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DEDEKIND SUMS FOR A FUCHSIAN GROUP, II

LARRY JOEL GOLDSTEIN1

1. Introduction

In [1] we derived a generalization of Kronecker's first limit formula.
Our generalization was a limit formula for the Eisenstein series for an
arbitrary cusp of a Fuchsian group Γ of the first kind operating on
the complex upper half-plane H. In that work, we introduced Dedekind
sums associated to the principal congruence subgroups Γ(N) of the
elliptic modular group. The work of our preceding paper suggests a
natural question: Is there a generalization of Kronecker's second limit
formula to the setting of a general Fuchsian group of the first kind?
The answer to this question is the subject of this paper.

In our preceding work, we viewed the Eisenstein series as a gen-
eralization of the classical series

Σ -i ^ „ > z = x + iy , y > 0 , Re (β) > 1 .
(m,W)=£(o,o) \m + nz\2s

In order to generalize Kronecker's second limit formula, it is necessary
to find an intrinsic interpretation for the classical series

O2πi{mu + nv)

E*(z,s\u,v) =
(m,ί7J(o,o) \m + nz\2s

u, v real, z = x + iy, y > 0, Re (s) > 1

in terms of the group theory of our Fuchsian group Γ. The behavior
of the generalized function near s = 1 gives rise to a generalization of
Kronecker's second limit formula. For our purposes, the series
E*(z,s\u,v) is not the natural object to generalize, but rather the series

E(z,s\u,v) = ys Σ -?• 5-. (*)
(m,7i)=5fe(o,o) \m + nz\s

(m,n)=l ' '
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172 LARRY JOEL GOLDSTEIN

We can compute E*(z,s\u,v) from E(z,s\u,v) via

E*(z, 8\u9v) = Σ 4 r # ( * > s I k u > **>) > (**)

so that any limiting behavior of E(z,s\u,v) at s — 1 can easily be
transcribed to 2£*(2,s|w,i;).

The series E(zfs\u,v) will be a typical example of what we call a
generalized Eisenstein series, with the series (*) being the generalized
Eisenstein series for the Fuchsian group Γ = SL(2,Z). In this paper,
we will define the generalized Eisenstein series for any Fuchsian group
of the first kind which is contained in SL(2,Z) and for which —leΓ.
(The latter hypothesis is merely for the sake of convenience.) We will
study the analytic continuability of our generalized Eisenstein series past
the line Re (s) = 1. From our analytic continuation, we will deduce a
Kronecker limit formula for our generalized Eisenstein series and will
study the properties of the analogues of the classical ^-function which
appear in our limit formula.

2. Definition of the Generalized Eisenstein Series

Throughout this paper, let Γ be a Fuchsian group of the first kind,
i.e. a discrete subgroup of SL(2,R) with a fundamental domain D of
finite invariant volume. Further, we will assume that Γ has at least
one cusp. For the sake of convenience, let us assume that — leΓ.
Finally, let us assume that co is a cusp of Γ. We will carry out our
definition of the generalized Eisenstein series for the cusp at infinity
only. It will be clear from our reasoning how to define Eisenstein series
for any other cusp. In order to completely study our generalized
Eisenstein series, it will be necessary for us to assume that Γ cz SL(2, Z),
but this hypothesis is not necessary in this section.

Throughont z = x + iy will denote a point of the complex upper
half-plane H and we will set y = y(z). We will denote by Γ^ the
stabilizer of oo in Γ. Then, since - l e Γ ,

for some a > 0. Let σ^ e SL(2, R) be such that σz'Γ^σ^ = [± ί1 n\nez\,
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DEDEKIND SUMS 173

Let us fix u,v eR and let us consider the series

E(z,8\u,v)= Σ y(σz1σz)se2 u c u + d v ) (zeH, Re(s) > 1)
«erZ\r

" ( ? S)
= oΓ'v*

It is immediate from the definition that this series does not depend on
the choice of the coset representatives of σ&ΓJ\Γ.

