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On the primality of totally ordered
q-factorization graphs
Adriano Moura and Clayton Silva
Abstract. We introduce the combinatorial notion of a q-factorization graph intended as a tool to
study and express results related to the classification of prime simple modules for quantum affine
algebras. These are directed graphs equipped with three decorations: a coloring and a weight map on
vertices, and an exponent map on arrows (the exponent map can be seen as a weight map on arrows).
Such graphs do not contain oriented cycles and, hence, the set of arrows induces a partial order on
the set of vertices. In this first paper on the topic, beside setting the theoretical base of the concept,
we establish several criteria for deciding whether or not a tensor product of two simple modules is
a highest-�-weight module and use such criteria to prove, for type A, that a simple module whose
q-factorization graph has a totally ordered vertex set is prime.

1 Introduction

The simple finite-dimensional modules for an affine Kac–Moody algebra g̃ were
classified by Chari and Pressley [5, 10] in terms of tensor products of simple evaluation
modules, which are built from simple finite-dimensional g-modules. Moreover, the
factorization of such simple g̃-modules in terms of evaluation modules is unique, up to
permutation of the factors. In fact, the finite-dimensional simple evaluation modules
are exactly the finite-dimensional prime simple g̃-modules, that is, those that cannot
be factored as a nontrivial tensor product.

As in the classical case, the simple finite-dimensional modules for the associated
Drinfeld–Jimbo quantum group Uq(g̃) were also classified by Chari and Pressley [11,
12]. However, in this context, the classification was described in terms of their highest-
�-weights (or Drinfeld polynomials), with no mention to prime simple modules,
except in the case, the underlying finite-dimensional simple Lie algebra g is of type
A1. In that case, the simple prime modules are again evaluation modules and every
simple module can be uniquely expressed as a tensor product of prime ones (up to
reordering). Thus, the question about finding a description of the simple modules in
terms of tensor products of prime ones beyond rank one has intrigued the specialists
since the early days of the study of the finite-dimensional representation theory
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of quantum affine algebras. The situation is indeed much more complicated since
evaluation modules exist only for type A but, even in that case, it is known [14] that
there are prime simple modules which are not evaluation modules. The classification
of prime simple modules remains open after more than three decades since the early
works on the topic.

As further studies were made, several examples of families of prime simple modules
started to appear in the literature such as the Kirillov–Reshetikhin (KR) modules or,
more generally, minimal affinizations [6], and certain snake modules [28] (which
contain the examples in the aforementioned [14]). However, the most important
advent related to this topic was a theory introduced by Hernandez and Leclerc [20]
connecting the finite-dimensional representations of quantum affine algebras to clus-
ter algebras. In particular, as a consequence of their main conjecture (referred to as HL
conjecture below), in principle, all real prime simple modules can be computed using
the machinery of cluster mutations since they correspond to the cluster variables of
certain explicitly prescribed cluster algebras. A real module is a simple module whose
tensor square is also simple (only the trivial module is real in the classical setting, but
they abound in the quantum setting). However, describing all cluster variables is not
exactly a simple task in general. The combinatorics of cluster mutations for type A
was rephrased in [4] in tableau-theoretic language and the resulting algorithm could
be used to produce examples of prime, real, and nonreal modules. Most of the HL
conjecture was proved for simply laced g in [33], which built up on [30]. We refer to the
survey [21] for an account on the status of the conjecture and the related literature. The
papers [2, 3, 8, 15] have explicitly identified prime modules in certain HL subcategories
and provided alternate proofs for parts of the HL conjecture. See also [1, 25, 31] for
recent developments related to HL subcategories as well as [9] for a study of primality
from a homological perspective.

The motivation for the present work is the problem of classifying the Drinfeld poly-
nomials whose associated simple modules are prime and similarly for real modules.
We will focus here on the former, leaving our first answers regarding the latter to
appear in [27]. As it is clear from the above considerations, this is a difficult problem, so
our goal is to gradually obtain general results toward such classification. In this sense,
most of the original results of the present paper consist of criteria for deciding whether
certain tensor products are highest-�-weight modules or not. We use such criteria for
proving the main result of the present paper, Theorem 3.5.5, as well as the main results
of [27]. Such criteria allowed us to expand the number of examples of families of
prime and real simple modules compared to the existing literature. In particular, they
recover the primality and reality of minimal affinizations for all types and, for type A,
the primality of snake modules arising from prime snakes, skew representations, and
certain minimal affinizations by parts.

In order to describe Drinfeld polynomials which correspond to simple prime
modules in an efficient manner, we propose a graph theoretical language based on
the notion of q-factorization. The notion of q-factorization is already present in the
literature and is based on the solution of this classification for g of rank one. More
precisely, for each simple root of g, one considers the subalgebra of Uq(g̃) generated
by the corresponding loop-like generators and then the associated restriction of the
Drinfeld polynomial. Since this subalgebra is of type A(1)1 , this restricted polynomial
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can then be factorized according to the decomposition of the associated simple
module as a tensor product of prime modules. Each of these factors is said to be a
q-factor of the original Drinfeld polynomial π. Using the q-factorization, we define a
decorated oriented graph G(π) which we call the q-factorization graph of π. The set
of vertices of G(π) is the multiset of q-factors (q-factors with multiplicities give rise
to as many vertices). Each vertex is given two decorations: a “color” (the simple root
which originated the vertex) and a “weight” (the degree of the polynomial). Given two
vertices ω and ω′, G(π) contains the arrow

ω ω′

if and only if the tensor product Lq(ω) ⊗ Lq(ω′) of the associated simple modules is
reducible and highest-�-weight. Since Lq(ω) is a KR module for every vertex ω and
KR modules are real, it follows that G(π) has no loops. Moreover, if a tensor product
of KR modules is not highest-�-weight, the tensor product in the opposite order is.
Hence, the determination of the arrows is equivalent to the solution of the problem
of classifying the reducible tensor products of KR modules. Such classification gives
rise to a decoration for the arrows: a positive integer which we call the exponent of
the arrow. We recall that the roots of the polynomial ω form a q-string. Let us say a is
the center of such string and similarly let a′ be the center of the string associated with
ω′. Let us say that ω is i-colored and has weight r while ω′ is j-colored and has weight
s. Then, there exists a finite set of positive integers R r ,s

i , j such that Lq(ω) ⊗ Lq(ω′) is
reducible and highest-�-weight if and only if a = a′qm for some m ∈R r ,s

i , j . This number
m is then defined to be the exponent of the arrow. We visually express this set of data
by the picture

r
i

s
j .m

If G(π) is connected, this data determines π uniquely up to uniform shift of all centers.
Primeness and reality of the underlying simple modules are independent of such shift.
Thus, the classification of prime simple modules can be rephrased as a classification
of such decorated graphs. For instance, the result for g of type A1 can be phrased as:
Lq(π) is prime if and only if G(π) has a single vertex. Also, for general g, if G(π)
has two vertices, then Lq(π) is prime if and only if G(π) is connected. This is not
true in general: although G(π) is connected if Lq(π) is prime (Proposition 3.4.1), the
converse is far from true. Henceforth, we say G(π) is prime if Lq(π) is prime. We
remark that, by definition, G(π) has no oriented cycles and, therefore, the structure
of arrows induce a natural partial order on the set of vertices of G(π). For instance,
in the above picture, ω ≻ ω′.

A precise description of the elements belonging to R r ,s
i , j can be read off the results

of [32] for nonexceptional g as well as for type G. Some of our results were proved
without using such precise description and, hence, they are proved for all types. For
instance, the main result of [14] describes a family of prime simple modules for type
A2. In the graph language that we are introducing here, this can be simply described
by saying that G(π) is prime if it is an oriented line (all arrows in the same direction):

○ ○ ⋅ ⋅ ⋅ .
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In Theorem 3.5.4, we prove that this is true for all g. Even for type A2, this does not
cover all prime simple modules. For instance, one of the main results we present in
[27] characterize all nonoriented lines with three vertices which are prime for type A.
Another fact we prove here for all g concerns the case that G(π) is a tree, i.e., there
are no (nonoriented) cycles. In that case, we prove that, if G(π) is prime, then every
connected subgraph of G(π) is also prime. This not true if G(π) is not a tree, and
we give a counter example in [27], which is a paper dedicated to the study of several
results concerning trees.

Beside the collection of criteria for deciding whether certain tensor products are
highest-�-weight modules or not, the main result of the present paper (Theorem 3.5.5)
states that, if g is of type A, Lq(π) is prime if G(π) is a totally ordered graph, i.e.,
the partial order on the set of vertices is a total order. In particular, this is the case
if G(π) is a tournament, i.e., if any pair of vertices is linked by an arrow. Thus, for
type A, Theorem 3.5.5 is a strong generalization of the aforementioned Theorem 3.5.4.
After solving the purely combinatorial problem of classifying all the totally ordered
q-factorization graphs, Theorem 3.5.5 would then provide an explicit family of simple
prime modules. We do not address this combinatorial problem here beyond type A2,
restricting ourselves to presenting a family of examples of q-factorization graphs with
arbitrary number of vertices for type A which are afforded by tournaments in Example
3.6.1. For type A2, Proposition 3.5.6 implies that a totally ordered q-factorization graph
must be a tree and, hence, we are back to the context of [14] and Theorem 3.5.4.

The reason Theorem 3.5.5 is proved only for type A is that, differently from the
proof of Theorem 3.5.4, the argument used here explicitly utilizes the description of
the sets R r ,s

i , j . Therefore, if the same approach is to be used for other types, a case-by-
case analysis would have to be employed. Thus, we leave the analysis for other types
to appear elsewhere.

The paper is organized as follows. In Section 2.1, we review the basic terminology
and notation about directed graphs which we shall use, while in Section 2.2, we recall
the concept of cuts of a graph as well as the definitions of special types of graphs such as
trees and tournaments. The basic notation about classical and quantum affine algebras
is fixed in Section 2.3, whereas the notions of Drinfeld polynomials, �-weights, and q-
factorization are reviewed in Section 2.4. This is sufficient to formalize the first part of
the definition of q-factorization graphs. Thus, in Section 2.5, we define the concept of
pre-factorization graph. Section 2.6 closes Section 2 by collecting some basic general
facts about Hopf algebras and their representations theory.

The second part of the definition of q-factorization graphs, given in Section
3.4, concerns the sets R r ,s

i , j , which are explained, alongside the definition of prime
modules, in Section 3.3. The required representation theoretic background for these
subsections is reviewed in Sections 3.1 and 3.2. The statements of our main results
and conjectures are presented in Section 3.5, whereas Section 3.6 brings a few illus-
trative examples such as the aforementioned family of tournaments. The other two
examples interpret the notions of snake and skew modules from the perspective of
q-factorization graphs.

Section 4 brings the statements and proofs of the several criteria for deciding
whether certain tensor products are highest-�-weight modules or not. Its several
subsections split them by the nature of the statements. Perhaps it is worth calling
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attention to those criteria which are most used or play more crucial roles in the proof
of Theorem 3.5.5 as well as in the proofs of the main results from [27]: Corollary 4.1.6,
Proposition 4.3.1, and Proposition 4.5.1.

Section 5 is completely dedicated to the proof of Theorem 3.5.5. We begin by
collecting a few technical lemmas concerned with arithmetic relations among the
elements of R r ,s

i , j in Section 5.1. The key technical part of the proof of Theorem 3.5.5
is Lemma 5.2.1. All the criteria are then brought together to finalize the proof in
Section 5.3.

2 Preliminaries

Throughout the paper, let C and Z denote the sets of complex numbers and integers,
respectively. Let also Z≥m ,Z<m , etc. denote the obvious subsets of Z. Given a ring A,
the underlying multiplicative group of units is denoted by A×. The symbol ≅ means
“isomorphic to.” We shall use the symbol ◇ to mark the end of remarks, examples, and
statements of results whose proofs are postponed. The symbol ∎ will mark the end of
proofs as well as of statements whose proofs are omitted.

2.1 Directed graphs

In this section, we fix notation regarding the basic concepts of graph theory.
A directed graph is a pair G = (VG ,AG), where VG is a set and AG is a subset of

VG ×VG such that

(v , v′) ∈ AG ⇒ (v′ , v) ∉ AG .

We will typically simplify notation and write V and A instead of VG and AG . An
element of V is called a vertex and an element (v , v′) of A is called an arrow from
v to v′. We shall also say v′ is the head of the arrow (v , v′) while v is its tail. Given
a ∈ A, we write ta for its tail end ha for its head. As usual, the picture

v v′

will mean that (v , v′) ∈ A. A loop in G is an element a ∈ A such that ta = ha . We will
only consider graphs with no loops, so, henceforth, this is implicitly assumed. We also
assume G is finite, i.e., V is a finite set.

Given a subset V′ of V, the subgraph G′ = GV′ of G associated with V′ is the pair
(V′ ,A′) with

A′ = {a ∈ A ∶ ta , ha ∈ V′}.

In terms of pictures, GV′ is obtained from G by deleting the elements ofV/V′ as well as
all the arrows starting at or heading to an element of V/V′. It will often be convenient
to write G/V′ instead of GV′ .

Let P(V) be the power set of V and π ∶ A→P(V) be given by π(a) = {ta , ha}.
The (nondirected) graph associated with G is the pair (V,E), where E = π(A). The
elements of E will be referred to as edges. By a (nondirected) path of length m ∈ Z≥0
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in G, we mean a sequence ρ = e1 , . . . , em of edges in E such that

#(e j ∩ e j+1) = 1 for all 1 ≤ j < m and e j−1 ∩ e j ∩ e j+1 = ∅ for all 1 < j < m.

This is equivalent to saying that there exists an underlying sequence of vertices
v1 , . . . , vm+1 such that e j = {v j , v j+1} for all 1 ≤ j ≤ m. This sequence is unique if m > 1.
If v1 = vm+1, we say ρ is a cycle based on v1. In that case, if m = min{ j > 1 ∶ v j = v1}, we
say ρ is an m-cycle. Note there does not exist m-cycles for m ≤ 2.

We shall often write ρ = e1 . . . em instead of ρ = e1 , . . . , em and set �(ρ) = m. We
also write e ∈ ρ to mean that e = e j for some 1 ≤ j ≤ m. Suppose ρ′ = e′1 . . . e′m′ is
another path such that em ∩ e′1 ≠ ∅ and either

em = e′1 or em−1 ∩ em ∩ e′1 = ∅ = em ∩ e′1 ∩ e′2 .

Then, the sequence obtained from e1 . . . em e′1 . . . e′m′ after successive deletion of any
appearance of a substring of the form ee , e ∈ E, is a path which we denote by ρ ∗ ρ′.
The path ρ− ∶= em . . . e1 will be referred to as the reverse path of ρ. In particular, ρ ∗ ρ−
is the empty sequence.

If m = �(ρ) > 1,

v ∈ e1/e2 , and v′ ∈ em/em−1 ,

we say ρ is a is a path from v to v′. If �(ρ) = 1, say, ρ = e1 = π(a) for some a ∈ A, ρ
can be regarded as a path from ta to ha and vice versa. We let Pv ,v′ be the set of all
paths from v to v′ and PG be the set of all paths in G. If ρ ∈Pv ,v′ and ρ′ ∈Pv′ ,v′′ ,
then ρ ∗ ρ′ ∈Pv ,v′′ .

A subpath ρ′ of ρ is subsequence such that

e i , e j ∈ ρ′ with i < j ⇒ ek ∈ ρ′ for all i ≤ k ≤ j.

