as the integer 

e ( H Y J h(m)ym 

where ym and ym are generators of Hm(Sm, J) and Hm{Sm, J) whose Kronecker 
index is 1 so Dym yields Poincare Duality and the augmentation homo­
morphism e replaces an integral multiple of a generator by the integer. Thus 

The relative degree of/ requires the assumption of (2.14) and is defined as 

(3.2) d[f, U, QN, EN] = deg(J>N*-iTN*r*) = deg(fN*r*). 

In spite of the apparent arbitrariness, the relative degree is independent of 
the choice of U, EN and QN. For convenience, we note the known result 
asserting naturality of the Mayer-Vietoris sequence. 

LEMMA 3.3: If T is a map of A, B —> A', B', then there is commutativity in the 
squares 

Hm(A) 0 Hm(B) -> Hm(A n 5 ) ^ Hm+1(A U B) 

î î Î 
Hm(A') 0 Hm(B') ^Hm{A' fi B') ^Hm+1{Af U B'). 

LEMMA 3.4. The relative degree is independent of the choice of EN. 

Suppose -Ejv+i ^ EN. Write eN+ and eN~ for the upper and lower closed 
hemispherical cells of SN determined by the equatorial cutting plane EN. Then 

Stf-i = eN+ r\ eN~, SN = eN+ \J eN~. 

(o AU V^N) = T(F\e„+) r\ T(F\eN-). 
{6'^} T(FN+1) = T(F\eN+) U T(F\eN~). 

In view of Theorem (1.2), and recalling that (2.14) is implied, 

0 = Hm(eN±) œ Hm(T{F\eN±) m ^ N - 1. 

Hence, by exactness of the Mayer Vietoris sequence 

(3.42) H^TiF^à^TiF^), 

where A and 3 refer to the boundary homomorphisms in the Mayer Vietoris 
sequence. Then 
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(3.43) 

H * - l (£*-!) 

S I 

-m"-1^1 x K) -£*-

5 II A III 

HN-\DN) 

HN(SN) 

T 

-> ff"(S" X20 
^Vfl! tjiV^ £ ;pN+l t r ^ 

^iTr/w^ HN(DN+1). 

By reason of (3.42), Lemma (3.3) assures commutativity of I, II, III . Only II 
merits more details. Observe then that QN ia obviously available as a choice 
for QN+i. Note CN(±) = QN F eN{±) denote bounded subsets of EN. Hence 

fN+1(eN±) = eN(±) - CN(±) ~É. ON+I 

is a collection of translates of eN(±) parallel to EN (in EN+1). In particular, 
equality is justified in 

}N(eN+ C\ eN~) = fN+i(en
+) r\}N+i(en-), 

This is a collection of translates in E^ of S2*-1 = eN+ r\ eN~. Also 

fN+i(eN
+ U eN~) = fN+1(eN+) \J fN+i(eN~) g 0N+1. 

In Lemma (3.3) if we identify A, B with T (FN+1\eN
+) and T(FN+i\eN~) we 

have just shown that for a suitable positive interval K for the radial coordinates 
we can define A', B' by 

eN+ X K = 4 ' D / ^ + i ( ^ + ) = TN+1T(FN+1\eN+) 

eN~ X K = B' DfN+i(eN~) = fN+1T(FN+1\eN-). 

Then 

A' C\B' = SN-X X K £dN 

A' \J B' = SNX K £ 0N+1. 

The commutativity of II follows forthwith. 
It is therefore clear that in view of the definition (3.2), 

(3.44) d[f,U, = d[f, U, QN, EN+1] 

follows from consistent choices of corresponding generators in the four corner 
groups in (3.43). More generally, if E M D ENy one applies the conclusion (3.44) 
to the chain EN C EN+i C • • C E M_i C E M. Finally, for any pair EN, E M, 
(3.44) applies by comparing with EQ — EN + EM. 

LEMMA 3.5. d[f, U, QN, EN] = d[f, U', QN, EN], where Uand Uf satisfy (2.13). 

Assume QN is associated with U. Suppose first that U' D U. Since QN 

satisfies (2.15) for U, it does for V also. This is all that is required to define 
tN with range in SN~X X K; that is to say, all the homomorphisms in (3.1) 
are unaffected. For arbitrary V and U, introduce TJ" = U' C\ U so the 
conclusion still holds. 
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LEMMA 3.6. 

d[f, U, QN, EN] = d[f, U, Q'N, EN]. 

Let Q(t) = tQN + (1 - t)Q'Nf t e I. Then Q(t) is a homotopy satisfying 
(2.15). Accordingly there is an induced homotopy. 

t t = ttN + (1 - t) TV 

and it is easy to see that the range of t t does not include dN. Hence tN* and 
TV* are the same, whence the asserted conclusion of the lemma. 

In view of Theorems (3.4), (3.5), and (3.6) we can drop the specialization to 
particular choices of U and EN and refer to the integer in (3.4) as the degree 
of/ and write d[f]. The case of a finite dimensional Banach space E = EN is 
covered if N ^ p + 2. 

4. Properties of the degree. We now establish some fundamental properties 
of the degree. The first, without which the definition of d[f] would be of little 
interest, is 

THEOREM 4.1. For admissible F, if d[f] ^ 0, then F admits a fixed point. 

