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Abstract. We prove a generalization of the fixed point theorem of Cartwright and
Littlewood. Namely, suppose that h : R2

→ R2 is an orientation preserving planar
homeomorphism, and let C be a continuum such that h−1(C) ∪ C is acyclic. If there
is a c ∈ C such that {h−i (c) : i ∈ N} ⊆ C , or {hi (c) : i ∈ N} ⊆ C , then C also contains
a fixed point of h. Our approach is based on Brown’s short proof of the result of
Cartwright and Littlewood. In addition, making use of a linked periodic orbits theorem of
Bonino, we also prove a counterpart of the aforementioned result for orientation reversing
homeomorphisms, that guarantees a 2-periodic orbit in C if it contains a k-periodic orbit
(k > 1).

1. Introduction
In 1951 Cartwright and Littlewood [14] studied van der Pol’s differential equation and
were led to investigate the existence of fixed points of planar homeomorphisms in
invariant continua. The continuum that they encountered had a boundary that was not
locally connected and was potentially even indecomposable. Recall that a continuum is
a connected and compact non-degenerate set. It is indecomposable if it is not the union
of any two proper subcontinua. A planar continuum is acyclic if it does not separate the
plane. The following is the celebrated Cartwright–Littlewood fixed point theorem.

THEOREM A. [14] Let f : R2
→ R2 be an orientation preserving planar homeomor-

phism. Suppose that there is an acyclic continuum C invariant under f ; i.e. f (C)= C.
Then there is a fixed point of f in C.

https://doi.org/10.1017/etds.2015.129 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.129


1816 J. P. Boroński

FIGURE 1. An (acyclic) arc-like chaotic attractor without indecomposable subcontinua.

A number of authors provided alternative proofs of the result, many of which are
substantially shorter then the original one, including those given by Brown [13] and
Hamilton [15]. Barge and Gillette proved that the continuum considered by Cartwright
and Littlewood was in fact indecomposable [4]. Barge and Martin also showed [3]
that any inverse limit of arcs with a single continuous bonding map gives an acyclic
continuum (called arc-like†) that is an attractor of a planar homeomorphism. The class
of arc-like continua includes the famous hereditarily indecomposable pseudo-arc [6]
(which is homogeneous, contains no arcs and is nowhere locally connected) and Knaster
buckethandle continuum [1] (cf. topological horseshoe [21]). There is often a strong
connection between the topology of the attracting continua and the complexity of the
associated dynamics, like the link between indecomposability and chaos [2] (a chaotic
decomposable arc-like attractor of a planar homeomorphism without indecomposable
subcontinua recently constructed by Oprocha and the author [10] is depicted in Figure 1).
In addition, Pliss in [20] showed that any acyclic plane continuum is the maximal bounded
closed set invariant under a transformation F , where F is a solution of certain dissipative
system of differential equations. Note that Theorem A holds true for orientation reversing
homeomorphisms, by the result of Bell [5], and Kuperberg generalized Bell’s result
to plane separating continua [16, 17]. However, it remains a major 100-year-old open
problem whether every acyclic planar continuum has the fixed point property (see Scottish
Book Problem 107 [18], and [7] for the most recent developments regarding the subject).

In the present paper we are interested in generalizing Theorem A in the following
direction. Suppose that a continuum C is not necessarily invariant under h. Can one find
some natural conditions under which a component of C ∩ h(C) contains a fixed point?
Finding such conditions has the potential to give a lower bound for the number of fixed
points of h, which could prove very useful if C ∩ h(C) has more than just one component.
Such conditions could also aid in locating fixed points of h. With this goal in mind, we shall
demonstrate that, given a continuum C , in order for h to have a fixed point in C it suffices
that h−1(C) ∪ C is acyclic and there is a backward or forward orbit O entirely contained
in C . As a consequence we get that if h has no fixed point in C then C also does not contain

† A continuum is called arc-like, chainable, or snakelike if it can be given as the inverse limit of arcs with
continuous bonding maps.
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any periodic orbits. A related result has recently been obtained by Ostrovski [19], with
very strong assumptions on the topological structure of C . Namely, by entirely different
methods, Ostrovski proved the following two theorems.

THEOREM B. [19] Let X ⊂ R2 be a compact, simply connected, locally connected subset
of the real plane and let f : X→ Y ⊂ R2 be a homeomorphism isotopic to the identity on
X. Let C be a connected component of X ∩ Y . If f has a periodic orbit in C, then f also
has a fixed point in C.