We say ρ is a simple path if no subpath is a cycle. If ρ = e1 . . . em is a path from v
to v′ , e j = π(a j), and m > 1, the signature of ρ is the element σρ = (s1 , . . . , sm) ∈ Zm

given by

s1 =
⎧⎪⎪
⎨
⎪⎪⎩

−1, if v = ta1 ,
1, if v = ha1 ,

and s j+1 =
⎧⎪⎪
⎨
⎪⎪⎩

s j , if ta j+1 = ha j or ta j = ha j+1 ,
−s j , otherwise,

for all 1 ≤ j < m. If m = 1, the signature will be 1 or −1 depending on whether it is
regarded as a path from ha1 to ta1 or the other way round, respectively. We shall say
ρ is monotonic or directed if s i = s j for all 1 ≤ i , j ≤ m. In that case, if s j = 1 for all
1 ≤ j ≤ m, we say it is increasing. Otherwise, it is decreasing. If ρ is increasing, we set
hρ = ha1 and tρ = tam . If it is decreasing, then tρ = ta1 and hρ = ham . If s j+1 = −s j for
all 1 ≤ j < m, we say ρ is alternating. Clearly, σρ− = (−sm , . . . ,−s1). We shall refer to a
monotonic cycle as an oriented cycle. We will denote by P+

v ,v′ (resp. P−
v ,v′) be the set

of increasing (resp. decreasing) monotonic paths from v to v′. For instance,

v1 v2 v3 ∈P−
v1 ,v3

a1 a2 while v1 v2 v3 ∈P+
v1 ,v3

.a1 a2

On the other hand, v1 v2 v3 ∈Pv1 , v3 ,a1 a2 but is neither in P+
v1 ,v3

nor in
P−

v1 ,v3
.
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A graph G is said to be connected if, for every pair of vertices v ≠ v′, there exists a
path from v to v′. If G is connected, we can consider the distance function d ∶ V→ Z

defined by, d(v , v) = 0 for all v ∈ V and

d(v , v′) = min{�(ρ) ∶ ρ is a path from v to v′} if v ≠ v′ .

If d(v , v′) = 1 we say v and v′ are adjacent. Also, for two subsets V1 ,V2 ⊆ V, define

d(V1 ,V2) = min{d(v1 , v2) ∶ v1 ∈ V1 , v2 ∈ V2}.

Set d(v , v′) = ∞ if v and v′ belong to distinct connected components.

Example 2.1.1 The following path ρ = e1 . . . e5 from v to v′ has signature
(1,−1,−1, 1,−1) and contains the 3-cycle e2e3e4. The circles denote other arbitrary
elements in V.

(2.1.1)

v′ ○

v ○

○

a1

a5
a4

a2

a3

Note d(v , v′) ≤ 2 since a1a5 is a path from v to v′. The subpath e2e3 is decreasing, while
e3e4e5 is an alternating subpath. The path e1e5 is alternating while e3e2 is increasing,
but they are not subpaths of ρ. ◇

Every path gives rise to a subgraph associated with the set

Vρ = {v ∈ V ∶ v ∈ e for some e ∈ ρ}.

Given v ∈ V, set Av = {v′ ∈ V ∶ d(v , v′) = 1},

A1
v = {v′ ∈ Av ∶ (v′ , v) ∈ A}, and A−1

v = {v′ ∈ Av ∶ (v , v′) ∈ A}.(2.1.2)

The valence of v is defined as #Av . If this number is 0, we say v is an isolated vertex, if
it is 1, we say v is monovalent, and if it is at least 3, we say v is multivalent. Set

G̊ = {v ∈ V ∶ #Av > 1} and ∂G = G/G̊ .

Elements of ∂G will be referred to as boundary vertices while those of G̊ will be
referred to as inner vertices. A vertex v is said to be a source if there are no incoming
arrows toward it or, equivalently,

Av ⊆ A−1
v ,

whereas it is a sink if

Av ⊆ A1
v .

In particular, isolated vertices are sinks and sources at the same time and a non-
isolated vertex cannot be a sink and a source concomitantly. We will say a vertex is
extremal if it is either a sink or a source. Note the middle circle in (2.1.1) is a source,
the upper one is a sink, and the lower one is neither.
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2.2 Cuts and special kinds of graphs

A cut of a directed graph G is a pair of subgraphs (G′ , G′′) such that

V = V′ ⊔V′′ , A′ = {a ∈ A ∶ ha , ta ∈ V′}, and A′′ = {a ∈ A ∶ ha , ta ∈ V′′}.

The set

A/(A′ ∪A′′)

is called the associated cut-set. Note the cut can be recovered from its cut-set if G is
connected. Elements of the cut-set are said to cross the cut. An element a ∈ A is said
to be a bridge if the number of connected components of (V,A/{a}) is larger than
that of G. If G is connected, this is equivalent to saying that {a} is the cut-set of a cut.
We shall say a cut (G′ , G′′) is connected if both G′ and G′′ are connected.

A connected graph with no cycles is said to be a tree. We shall refer to a tree with
no multivalent vertex as a line. We will say G is a monotonic line if V = Vρ for some
simple monotonic path ρ. Note every tree with more than one vertex has at least two
monovalent vertices, a fact which is false in general, as seen in the following examples.

(2.2.1)

○

○ ○ ○

○

○

○ ○

○

○

○ ○

○ ○

Note that, in the first two graphs, the subgraphs obtained by removing the upper vertex
are formed by directed cycles, while the cycle corresponding to the subgraphs obtained
by removing the lower vertex are not. Note also that an arrow a is a bridge if and only
if it is not contained in a cycle. In particular, the above graphs are bridgeless. A forest
is a graph whose connected components are trees or, equivalently, every arrow is a
bridge. We also recall that a tournament is a graph whose underlying set of edges
is complete, i.e., {v , v′} ∈ E for every v , v′ ∈ V, v ≠ v′. In that case, the underlying
nondirected graph is said to be complete. None of the above graphs is a tournament,
but the middle one is missing only one arrow to become a tournament.

Let us record some elementary properties of trees.

Lemma 2.2.1 The following are equivalent for a graph G.

(i) G is a tree.
(ii) G is connected and the graph obtained by removing any edge has two connected

components.
(iii) #Pv ,v′ = 1 for all vertices v, v′ ∈ G.

In light of (iii) of the above lemma, given vertices v , v′ in a tree, we denote by
[v , v′] the set of vertices of the unique element of Pv ,v′ . In particular, [v′ , v] = [v , v′].
Evidently, if v ≠ v′, #([v , v′] ∩Av) = 1. Given m ∈ Z>0, set

A±m
v = {v′ ∈ V ∶ d(v , v′) = m and [v , v′] ∩A∓1

v′ ≠ ∅}.(2.2.2)
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This clearly coincides with the sets defined in (2.1.2) when m = 1. Set also A0
v = {v}

and

A±v = ⋃
m∈Z>0

A±m
v .(2.2.3)

Lemma 2.2.2 Assume G is a tree.
(a) ∂G ≠ ∅, #∂G = 1 iff G is a singleton, and #∂G = 2 iff G is a nontrivial path.
(b) If H is a subgraph, then H is a tree. Moreover, if H is connected and proper, ∂G/VH ≠

∅.
(c) If H is a connected subgraph and k = #VG − #VH , there exist v1 , . . . , vk ∈ VG such

that v j ∈ ∂(G/{v i ∶ i < j}) and H = G/{v i ∶ 1 ≤ i ≤ k}.
(d) IfV1 ∪V2 is a nontrivial partition ofVG such that GVi is connected for i = 1, 2, there

exists unique (v1 , v2) ∈ V1 ×V2 such that d(v1 , v2) = 1.
(e) For all v ∈ V, the sets Am

v , m ∈ Z are disjoint and V = A+v ∪A
0
v ∪A

−
v .

We will be interested in graphs with no oriented cycles. In that case, the set of arrows
A induces a partial order on V by the transitive extension of the strict relation

ha ≺ ta for a ∈ A.

Note

P+v ,v′ ≠ ∅ ⇔ v ≺ v′ and P−v ,v′ ≠ ∅ ⇔ v′ ≺ v .(2.2.4)

Set D(v , v′) = 0 if v = v′,

D(v , v′) = min{�(ρ) ∶ ρ ∈P+
v ,v′} if v ≺ v′ ,

D(v , v′) = −min{�(ρ) ∶ ρ ∈P−
v ,v′} if v′ ≺ v ,

(2.2.5)

and D(v , v′) = ∞ if v and v′ are not comparable by ⪯. Given m ∈ Z, set

Nm
G (v) = {v ∈ V ∶ D(v , v′) = m} and N±G(v) = ⋃

m∈Z≥0

NG(v)±m .(2.2.6)

If no confusion arises, we simplify notation and write Nm(v) and N±(v).
We shall say G is a totally ordered graph if ⪯ is a total order on V. The following

lemma is easily established.

Lemma 2.2.3 (a) Every totally ordered graph is connected and has a unique sink and
a unique source.

(b) If G is a totally ordered graph and v ∈ V is an extremal vertex, the subgraph
associated with V/{v} is also totally ordered.

(c) A totally ordered tree is an monotonic line.
(d) Every tournament with no oriented cycles is totally ordered.

Only the last graph in (2.2.1) does not contain an directed cycle so ⪯ is defined, but
it is not totally ordered. The following are examples of totally ordered graphs:

○ ○

○

○

○

○ ○

○

○ ○

○ ○
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2.3 Classical and quantum algebras

Let I be the set of nodes of a finite-type connected Dynkin diagram. By regarding I as
the set of vertices of the undirected graph whose edges are the sets of adjacent nodes
of the diagram, we can use the notions of graph theory from the previous sections.
By abuse of language, we refer to any subset J of I as a subdiagram (subgraph). In
particular, we have defined d(i , j) and [i , j] for all i , j ∈ I as well as ∂J and J̊ for any
J ⊆ I. Let also J̄ be the minimal connected subdiagram of I containing J. This is well
defined since I is a tree.

Let g be the simple Lie algebra over C corresponding to the given Dynkin diagram,
fix a Cartan subalgebra h and a set of positive roots R+ and let g±α , α ∈ R+, and
g = n− ⊕ h⊕ n+ be the associated root spaces and triangular decomposition. The
simple roots will be denoted by α i , the fundamental weights by ω i , i ∈ I, while
Q , P, Q+ , P+ will denote the root and weight lattices with corresponding positive
cones, respectively. Let also hα ∈ h be the co-root associated with α ∈ R+. If α = α i is
simple, we often simplify notation and write h i . Let C = (c i , j)i , j∈I be the Cartan matrix
of g, i.e., c i , j = α j(h i), and d i , i ∈ I, be such that d i c i , j = d jc j, i , i , j ∈ I. The Weyl group
is denoted byW and its longest element by w0. We also denote by w0 the involution on
I induced by w0 and set i∗ = w0(i). The dual Coxeter number and the lacing number
of g will be denoted by h∨ and r∨, respectively. In particular, r∨ = max{d i ∶ i ∈ I}.

For a subdiagram J ⊆ I, let gJ be the subalgebra of g generated by the corresponding
simple root vectors, hJ = h ∩ gJ , and so on. Let also QJ be the subgroup of Q generated
by α j , j ∈ J, Q+J = Q+ ∩ QJ , and R+J = R+ ∩ QJ . Given λ ∈ P, let λJ denote the restric-
tion of λ to h∗J . For μ ∈ P, define also

supp(μ) = {i ∈ I ∶ μ(h i) ≠ 0}.

For a Lie algebra a over C, let ã = a⊗C[t, t−1] be its loop algebras and identify a

with the subalgebra a⊗ 1. Then, g̃ = ñ− ⊕ h̃⊕ ñ+ and h̃ is an abelian subalgebra.
Let F be an algebraically closed field of characteristic zero, fix q ∈ F× which is not a

root of 1, and set q i = qd i , i ∈ I. Let also Uq(g) and Uq(g̃) be the associated Drinfeld–
Jimbo quantum groups overF. We use the notation as in [26, Section 1.2]. In particular,
the Drinfeld loop-like generators of Uq(g̃) are denoted by x±i ,r , h i ,s , k±1

i , i ∈ I, r, s ∈
Z, s ≠ 0. Also, Uq(g) is the subalgebra of Uq(g̃) generated by x±i = x±i ,0 , k±1

i , i ∈ I, and
the subalgebras Uq(n±), Uq(h), Uq(ñ±), Uq(h̃) are defined in the expected way.

Given J ⊆ I, let Uq(aJ), with a = g, g̃, h̃, etc. be the respective quantum groups
associated with aJ . Let also Uq(a)J be the subalgebra of Uq(g̃) generated by the
generators corresponding to J. It is well known that there is an algebra isomorphism

Uq(a)J ≅ Uq J(aJ), where qJ = qd J with dJ = min{d j ∶ j ∈ J}.

This is a Hopf algebra isomorphism only if a ⊆ g. We shall always implicitly identify
Uq(a)J with Uq J(aJ) without further notice. When J = { j} is a singleton, we simply
write Uq(a) j instead of Uq(a){ j}, and so on.

2.4 The �-weight lattice

The �-weight lattice of Uq(g̃) is the multiplicative group P of n-tuples of ratio-
nal functions ϖ = (ϖ i(u))i∈I with values in F such that ϖ i(0) = 1 for all i ∈ I.
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The elements of the submonoid P+ of P consisting of n-tuples of polynomials will
be referred to as dominant �-weights or Drinfeld polynomials. If π, ω ∈ P+ satisfy
πω−1 ∈ P+, we shall say ω divides π and write ω∣π.

Given a ∈ F× and μ ∈ P, let ωμ ,a ∈ P be the element whose ith rational function is

(1 − au)μ(h i) , i ∈ I.

In the case that μ = ω i for some i, we simplify notation and write ω i ,a . Since P is
a (multiplicative) free abelian group on the set {ω i ,a ∶ i ∈ I, a ∈ F×}, there exists a
unique group homomorphism wt ∶ P→ P determined by setting wt(ω i ,a) = ω i . Set

supp(ϖ) = supp(wt(ϖ)), ϖ ∈ P.

There exists an injective map P→ (Uq(h̃))∗ (see [26]) and, hence, we identify P with
its image in (Uq(h̃))∗.

Given i ∈ I, a ∈ F× , m ∈ Z≥0, define q i = qd i and

ω i ,a ,r =
r−1
∏
p=0

ω i ,aqr−1−2p
i

.

Note that wt(ω i ,a ,r) = rω i . We shall refer to Drinfeld polynomials of the form ω i ,a ,r
as polynomials of KR type. Every Drinfeld polynomial can be written uniquely as a
product of KR type polynomials such that, for every two factors supported at i, say
ω i ,a ,r and ω i ,b ,s , the following holds:

a
b
≠ qr+s−2p

i for all 0 ≤ p < min{r, s}.(2.4.1)

Such factorization is said to be the q-factorization of π and the corresponding factors
are called the q-factors of π. By abuse of language, whenever we mention the set of
q-factors of π we actually mean the associated multiset of q-factors counted with
multiplicities in the q-factorization. We shall say that π, π′ ∈ P+ have dissociate q-
factorizations if the set of q-factors of ππ′ is the union of the sets of q-factors of π
and π′. It will also be convenient to work with factorizations in KR type polynomials
which not necessarily satisfy (2.4.1). Such factorization will be referred to as pseudo
q-factorizations and the associated factors as the corresponding pseudo q-factors.

For ϖ ∈ P and J ⊆ I, let ϖ J be the associated J-tuple of rational functions, and let
PJ = {ϖ J ∶ ϖ ∈ P}. Similarly define P+J . Notice that ϖ J can be regarded as an element
of the �-weight lattice of Uq(g̃)J . Let πJ ∶ P→ PJ denote the map ϖ ↦ ϖ J . If J = { j}
is a singleton, we write π j instead of πJ .