Note that if (u,v) = (0,0), then we see that

£7(2, s 10,0) = a~sys

e Σ N r
= vc d-

\cz + d\2

which is the usual Eisenstein series associated to the cusp oo of Γ (See
[2].). Moreover, by comparing the terms of E(z,8\u,v) with the cor-
responding terms of the usual Eisenstein series, we deduce that the
series for E(z,s\u,v) converges absolutely and uniformly on compact
subsets of the half-plane Re (s) > 1. In particular, E(z,s\u,v) is analytic
for Re (β) > 1.

Let D = y~2(d2/dx2 + 32/dy2) denote the Laplace-Beltrami operator for
the Riemannian symmetric space H with respect to the action of SL(2,R).
Then D is an invariant differential operator on H. Moreover, since

Dys = s(s - l)ιf ,

the invariance of D implies that

DE(z,s\u,v) = s(s - ΐ)E(s,z\u,v) . ( 1 )

Thus, E(z,s\u,v) is an eigenfunction of D corresponding to the eigen-
value λs = s(s — 1). In particular, E(z,s\u,v) is a real-analytic function
of z.

An elementary combinatorial argument shows that i fσ = ί Λ e Γ>

then

E(σz, sIau + bv, cu + dv) = E(z,s\u,v) . (2)

The main problem treated in this paper is the analytic continuability
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174 LARRY JOEL GOLDSTEIN

of E(z,s\u,v) beyond the half-plane Re(s) > 1.

Let us first get an explicit set of representatives for the cosets ΓM\Γ.

First of all, it is trivial to see that Γroσ = Γ^d (σ, </ 6 Γ) <=Φ a and σf

have the same second row. Next, note that

ίa b\(l na\ _ /a naa + b\
\c d/\0 1 / \c nac + d) '

Therefore, as a set of coset representatives of ΓJ\Γ9 we may take the

set

r i Λ N. f /sk ^̂  runs over a set representing the second)
Λ J U <?rk= J e Γ rows of elements in Γ, c > 0, d taken}
.0 1/J I \c d) Λ Λ -n I

( only mod cα:, γeΓ^. J

Therefore, we may write

E(z,s\u,v)=z a~syse2Hv + a~s Σ Σ y(σγ(z)ye2H{cu+(nac+d)v)

(* *\ p p

cφQ _(1 na\

d(moά ca) r~\0 1 J

= a'syse2πiv + a~sys Σ e2πUcu+dv) Σ e2'%naCΌ ^
ς *) 6 Γ n=-oo \cz + nac + d\2s

d (mod ca)

Let us denote

z,8,v)= Σ (3)
^ o o \ C Z - • ^ 1 O "

Then

, s I u, v) = a-syse2Hv + a~sys Σ e

2πUcu+avΊe d(z, s, v) . ( 4 )
C 2)er

oo
d (mod cα)

By applying the Poisson summation formula to the sum (3), we derive

oo Γ°° s>2πiw (m + otCV)

oo Λoo s>2πiyw(mJraCV)/a

= | c | - 2 5 α - y - 2 s 2 e-2 H ( C Λ ; + d ) ( m + Λ C V ) / α c — cZw , ( 5 )

where z = x + iy. I t is well-known that for u ^ 0,u e R, we have
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where Ks(u) is the modified Bessel function defined by

2 sin (sπ)

where

(z/2)s+m

Is(z) =
ô m! Γ(s + m + 1)

Moreover,

Therefore, by (6), we have

ΎTL--OO

mφaυc

a1/2-s\-τn + acv\s-ί/2Ks_ι/2(~\y(-nι + acv)\)

where

„ x 0 if x is not an integer,
E(x) =

1 if x in an integer.