THEOREM C. [19] Let D ⊂ R2 be a Jordan domain and f : D→ E ⊂ R2 an orientation
preserving homeomorphism. Let C be a connected component of D ∩ E. If f has a
periodic orbit in C, then f also has a fixed point in C.

Theorem C is in fact a corollary to Theorem B, since it is known that any
homeomorphism f : X→ X satisfying the assumptions of Theorem C is isotopic to
the identity on D (see [19] for details). However, Theorem C better encapsulates the
motivation for our results, because we formulate them for a rather wide class of continua,
which may contain no arcs at all, and therefore they may admit no isotopies connecting
two distinct homeomorphisms. Our first result is the following theorem.

THEOREM 1.1. Let h : R2
→ R2 be an orientation preserving planar homeomorphism,

and let C be a continuum such that h−1(C) ∪ C is acyclic. If there is a point c ∈ C such
that {h−i (c) : i ∈ N} ⊆ C, or {h−i (c) : i ∈ N} ⊆ C, then C also contains a fixed point of h.

Note that Theorem 1.1 generalizes Theorem A because if h(C)= C then C ∪ h−1(C)=
C and {h−i (c) : i ∈ Z} ⊆ C for any c ∈ C . It is also quite clear that Theorem 1.1 implies
Theorem B if X is one-dimensional, because in this case h−1(C) ∪ C is acyclic as a
subcontinuum of the one-dimensional and simply connected X . Finally, Theorem 1.1 is
false without the assumption that h−1(C) ∪ C is acyclic. Indeed, it is enough to consider
the rotation h of the plane about the origin by 180◦, and let C be the upper semicircle in
the unit circle. Then C contains a 2-periodic orbit (the end points) but no fixed point.

At this point we would like to point out that some different fixed point results for non-
invariant continua were proven in [7, Ch. 5] by Blokh et al. The authors showed that
every positively oriented map of the complex plane that strongly scrambles the boundary
of an acyclic (potentially non-invariant) continuum C must have a fixed point in C , and
a related result is also proven for certain maps on dendrites. Since positively oriented
maps generalize orientation preserving homeomorphisms their results are related to ours,
but the emphasis of their approach is more on the structure of X , expressed in one-step
‘geometric’ conditions, whereas our approach can be considered more dynamical in nature,
as determined by iterations of the homeomorphism on X . The reader is referred to [7] for
more details.

A natural question to ask next is: what if h reverses orientation? Can one also generalize
Bell’s theorem [5] in the same way? This question seems a little bit more delicate, as we
shall now explain. First, note that if h reverses orientation then h2 preserves orientation,
and so it is natural to expect for h either a fixed point or a point of least period 2, under
assumptions similar to those of Theorem 1.1. Note also that the fact that h−1(C) ∪ C is
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acyclic, for a continuum C , does not imply that h−2(C) ∪ C is acyclic, so a straightforward
application of Theorem 1.1 in the orientation reversing case does not automatically give
us fixed points for h2. Next recall that an important property of orientation preserving
homeomorphisms, which is often used to prove the Cartwright–Littlewood theorem, is
the result attributed to Brouwer [12]: if a planar homeomorphism has a bounded orbit
then it also has a fixed point. This property is not shared by orientation reversing
homeomorphisms. In 1981 Boyles [11] constructed an example of such a homeomorphism
with every orbit bounded but no fixed points. Inspired by her construction, in §4 we
will exhibit an example of an orientation reversing homeomorphism H with every orbit
bounded, and a continuum C , with H−1(C) ∪ C acyclic, that contains periodic points of
any even period, but contains no fixed points (in fact H is fixed-point-free).

Nonetheless, one can also hope for a counterpart of Theorem 1.1 for orientation
reversing homeomorphisms, if a periodic point of least period 2 in C is to be guaranteed
instead of a fixed point. We obtain such a result in Theorem 1.2, where we show that
assuming a continuum C , with the property that h−1(C) ∪ C is acyclic, contains a periodic
orbit of period k > 1, one can infer the existence of a 2-periodic point in C . This result
does not seem to follow from Brown’s work but can be proved using Bonino’s powerful
result on linked periodic orbits [8]. Very similar arguments were previously used by the
author [9] to show that any orientation reversing planar homeomorphism with a k-periodic
orbit (k > 1) contained in an invariant acyclic continuum C must have a 2-periodic orbit
in C .

THEOREM 1.2. Let g : R2
→ R2 be an orientation reversing planar homeomorphism, and

let C be a continuum which contains a periodic orbit of least period k > 1. If g−1(C) ∪ C
is acyclic then C contains a point of least period 2.