Given i ∈ I, a ∈ F×, the following elements are known as simple �-roots:

α i ,a = (ω i ,aq i ,2)−1∏
j≠i

ω j,aq i ,−c j, i .(2.4.2)

The subgroup of P generated by them is called the �-root lattice of Uq(g̃) and will be
denoted by Qq . Let also Q+q be the submonoid generated by the simple �-roots. Quite
clearly, wt(α i ,a) = α i . Define a partial order on P by

ϖ ≤ ω i f ωϖ−1 ∈ Q+q .
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2.5 Pre-factorization graphs

Given a set I, an I-coloring of a graph G = (V,A) is a function c ∶ V→ I. Given an
I-coloring c and i ∈ I, let Vi = {x ∈ V ∶ c(x) = i}. By a colored graph, we will mean an
oriented graph G with a choice of coloring c ∶ V→ I.

We shall also decorate the vertices and arrows of graphs by positive integers. We
will refer to a function λ ∶ V→ Z>0 as a weight and to a function ε ∶ A→ Z>0 as an
exponent on G. The number ε(a) will be referred to as the exponent of a. We will
always assume that ε satisfies the following compatibility condition:

ερ = ερ′ for all ρ, ρ′ ∈Pv ,v′ , v , v′ ∈ V,(2.5.1)

where, if ρ = e1 . . . em is such that σρ = (s1 , . . . , sm) and e j = π(a j),

ερ ∶=
m
∑
j=1

s jε(a j).

Evidently, ερ− = −ερ and one easily checks ερ∗ρ′ = ερ + ερ′ . Set

P+
G = {ρ ∈PG ∶ ερ > 0} and P−

G = {ρ ∈PG ∶ ερ < 0}.(2.5.2)

We shall refer to the data (G , c, λ, ε) formed by a colored oriented graph, a weight
λ, and an exponent ε on G as a pre-factorization graph. We shall abuse of language
and simply say G is a pre-factorization graph. We locally illustrate the structures maps
of a pre-factorization graph with the following picture:

r
i

s
j,m

where i and j are the colors at the corresponding vertices, r and s are their associated
weights, and m is the exponent associated with the given arrow. The following is an
obvious consequence of (2.5.1).

Lemma 2.5.1 If G is a pre-factorization graph, then G contains no oriented cycles.

In particular, only the last graph in (2.2.1) can be equipped with a pre-factorization
graph structure. If I is as in Section 2.3 and G is a connected pre-factorization graph,
for each choice of (v0 , a) ∈ V × F×, we can associate a Drinfeld polynomial as follows.
Define

av0 = a and av = aqερ if ρ ∈Pv0 ,v .(2.5.3)

Condition (2.5.1) guarantees this is well defined. Then, define

πG ,v0 ,a = ∏
v∈V

ωc(v),av ,λ(v).(2.5.4)

One can easily check that

πG ,v0 ,a′q−ερ = πG ,v′0 ,a′ for all (v′0 , a′) ∈ V × F× , ρ ∈Pv0 ,v′0 .(2.5.5)

Therefore, up to a uniform modification on the centers of the factors in the right-hand
side of (2.5.4), the definition is independent of the choice of (v0 , a). We will often write
πG to shorten notation when the knowledge of precise centers is not relevant.
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Example 2.5.2 Assume g is of type A2, so I = {1, 2}, and consider the following pre-
factorization graph:

2
1

2
2

1
1.3 4

If we select the middle vertex to define π = πG , we get

π = ω2,a ,2 ω1,aq3 ,2 ω1,aq4 .

Note that, in this case, the factors in (2.5.4) are the q-factors of π. However, this may
not be the case as the following trivial example shows:

1
1

1
1.2

In this case, if we choose the first vertex as the base for the definition, the factors in
(2.5.4) are ω1,a and ω1,aq2 , which combine to form a single q-factor.

2.6 Hopf algebra facts

We recall some general facts about Hopf algebras (see, for instance, [16] and the
references therein).

Given a Hopf algebraH overF, its categoryC of finite-dimensional representations
is an abelian monoidal category and we denote the (right) dual of a module V by V∗.
More precisely, the action of H of V∗ is given by

(h f )(v) = f (S(h)v) for h ∈H, f ∈ V∗ , v ∈ V .(2.6.1)

The evaluation map V∗ ⊗ V → F is a module map, where F is regarded as the trivial
module by using the counit map. Moreover if, v1 , . . . , vn is a basis of V and f1 , . . . , fn
is the corresponding dual basis, there exists a unique homomorphism of modules

F→ V ⊗ V∗ , 1 ↦
n
∑
i=1

v i ⊗ f i ,

called the coevaluation map. We denote the evaluation and coevaluation maps asso-
ciated with a module V by evV and coevV , respectively, or simply by ev and coev if no
confusion arises. In particular,

HomH(F, V ⊗ V∗) ≠ 0 and HomH(V∗ ⊗ V ,F) ≠ 0.

If the antipode is invertible, the notion of left dual module is obtained by replacing S
by S−1 in (2.6.1). The left dual of V will be denoted by ∗V and we have

∗(V∗) ≅ (∗V)∗ ≅ V .

Given H-modules V1 , V2 , V3, we have

HomC(V1 ⊗ V2 , V3) ≅ HomC(V1 , V3 ⊗ V∗2 ),
HomC(V1 , V2 ⊗ V3) ≅ HomC(V∗2 ⊗ V1 , V3),

(2.6.2)

and

(V1 ⊗ V2)∗ ≅ V∗2 ⊗ V∗1 .(2.6.3)
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For instance, an isomorphism for the first statement in (2.6.2) is given by

f ↦ ( f ⊗ idV∗2 ) ○ (idV1 ⊗ coevV2) ○ γV1

and has the inverse

g ↦ γ′V3
○ (idV3 ⊗ evV2) ○ (g ⊗ idV2),

where γV ∶ V → V ⊗ F and γ′V ∶ V ⊗ F→ V are the canonical maps. Note also that
every short exact sequence

0 → V1 → V2 → V3 → 0

gives rise to another short exact sequence of the form

0 → V∗3 → V∗2 → V∗1 → 0.(2.6.4)

We shall use the following lemma in the same spirit as in [24] (a proof can also be
found in [34]).

Lemma 2.6.1 Let V1 , V2 , V3 ∈ C and suppose M is a submodule of V1 ⊗ V2 and N is a
submodule of V2 ⊗ V3 such that

M ⊗ V3 ⊆ V1 ⊗ N .

Then, there exists a submodule W of V2 such that

M ⊆ V1 ⊗W and W ⊗ V3 ⊆ N .

Similarly, if V1 ⊗ N ⊆ M ⊗ V3 , there exists a submodule W of V2 such that

N ⊆ W ⊗ V3 and V1 ⊗W ⊆ M .

Lemma 2.6.2 Let V1 , V2 , V3 , L1 , L2 be H-modules and assume V2 is simple. If

φ1 ∶ L1 → V1 ⊗ V2 and φ2 ∶ V2 ⊗ V3 → L2

are nonzero homomorphisms, the composition

L1 ⊗ V3
φ1⊗idV3%%%%→ V1 ⊗ V2 ⊗ V3

idV1 ⊗φ2
%%%%→ V1 ⊗ L2

does not vanish. Similarly, if

φ1 ∶ V1 ⊗ V2 → L1 and φ2 ∶ L2 → V2 ⊗ V3

are nonzero homomorphisms, the composition

V1 ⊗ L2
idV1 ⊗φ2
%%%%→ V1 ⊗ V2 ⊗ V3

φ1⊗idV3%%%%→ L1 ⊗ V3

does not vanish.

Proof We will write down the details for the first claim only, as the second can be
proved similarly. Assume

(idV1 ⊗φ2) ○ (φ1 ⊗ idV3) = 0,
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i.e.,

Im(φ1) ⊗ V3 = Im(φ1 ⊗ idV3) ⊆ Ker(idV1 ⊗φ2) = V1 ⊗Ker(φ2).

Lemma 2.6.1 implies there exists a submodule W ⊆ V2 such that

Im(φ1) ⊆ V1 ⊗W and W ⊗ V3 ⊆ Ker(φ2).

Since V2 is simple, either W = 0 or W = V2. If W = 0, then Im(φ1) ⊆ V1 ⊗W = 0,
which is a contradiction, since φ1 is nonzero. On the other hand, if W = V2, it follows
that V2 ⊗ V3 = Ker(φ2), yielding a contradiction, since φ2 is nonzero. ∎

3 Representation theory and q-factorization graphs

We start this section reviewing the relevant representation theoretic background for
our purposes. This will lead to the main definition of the paper: that of q-factorization
graphs. We then state the main results of the paper and end the section with a few
illustrative examples.

3.1 Finite-dimensional representations

LetC be the category of all finite-dimensional (type-1) weight modules of Uq(g). Thus,
a finite-dimensional Uq(g)-module V is in C if

V = ⊕
μ∈P

Vμ , where Vμ = {v ∈ V ∶ k iv = qμ(h i)
i v for all i ∈ I}.

The following theorem summarizes the basic facts about C.

Theorem 3.1.1 Let V be an object of C. Then:
(a) dim Vμ = dim Vw μ for all w ∈W.
(b) V is completely reducible.
(c) For each λ ∈ P+, the Uq(g)-module Lq(λ) generated by a vector v satisfying

x+i v = 0, k iv = qλ(h i)v , (x−i )λ(h i)+1v = 0, ∀ i ∈ I,

is irreducible and finite-dimensional. If V ∈ C is irreducible, then V is isomorphic to
Lq(λ) for some λ ∈ P+.

If J ⊆ I we shall denote by Lq(λJ) the simple Uq(g)J-module of highest weight λJ .
Since C is semisimple, it is easy to see that, if λ ∈ P+ and v ∈ Lq(λ)λ is nonzero, then
Uq(g)Jv ≅ Lq(λJ).

Let C̃ the category of all finite-dimensional �-weight modules of Uq(g̃). Thus, a
finite-dimensional Uq(g̃)-module V is in C̃ if

V = ⊕
ϖ∈P

Vϖ ,

where

v ∈ Vϖ ⇔ ∃ k ≫ 0 s.t. (η − ϖ(η))kv = 0 for all η ∈ Uq(h̃).
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Vϖ is called the �-weight space of V associated with ϖ. Note that if V ∈ C̃, then V ∈ C
and

Vμ = ⊕
ϖ∶wt(ϖ)=μ

Vϖ .

If V ∈ C̃, the q-character of V is the following element of the group ring Z[P]:

qch(V) = ∑
ϖ∈P

dim(Vϖ)ϖ.

A nonzero vector v ∈ Vϖ is said to be a highest-�-weight vector if

ηv = ϖ(η)v for every η ∈ Uq(h̃) and x+i ,rv = 0 for all i ∈ I, r ∈ Z.

V is said to be a highest-�-weight module if it is generated by a highest-�-weight
vector. Evidently, every highest-�-weight module has a maximal proper submodule
and, hence, a unique irreducible quotient. In particular, if two simple modules are
highest-�-weight, then they are isomorphic if and only if the highest �-weights are
the same. This is also equivalent to saying that they have the same q-character. The
following was proved in [11].

Theorem 3.1.2 Every simple object of C̃ is a highest-�-weight module. There exists a
simple object of C̃ of highest �-weight π if and only if π ∈ P+.

It follows that qch(V) completely determines the irreducible factors of V. We shall
denote by Lq(π) any representative of the isomorphism class of simple modules with
highest �-weight π. For J ⊆ I, we shall denote by Lq(π J) the simple Uq(g̃)J-module
of highest weight π J .

If V is a highest-�-weight module with highest-�-weight vector v and J ⊂ I, we let VJ
denote the Uq(g̃)J-submodule of Lq(π) generated by v. Evidently, if π is the highest-
�-weight of V, then VJ is highest-�-weight with highest �-weight π J . Moreover, we have
the following well-known facts:

VJ = ⊕
η∈Q+J

Vwt(π)−η = ⊕
η∈Q J

Vwt(π)+η .(3.1.1)

Lemma 3.1.3 If V is simple, so is VJ .

3.2 Tensor products and duality for Uq(g̃)-modules

It is well known that Uq(g̃) is a Hopf algebra with invertible antipode. For the proof of
following proposition, see [6, Propositions 1.5 and 1.6] (part (b) has not been proved
there, but the proof is similar to that of part (c)).

Proposition 3.2.1 (a) Given a ∈ C×, there exists a unique Hopf algebra automorphism
τa of Uq(g̃) such that

τa(x±i ,r) = ar x±i ,r , τa(h i ,s) = ar h i ,s , τa(k±i ) = k±i , i ∈ I, r, s ∈ Z, s ≠ 0.

(b) There exists a unique Hopf algebra automorphism σ of Uq(g̃) such that

σ(x±i ,r) = x±i∗ ,r , σ(h i ,s) = h i∗ ,s , σ(k±i ) = k±i∗ , i ∈ I, r, s ∈ Z, s ≠ 0.
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(c) There exists a unique algebra automorphism κ of Uq(g̃) such that

κ(x±i ,r) = −x∓i ,−r , κ(h i ,s) = −h i ,−s , κ(k±1
i ) = k∓1

i , i ∈ I, r, s ∈ Z, s ≠ 0.

Moreover (κ⊗ κ) ○ Δ = Δop ○ κ, where Δop is the opposite comultiplication of
Uq(g̃).1

Given π ∈ P+, define πτa ∈ P+ by πτa
i (u) = π i(au). One easily checks that the

pullback Lq(ω)τa of Lq(π) by τa satisfies

Lq(π)τa ≅ Lq(πτa).(3.2.1)

Define also πσ , π∗ ∈ P+ by

πσ
i (u) = π i∗(u) for i ∈ I, and π∗ = (πσ)τ

q−r∨h∨ = (πτ
q−r∨h∨ )σ .(3.2.2)

It is well known that

Lq(π)∗ ≅ Lq(π∗).(3.2.3)

We denote by V σ and Vκ the pull-back of V by σ and κ, respectively. In particular,

(V1 ⊗ V2)τa ≅ V τa
1 ⊗ V τa

2 , (V1 ⊗ V2)σ ≅ V σ
1 ⊗ V σ

2 , and (V1 ⊗ V2)κ ≅ Vκ
2 ⊗ Vκ

1 .
(3.2.4)

Also, for any short exact sequence

0 → V1 → V2 → V3 → 0,

we have short exact sequences

0 → V f
1 → V f

2 → V f
3 → 0 with f = τa , σ ,κ.(3.2.5)

Moreover, if π ∈ P+ with π i(u) = ∏ j(1 − a i , ju), where a i , j ∈ F, and π− ∈ P+ is
defined by π−i (u) = ∏ j(1 − a−1

i , ju), we have

Lq(π)σ ≅ Lq(πσ) and Lq(π)κ ≅ Lq(πκ), where πκ = (π−)∗.(3.2.6)

It was proved in [17] that

qch(V ⊗W) = qch(V)qch(W).(3.2.7)

In particular, we have the following proposition.

Proposition 3.2.2 Let π, ϖ ∈ P+. Then, Lq(π) ⊗ Lq(ϖ) is simple if and only if
Lq(ϖ) ⊗ Lq(π) is simple and, in that case, Lq(π) ⊗ Lq(ϖ) ≅ Lq(πϖ) ≅ Lq(ϖ) ⊗
Lq(π).

Given a connected subdiagram J, since Uq(g̃)J is not a sub-coalgebra of Uq(g̃),
if M and N are Uq(g̃)J-submodules of Uq(g̃)-modules V and W, respectively, it is
in general not true that M ⊗ N is a Uq(g̃)J-submodule of V ⊗W . Recalling that

1The automorphism κ is most often denoted by ω̂ in the literature and its restriction to Uq(g),
typically denoted by ω, is referred to as the Cartan automorphism of Uq(g). We chose to modify the
notation to avoid visual confusion with our most often used symbol for a Drinfeld polynomial: ω.
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we have an algebra isomorphism Uq(g̃)J ≅ Uq J(g̃J), we shall denote by M ⊗J N the
Uq(g̃)J-module obtained by using the coalgebra structure from Uq J(g̃J). The next
result describes a special situation on which M ⊗ N is a submodule isomorphic to
M ⊗J N . Recall the notation defined in the paragraph preceding Lemma 3.1.3.