Thus, by (4) and an elementary computation, we deduce the following

expansion of our generalized Einstein series:

E(a«,z,s\u9v) = yse2Hv + 2π^y f] am(s,z\u,v)e2πίmx

m -« (6)

s\u,v) , (Re 0) > 1, z e H) ,
Γ(s)

where

am(s,z\u,v) =

C>0 ( 7 Λ

|m —

and
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176 LARRY JOEL GOLDSTEIN

e2πUcU*

φ(s\u,v) =

c>0
i(mod ca)

acvez

The formula (6) is the analogue in our setting of the Fourier series ex-
pansion of the usual Eisenstein series about the cusp at oo. Note,
however, the following remarks:

Remark 1: E(z9s\u9v) is not usually periodic in z. This is re-
flected in the fact that the coefficient am(s,z\u,v) depends on x. Note,
however, that if v = 0, then this dependence vanishes and E(z9 s \ u9 0) is
periodic in z with period 1. Note, also, that if v is rational, say v =
h/k and if Γcz£L(2,Z), then E(z,s\u,h/k) is periodic in z with period
k. In each of these two cases, the expansion (6) is the Fourier series
which exhibits the periodicity.

Remark 2: The generalized Dirichlet series φ(s\u,v) is the precise
generalization of the Dirichlet series which appears in the constant term
of the Fourier expansion of the usual Eisenstein series. Note that in
the expansion (6), we have isolated the third term which corresponds
to the constant term in the usual theory.

3. The Analytic Continuation of E(z,s\u,v) for Re(s) > J

By using the same estimates as used to develop the analytic contin-
uation of the usual Eisenstein series, we see that the series

φ ± am(8,z\
aΓ(s) •-;«

converges absolutely and uniformly for Re (s) > | . Therefore, in order
to analytically continue E(z, s\u,v) for Re (s) > \> it suffices to analytically
continue φ(s\u9v). By the classical theory of Eisenstein series, Φ(s\ 0,0)
can be analytically continued to a meromorphic function for Re (s) > J,
whose only poles satisfy 0 < s < 1. For (u9 v) ψ (0,0), we have not been
able to establish such a general result. However, we can be specific if
u and v are both rational. Namely, we will prove

THEOREM 3-1: Assume u and v are rational and that Γc:SL(2,Z).
The series φ(s\u,v) can be analytically continued to a meromorphic func-
tion for Re(s) > 1 — ε for some ε > 0, such that the only poles of φ{s\u,v)
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DEDEKIND SUMS 177

in the half-plane are on the real axis. Moreover, at s = 1, there is at
most a simple pole.

Our proof of Theorem 3-1 is a reworking of the proof of the analytic
continuability of the Eisenstein series given in [2]. Since the calcula-
tions are somewhat complicated, we will give fairly complete proofs
where the details differ substantially from [2]. Our main hypotheses,
namely that ΓcSL(2,Z) and u and v are rational are already strongly
utilized in the following lemma.

LEMMA 3-2: Assume that Γ c: SL(2, Z) and that u and v are ra-
tional. Let f be a common denominator for u and v and let Γf — Γ(f) Π Γ,
where Γ(f) = the principal congruence subgroup of SL(2, Z) of level f.
Then E(z,s\u,v) is an automorphic function for Γf.

Proof: If σf = K %λ e Γ', then α' = d' = 1 (mod /) and b = c = 0

(mod/), so that

E(σfz,sIa'u + b'v.c'u + d'v) = E(σ'z,s\u,v) ,

as a simple computation shows. But then by (2), we have

E(σ'z,s\u,v) = E(z9s\uyv) ,

whence the lemma.
Our proof of Theorem 3-1 will proceed in three steps. First, we

will analytically continue φ(s\u,v) into the region Re(s) > £, s€ (£,1]
Next, we will show how to extend the continuation to the segment
(£, 1]. Finally, we will study the behavior at s = 1.

Let us recall some preliminaries from [2], Let ψ(z) be a function
on the upper half-plane such that ψ(z + x) = ψ(z) for all x e R. Then
the Mellin transform LΨ(s) of ψ is defined by the formula

LΨ(s) = .
Jo y

and the inverse Mellin transform is given by

iy) = ^-7 I +* LΨ(s)ysds .

These formulas hold, for example, when ψ(iy) = O(y~Λ) (y —> oo) for all
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178 LARRY JOEL GOLDSTEIN

A > 0, and ψ(iy) = O(yΛ) (y —> 0) for all A > 0. In this case, σ may be
an arbitrary real number. Whenever we consider functions ψ, they will
be assumed to satisfy these conditions.