Although, based on Theorem 1.1, one could expect that there must be either a fixed
point or a 2-periodic point in C , one can see that Theorem 1.2 determines more than just a
mere alternative. In particular, C may or may not contain a fixed point, but it is guaranteed
to contain a point of least period 2. In the final section of our paper we show that the above
result is in a sense the best possible. In particular, one can neither expect a fixed point
under the assumptions, nor weaken the assumptions and require that a non-periodic orbit
contained in C will force a point of least period 2. Note that, as a corollary to the above
two theorems, we obtain the following result.

COROLLARY 1.3. Let h : R2
→ R2 be a planar homeomorphism and X be a one-

dimensional acyclic continuum. Suppose there are n components of X ∩ h(X), each of
which contains a periodic orbit of period k > 1. Then:
(1) if h preserves orientation then h has at least n fixed points in X;
(2) if h reverses orientation then h has at least b(n + 1)/2c orbits of period 2 in X.

2. Preliminaries
Given a set D, we shall denote its boundary by ∂D. Given a homeomorphism h : R2

→

R2, we define h1(x)= h(x) and hk+1(x)= h ◦ hk(x) for all k ∈ N and x ∈ R2. Similarly,
h−k−1(x)= h−1

◦ h−k(x) for every k ∈ N. A point x ∈ R2 is said to be k-periodic or of
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least period k if hk(x)= x and hi (x) 6= x for i = 1, . . . , k − 1. If k = 1 (that is, h(x)= x),
then we say that x is a fixed point of h. The forward orbit of x is given by {hn(x) : n =
1, 2, 3, . . .} and the backward orbit of x is given by {h−n(x) : n = 1, 2, 3, . . .}. If x is
k-periodic then the orbit of x is given by {x, h(x), . . . , hk−1(x)} and is said to be a k-
periodic orbit. Following [8], we say that two periodic orbits O and O′ are linked if one
cannot find a Jordan curve C ⊆ S2 separating O and O′ which is freely isotopic to h(C)
in S2
\(O ∪O′). C and h(C) are freely isotopic in S2

\(O ∪O′) if there is an isotopy
{it : S1

→ S2
\(O ∪O′) : 0≤ t ≤ 1} from i0(S1)= C to i1(S1)= h(C); that is, it (S1) is a

Jordan curve for any t (S1 denotes the unit circle). Also, recall that if U is an open surface
and (Ũ , τ ) is its universal covering space then, given a homeomorphism h :U →U , there
exists a lift homeomorphism h̃ : Ũ → Ũ such that the following diagram commutes.

Ũ

τ

��

h̃ // Ũ

τ

��
U h // U

Additionally if h(x)= y then h̃ is uniquely determined by the choice of two points x̃ ∈
τ−1(x), ỹ ∈ τ−1(y) and setting h̃(x̃)= ỹ.

3. Proofs of the main results
Our proof of Theorem 1.1 will follow the approach used by Brown in [13] to prove
the Cartwright–Littlewood fixed point theorem. His proof by contradiction was based
on an idea that an orientation preserving homeomorphism h : R2

→ R2, with an acyclic
continuum X = h(X) and the fixed point set Fix(h), can be lifted to a homeomorphism h̃ of
the universal covering (Ũ , τ ) of a component of R2

\ Fix(h) that will have a bounded orbit,
yet no fixed point. This leads to a contradiction with Brouwer’s theorem. The approach
works because Ũ is homeomorphic to R2 and the lift h̃ preserves orientation. Strictly
speaking, the existence of a bounded orbit of h̃ is guaranteed by the fact that X lifts to
disjoint homeomorphic copies (the components of τ−1(X)) and h̃ can be chosen so that
one such copy is invariant. Indeed, it is well known that every acyclic continuum X is
the intersection of a decreasing sequence of closed disks {Dn : n ∈ N}; that is, Dn ⊆ Dn−1

for every n, and X =
⋂

n∈N Dn . In particular, X has arbitrarily small simply connected
neighborhoods that can separate X from Fix(h).

Proof of Theorem 1.1. Refer to Figure 2. By contradiction, suppose that Fix(h) ∩ C = ∅.
Let U be the component of R2

\Fix(h) that contains C . Note that h(U )=U , since h is
onto, h(U )must be contained in one of the complementary domains of Fix(h) and h(U ) ∩
U 6= ∅. Let (τ, Ũ ) be the universal cover of U . Note that Ũ is homeomorphic to R2 and
C lifts to disjoint homeomorphic copies in Ũ , because of h−1(C) ∪ C being acyclic [13].
Let C̃ be one such a copy.