Proposition 3.2.3 ([13, Proposition 2.2]) Let V and W be finite-dimensional highest-
�-weight modules with highest �-weights π, ϖ ∈ P+, respectively, and let J ⊆ I be a
connected subdiagram. Then, VJ ⊗WJ is a Uq(g̃)J-submodule of V ⊗W isomorphic
to VJ ⊗J WJ via the identity map.

Corollary 3.2.4 In the notation of Proposition 3.2.3, if V ⊗W is highest-�-weight, so
is VJ ⊗WJ . Moreover, if V ⊗W is simple, so is VJ ⊗WJ .

Proof As shown in the proof of Proposition 3.2.3, we have

VJ ⊗WJ = ⊕

η ∈ Q+J
(V ⊗W)wt(π)+wt(ϖ)−η .(3.2.8)

Thus, if V ⊗W is highest-�-weight, any nonzero vector in VJ ⊗WJ is a linear combina-
tion of vectors of the form x−i1 ,r1

. . . x−i l ,r l
(v ⊗w) for some l ≥ 0, ik ∈ I, rk ∈ Z, 1 ≤ k ≤ l .

But the weight of such vector is

wt(π) +wt(ϖ) −
l
∑
k=1

α ik

and, hence, we must have ik ∈ J for all 1 ≤ k ≤ l , which implies the first claim. The
second claim follows from the first together with Lemma 3.1.3. ∎

3.3 Simple prime modules and q-factors

A finite-dimensional Uq(g̃)-module V is said to be prime if it is not isomorphic to a
tensor product of two nontrivial modules. Evidently, any finite-dimensional simple
module can be written as a tensor product of (simple) prime modules. If a prime
module P appears in some factorization of a simple module S, we shall say that P is a
prime factor of S.

In particular, in light of (3.2.7), in order to understand the q-characters of the simple
modules, it suffices to understand those of the simple prime modules. However, the
only case, the classification of simple prime modules is completely understood is for
g = sl2. In that case, the classification is given by the following theorem, proved in [11].

Theorem 3.3.1 If g = sl2 , π ∈ P+, and the q-factors of π are π( j) , 1 ≤ j ≤ m, then

Lq(π) ≅ Lq(π(1)) ⊗ ⋅ ⋅ ⋅ ⊗ Lq(π(m)).

Moreover, up to re-ordering, Lq(π) has a unique factorization as tensor product of prime
modules. In particular, Lq(π) is prime if and only if it has a unique q-factor.

If π ∈ P+ has a unique q-factor, the module Lq(π) is called a KR module. It is well
known (see [7, 32] and the references therein) that, given (i , r), ( j, s) ∈ I ×Z>0, there
exists a finite set R r ,s

i , j ⊆ Z>0 such that

Lq(ω i ,a ,r) ⊗ Lq(ω j,b ,s) is reducible ⇔
a
b
= qm with ∣m∣ ∈R r ,s

i , j .(3.3.1)
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Moreover, in that case,

Lq(ω i ,a ,r) ⊗ Lq(ω j,b ,s) is highest-�-weight ⇔ m > 0.(3.3.2)

It follows from Proposition 3.2.2 and (2.6.3) that

R s ,r
j, i =R r ,s

i , j =R r ,s
i∗ , j∗ .(3.3.3)

Theorem 3.3.2 If g is of type A and i , j ∈ I, r, s ∈ Z>0, we have

R r ,s
i , j = {r + s + d(i , j) − 2p ∶ −d([i , j], ∂I) ≤ p < min{r, s}}.

The above was essentially proved in [7] and can be read off the results of [32], from
where the description for other types can also be extracted (see also [23]).

Given a connected subdiagram J such that [i , j] ⊆ J, let R r ,s
i , j, J be determined by

Lq((ω i ,a ,r)J) ⊗ Lq((ω j,b ,s)J) is reducible ⇔
a
b
= qm with ∣m∣ ∈R r ,s

i , j, J .

Note this is not the same set obtained by considering the corresponding module for
the algebra Uq J(g̃J) ≅ Uq(g̃)J . Indeed, if we denote the latter by R r ,s

i , j [J], we have

m ∈R r ,s
i , j [J] ⇔ dJ m ∈R r ,s

i , j, J .

Note also that Corollary 3.2.4 implies

R r ,s
i , j, J ⊆R r ,s

i , j,K if J ⊆ K .(3.3.4)

Finally, set

R r ,s
i =R r ,s

i , i ,{i} .(3.3.5)

Corollary 3.3.3 For every i ∈ I, r, s ∈ Z>0, R r ,s
i = {d i(r + s − 2p) ∶ 0 ≤ p <

min{r, s}}.

Proposition 3.3.4 If π, ϖ ∈ P+ are such that Lq(π) ⊗ Lq(ϖ) is simple, then they have
dissociate q-factorizations.

Proof If the q-factorizations are not dissociate, it follows from Theorem 3.3.1 that
there exists i ∈ I and q-factors ω of π and ω′ of π′, both supported at i, such that
Lq(ω) ⊗ Lq(ω′) is reducible. Moreover, writing π = π̃ω and π′ = π̃′ω′, it follows that

Lq(π i) ⊗ Lq(π′i) ≅ Lq(π̃ i) ⊗ Lq(ω i) ⊗ Lq(ω′i) ⊗ Lq(π̃′i)

which is reducible, yielding a contradiction with Corollary 3.2.4. ∎

Corollary 3.3.5 Let π ∈ P+. Lq(π) is prime if and only if for every decomposition π =
ωϖ, ω, ϖ ∈ P+, such that ω and ϖ have dissociate q-factorizations, Lq(ω) ⊗ Lq(ϖ) is
reducible.

Proof If Lq(π) is not prime, by definition, there exists a nontrivial decomposition
π = ωϖ such that Lq(ω) ⊗ Lq(ϖ) is simple and Proposition 3.3.4 implies ω and ϖ
have dissociate q-factorizations. If Lq(π) is prime, by definition, Lq(ω) ⊗ Lq(ϖ) is
reducible for any nontrivial decomposition π = ωϖ. ∎
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Given π ∈ P+, consider a nontrivial 2-set partition of its set of q-factors and let ω
and ϖ be the products of the q-factors in each of the parts. The above corollary tells
us that the task of deciding the primality of Lq(π) can be phrased as a task of testing
the reducibility of Lq(ω) ⊗ Lq(ϖ) for every such partition. Thus, one can think of
organizing the level of complexity of the task by the number of q-factors of π. The
answer for the two first levels is given by:

Corollary 3.3.6 Every KR module is prime. Moreover, if π ∈ P+ has exactly two q-
factors, say ω i ,a ,r and ω j,b ,s , then Lq(π) is prime if and only if a

b = qm with ∣m∣ ∈R r ,s
i , j .

3.4 Factorization graphs

Recall the definition of the sets R r ,s
i , j in (3.3.1), as well as (3.3.5), and (2.5.2). We shall

say that a pre-factorization graph G is a q-factorization graph if, for every i ∈ I,

v , v′ ∈ Vi , ρ ∈Pv ,v′ ⇒ ∣ερ ∣ ∉R
λ(v),λ(v′)
i(3.4.1)

and

ρ ∈Pv ,v′ ∩P+
G with ερ ∈R

λ(v),λ(v′)
c(v),c(v′) ⇒ (v′ , v) ∈ A.(3.4.2)

Condition (3.4.1) ensures that the factors in the right-hand side of (2.5.4) are the q-
factors of π. On the other hand, (3.4.2) guarantees that no pre-factorization graph
can be obtained by adding an arrow to G. We will refer to a pre-factorization graph
satisfying (3.4.2) as a pseudo q-factorization graph.

We shall now see that any pseudo q-factorization of a Drinfeld polynomial gives rise
to a pseudo q-factorization graph which is a q-factorization graph if and only if it is
the q-factorization. Thus, fix a Drinfeld polynomial π, and let V be the corresponding
multiset of pseudo q-factors. For i ∈ I, let

Vi = {ω ∈ V ∶ supp(ω) = {i}}.

This gives rise to a coloring c ∶ V→ I defined by declaring Vi = c−1({i}). The weight
map λ ∶ V→ Z>0 is defined by

λ(ω) = wt(ω)(h i) for all ω ∈ Vi .(3.4.3)

In particular,

∑
i∈I

∑
ω∈Vi

λ(ω)ω i = wt(π).(3.4.4)

The set of arrows A = A(π) is defined as the set of ordered pairs of q-factors, say
(ω i ,a ,r , ω j,b ,s), such that

a = bqm for some m ∈R r ,s
i , j .(3.4.5)

In representation theoretic terms, this is equivalent to saying:

Lq(ω i ,a ,r) ⊗ Lq(ω j,b ,s) is reducible and highest-�-weight.

Note that, in the case of the actual q-factorization, we necessarily have m ∉R r ,s
i when

i = j. The value of the exponent ε ∶ A→ Z>0 at an arrow satisfying (3.4.5) is set to be m.
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Quite clearly, G = (V,A) with the above choice of coloring, weight, and exponent is
a pseudo q-factorization graph and πG = π. We refer to G as a pseudo q-factorization
graph over π. In the case this construction was performed using the q-factorization of
π, then G will be called the q-factorization graph of π and we denote it by G(π).

It is now natural to seek for the classification of the prime q-factorization graphs,
i.e., those for which Lq(πG) is prime. In type A1, this is the case if and only if the
q-factorization graph of π has a single vertex, which is also equivalent to saying that
the graph is connected. For higher rank, the story is much more complicated. We still
have the following proposition which will be proved in Section 4.1.

Proposition 3.4.1 Let π ∈ P+. If G1 , . . . , Gk are the connected components of G(π) and
π( j) ∈ P+, 1 ≤ j ≤ k, are such that π = ∏k

j=1 π( j) and G j = G(π( j)), then

Lq(π) ≅ Lq(π(1)) ⊗ ⋅ ⋅ ⋅ ⊗ Lq(π(k)).

In particular, G(π) is connected if Lq(π) is prime.

However, even for type A2, the converse is not true and counter examples can be
found in [27], for instance.

We also introduce duality notions for pre-factorization graphs. Given a graph G, we
denote by G− the graph obtained from G by reversing all the arrows2 and keeping the
rest of structure of (pre)-factorization graph. In light of (3.3.3), G− is a factorization
graph as well, which we refer to as the arrow-dual of G. Similarly, the graph G∗, called
the color-dual of G, obtained by changing the coloring according to the rule i ↦ i∗ for
all i ∈ I, is a factorization graph. Moreover,

πG− ,v ,a−1 = π−G ,v ,a and πG∗ ,v ,aq−r∨h∨ = π∗G ,v ,a .(3.4.6)

Given π, π′ ∈ P+, the graph G(ππ′) may have no relation to G(π) and G(π′).
However, if π and π′ have dissociate q-factorizations, then G(π) and G(π′)determine
a cut of G(ππ′). We will consider several times the situation that the corresponding
cut-set is a singleton. More generally, given pseudo q-factorization graphs G and G′,
let G ⊗G′ be the unique pseudo q-factorization graph whose set of vertices is V ⊔V′
preserving the original coloring and weight map. The following is trivially established.

Lemma 3.4.2 If G and G′ are pseudo q-factorization graphs over π and π′, respectively,
then G ⊗G′ is a pseudo q-factorization graph over ππ′. Moreover, if G = G(π) and G′ =
G(π′), then G ⊗G′ = G(ππ′) if and only if π and π′ have dissociate q-factorizations.

If G and G′ are pseudo q-factorization graphs over π and π′, respectively, we shall
say that the pair (G , G′) or, equivalently, that G ⊗G′ is simple if so is Lq(π) ⊗ Lq(π′).
Otherwise we say it is reducible. Evidently, G ⊗G′ = G′ ⊗G, regardless if Lq(π) ⊗
Lq(π′) is simple or not.

3.5 Main conjectures and results

Throughout this section, we let G = G(π) = (V,A) be a q-factorization graph. We say
G is prime if Lq(π) is prime. One could hope that the complexity of prime graphs

2The underlying directed graph is usually called the transpose of G.
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is incremental in the sense that all prime graphs with N + 1 vertices are obtained by
adding a vertex in some particular ways to some prime graph with N vertices. In other
words:

Conjecture 3.5.1 If G is prime and #V > 1, there exists v ∈ V such that GV/{v} is also
prime.

Remark 3.5.2 In Section 4.2, we give a proof that the conclusion of Conjecture 3.5.1
holds for every v ∈ ∂G using the main result of [19] as stated there (see Remark 4.1.7
for more precise comments) by exploring the role of sinks and sources. In particular,
this would prove the conjecture holds if G is a tree since, in that case, ∂G ≠ ∅. Together
with general combinatorial properties of trees (Lemma 2.2.2(c)), we would then have
the following corollary.

Corollary 3.5.3 If G is a prime tree, every of its proper connected subgraphs are prime.

Trees are the simplest kinds of directed graphs and, among them, totally ordered
lines are the simplest. The following is the first of our main results.

Theorem 3.5.4 If G is a totally ordered line, then G is prime.

For g of type A2, this was the main result of [14]. It will be proved here for general
g, by a different argument, as a corollary of Proposition 4.3.1. In particular, differently
than the proof in [14], our proof does not use any information about the elements
belonging to the sets R r ,s

i , j . For g of type A, we also prove the following generalization,
which is the main result of the present paper.

Theorem 3.5.5 If g is of type A, every totally ordered q-factorization graph is prime.

In particular, a q-factorization graph afforded by a tournament is prime. After
Theorem 3.5.5, it becomes natural the purely combinatorial problem of classifying all
q-factorization graphs which are totally ordered since this leads to the explicit con-
struction of a family of Drinfeld polynomials whose corresponding simple modules
are prime. We shall not pursue a general answer for this combinatorial problem here.
However, for illustrative purposes, we do present two results in this direction. One
is Example 3.6.1, where we describe an infinite family of examples of q-factorization
graphs afforded by tournaments. The other is the following proposition whose proof,
given in Section 5.2, is essentially a byproduct of some technical lemmas extracted
from the proof of Theorem 3.5.5 in Section 5.1. In particular, it solves this combinato-
rial problem for type A2 since, in that case, I = ∂I.

Proposition 3.5.6 Suppose g is of type A and π ∈ P+ is such that G = G(π) is totally
ordered. If c(VG) ⊆ ∂I, then G is a line whose vertices are alternately colored.

We have the following rephrasing of Corollary 3.3.5 in the language of cuts: G is
prime if and only if every nontrivial cut of G is reducible. Several partial results in the
direction of proving our main results provide criteria for checking the reducibility of
certain special cuts, which we deem to be interesting results in their own right. One
of these, which is an immediate consequence of Corollary 4.3.3, is stated here in the
language of cuts.
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Theorem 3.5.7 Let (G′ , G′′) be a cut of G, and suppose there exist vertices v′ of G′ and
v′′ of G′′ satisfying the following conditions:

(i) v′ and v′′ are adjacent in G.
(ii) v′ and v′′ are extremal in G′ and G′′, respectively.

(iii) v′ is extremal in G only if v′ is an isolated vertex of G′ and similarly for v′′.
Then, (G′ , G′′) is reducible.

The following corollary about triangles is immediate.

Corollary 3.5.8 Suppose G is a triangle, and let (G′ , G′′) be a cut such that G′ is a
singleton containing an extremal vertex of G. Then, (G′ , G′′) is reducible.