Let us associate to ψ as above a generalized θ-series θΨ(z\u,v) de-
fined by

θΨ(z\u,v) = Σ> f(σz)e2πUcu+dv) .
σΘΓocΛΓ

(a δ\
σ = \c d)

By using the same reasoning as used in the proof of Lemma 3-1, we
see that θ+(z\u,v) is an automorphic function for the group Γ = Γί1 Γf.

Let us consider the Hubert space jf? = L2(H/Γ') with respect to the
inner product

(/,£)= f f(z)g(z)dz
J 9

where 2 is a fundamental domain for Γ1 and where d# = dxdyjy2, z —
x + iy. By using the same reasoning as used in [2], it is easy to see
that θΨ(z\u,v) e Jf. Moreover, by using exactly the same reasoning as
used in [2,p. 24], we derive the following inner product formula:
Let Γ'o = the stabilizer of oo in Γ'. Then Γί c Γn, so that

for some β > 0 such that β/a e Z. Then, we have

t~LΨ(l - s)Lr(s)
2πi

Lir(s)Lr(s)φ^(s\u,v)ds ,

where Λ*(s|«,t;) = ^-yι~s^Sl Hφ(s\u9v).
a Γ(s)

Let us now take for ψ the function such that

ΓlCO es2ysds ,
2π%

and let, for Re (ζ) > 1, us set

1

ψJy) J
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where in the latter integral we choose σ so that Re (1 — ζ) < σ < Re(ζ).

These functions satisfy the growth conditions above. Let us write

θ(zIu, v) instead of θΨ(z\u, v) and θζ(z\u, v) instead of θΨζ(z\u,v). A simple

computation shows that for σ > 1, we have

ψζ(z\u,v) = — - — -~E(z,s\u,v)ds .

2π% Jσ-ίco(s — ζ)(s — 1 + ζ)

Therefore, if D = y~2(d2/dx2 + d2/dy2) denotes the Laplacian, then

(D - C(C - ΐ)Dθζ(z\ufv) = θ(z) ,

where / denotes the identity operator of 3f. Thus, if λ is a complex

number which is not real, then D + λ has an inverse Rλ which is a

closed linear operator on tf3 and

θζ(z\u,v) = Rλθ{z\u,v) ,

with λ — ζ(ζ — 1). Moreover, for Jϊ not contained in the spectrum of D,

we see that (β, Rλθ) is an analytic function of λ. Therefore, (θ, θc) is an

analytic function of ζ for ζ non-real. Moreover, by the inner product

formula (9), we have for σ > 1 that

(θ,θr) = -l-e2πiυ Γ+'°° ^ α ds
2ττi J.-ίoo(s - ζ)( s - 1 + ζ)

+
2πiaL-ί~(s - ζ)(s - 1 + ζ)^

By shifting the line of integration to the line Re (s) = σu where ax > Re (ζ),

we see that

(θ, θ.) = -£_ euiΏ ds
" 2πi J.,-,. ( S _ O ( 8 - 1 + O(S_O(8

e2sφ*(s
(8-0(8- 1 + ζ)

_^_ p'+'- e2sφ*(s\u,v) ds (10)
2ία J..-t-(8-0(8- 1

^ 2 ζ - l r v " ' ' 2 ζ - l

From equation (10), we immediately deduce the following result:

PROPOSITION 3-3: φ(s\u,v) may be analytically continued to a holo-

morphic function in the region Re 0) > £, s g ( | , l ] .

By repeating the arguments of [2, pp. 35-43] almost word for word
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applied to our generalized Eisenstein series, using Proposition 3-3 and

the fact that E(z,s\u,v) is an automorphic function with respect to Γ',

we see that the following result holds:

PROPOSITION 3-4: φ(s\u,v) may be analytically continued to a mero-

morphic function in the entire region Re (s) > J.