Case 1. First suppose that c has a backward orbit O = {h−i (c) : i ∈ N} contained in C .
Let x = h−1(c).

There is a lift h̃ : Ũ → Ũ of h determined by h̃(C̃) ∩ C̃ 6= ∅. Namely, let x̃ ∈ τ−1(x) ∩
C̃ . If ỹ ∈ τ−1(c) ∩ C̃ then the condition h̃(x̃)= ỹ uniquely determines the lift h̃.
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FIGURE 2. U is the complementary domain of Fix(h)=
⋃8

i=1 Fi that contains C ∪ h−1(C).

FIGURE 3. Proof of Claim 3.2: h̃−1(C̃) cannot intersect C̃ ′.

CLAIM 3.1. h̃−1(x̃) ∈ C̃.

Proof of Claim 3.1. Refer to Figure 3. We shall use the fact that, under the covering map τ ,
continua which map to acyclic continua must map one-to-one. Set Q = h−1(C) and
let Q̃ be the component of τ−1(Q) such that Q̃ = h̃−1(C̃). By contradiction, suppose
h̃−1(x̃) /∈ C̃ . Then there is another copy C̃ ′ of C in τ−1(C) such that h̃−1(x̃) ∈ C̃ ′.
Note that h̃−1(x̃) ∈ Q̃ ∩ C̃ ′ and x̃ ∈ Q̃ ∩ C̃ . But then Q̃ ∪ C̃ ∪ C̃ ′ is a continuum with
τ(Q̃ ∪ C̃ ∪ C̃ ′)= C ∪ h−1(C), and C ∪ h−1(C) is acyclic so τ−1(C ∪ h−1(C)) cannot
contain two components of τ−1(C). This leads to a contradiction. �

CLAIM 3.2. h̃−i (x̃) ∈ C̃ for every i .

Proof of Claim 3.2. This follows by induction. Suppose that we have already proved that
h̃−i (x̃) ∈ C̃ for all i = 1, . . . , j . Now replace x̃ with h̃− j (x̃) in the proof of the above
claim and repeat the same arguments. It follows that h̃− j−1(x̃) ∈ C̃ and then, by induction,
that h̃−i (x̃) ∈ C̃ for every i . �

To complete the proof of case 1 note that h̃−1
: Ũ → Ũ is a planar homeomorphism with

{h̃−i (x̃) : i ∈ N} ⊆ C̃ . Since h̃−1 has no fixed points, we have obtained a contradiction with
Brouwer’s theorem [12].
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Case 2. Now suppose that c has a forward orbit O′ = {hi (c) : i ∈ N} contained in C .
Then the proof of case 1 can be repeated because the fact that h is a homeomorphism and
h−1(C) ∪ C is acyclic implies that C ∪ h(C) is acyclic as well. �

Now we shall prove Theorem 1.2. Our proof, similar to [9, proof of Theorem 3.1], will
rely on the powerful result of Bonino on linked periodic orbits [8]. Recall that two periodic
orbits O and O′ of a homeomorphism h are linked if one cannot find a Jordan curve C ⊆ S2

separating O and O′ which is freely isotopic to h(C) in S2
\(O ∪O′). C and h(C) are

freely isotopic in S2
\(O ∪O′) if there is an isotopy {it : S1

→ S2
\(O ∪O′) : 0≤ t ≤ 1}

from i0(S1)= C to i1(S1)= h(C); that is, it (S1) is a Jordan curve for any t .

Proof of Theorem 1.2. We shall show that, under the assumptions, if C contains a k-
periodic (k > 1) orbit O then the 2-periodic orbit linked to O, guaranteed by [8], must
intersect C . Note that if k = 2 then there is nothing to prove, so assume k > 2. Compactify
R2 by a point ∞ to obtain S2

= R2
∪ {∞}. Note that g : R2

→ R2 can be extended to a
homeomorphism g̃ : S2

→ S2 by setting g̃ | R2
= g, and g̃(∞)=∞. g and g̃ have exactly

the same k-periodic points for any k > 1. Let O be the k-periodic orbit contained in C . By
Bonino’s result there is a 2-periodic orbit O′ ⊆ S2 that is linked to O. We will show that
O′ ∩ C 6= ∅. This will imply that O′ ⊆ g−1(C) ∪ C .