This corollary implies there is only one cut for a triangle which may be simple: the
one whose singleton contains the vertex which is not extremal. Theorem 3.5.5 implies
this is not so for type A. However, the present proof utilizes the precise description of
the sets R r ,s

i , j and, hence, in order to extend it to other types, it requires a case by case
analysis, which will appear elsewhere.

We also have the following general criterion for primality.

Proposition 3.5.9 G is prime if, for any cut (G′ , G′′) of G, there exist ϖ′ ∈ VG′ , ϖ′′ ∈
VG′′ such that one of the following two conditions holds:
(i) (ϖ′′ , ϖ′) ∈ AG and Lq(ω′) ⊗ Lq(ω′′)∗ is simple for all (ω′ , ω′′) ∈ N+G′(ϖ′) ×

N−G′′(ϖ′′)/{(ϖ′ , ϖ′′)}.
(ii) (ϖ′ , ϖ′′) ∈ AG and Lq(ω′)∗ ⊗ Lq(ω′′) is simple for all (ω′ , ω′′) ∈ N−G′(ϖ′) ×

N+G′′(ϖ′′)/{(ϖ′ , ϖ′′)}.

Proposition 3.5.9 will be proved as a corollary to Proposition 4.5.3.

3.6 Examples

The first example provides a family of tournaments for type A and, hence, a family of
simple prime modules.

Example 3.6.1 Given N > 1, let g be of type An , n ≥ 3N − 4, identify I with the integer
interval [1, n] as usual, and consider

π =
N
∏
i=1

ω i+N−2,q3(i−1) .

Checking that G(π) is a tournament with N vertices amounts to showing that

3( j − i) ∈R 1,1
i+N−2, j+N−2 for all 1 ≤ i < j ≤ N ,

which, by Theorem 3.3.2, is equivalent to

3( j − i) = 2 + d(i + N − 2, j + N − 2) − 2p with − d([i + N − 2, j + N − 2], ∂I) ≤ p ≤ 0.

Since d(i + N − 2, j + N − 2) = j − i and 3( j − i) = 2 + ( j − i) − 2(1 − ( j − i)), we
need to check

−d([i + N − 2, j + N − 2], ∂I) ≤ 1 − ( j − i) ≤ 0.

https://doi.org/10.4153/S0008414X23000160 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000160


On the primality of totally ordered q-factorization graphs 617

The second inequality is immediate from 1 ≤ i < j ≤ N . On the other hand,

d([i + N − 2, j + N − 2], ∂I) = min{(i + N − 2) − 1, n − ( j + N − 2)} ≥ N − 2,

from where the first inequality easily follows.
Although the above family affords triangles only for rank at least 5, it is easy to build

q-factorization graphs which are triangles for n ≥ 3. For instance,

3
3

3
1

3
2

6 3

3

and
3
2

3
1

3
3.

7 3

4

Example 3.6.2 We now examine prime snake modules for type A from the perspec-
tive of q-factorization graphs. The notion of snake and snake modules was introduced
in [28] while that of prime snakes was introduced in [29] and revised in [15]. We now
rephrase these definitions in terms of the sets R r ,s

i , j . A (type A) snake of length k is a
sequence (i j , m j) ∈ I ×Z, 1 ≤ j ≤ k, such that

m j+1 −m j = 2 + d(i j , i j+1) − 2p j for some p j ∈ Z≤0 and all 1 ≤ j < k.

The snake is said to be prime if −d([i j , i j+1], ∂I) ≤ p j for all 1 ≤ j < k. In other words,
the snake is prime if and only if

m j+1 −m j ∈R 1,1
i j , i j+1

for all 1 ≤ j < k.

Given a snake and a ∈ F×, the associated snake module is Lq(π) with

π =
k
∏
j=1

ω i j ,aqm j .(3.6.1)

For a general snake, G(π) may be disconnected and, hence, not prime. However, if
the snake is prime and we regard the definition of π as a pseudo q-factorization,
the associated pseudo q-factorization graph is totally ordered. It is then easy to see
that G(π), the actual q-factorization graph, is also totally ordered and, hence, prime
by Theorem 3.5.5. Thus, Theorem 3.5.5, together with Proposition 3.4.1, recovers [29,
Proposition 3.1].

The following is the q-factorization graph arising from the following prime snake
for type A5: (4,−2), (3, 1), (2, 4), (3, 7).

1
3

3

����
��
�� 6

���
��

��
�

1
2 3 �� 1

3 3 �� 1
4
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Example 3.6.3 Snake modules also arise in the study of the so-called skew repre-
sentations associated with skew tableaux λ/μ [22, Section 4], which we now review.
Fix m ∈ Z≥0, as well as λ = (λ1 , λ2 , . . . , λm+n+1) ∈ Zm+n+1 and μ = (μ1 , . . . , μm) ∈ Zm

such that

λ i ≥ λ i+1 , μ l ≥ μ l+1 , and λk ≥ μk ≥ λk+n+1

for all 1 ≤ i ≤ m + n, 1 ≤ l < m, 1 ≤ k ≤ m. Set μ0 = +∞, μm+1 = −∞, and, for 1 ≤ i ≤
n + 1 and 1 ≤ l ≤ m + 1, let ν i , l be the middle value among μ l−1 , μ l , and λ i+l−1. The
skew module of Uq(g̃) associated with the skew tableaux λ/μ is the simple module
Lq(πλ ,μ), where

πλ ,μ
i (u) =

m+1
∏
l=1

ω i ,qνi , l+νi+1, l−2l+1−i ,ν i , l−ν i+1, l
.(3.6.2)

For μ = ∅, this is the Drinfeld polynomial of an evaluation module. With a little
patience, one can check each factor of the above definition is a q-factor of πλ ,μ .
Moreover, each connected component of G(πλ ,μ) is totally ordered and, hence,
corresponds to a prime simple module by Theorem 3.5.5.

In order to explore specific examples, let us organize the table:

Values of ν i , l

l/i 1 2 ⋅ ⋅ ⋅ n+1

1 ν1,1 ν2,1 ⋅ ⋅ ⋅ νn+1,1

⋮ ⋮

m + 1 ν1,m+1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ νn+1,m+1

Plugging this information in (3.6.2), each row will produce at most one q-factor
for each i ∈ I. Moreover, the centers of the associated q-strings are of the form qk for
some exponent k ∈ Z. We can then form a table with the corresponding exponents
and lengths.

Exponents and lengths

l/i 1 2 ⋅ ⋅ ⋅ n

1 k1,1 ∣ r1,1 k2,1 ∣ r2,1 ⋅ ⋅ ⋅ kn ,1 ∣ rn ,1

⋮ ⋮

m + 1 k1,m+1 ∣ r1,m+11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ kn ,m+1 ∣ rn ,m+11

For instance, if λ = (20, 16, 10, 7, 2, 0) and μ = (17, 5), so m = 2 and n = 3, we have
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Values of ν i , l
l/i 1 2 3 4
1 20 17 17 17
2 16 10 7 5
3 5 5 2 0

Exponents and Lengths
l/i 1 2 3
1 35 ∣ 3 31 ∣ 0 30 ∣ 0
2 22 ∣ 6 12 ∣ 3 6 ∣ 2
3 4 ∣ 0 0 ∣ 3 −6 ∣ 2

Organizing the vertices of G(πλ ,μ) following the rows of the last table, we get

3
1
6
1 10 �� 3

2 6 �� 2
3

6

�����
��
��

3
2 6 �� 2

3 .

Thus, this example leads to a graph with two connected components: a singleton and
an oriented line. If λ = (6, 6, 6, 4, 2, 1, 1) and μ = (5), so m = 1 and n = 5, then

Values of ν i , l
l/i 1 2 3 4 5 6
1 6 6 6 5 5 5
2 5 5 4 3 1 1

Exponents and Lengths
l/i 1 2 3 4 5
1 10 ∣ 0 9 ∣ 0 7 ∣ 1 5 ∣ 0 4 ∣ 0
2 6 ∣ 0 4 ∣ 1 0 ∣ 2 −3 ∣ 2 −7 ∣ 0

and G(πλ ,μ) is connected:

1
3

3

����
��
�� 7

���
��

��
�

1
2 4 �� 2

3 3 �� 2
4 .

Although the underlying directed graph is the same as the one in Example 3.6.2,
Lq(πλ ,μ) is not a snake module. Indeed, πλ ,μ can be constructed as in (3.6.1) by using
the sequence:

(4,−4), (4,−2), (3,−1), (3, 1), (2, 4), (3, 7).

However, this is not a snake because (i2 , m2) = (4,−2), (i3 , m3) = (3,−1), and m3 −
m2 = 1 ∉R 1,1

4,3. One can easily check no reordering of this sequence is a snake.

4 Highest-�-weight criteria

In this section, we prove several criteria for deciding whether a tensor product of
simple module is highest-�-weight or not. In particular, the results proved here can be
regarded as the backbone of the arguments in the proof of Theorem 3.5.5. Moreover,
they will also be prominently used to prove the main results of [27].
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4.1 Background on highest-�-weight tensor products

The following is easily established.

Lemma 4.1.1 Let m ∈ Z>0 and Vk ∈ C̃, 1 ≤ k ≤ m. Then, V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vm is highest-�-
weight (resp. simple) only if Vk is highest-�-weight (resp. simple) for all 1 ≤ k ≤ m.

Lemma 4.1.2 Let π, π′ ∈ P+, V = Lq(π) ⊗ Lq(π′), and W = Lq(π′) ⊗ Lq(π).
(a) V contains a submodule isomorphic to Lq(ϖ), ϖ ∈ P+, if and only there exists an

epimorphism W → Lq(ϖ).
(b) If W is highest-�-weight, the submodule of V generated by its top weight space is

simple.
(c) If V is not highest-�-weight, there exists an epimorphism V → Lq(ϖ) for some ϖ ∈

P+ such that ϖ < ππ′.

Proof Assume we have a monomorphism Lq(ϖ) → V . It follows from (2.6.4) and
(2.6.3) that we have an epimorphism

Lq(π′)∗ ⊗ Lq(π)∗ → Lq(ϖ)∗ .

In particular, letting ψ = σ ○ τqr∨h∨ and using (3.2.4) and (3.2.5), we get an epimor-
phism

(Lq(π′)∗)ψ ⊗ (Lq(π)∗)ψ → (Lq(ϖ)∗)ψ .

One easily checks using (3.2.1), (3.2.3), and (3.2.6) that the domain of the latter
epimorphism is isomorphic to W and (Lq(ϖ)∗)ψ ≅ Lq(ϖ). The converse in part
(a) is proved by reversing this argument. Part (b) is immediate from (a) since the
assumption on W implies we have an epimorphism W → Lq(ππ′) and the top weight
space of V is one-dimensional and equal to Vππ′ .

For proving (c), let V ′ be the submodule of V generated by its top weight space.
The assumption is equivalent to saying that V ′ is a proper submodule. Since V is
finite-dimensional, the set of proper submodules of V containing V ′ is nonempty and
contains a maximal element, say U, which is necessarily also maximal in the set of all
proper submodules of V. Hence, V/U ≅ Lq(ϖ) for some ϖ ∈ P+ and, since Vππ′ ⊆ U ,
we have ϖ ≠ ππ′. Since ϖ is an �-weight of V and every �-weight of V is smaller than
ππ′, we have ϖ < ππ′. ∎

The following fact is well known (a proof can be found in [26]).

Proposition 4.1.3 Let V be finite-dimensional Uq(g̃)-module. Then, V is simple if and
only if V and V∗ are highest-�-weight.

Corollary 4.1.4 Let π, ϖ ∈ P+. Then, Lq(π) ⊗ Lq(ϖ) is simple if and only if both
Lq(π) ⊗ Lq(ϖ) and Lq(ϖ) ⊗ Lq(π) are highest-�-weight.

Proof If U ∶= Lq(π) ⊗ Lq(ϖ) is simple, Proposition 3.2.2 implies U ≅ W ∶=
Lq(ϖ) ⊗ Lq(π). In particular, U and W are both highest-�-weight. Conversely,
assume U and W are both highest-�-weight. Since U is highest-�-weight, Proposition
4.1.3, (2.6.3), and (3.2.3), imply that it suffices to show

Lq(ϖ∗) ⊗ Lq(π∗) is highest-�-weight.(4.1.1)
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Using (3.2.5) with V2 = W , it follows from (3.2.4) and (3.2.6) that W σ ≅ Lq(ϖσ) ⊗
Lq(πσ) is highest-�-weight. Setting a = q−r∨h∨ , (3.2.6) implies π∗ = (πσ)τa and sim-
ilarly for ϖ. The proof of (4.1.1) is then completed by using (3.2.4), (3.2.1) and (3.2.5)
with V2 = W σ and f = τa . ∎

We now state one of the main tools we shall use in the proofs of our main results.

Theorem 4.1.5 Let S1 , . . . , Sm be simple Uq(g̃)-modules. If S i ⊗ S j is highest-�-weight,
for all 1 ≤ i ≤ j ≤ m, then S1 ⊗ ⋅ ⋅ ⋅ ⊗ Sm is highest-�-weight. Conversely, if S1 ⊗ ⋅ ⋅ ⋅ ⊗ Sm
is highest-�-weight, then S i ⊗ S j is highest-�-weight for all 1 ≤ i < j ≤ m.

Proof The first claim, which is the part we need below, is the main result of [19]
(see also Remark 4.1.7). We now prove the second by induction on m. Thus, suppose
S1 ⊗ ⋅ ⋅ ⋅ ⊗ Sm is highest-�-weight and note there is nothing to prove if m ≤ 2. Assume
m > 2 and note Lemma 4.1.1 implies S i ⊗ ⋅ ⋅ ⋅ ⊗ S j is highest-�-weight for all 1 ≤ i ≤ j ≤
m. Together with the induction hypothesis, this implies S i ⊗ S j is highest-�-weight for
all 1 ≤ i < j ≤ m except if (i , j) = (1, m).

To prove that S1 ⊗ Sm is also highest-�-weight, thus completing the proof, let S be
a simple quotient of T ∶= S2 ⊗ ⋅ ⋅ ⋅ ⊗ Sm−1 and consider the associated epimorphism
π ∶ T → S. This implies we have an epimorphism

S1 ⊗ T ⊗ Sm
idS1 ⊗π⊗idSm%%%%%%%%%%→ S1 ⊗ S ⊗ Sm ,

which, together with the assumption that S1 ⊗ ⋅ ⋅ ⋅ ⊗ Sm is highest-�-weight, implies
S1 ⊗ S ⊗ Sm is highest-�-weight as well. The inductive argument is completed if m > 3.

If m = 3, let λ i ∈ P+ be the highest weight of S i , 1 ≤ i ≤ 3. Since S1 ⊗ S2 is highest-�-
weight, Lemma 4.1.2(b) implies the submodule M generated by the top weight space
of S2 ⊗ S1 is simple and we have a monomorphism

M ⊗ S3 → S2 ⊗ S1 ⊗ S3 .

If S1 ⊗ S3 were not highest-�-weight, an application of Lemma 4.1.2(c) would gives us
an epimorphism

S1 ⊗ S3 → N ,

where N is a simple module whose highest weight λ satisfies λ < λ1 + λ3. Lemma 2.6.2
says these maps can be used to obtain a nonzero map

M ⊗ S3 → S2 ⊗ N .

The highest weight of M ⊗ S3 is λ1 + λ2 + λ3 while that of S2 ⊗ N is λ2 + λ. To reach a
contradiction, it then suffices to show M ⊗ S3 is highest-�-weight.

Indeed, we have an epimorphism S1 ⊗ S2 → M and, hence, an epimorphism

S1 ⊗ S2 ⊗ S3 → M ⊗ S3 .