Using Proposition 3-4, we may complete the proof of Theorem 3-1

by making the following observation: The terms of the series for

0(s|O,O) dominate the absolute values of the terms of the series for

φ(s\u,v) for s > l . However, since ^(s|0,0) has a simple pole at s = 1,

we know that (s — l)φ(s | u9 v) is bounded in a region of the form

{s\\s — l|<ε,Re(s) > 1}. Thus, since φ(s\u,v) meromorphic at s = 1, we

see that φ(s\u,v) has at most a simple pole at s = 1. This completes

the proof of Theorem 3-1.

Remarks: (1) In the case Γ = SL(2,Z), the function φ(s\u,v) is

holomorphic for u9v not both integers, as is seen from the classical

second limit formula and the relation (**).

(2) It is not generally true that φ(s\u,v) is holomorphic for u, v

not both integers. Indeed, if u, v both have denominator dividing / and

if Γ = Γ(/), then

φ(s\u,v) = e2Hvφ(s10,0) ,

so that φ(β\u9v) has a simple pole at s = 1.

(3) It would be interesting to remove the hypothesis u, v rational

from Theorem 3-1. We have been able to prove Proposition 3-3 with-

out the assumption. But the proof of Proposition 3-4, as derived from

[2, pp. 35-431, does not extend in any obvious way.

4. Kronecker's Second Limit Formula

In this section, we will derive our generalization of Kronecker's

second limit formula. We will assume throughout that — leΓ, Γ c

SL(2,Z) and u and v are rational. Then, by the results of Section 3,

we may write

φ(s\u,v) - ^ ^ + B(u,v) + . . • , (11)
s — 1
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in a neighborhood of s = 1.
By letting s tend to 1 from the right in (6), we see that

lim [Eiβji,s\%,v)- VΊ^y1'*ί^p^-φ(s|u, v)]
Λ As) JΠs)

Ύ 2
mφQ

where

bm(z\u, v) = Σl e2πUcu+dv~aCxV-dv+dm/acW\m — acv\ K1/2(2πy \m - acv\)

dimoάca)
acvφm

C *\
d (mod ca)

OO

Let us rewrite the double sum implied in (12) somewhat. Let us sum
over all c from 1 to oo and then sum over d (mod ca) for which (c, d)
is the second row of an element of Γ, making the convention that an
empty summation equals 0. Then (12) may be rewritten

lim {Eiσ^Zys\u,v) — V πyι~&

*-i+

oo oo

ygZπiυ i -. y V1 β πί(m-acυ)χ~2πy\m-acυ}

mΦO Vc ds c A

mΦacv d(mod ca)

c = l m-acv>0 (* *)€
mΦO V? d/

d(moά c

V1 V1 />2πi(m-acυ)z V1 Λπίicu + dm/ac)

+
c=l m-acv>0 d)eι

mod ca)

However, the last summand may be rewritten as follows:

oo

V1

 β-2H(m + acv)z V1

 β2iti{cu-dτrι/ac)_ X 1

π /_j
C = l m+cV> (

mΦO Vc d

+acV>0 (* *Λ
Vc d'

ca)

Vc ύ)
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182 LARRY JOEL GOLDSTEIN

so that

lim\E(σ»z,8\u,v) - V π y1- Γ ( * ® φ(8\u,v)\
«-»!+ L I (s) JΓ(s)

Σ e2πί(cu+dm/ac) (14)
c = lm-αcυ>0 f

(Z(mod cα)

_j_ _ V 1 y sjm + aCV y />2jrt(-CW + <Zm/αCΛ

C = l m+αcυ>0 /* * ^ e ^

d(mod cα)

In order to bring (14) into a more convenient form, notice that since
— 1 eΓ, we have

E(z9s\u9v) = E(z,s\ —u, —v) ,

φ(s\u,v) — φ(s\ —u, —v) .