Assume the assertion untrue. Then 

(4.11) f(D) r\ d = 0. 

That/(.D) is closed follows from (4.11), and the facts that F(D) is compact 
and F is use. Let U be a symmetric convex open set satisfying 

f(D) n u = 0. 

Note TN is on T(FN) to EN, and in fact, because of (4.11), the image of rTN 

is in SN~\ Let j be inclusion of T(FN) in T(FN). By Theorem (1.2), 

H^iTFv) ^ 0 

whence 

TV* r* : i T ^ - 1 ^ - 1 ) -^H^WF*) 

is trivial. Since the homomorphisms are induced by maps, the diagram 

HN-lY(FN)+—^ HN^(SN~l X K) 

T Y * T 
HN-*Y{FN) < HN-l{SN~l X K) 

commutes. Hence TN* is trivial. Therefore the degree is 0 in contradiction with 
our hypothesis. 

The next theorem is of prime importance also. 
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THEOREM 4.2. Let h be an admissible homotopy of F with h( , 0) = F. Then 

d[I - F] = d[I - F{\. 

We repeat the essentials of our earlier constructions. Thus with I the unit 
segment, since h is fixed point free on D X / , if 

g = i - h 

then the image of g on D X I is closed and does not include B. Choose U disj unct 
from g(D X I) and EN and QN to satisfy (2.11) and (2.14). Write h for 
h\D X I,P for the projection of T(h) onto D X I and hN,PN for the analogous 
transformations with DN X L Then, just as in the comment on Theorem 1.2, 
it follows tha tP^* is an isomorphism. The (continuous) map tN(I) is defined 
as in (2.19) with gN and Y(hN) replacing fN and T(FN). Thus 

fN(I) : T(hN)->SN-iXK. 

The rest of the demonstration below is essentially a transcription of that in 
[3, Theorem 2.1] where the interest is in h* = ^>*_1g* while here gN* = 

PN*~X fN*(I). (In connection with [3], the phrase "since F(x) does" ending 
the proof of Theorem 3.3, is pointless.) 

Let e{i) be the natural map of DN in DN X t. Then 

gNe(t) = fN(I)PN-ie(t) : DN^SN-i X K. 

(Evidently gN e{t) is use since gN is use.) 

Accordingly, we can define 

(4.12) fe e(t))* = e(t)* (P^*"1 tN(I)*). 

Clearly 

(4.22) (TAIVPN-1 e(0))* = (t^I)^-1®))* = « (O)*^* - 1 tN(I)* 

(fN(I)PN-U(l)r = (fN(I)pN-i(l))* = e(l)*PN*-i tN(I)*. 

It is well-known [4, p. 177] that e(t)* is independent of L Hence combining 
(4.21) and (4.22) and noting that gN(0) = gN e(0), gN(l) = gN e(l) we arrive 
at 

which is tantamount to the assertion of the theorem. 

LEMMA 4.3. / / F is the constant map F : D —» x0 G D C\ D~, then d[f] = ± 1. 

Evidently 

r ( ^ ) = s*-1 x x0,xo~ëSN-K 
Then 

J. ffX —~ X ^ 0 ) X \z o 

or TN* is an isomorphism. 

Remark. Our degree of f seems more descriptive here than the conventional 
index of F, [5]. 
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The restriction to convex domains can be weakened somewhat. Thus 

LEMMA 4.4. Let R be a deformation retract of D with retracting function r. 
Suppose the interior of R is non-empty. If F is admissible on R to E, then d[f] can 
be defined to satisfy (4.1), . . . (4.3). 

Write 

FDx = F rx 

for all x G D. The admissibility of F implies satisfaction of 1.11, . . . , 1.14 
when the domain in 1.1 is R. Evidently FD is admissible on D to E. It is under­
stood t h a t / is I — F (and/i) is I — FD). Define 

din = d(fD). 

The last part of the lemma is then obvious. 

Added in proof. The results are valid without the restriction a (j Es, S < oo 
and in fact none of the proofs require this condition. 

REFERENCES 

1. D. G. Bourgin, Set valued transformations, Bull. Amer. Math. Soc. 78 (1972), 597-599. 
2. Fixed points and saddle points, Notices Amer. Math. Soc. 19 (1972), A-724. 
3. Fixed point and min max theorems, Pacific J. Math. 45 (1973) 403-412. 
4. Modern algebraic topology (Macmillan, New York, 1963). 
5. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, 

Topology 4 (1965), 1-8. 
6. L. Gornewicz and A. Granas, Fixed point theorems for multi-valued mappings of the absolute 

neighborhood retracts, J. Math Pures Appl. 49 (1970), 381-395. 
7. V. Klee, Leray-Schauder Theory without local convexity, Math. Ann. 141 (1962), 380-296. 
8. J. Leray and J. Schauder, Topologie et equations functionelles, Ann. Sci. Ecole Norm. Sup. 

51 (1934), 45-78. 
9. E. G. Sklyarenko, Some applications of the theory of sheaves in general topology, Uspehi, 

Mat. Nauk. 19 (1964), 47-70. 

University of Houston, 
Houston, Texas 

https://doi.org/10.4153/CJM-1974-103-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-103-2