The assumption that S1 ⊗ S2 ⊗ S3 is highest-�-weight then implies that so is M ⊗ S3,
as desired. ∎
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Corollary 4.1.6 Given π, π̃ ∈ P+, Lq(π) ⊗ Lq(π̃) is highest-�-weight if there exist
π(k) ∈ P+, 1 ≤ k ≤ m, π̃(k) ∈ P+ , 1 ≤ k ≤ m̃, such that

π =
m
∏
k=1

π(k) , π̃ =
m̃
∏
k=1

π̃(k) ,

and the following tensor products are highest-�-weight:

Lq(π(k)) ⊗ Lq(π(l)), Lq(π̃(k)) ⊗ Lq(π̃(l)), for k ≤ l ,

and Lq(π(k)) ⊗ Lq(π̃(l)) for all k, l .

Moreover, if all these tensor products are irreducible, then so is Lq(π) ⊗ Lq(π̃).
Proof It follows from Theorem 4.1.5 that

W ∶= Lq(π(1)) ⊗ ⋅ ⋅ ⋅ ⊗ Lq(π(m)), W̃ ∶= Lq(π̃(1)) ⊗ ⋅ ⋅ ⋅ ⊗ Lq(π̃(m̃)), and W ⊗ W̃

are highest-�-weight. Therefore, we have epimorphisms p ∶ W → Lq(π), p̃ ∶ W̃ →
Lq(π̃), and, hence, p⊗ p̃ ∶ W ⊗ W̃ → Lq(π) ⊗ Lq(π̃). For the last claim, the extra
assumption implies we reach the same conclusion with the tensor products above in
reversed order. Hence, we are done by Corollary 4.1.4. ∎

Remark 4.1.7 The first claim in Theorem 4.1.5 was stated with i < j in [19] instead
of i ≤ j, as it is stated above. In other words, the version stated above includes the
assumption that all tensor factors are real modules. This version for real factors also
follows from the results of [24] (see also [18]). In every instance, we use Corollary 4.1.6,
we use it with the factors being of KR type which are well known to be real modules.
Hence, in such situations, the k ≤ l in the statement can be replaced by k < l . The
strong version of Theorem 4.1.5 without the assumption the factors are real is used
only in Section 4.2, as explained in Remark 3.5.2. The results of Section 4.2 are not used
anywhere else in the paper and are presented here since we believe they are interesting
in their on right.

We are now able to prove Proposition 3.4.1.
Proof of Proposition 3.4.1 Let G′ and G′′ be nonempty unions of distinct connected
components of G(π). Let also π′ , π′′ ∈ P+ be such that G′ = G(π′) and G′′ = G(π′′).
If ω′ is a vertex of G′ and ω′′ is a vertex of G′′, they belong to different connected
components of G and, hence, Lq(ω′) ⊗ Lq(ω′′) is simple. It then follows from Corol-
lary 4.1.6 that Lq(π′) ⊗ Lq(π′′) is simple. An obvious inductive argument proves
Proposition 3.4.1. ∎

4.2 On the removal of boundary vertices

Lemma 4.2.1 Let π ∈ P+ and suppose ω is an extremal vertex in G(π). Let ϖ = πω−1

and assume there exists a nontrivial factorization ϖ = ϖ(1)ϖ(2) such that

Lq(ϖ) ≅ Lq(ϖ(1)) ⊗ Lq(ϖ(2))

and every q-factor of π adjacent to ω in G(π) lies in G(ϖ(1)). Then,

Lq(π) ≅ Lq(ωϖ(1)) ⊗ Lq(ϖ(2)).
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Proof Up to arrow dualization, we can assume ω is a source and, hence,

Lq(ω) ⊗ Lq(ω′) is highest-�-weight for every other q-factor ω′ of π.

By Corollary 4.1.4, it suffices to prove that both

Lq(ωϖ(1)) ⊗ Lq(ϖ(2)) and Lq(ϖ(2)) ⊗ Lq(ωϖ(1))

are highest-�-weight. Consider the tensor product

W1 = Lq(ω) ⊗ Lq(ϖ(1)) ⊗ Lq(ϖ(2)).

We claim that W1 is highest-�-weight. Indeed, we are assuming that Lq(ϖ(1)) ⊗
Lq(ϖ(2)) is simple and the hypothesis on G(ϖ(1)) together with Corollary 4.1.6
implies Lq(ω) ⊗ Lq(ϖ(2)) is also simple. Also, since ω is a source, Corollary 4.1.6
implies Lq(ω) ⊗ Lq(ϖ(1)) is highest-�-weight. Hence, the strong version of Theorem
4.1.5 implies W1 is highest-�-weight, as well as its quotient Lq(ωϖ(1)) ⊗ Lq(ϖ(2)).
These facts also imply Lq(ϖ(2)) ⊗ Lq(ω) ⊗ Lq(ϖ(1)) is highest-�-weight, showing
that Lq(ϖ(2)) ⊗ Lq(ωϖ(1)) is highest-�-weight. ∎

Lemma 4.2.2 Suppose Lq(π) is prime and that ω is an extremal vertex in G(π). Let
ϖ = πω−1. Then, either Lq(ϖ) is prime or there exists a nontrivial factorization ϖ =
ϖ(1)ϖ(2) such that

Lq(ϖ) ≅ Lq(ϖ(1)) ⊗ Lq(ϖ(2))

and both ϖ(1) and ϖ(2) contain q-factors of π adjacent to ω in G(π).

Proof Immediate from Lemma 4.2.1. ∎

We can now give the proof mentioned in Remark 3.5.2. Write G = G(π), let ω =
v, and ϖ = πω−1. In particular, GV/{v} = G(ϖ). Since G is connected by Proposition
3.4.1, v must be monovalent and, hence, there exists a unique q-factor ω′ of ϖ such that
Lq(ω) ⊗ Lq(ω′) is reducible. In particular, ω is extremal in G. The claim then follows
immediately from Lemma 4.2.2.

4.3 A key highest-�-weight criterion and Theorem 3.5.4

We now establish a criterion for a tensor product to be highest-�-weight which is the
heart of the proof of Theorem 3.5.4 and will also be used to deduce further criteria
which will be used in the proof of Theorem 3.5.5.

Proposition 4.3.1 Let λ, ν ∈ P+ and V = Lq(λ) ⊗ Lq(ν). Then, V is highest-�-weight
provided there exists μ ∈ P+ such that one of the following conditions holds:
(i) Lq(λμ) ⊗ Lq(ν) and Lq(λ) ⊗ Lq(μ) are both highest-�-weight.

(ii) Lq(λ) ⊗ Lq(μν) and Lq(μ) ⊗ Lq(ν) are both highest-�-weight.

Proof We write the details only in case (i) holds since the other case is similar. So,
assume that V is not highest-�-weight. In particular, there exists ξ ∈ P+ such that
ξ < λν together with an epimorphism V

f
%→ Lq(ξ). Therefore, there also exists an
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epimorphism

Lq(μ) ⊗ V = Lq(μ) ⊗ Lq(λ) ⊗ Lq(ν)
idLq(μ)⊗ f
%%%%%→ Lq(μ) ⊗ Lq(ξ).

On the other hand, since Lq(λ) ⊗ Lq(μ) is highest-�-weight, there exist monomor-
phisms

Lq(λμ)
g
%→ Lq(μ) ⊗ Lq(λ) and Lq(λμ) ⊗ Lq(ν)

g⊗idLq(ν)
%%%%%→ Lq(μ) ⊗ Lq(λ) ⊗ Lq(ν).

Lemma 2.6.2 implies the composition

Lq(λμ) ⊗ Lq(ν)
g⊗idLq(ν)
%%%%%→ Lq(μ) ⊗ Lq(λ) ⊗ Lq(ν)

idLq(μ) ⊗ f
%%%%%→ Lq(μ) ⊗ Lq(ξ)

is nonzero. Then, since Lq(λμ) ⊗ Lq(ν) is highest-�-weight, the image of its highest-
�-weight vector under this composition must be a nonzero vector with �-weight
λμν. However, since ξ < λν, we also have ξμ < λμν and, hence, there is no vector
in Lq(μ) ⊗ Lq(ξ) with �-weight λμν, yielding a contradiction. ∎

One of the applications of the above result gives a partial answer to the following
question. Suppose π, π′ , ϖ ∈ P+ are such that Lq(π) ⊗ Lq(π′) is highest-�-weight and
ϖ divides π. Under which further assumptions Lq(πϖ−1) ⊗ Lq(π′) is also highest-�-
weight? A similar question can be made in the case ϖ divides π′.

Corollary 4.3.2 Suppose G and G′ are pseudo-q-factorization graphs over π, π′ ∈ P+,
respectively. Assume Lq(π) ⊗ Lq(π′) is highest-�-weight, and let ω ∈ VG and ω′ ∈ VG′ .
Then:
(a) If ω is a sink in VG , Lq(πω−1) ⊗ Lq(π′) is highest-�-weight.
(b) If ω′ is a source in VG′ , Lq(π) ⊗ Lq(π′(ω′)−1) is highest-�-weight.

Proof If ω is a sink inVG , Corollary 4.1.6 implies that Lq(πω−1) ⊗ Lq(ω) is highest-
�-weight, showing that (i) of Proposition 4.3.1 holds with λ = πω−1, μ = ω, and ν = π′.
Part (b) follows similarly. ∎

Corollary 4.3.3 Let π′ , π′′ ∈ P+ with dissociate factorizations and π = π′π′′. Let also
G = G(π), G′ = G(π′), G′′ = G(π′′), and suppose ω′ , ω′′ ∈ P+ satisfy

ω′ is a source in G′ , ω′′ is a sink in G′′ , and (ω′′ , ω′) ∈ AG .

Then, Lq(π′) ⊗ Lq(π′′) is not highest-�-weight.

Proof The first two assumptions, together with Corollary 4.1.6, imply that

Lq(ω′) ⊗ Lq(π′(ω′)−1) and Lq(π′′(ω′′)−1) ⊗ Lq(ω′′) are highest-�-weight.

On the other hand, the last assumption implies that Lq(ω′) ⊗ Lq(ω′′) is not highest-�-
weight. Letting λ = ω′ , μ = π′(ω′)−1 and ν = ω′′, Proposition 4.3.1(i) implies Lq(π′) ⊗
Lq(ω′′) is not highest-�-weight. Then, an application of Proposition 4.3.1(ii) with μ =
π′′(ω′′)−1 , ν = ω′′, and λ = π′ completes the proof. ∎

Theorem 3.5.7 is easily deduced from Corollary 4.3.3. Moreover, we can also give
the following proof.

https://doi.org/10.4153/S0008414X23000160 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000160


On the primality of totally ordered q-factorization graphs 625

Proof of Theorem 3.5.4 Let π ∈ P+ and assume G = G(π) is a totally ordered line.
By Proposition 3.3.4, we need to show that Lq(π′) ⊗ Lq(π′′) is reducible for any
nontrivial decomposition π = π′π′′ such that G = G′ ⊗G′′ with G′ = G(π′) and G′′ =
G(π′′) connected. In particular, G′ and G′′ are also totally ordered lines. Without loss
of generality, assume G′ contains the sink of G. Then, if ω′ is the source of G′ and
ω′′ is the sink of G′′, the fact that G , G′, and G′′ are totally ordered lines implies that
(ω′′ , ω′) ∈ AG and, hence, Lq(π′) ⊗ Lq(π′′) is not simple by Corollary 4.3.3. ∎

4.4 Highest-�-weight criteria via monotonic paths

Recall (2.2.6).

Lemma 4.4.1 Let π ∈ P+ and suppose G is a pseudo q-factorization graph over π.
Given ϖ ∈ VG , consider

π± = ∏
ω∈N±G(ϖ)

ω′ .

Then, the following tensor products are highest-�-weight:

Lq(π+) ⊗ Lq(ππ−1
+ ) and Lq(ππ−1

− ) ⊗ Lq(π−).

Proof For the first tensor product, Corollary 4.1.6. implies it suffices to show
Lq(ω) ⊗ Lq(ω′) is highest-�-weight for any ω ∈ N+G(ϖ) and any ω′ ∈ VG/N+G(ϖ).
Indeed, if this failed for some choice of such ω and ω′, it would follow that a ∶=
(ω′ , ω) ∈ AG . Since ω ∈ N+G(ϖ), we can chose ρ ∈P+

ϖ ,ω and it would follow that
ρ ∗ a ∈P+

ϖ ,ω′ , contradicting the assumption ω′ ∉ N+G(ϖ). The second tensor product
is treated similarly. ∎

The next lemma will play a role in the proofs of Proposition 4.5.3 and Theorem
3.5.5.

Lemma 4.4.2 Let π, π′ ∈ P+ and suppose G and G′ are pseudo q-factorization graphs
over π and π′, respectively. Let ϖ ∈ VG and ϖ′ ∈ VG′ and consider

π+ = ∏
ω∈N+G(ϖ)

ω and π′− = ∏
ω∈N−

G′
(ϖ′)

ω.

If V = Lq(π) ⊗ Lq(π′) is highest-�-weight, so are the following tensor products:

Lq(π+) ⊗ Lq(π′), Lq(π) ⊗ Lq(π′−), and Lq(π+) ⊗ Lq(π′−).

Proof Let λ = π+, μ = ππ−1
+ , and ν = π′. By assumption, Lq(λμ) ⊗ Lq(ν) is highest-

�-weight, while Lemma 4.4.1 implies that so is Lq(λ) ⊗ Lq(μ). The claim about the
first tensor product then follows from Proposition 4.3.1. The other two cases are treated
similarly. ∎

4.5 A highest-�-weight criterion from duality

We now deduce the main technical part behind the proof of Proposition 3.5.9 which
will also be used for proving Theorem 3.5.5.
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Proposition 4.5.1 Let λ, μ, ν ∈ P+. Let also V = Lq(λ) ⊗ Lq(ν)∗,

T1 = Lq(λμ) ⊗ Lq(ν), U1 = Lq(λ) ⊗ Lq(μ), W1 = Lq(μ) ⊗ Lq(ν),

T2 = Lq(λ) ⊗ Lq(μν), U2 = Lq(μ) ⊗ Lq(ν), W2 = Lq(λ) ⊗ Lq(μ).

Then, Wi is highest-�-weight provided Ti and U i are highest-�-weight, i ∈ {1, 2}, and V
is simple.

Proof We write the details for i = 1 only. Since V is simple, we have V ≅ Lq(ν)∗ ⊗
Lq(λ). If W1 were not highest-�-weight, there would exist ξ ∈ P+ such that ξ < μν,

together with an epimorphism W1
f
%→ Lq(ξ). Then, (2.6.2) implies there would also

exist monomorphisms

Lq(μ)
g
%→ Lq(ξ) ⊗ Lq(ν)∗ and

Lq(μ) ⊗ Lq(λ)
g⊗idLq(λ)
%%%%%→ Lq(ξ) ⊗ Lq(ν)∗ ⊗ Lq(λ) ≅ Lq(ξ) ⊗ V .

On the other hand, since U1 is highest-�-weight, there exists a monomorphism

Lq(λμ) h
%→ Lq(μ) ⊗ Lq(λ).

Therefore, the following composition would also be injective:

Lq(λμ) h
%→ Lq(μ) ⊗ Lq(λ)

g⊗idLq(λ)
%%%%%→ Lq(ξ) ⊗ V ,

yielding a monomorphism

Lq(λμ) ↪ Lq(ξ) ⊗ Lq(λ) ⊗ Lq(ν)∗ .

Finally, by (2.6.2), this implies there would exist a nonzero homomorphism

T1 = Lq(λμ) ⊗ Lq(ν) → Lq(ξ) ⊗ Lq(λ).