Therefore, by adding (14) for (u, v) to (14) for (—u, — v), we see that

2 l i m I E ( σ ^ z , s \ u 9 v ) — V π y ι ~ s ——~ J φ(s\u9v)\
Γ(s) J

= 2y cos (2πv) + π Σ Σ ^m~αC^m(^> ̂ ) + π Σ Σ
c = l m-acυ>0 c=l m-αcυ>

Σ 3m+"c^m(c,tί) + ^ Σ Σ
m+acv>0 c = l m+acv>0

mφQ mφO
Σ

(15)

where

Note now that

λ u) — Σ
oo

ci(mod co

g2jrΐ(CW. + dm/αC)

)

r cos (2πv) = ~ cos (2ττ2;) + (— cos (2πt;)) .
i \i /

Let

A = π/vol (H/Γ) = π/[[ ^L .
/ JJD y2

Then, we have proved [1, Theorem 3-3] that A = A(0,0). Then let us
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rewrite (15) as follows:

lim \λ-
L2
λ-E{σ»z,8\u,v) -J—y
2ττ 2 γ π Γ(s)

= -AΓ--4-Γ cos (2πv) - -V Σ Σ Qm-acv*m(c, u)
L AπlA 4 A c = l m-«c<y>0

-TTΣ Σ
4 A c = l m+«cϋ

Σ4A
mΦO

V V
4 A c=l m-acυ>0

This last formula suggests defining the generalized ^-function ηΓ(z\u,v)

log τ]Γ(z I u, v) = — cos (2πv) — - — Σ Σ ^ m ~ α c ^ m ( c , u)

Σ4A c =

Then our limit formula may be written

lim \λE(σooz,s\u,v l
L2

\u,v) yIllfJ£φ(8\u,v)\
2v 7r Γ(s) J (17)

= —A log|^Γ(^|^,i;)|2 .

The reason for inserting the normalizing factor A is to bring our limit

formula into agreement with the known classical cases (e.g. u = v = 0,

Γ = SL(2,Z)).

Let us now bring our limit formula into final form. About s = 1,

we have the expansions

if-* = 1 + (s - 1) log (I/"1) +

- (21og2)(s - 1) + . . . ) .

Therefore, by (11), we see that in a neighborhood of s = 1 that

s —
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where

C(u, v) = iA(u, v)

D(u, v) = i{B(u, v) + A(u, v) log (y-1) - (2 log 2)A(u, v)}

Thus, from (17) we deduce

THEOREM 4-1 (Kronecker's Second Limit Formula): Assume that

Γ cz SL(2, Z) is a Fuchsίan group of the first kind having infinity as a

( —1 0 \
Λ i ) e JΓ. Further, let u,v eQ. Then

we have the following limit formula:

lim — Eiσ^z, s\u,v) — —A(u,v)-
2π 2 s — 1

= —B(u, v) — A(u, v) log 2 — A(w, v) log (VT) — A log \ηΓ(z \u, v)\2 ,
LA

where

log ηΓ(z\u,v)= —-Ϊ-Γ-cos (2πv) - - L f; Σ.
4 Z A 4 A c»l m-αcί?>

>0TrΣ Σ
4 A c=l m+αcv>0

3 /'Λ o/^

C ί
Z

c>0
cZ(mod cα)

In case Γ = SL(2,Z), ^ = v = 0, Theorem 4-1 is precisely Kronecker's

first limit formula. In case Γ is arbitrary and u = v — 0, Theorem 4-1

gives the generalization of Kronecker's limit formula given in [1], In

all other cases, the formula appears to be new.

CONJECTURE: Although the hypotheses Γ c S L ( 2 , Z ) , u,veQ are

essential to our method of proof, we strongly suspect that Theorem 4-1

remains true even without them.

5. The Generalized ^-Function and Dedekind Sums

It is clear from the manner in which we defined ηΓ(z\u,v) that

ηΓ(z I u, v) is analytic for z e H and that ηΓ(z \ u, v) ψ 0 for zeH. Let us

derive a few elementary properties of this function. Throughout this
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section, we will use that branch of the log function whose argument

runs from 0 (included) to 2π (excluded). (Note that which branch of

log is used to define ηΓ(z\u,v) is immaterial.)

Since E(z,s\u,v) satisfies the transformation property (2), we see

that E(σO0z,s\u,v) satisfies:

Eiσ^z, s I an + bv, cu + dv) = Eiσ^z, s\u,v) (18)

for σ = tf^ίg V̂oo eσ^/Veo. Therefore, by reasoning precisely as in [1,

Theorem 3-2], we deduce a transformation property for \ogηΓ(z\u,v).

Let us fix σ = σzι{^ ^ W 6 σZιΓσM. Then by (18), both of the func-

tions E(σooaz,s\au + bv,cu + dv) and E(σooz,s\u,v) have the same residue

at s = 1. On the other hand, by Theorem 3-1, these residues are,

respectively, A(au + bv,cu + dv) and A(u9v). Thus,

A(au + bv, cu + dv) = A(u, v) (σ = (a δ ) e f ) . (19)

Another way of putting (19) is as follows:

THEOREM 5-1: Let Γ act on Q x Q by the formula

σ-(u, v) = {an + bv, cu + dv) , a = (a ) e Γ , (u9v) eQ X Q .
\c (Z/

the residue of φ(s\u,v) is constant on the orbits of Q x Q under

Γ.

For example, if Γ = SL(2,Z), then there are two orbits: {(0,0)} and

Q x Q - {(0,0)}. On the former, φ(s \ u, v) has a simple pole with resi-

due A. On the latter φ(s\u,v) is regular, as we see from the classical

Kronecker limit formula.

It turns out that the behavior of log^Γ(^|^,^) is quite different if

A(u, v) is zero or non-zero. Therefore, let us make the following defini-

tion:

DEFINITION 5-2: Let (u9v)eQx Q. We say that (u,v) is regular

or irregular according to whether A(u,v) is zero or not. By Theorem

5-1 the orbits of Q x Q under Γ consist of either all regular or all

irregular points. Thus, we will speak of regular or irregular orbits.
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Let us subtract the pole term from both sides of (18) (taking into
account (19)) and let us pass to the limit s = 1. Then by Theorem 3-1
and (19), we see that

—A(u, v) log (VWs)) — A log \rjΓ(σz \ an + bv, cu + dv)\2

— —A(u,v)log(VY) — A\og\ηΓ(z\u,v)\2

for σ = σ~ι\t ΛV°° eσ^Γσ^ However, since y(σz) — y/\caz + d\2, we see

that

A[\og\ηΓ{σz\au + bv,cu + dv)\ — \og\ηΓ(z\u,v)\]

= jA(u, v) log \caz + d\ .

Note that from (21), it is clear that A(u, v) is always real. Moreover,
from (21), it is also clear that there exists a real number SΓ(σ\u,v),
not depending on z9 such that

log ΎjΓ{σz I an + bv, cu + dv) — log ηΓ(z \ u> v)

= 1 A ( ^ ; ^ l o g (cz + d) + πίSΓ(σ \ u, v) . ( 2 2 )

2 A

Thus, finally, we deduced

THEOREM 5-3: Let σ = σ'1^ Λσ^ and let (u, v)eQ x Q.

(1) If (u,v) belongs to an irregular orbit, then

log ηΓ(σz \au + bv,cu + dv)

= \ogqΓ(z\u,v) + ~ A(u>v^ log(cz + d) + πiSΓ(σ\u,v)

with A(u, v) ψ 0.
(2) // (u, v) belongs to a regular orbit, then

logηΓ(σzI&U + bv,cu + dv) = logηΓ{z\u,v) + πiSΓ(σ\u,v) .

The quantities SΓ(σ \ u, v) are generalizations of the classical Dedekind
sums.

Let us close this paper with a comment which generalizes an obser-
vation of Siegel [3]. Suppose that (u, v) belongs to a regular orbit and
suppose that / is a common denominator for u and v. Let Γ = ΓΠ Γ(f).
Then Γ' is a subgroup of finite index in Γ. Moreover, from the defini-
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tion of Γ(/), we see that if σx = (* ^e Γ(f), then

\ogηΓ(z\au + bv,cu + dv) = \ogηΓ(z\u,v) .

Therefore, we derive from Theorem 5-3 that if σ = σ~ι\t Λ V«, € J T V * ,

then

In other words, log ^ΓO | u, v) is an abelian integral for the group σ
and the Dedekind sum appears as a period of this abelian integral. Siegel
observed this fact for Γ = SL(2,Z), (u9v) Φ (0,0).
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