Since ξ < μν and, therefore, λξ < λμν, this yields a contradiction with the assumption
that T1 is highest-�-weight. ∎

Corollary 4.5.2 Suppose G and G′ are pseudo-q-factorization graphs over π, π′ ∈ P+,
respectively, and assume Lq(π) ⊗ Lq(π′) is highest-�-weight.
(a) If ω ∈ VG is a source in G such that Lq(ω′)∗ ⊗ Lq(ω) is simple for any ω′ ∈ VG′ ,

then Lq(πω−1) ⊗ Lq(π′) is highest-�-weight.
(b) If ω′ ∈ VG′ is a sink in G′ such that Lq(ω′) ⊗ ∗Lq(ω) is simple for any ω ∈ VG , then

Lq(π) ⊗ Lq(π′(ω′)−1) is highest-�-weight.

Proof If ω ∈ VG is a source in G, Corollary 4.1.6 implies Lq(ω) ⊗ Lq(πω−1) is
highest-�-weight. In its turn, since Lq(ω′)∗ ⊗ Lq(ω) is simple for any ω′ ∈ VG′ , Corol-
lary 4.1.6 implies Lq(π′)∗ ⊗ Lq(ω) is simple. Part (a) then follows from Proposition
4.5.1 with λ = ω, μ = πω−1 , ν = π′, and i = 1. Part (b) is proved similarly. ∎

The latter criteria leads to the following criterion for proving that a tensor product
is not highest-�-weight.
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Proposition 4.5.3 Assume π, π′ ∈ P+ have dissociate q-factorizations, and let G =
G(π), G′ = G(π′), G′′ = G(ππ′). Suppose that there exist ϖ ∈ VG , ϖ′ ∈ VG′ such that
(ϖ′ , ϖ) ∈ AG′′ and

Lq(ω) ⊗ Lq(ω′)∗ is simple ∀ (ω, ω′) ∈ N+G(ϖ) ×N−G′(ϖ′)/{(ϖ, ϖ′)}.(4.5.1)

Then, Lq(π) ⊗ Lq(π′) is not highest-�-weight.

Proof Suppose Lq(π) ⊗ Lq(π′) is highest-�-weight, and let π+, π′− be defined as in
Lemma 4.4.2. In particular, Lq(π+) ⊗ Lq(π′−) is also highest-�-weight. On the other
hand, it follows from (4.5.1) and Corollary 4.1.6 that

Lq(π+) ⊗ Lq(π′−(ϖ′)−1)∗ is simple.

Proposition 4.5.1 with λ = π+, μ = ϖ′ , ν = π′−(ϖ′)−1 and i = 2 then implies that

Lq(π+) ⊗ Lq(ϖ′) is highest-�-weight.

Assumption (4.5.1) also implies Lq(ω) ⊗ Lq(ϖ′)∗ is simple for all ω ∈ N+G(ϖ)/{ω}
and, hence, it follows from Corollary 4.1.6 that

Lq(π+ϖ−1) ⊗ Lq(ϖ′)∗ is simple.

Therefore, Proposition 4.5.1 with λ = π+ϖ−1 , μ = ϖ, ν = ϖ′, and i = 1 implies that

Lq(ϖ) ⊗ Lq(ϖ′) is highest-�-weight,

which contradicts the assumption (ϖ′ , ϖ) ∈ AG′′ . ∎

We are ready for:

Proof of Proposition 3.5.9 Assume that G is not prime, so we have a nontrivial
factorization

Lq(π) ≅ Lq(π′) ⊗ Lq(π′′).(4.5.2)

By Proposition 3.3.4, π′ and π′′ have dissociate q-factorizations and, hence, if G′ =
G(π′) and G′′ = G(π′′), (G′ , G′′) is a cut of G. Therefore, by assumption there exist
ϖ′ ∈ VG′ and ϖ′′ ∈ VG′′ such that either (i) or (ii) holds. If it is (i), Proposition 4.5.3
implies that Lq(π′) ⊗ Lq(π′′) is not highest-�-weight, yielding a contradiction. If it is
(ii), the same conclusion is reached by interchanging the roles of π′ and π′′. ∎

5 Totally ordered graphs

In this section, we prove Theorem 3.5.5 and, hence, assume g is of type A.

5.1 Some combinatorics

In this section, we deduce a few technical lemmas concerned with arithmetic relations
among the elements of R r ,s

i , j . In particular, they are useful for detecting whether a
pseudo q-factorization graph is a tournament.

Lemma 5.1.1 If i , j ∈ I, r, s ∈ Z>0 , m ∈R r ,s
i , j /R

r ,s
i , j,[i , j], and a ∈ F×, then

Lq(ω i ,aqm ,r) ⊗ Lq(ω j,a ,s)∗ is simple.
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Proof The assumptions imply m = r + s + d(i , j) − 2p for some −d([i , j], ∂I) ≤ p <
0, while the claim follows if we show that m + h∨ ∉R r ,s

i , j∗ . Since

0 < m + h∨ = r + s + d(i , j∗) − 2p′ with p′ = p + d(i , j∗) − d(i , j) − h∨

2
,

it suffices to show p′ < −d([i , j∗], ∂I).
Without loss of generality, assume I has been identified with {1, . . . , n} so that i ≤ j

and recall that j∗ = n + 1 − j. Suppose first that d([i , j], ∂I) = d(i , ∂I). It follows that
d([i , j∗], ∂I) = d(i , ∂I) and either d(i , ∂I) = i − 1 or i = j and d(i , ∂I) = n − i. In the
former case, we have j∗ ≥ i and

d(i , j∗) − d(i , j) − h∨ = (n + 1 − j − i) − ( j − i) − (n + 1) = −2 j.

Therefore, since p ≤ −1, we see that

p′ ≤ −1 − j ≤ −1 − i = −1 − (d([i , j∗], ∂I) + 1) = −d([i , j∗], ∂I) − 2,

thus completing the proof in this case. In the latter case, j∗ ≤ i = j and we have

d(i , j∗) − d(i , j) − h∨ = (i − (n + 1 − i)) − (n + 1) = −2(n + 1 − i) = −2d([i , j∗], ∂I) − 2,

which also completes the proof.
It remains to consider the case d([i , j], ∂I) = d( j, ∂I) = n − j, which implies j∗ ≤ i

and d([i , j∗], ∂I) = d( j∗ , ∂I) = n − j. Hence,

d(i , j∗) − d(i , j) − h∨ = (i − (n + 1 − j)) − ( j − i) − (n + 1) = −2(n + 1 − i),

and we get,

p′ ≤ −1 − (d([i , j∗], ∂I) + 1 + ( j − i)) < −d([i , j∗], ∂I),

as desired. ∎

Lemma 5.1.2 Let N ∈ Z>0 and (mk , rk , ik) ∈ Z≥0 ×Z>0 × I, 1 ≤ k ≤ N. Suppose

∣mk −mk−1∣ ∈R rk−1 ,rk
ik−1 , ik

for all 1 < k ≤ N .(5.1.1)

(a) For all 1 ≤ k, l ≤ N, there exists p l ,k ∈ Z such that m l −mk = r l + rk + d(i l , ik) −
2p l ,k .

(b) If mk > mk−1 for all 1 < k ≤ N, then pN ,1 < min{r1 , rN}, and

pN ,1 < p l ,k < min{rk , r l}, for all 1 ≤ k < l ≤ N , with (k, l) ≠ (1, N).

Similarly, if mk < mk−1 for all 1 < k ≤ N, then p1,N < min{r1 , rN}, and

p1,N < pk , l < min{rk , r l}, for all 1 ≤ k < l ≤ N , with (k, l) ≠ (1, N).

Proof The equality mk −m l = rk + r l + d(ik , i l) − 2pk , l clearly defines pk , l ∈ Q
and, moreover, one can easily check that

pk , l + p j,k = p j, l + rk + d ik
i j , i l

for all 1 ≤ j, k, l ≤ N ,(5.1.2)

and

pk , l + p l ,k = rk + r l + d(ik , i l) for all 1 ≤ k, l ≤ N .(5.1.3)
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We will use these to show pk , l ∈ Z by induction on ∣k − l ∣ ≥ 1 (note we also have pk ,k =
rk). If ∣k − l ∣ = 1, (5.1.1) implies either pk , l or p l ,k is an integer. Then, (5.1.3) implies the
same is true for the other one. If ∣k − l ∣ > 1, the inductive step easily follows from (5.1.2)
by choosing j in between k and l.

We prove (b) in the case mk > mk−1 by induction on N > 1 (the other case is
similar). For N = 2, we have pN ,1 = p2,1 and, hence, the first claim follows from (5.1.1),
while the second claim is vacuous. Note the first claim is a consequence of the second
for N > 2, in which case, the inductive hypothesis implies

pN−1,1 < p l ,k < min{rk , r l}, for all 1 ≤ k < l ≤ N − 1, with (k, l) ≠ (1, N − 1),

as well as pN−1,1 < min{r1 , rN−1}. By (5.1.2), we have

pN ,1 = pN ,N−1 + pN−1,1 − rN−1 − d iN−1
i1 , iN

and

pN ,1 = pN ,2 + p2,1 − r2 − d i1
i1 , iN

.
(5.1.4)

Moreover,

pN ,N−1 = pN < min{rN , rN−1} ≤ rN−1 and p2,1 < min{r2 , r1} ≤ r2 .(5.1.5)

Therefore,

pN ,1 < pN−1,1 − d iN−1
i1 , iN

≤ pN−1,1 < p l ,k < min{rk , r l},

for all 1 ≤ k < l ≤ N − 1 with (k, l) ≠ (1, N − 1).
Thus, it remains to show that

pN ,1 < pN ,k < min{rk , rN} for all 1 < k < N .

Applying the inductive hypothesis to the sequence (mk , rk , ik), 1 < k ≤ N , we have

pN ,1 < p l ,k < min{rk , r l} for all 1 < k < l < N , (k, l) ≠ (2, N).

The second claims in (5.1.4) and (5.1.5) imply pN ,1 < pN ,2, thus completing the proof.
∎

Lemma 5.1.3 Assume mk > mk−1 for all 1 < k ≤ N in Lemma 5.1.2.

(a) If pN ,1 ≥ −d([ik , i l ], ∂I) − 1 for some 1 ≤ k < l ≤ N , (l , k) ≠ (1, N), then m l −
mk ∈R rk ,r l

ik , i l
. In particular, this is the case if mN −m1 ∈R r1 ,rN

i1 , iN
and d([ik , i l ], ∂I) ≥

d([i1 , iN], ∂I).
(b) If mN −m1 ∈R r1 ,rN

i1 , iN ,[i1 , iN ]
, then m l −mk ∈R rk ,r l

ik , i l ,[ik , i l ]
for all 1 ≤ k < l ≤ N.

Proof The initial assumption in (a), together with Lemma 5.1.2(b), implies
−d([ik , i l ], ∂I) − 1 ≤ pN ,1 < p l ,k . A second application of Lemma 5.1.2(b) then implies
−d([ik , i l ], ∂I) ≤ p l ,k < min{rk , r l}, thus proving the first claim in (a). The assump-
tions in the second part of (a) imply pN ,1 ≥ −d([i1 , iN], ∂I) ≥ −d([ik , i l ], ∂I), show-
ing the second part follows from the first.

The assumption in (b) implies 0 ≤ pN ,1 < min{r1 , rN} and we want to show 0 ≤
p l ,k < min{rk , r l}, which follows from Lemma 5.1.2(b). ∎
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Assume, for instance, that the assumption in (b) of the last lemma holds. Then, if
J ⊆ I is connected and

π = ∏
k∶ik∈J

ω ik ,aqmk ,rk ,

the pseudo q-factorization graph G for Uq(g̃)J associated with this pseudo q-
factorization of π is a tournament.

5.2 The main lemma

Fix π ∈ P+ such that its q-factorization graph G = G(π) = (V,A) is totally ordered,
and let N = #V. Let ω i ,a ,r be the sink, and let m l , r l ∈ Z≥0 , 1 ≤ l ≤ N , be such that 0 =
m1 < m2 < ⋅ ⋅ ⋅ < mN and

V = {ω i l ,aqml ,r l ∶ 1 ≤ l ≤ N}.

To shorten notation, set ω(l) = ω i l ,aqml ,r l , 1 ≤ l ≤ N . Note

A ⊆ {(ω(l) , ω(k)) ∶ 1 ≤ k < l ≤ N}

and

(ω(l) , ω(k)) ∈ A ⇒ m l −mk ∈R rk ,r l
ik , i l

.

Since g is of type A, the latter is equivalent to

m l −mk = rk + r l + d(ik , i l) − 2p l ,k , for some − d([ik , i l ], ∂I) ≤ p l ,k < min{rk , r l}.

Lemma 5.1.2 implies such an expression exists for m l −mk for all 1 ≤ k < l ≤ N for
some p l ,k ∈ Z and, moreover,

p l ,k < min{rk , r l} for all 1 ≤ k < l ≤ N .(5.2.1)

Furthermore, Theorem 3.3.2 and (3.4.1) imply

p l ,k ≥ 0 ⇔ m l −mk ∈R rk ,r l
ik , i l ,[ik , i l ]

⇒ i l ≠ ik .(5.2.2)

Let us make a brief interlude and use the setup we have just fixed to give the:

Proof of Proposition 3.5.6 In light of (5.2.2), the assumption c(V) ⊆ ∂I implies

(ω(l) , ω(k)) ∈ A only if ik ≠ i l .(5.2.3)

Note the claim about the vertices being alternately colored is immediate from this.
Since a totally ordered tree is a line, if G were not a line, it would contain a cycle. In
that case, let v be the maximal element ofVwhich is part of a cycle. Suppose a = (v , w)
is the first arrow of this cycle and a′ = (v , w′) is the last:

⋅ ⋅ ⋅w v w′ ⋅ ⋅ ⋅ .a a′

Set e = π(a) and e′ = π(a′). Since G is totally ordered, we must have either w ≺ w′ or
w ≻ w′. Without loss of generality, we assume it is the latter. This means there exists a
(simple) monotonic path ρ ∈Pw ,w′ and, moreover, ρ ∗ e∈Pv ,w′ is a monotonic path.
Furthermore, e′ ∗ ρ ∗ e is a cycle based on v and, by construction, the vertices in this
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cycle satisfy all the assumptions in Lemma 5.1.3(b). As commented after that lemma,
this implies the subgraph determined by this subset of vertices is a tournament which,
by (5.2.3), have all of its vertices differently colored. This yields a contradiction since
#∂I = 2 and there are no cycles with less than three vertices. ∎

The next lemma is the heart of the proof of Theorem 3.5.5.

Lemma 5.2.1 Let π′ , π′′ ∈ P+ have dissociate q-factorizations and assume π = π′π′′.
Let also G′ = G(π′) and G′′ = G(π′′). Assume

Lq(π′) ⊗ Lq(π′′) is highest-�-weight(5.2.4)

and that 1 ≤ j′ < j′′ ≤ N are such that ω( j′) ∈ VG′ , ω( j′′) ∈ VG′′ , and

m j′′ −m j′ ∈R
r j′ ,r j′′

i j′ , i j′′ , J
, where J = [i j′ , i j′′].(5.2.5)

Then, there exist 1 ≤ k′′ < k′ ≤ N such that K ∶= [ik′ , ik′′] ⫋ J, ω(k
′) ∈ VG′ , ω(k

′′) ∈ VG′′ ,
and mk′ −mk′′ ∈R

rk′ ,rk′′

ik′ , ik′′ ,K
.

Proof Assume, by contradiction, that there does not exist such pair (k′ , k′′) and
consider:

I+G′ = {1 ≤ l ≤ N ∶ ω(l) ∈ N+G′(ω( j′))} = {1 ≤ l ≤ N ∶ ω(l) ∈ VG′ , l ≥ j′},

I−G′′ = {1 ≤ l ≤ N ∶ ω(l) ∈ N−G′′(ω( j′′))} = {1 ≤ l ≤ N ∶ ω(l) ∈ VG′′ , l ≤ j′′}.

Lemma 4.4.2, together with (5.2.4), implies

Lq(π+) ⊗ Lq(π−) is highest-�-weight, where

π+ ∶= ∏
l∈I+

G′

ω(l) and π− ∶= ∏
l∈I−

G′′

ω(l) .(5.2.6)

If I+G′ = { j′} and I−G′′ = { j′′}, then π+ = ω( j′), π− = ω( j′′), and (5.2.6) contradicts
(5.2.5). Thus, henceforth assume that

either #I+G′ > 1 or #I−G′′ > 1.

Set

I++G′ = {l ∈ I+G′ ∶ l > j′′ , p l , j′′ < 0}, I−−G′′ = {l ∈ I−G′′ ∶ l < j′ , p j′ , l < 0},

π++ = ∏
l∈I++

G′′

ω(l) and π−− = ∏
l∈I−−

G′′

ω(l) .

Lemma 5.1.2 implies

p l ′ , l ′′ < p l ′ , j′′ < 0 for all l ′ ∈ I++G′ , l ′′ ∈ I−G′′/{ j′′}(5.2.7)

and

p l ′ , l ′′ < p j′ , l ′′ < 0 for all l ′′ ∈ I−−G′′ , l ′ ∈ I+G′/{ j′}.(5.2.8)
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Moreover, Lemma 5.1.2 also implies

l ′ ∈ I+G′/I++G′ ⇒ l ′ < l for all l ∈ I++G′ .(5.2.9)

Indeed, if it could be l < l ′ for some l ∈ I++G′ , it would follow from Lemma 5.1.2 that

p l ′ , j′′ < p l , j′′ < 0

which contradicts the assumption l ′ ∉ I++G′ . Similarly,

l ′′ ∈ I−G′′/I−−G′′ ⇒ l ′′ > l for all l ∈ I−−G′′ .(5.2.10)

Note that (5.2.7), together with Lemma 5.1.1, implies

Lq(ω(l
′)) ⊗ Lq(ω(l

′′))∗ is simple for all l ′ ∈ I++G′ , l ′′ ∈ I−G′′(5.2.11)

and, similarly, (5.2.8) implies

Lq(ω(l
′)) ⊗ Lq(ω(l

′′))∗ is simple for all l ′′ ∈ I−−G′′ , l ′ ∈ I+G′ .(5.2.12)

In their turn, (5.2.9) and (5.2.10) imply

Lq(ω(l)) ⊗ Lq(ω(l
′)) is highest-�-weight for all l ′ ∈ I+G′/I++G′ , l ∈ I++G′(5.2.13)

and

Lq(ω(l
′)) ⊗ Lq(ω(l)) is highest-�-weight for all l ′ ∈ I−G′′/I−−G′′ , l ∈ I−−G′′ .(5.2.14)

We will check that these facts, together with (5.2.6), Corollary 4.1.6, and Proposition
4.5.1, imply

M = Lq(ϖ′) ⊗ Lq(ϖ′′) is highest-�-weight, where
ϖ′ = π+(π++)−1 and ϖ′′ = π−(π−−)−1 .

(5.2.15)

Moreover, Corollary 3.2.4 implies that MJ = Lq(ϖ′J) ⊗ Lq(ϖ′′J ) is also highest-�-
weight. Using the initial assumption of the proof, we will see that this contradicts
(5.2.5), thus completing the proof.

To check (5.2.15), we first use Proposition 4.5.1 with i = 1, λ = π++, μ = ϖ′, and
ν = π−. In the terminology of Proposition 4.5.1, (5.2.6) means T1 is highest-�-weight,
(5.2.11) and Corollary 4.1.6 imply V is simple, while (5.2.13) and Corollary 4.1.6 imply
U1 is highest-�-weight. Hence, W1 = Lq(ϖ′) ⊗ Lq(π−) is highest-�-weight. A second
application of Proposition 4.5.1 with i = 2, λ = ϖ′ , μ = ϖ′′, and ν = π−−, together with
(5.2.12), (5.2.14), Corollary 4.1.6, and Corollary 4.1.6 gives (5.2.15).

Consider the following sets:

JG′ = (I+G′/I
++
G′ ) ∩ {1 ≤ l ≤ N ∶ i l ∈ J} and

JG′′ = (I−G′′/I
−−
G′′) ∩ {1 ≤ l ≤ N ∶ i l ∈ J}.

Note

ϖ′J = ∏
l∈JG′

ω(l)J and ϖ′′J = ∏
l∈JG′′

ω(l)J .(5.2.16)
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If JG′ = { j′} and JG′ = { j′′}, then ϖ′J = ω( j′)
J , ϖ′′J = ω( j′′)

J and MJ = Lq(ω( j′)
J ) ⊗

Lq(ω( j′′)
J ), yielding a contradiction between (5.2.15) and (5.2.5). Thus, we must have

either #JG′ > 1 or #JG′′ > 1.

Consider also

J+G′ ∶= {l ∈ JG′ ∶ l > j′′}, J−G′ ∶= {l ∈ JG′ ∶ l < j′′},

J+G′′ ∶= {l ∈ JG′′ ∶ l > j′}, J−G′′ ∶= {l ∈ JG′′ ∶ l < j′}.

Obviously, j′ ∈ J−G′ , j′′ ∈ J+G′′ , JG′ is the disjoint union of J±G′ , and similarly for JG′′ .
We claim

#J+G′ ≤ 1 and #J−G′′ ≤ 1.

Indeed, by definition of let J+G′ , we have

l ∈ J+G′ ⇒ i l ∈ J , l > j′′ , and p l , j′′ ≥ 0.(5.2.17)

In particular, together with (5.2.1) and (5.2.2), this implies

m l −m j′′ ∈R
r j′′ ,r l

i j′′ , i l [i j′′ , i l ]
, i j′′ ≠ i l , and [i j′′ , i l ] ⊆ J .

If it were [i j′′ , i l ] ⫋ J, then k′ = l and k′′ = j′′ would be a pair of indices satisfying the
conclusion of the lemma, contradicting the initial assumption in the proof. Hence, we
must have

i l = i j for all l ∈ J+G′ .

If it were #J+G′ > 1, let l , l ′ ∈ J+G′ with l > l ′. Then, since i l ′ = i l = i j′ and G is a
q-factorization graph, we must have p l , l ′ < 0. However, Lemma 5.1.2 implies that

p l , j′′ < p l , l ′ < 0,

contradicting (5.2.17). Similar arguments can be used to show that #J−G′′ ≤ 1 and that
i l = i j′′ if l ∈ J−G′′ . Henceforth, let j+ denote the unique element of J+G′ , if it exists, and
let j− be the unique element of J−G′′ , if it exists. In particular,

J−G′ = JG′/{ j+}, J+G′′ = JG′′/{ j−}, i j+ = i j′ , i j− = i j′′ ,
and j− < j′ ≤ l ≤ j′′ < j+ for all l ∈ J−G′ ∪ J+G′′ .

(5.2.18)

Moreover, since p j′′ , j′ ≥ 0 by (5.2.5), Lemma 5.1.2, and (5.2.2) imply that

0 ≤ p l , l ′ < min{r l , r l ′} and i l ≠ i l ′ for all l , l ′ ∈ J−G′ ∪ J+G′′ , l > l ′ .(5.2.19)

It follows that a pair (k′ , k′′) such that k′ ∈ J−G′ , k′′ ∈ J+G′′ , and k′ > k′′ satisfies the
conclusion of the lemma and, hence, does not exist by the initial assumption of the
proof. Thus, we must have

l < l ′ for all l ∈ J−G′ , l ′ ∈ J+G′′ .
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Note also that

ϖ′J = ω( j+) ∏
l∈J−

G′

ω(l)J and ϖ′′J = ω( j−) ∏
l∈J+

G′′

ω(l)J ,(5.2.20)

where we set ω( j±) = 1 if j± does not exist. Let us check that

J−G′ = { j′} and J+G′′ = { j′′}.(5.2.21)

Indeed, assume J−G′/{ j′} ≠ ∅, choose l ′ ∈ J−G′/{ j′} and l ′′ ∈ J+G′′ such that d(i l ′ , i l ′′)
is minimal, and let

J = [i l ′ , i l ′′] ⫋ J .

The choice of (l ′ , l ′′) implies ϖ′J = ω(l
′)

J
, while

ϖ′′J =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ω(l
′′)

J
, if l ′′ ≠ j′′ ,

ω( j′′)
J

ω( j−)
J

, if l ′′ = j′′ .

As commented after (5.2.15), MJ is highest-�-weight and, hence, so is

MJ ∶= Lq(ϖ′J) ⊗ Lq(ϖ′′J ) = Lq(ω(l
′)

J
) ⊗ Lq(ϖ′′J ).

If l ′′ ≠ j′′, we have

MJ = Lq(ω(l
′)

J
) ⊗ Lq(ω(l

′′)J),

which is not highest-�-weight by (5.2.19), yielding a contradiction. If l ′′ = j′′ (so i l ′′ =
i j′′), (5.2.1) and (5.2.2) imply p j′′ , j− < 0 and, hence,

Lq(ϖ′′J ) ≅ Lq(ω( j′′)
J

) ⊗ Lq(ω( j−)
J

).

Therefore,

MJ ≅ Lq(ω(l
′)

J
) ⊗ Lq(ω( j′′)

J
) ⊗ Lq(ω( j−)

J
),

yielding a contradiction with (5.2.19) again. This proves the first claim in (5.2.21) and
the second is proved similarly.

We have shown JG′ = { j′ , j+} and JG′′ = { j′′ , j−}, where we understand j± has not
being listed if it does not exist. In particular,

J ∩ supp(ϖ′) = {i j′} and J ∩ supp(ϖ′) = {i j′′},

which implies

MJ = Lq((ω( j′)ω( j+))J) ⊗ Lq((ω( j′′)ω( j−))J).

Since p j+ , j′ < 0 and p j′′ , j− < 0, it follows that

MJ ≅ Lq(ω( j+)
J ) ⊗ Lq(ω( j′)

J ) ⊗ Lq(ω( j′′)
J ) ⊗ Lq(ω( j−)

J ).

However, Lq(ω( j′)
J ) ⊗ Lq(ω( j′′)

J ) is not highest-�-weight by (5.2.5), yielding the
promised contradiction. ∎
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5.3 Proof of Theorem 3.5.5

Let π′ , π′′ ∈ P+/{1} be such that π = π′π′′ and set

U = Lq(π′) ⊗ Lq(π′′) and V = Lq(π′′) ⊗ Lq(π′)

In light of Corollary 4.1.4, Theorem 3.5.5 follows if we show that either U or V
is not highest-�-weight. Moreover, by Corollary 3.2.4, we can assume π′ and π′′
have dissociate q-factorizations. The case N = 1 is obvious, while the case N = 2
follows from the definition of q-factorization graph and (3.3.2), since G is connected.
Thus, henceforth, N ≥ 3. We shall assume U and V are highest-�-weight and reach a
contradiction.

We will use the notation fixed before Lemma 5.2.1. Let also G′ = G(π′) = (V′ ,A′)
and G′′ = G(π′′) = (V′′ ,A′′). Without loss of generality, assume ω ∶= ω(N) ∈ V′′ (ω is
the source of G). We claim

#V′′ > 1 and, hence, π′′ω−1 ≠ 1.(5.3.1)

Indeed, if this were not the case, it would follow that ν ∶= π′′ ∈ V and π′ = πν−1.
Lemma 2.2.3 then implies G′ is also totally ordered and, letting λ = ω(N−1) be the
source of G′, it would follow that

(ν, λ) ∈ A.(5.3.2)

Set also μ = π′λ−1 and note μ ∈ P+/{1} since N ≥ 3 and we are assuming #V′′ = 1. By
assumption, Lq(λμ) ⊗ Lq(ν) = U is highest-�-weight. On the other hand, Corollary
4.1.6 implies Lq(λ) ⊗ Lq(μ) is also highest-�-weight. Together with Proposition 4.3.1,
this implies Lq(λ) ⊗ Lq(ν) is highest-�-weight as well, yielding a contradiction with
(5.3.2) and (3.3.2).

Note also that Corollary 4.3.2 implies that

Ũ ∶= Lq(π′) ⊗ Lq(π′′ω−1) is highest-�-weight.

Since G(πω−1) is totally ordered by Lemma 2.2.3, an inductive argument on N then
implies

Ṽ ∶= Lq(π′′ω−1) ⊗ Lq(π′) is not highest-�-weight.(5.3.3)

Let

I′ = { j ∶ ω( j) ∈ V′}, I′′ = { j ∶ ω( j) ∈ V′′},

and

I′> = { j ∈ I′ ∶ pN , j ≥ 0}.

Let us show I′> ≠ ∅. If it were I′> = ∅, i.e., pN , j < 0 for all j ∈ I′, it would follow from
Lemma 5.1.1 that Lq(ω) ⊗ Lq(ω( j))∗ is simple for all j ∈ I′ and, hence, Lq(ω) ⊗
Lq(π′)∗ would be simple by Corollary 4.1.6. Let us show this contradicts Proposition
4.5.1. Indeed, let λ = ω, μ = π′′ω−1 , ν = π′. We have just argued that Lq(λ) ⊗ Lq(ν)∗
would be simple if I′> = ∅. In the notation of Proposition 4.5.1, notice U1 is highest-�-
weight by Corollary 4.1.6 since ω is the source and T1 = Lq(π′′) ⊗ Lq(π′) is highest-
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�-weight by assumption. Hence, Proposition 4.5.1 would imply W1 is also highest-�-
weight, contradicting (5.3.3).

If j ∈ I′> and k > j, it follows from Lemma 5.1.2 that pk , j > pN , j ≥ 0 and, hence,
i j ≠ ik by (5.2.2). This shows

i j ≠ ik for all j, k ∈ I′>, j ≠ k,

and, therefore, there exists unique j′ ∈ I′> such that

0 < d(i j′ , iN) = min{d(i j , iN) ∶ j ∈ I′>}.

Set

I′′> = { j ∈ I′′ ∶ j′ < j and p j, j′ ≥ 0}

and note N ∈ I′′> . Proceeding as above, one easily checks that

l ∈ I′′> and j′ < k < l ⇒ ik ≠ i l ,

which implies ik ≠ i l for all k, l ∈ I′′> , k ≠ l . Let then j′′ ∈ I′′> be the unique element
such that

0 < d(i j′ , i j′′) = min{d(i j′ , i j) ∶ j ∈ I′′>}

and set J = [i j′ , i j′′]. By construction (5.2.5) holds. Since U is highest-�-weight,
Lemma 5.2.1 then implies there exist j′′1 < j′1 such that J1 ∶= [i j′1 , i j′′1 ] ⫋ J, ω( j′1) ∈ VG′ ,
ω( j′′1 ) ∈ VG′′ , and m j′1 −m j′′1 ∈R

r j′1
,r j′′1

i j′1
, i j′′1

, J1
.

Since V is also highest-�-weight, Lemma 5.2.1 with V in place of U, j′′1 in place of
j′ and j′1 in place of j′′, would imply there exist j′2 < j′′2 such that J2 ∶= [i j′2 , i j′′2 ] ⫋ J1,
ω( j′2) ∈ VG′ , ω( j′′2 ) ∈ VG′′ , and m j′′2 −m j′2 ∈R

r j′2
,r j′′2

i j′2
, i j′′2

, J2
. The same lemma with j′2 in place

of j′ and j′′2 in place of j′′ and so on would give rise to an infinite sequence J ⫌ J1 ⊋
J2 ⫌ ⋅ ⋅ ⋅ and, hence, the desired contradiction.
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