Refer to Figure 4. By contradiction, suppose that O′ ∩ C = ∅. Then also O′ ∩
g̃−1(C)= ∅. Consequently, O′ ⊆U for the complementary domain U of C . Since
C ∪ g̃−1(C) is acyclic, it is the intersection of a family of closed disks with diameters
decreasing to 0, and there is a Jordan curve S ⊆ S2 separating O′ from C ∪ g̃−1(C). Let
U∞ and Ub be the two complementary domains of S, with∞∈U∞. Then C ∪ g̃−1(C) is
contained in Ub and O′ ⊆U∞. Note that g̃(S) is a Jordan curve that bounds C (therefore
also O), and O′ is contained in g̃(U∞), as g̃(O′ ∪ {∞})=O′ ∪ {∞}. Let D be a disk
neighborhood of ∞ in S2 such that O′ ⊆ D and D is disjoint with S ∪ g̃(S). D can
be contracted to the point ∞. Then S2

\(C ∪ g−1(C) ∪ {∞}) is an open annulus that
contains S and g̃(S) as essential Jordan curves. Therefore S and g̃(S) are freely isotopic
in S2
\(C ∪ {∞}) and consequently in S2

\(O ∪O′). But this means that O and O′ are not
linked, leading to a contradiction. �

Finally we derive Corollary 1.3.

Proof of Corollary 1.3. Let C be a component of h(X) ∩ X . First, note that h−1(C) ∪ C
is an acyclic continuum by one-dimensionality of X and the fact that h−1(C) ∪ C ⊆ X . To
prove (1) simply notice that, by Theorem 1.1, h will have a fixed point in each component
of X ∩ h(X) that contains a periodic orbit. Since there are n such components, we deduce
that there must be at least n fixed points.

To prove (2) suppose that C1, C2 and C3 are three components of X ∩ h(X) and O1,O2

and O3 are k-periodic orbits (k > 2) such that Oi ⊆ Ci for i = 1, 2, 3. By Theorem 1.2
there are 2-periodic orbits O′1,O

′

2 and O′3 such that Ci ∩O′i 6= ∅ for i = 1, 2, 3. It
suffices to show that O′i 6=O′j for some i, j ∈ {1, 2, 3}. By contradiction, suppose that
O′1 =O′2 =O′3. Let p ∈O′1 ∩ C1. Then p /∈ C2 ∪ C3. Therefore h(p) ∈ C2 ∩ C3. We
obtain a contradiction since C2 and C3 are disjoint components of X ∩ h(X). �
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FIGURE 4. Proof of Theorem 1.2 with O = {c, g̃(c), g̃2(c)} and O′ = {d, g̃(d)}.

4. Examples
In this section we discuss restrictions on potential generalizations of our results. We shall
show that in Theorem 1.2 it is not enough to require that C contains an infinite (non-
periodic) orbit, nor can one,under the assumptions of Theorem 1.2, infer the existence of
a fixed point.

THEOREM 4.1. There exist an orientation reversing homeomorphism H and a continuum
C such that:
(1) H−1(C) ∪ C is an acyclic continuum and contains a 2k-periodic orbit for every

k ≥ 1.
(2) All orbits of H are bounded.
(3) H has no fixed points.

Proof. Refer to Figure 5. Let D = {(x1, x2) | x2
1 + x2

2 ≤ 1}. Consider a homeomorphism
φ : D→ D that has periodic orbits of all periods. (One such example can be easily
obtained by [2] and [3] from the tent map f on the unit interval. The inverse limit Y f =

lim←{ f, [0, 1]} is the buckethandle continuum and the shift on the inverse limit extends to
a disk homeomorphism with Y f as a chaotic attractor and all periods present.) One can also
easily ensure that φ(x)= x for every x ∈ ∂D. Let D1 = {(x1, x2) | (x1 − 2)2 + x2

2 ≤ 1}
and D−1 = {(x1, x2) | (x1 + 2)2 + x2

2 ≤ 1}. Let g(x1, x2)= φ(x1 − 2, x2) for (x1, x2) ∈

D1, g(x1, x2)= φ(−x1 + 2, x2) for (x1, x2) ∈ D−1 and g(x)= x if x /∈ (D1 ∪ D−1). Set
h = g ◦ r , where r is the reflection about the y-axis. Set E = {(x1, x2)|x2

1 + 4x2
2 ≤ 1}.

Consider the continuum X = D1 ∪ D−1 ∪ E . To obtain the desired homeomorphism H ,
one can easily modify h in the infinite strip S = {(x1, x2) : |x1|< 1}, without any changes
in the complement of S, so that every point in S is moved slightly upward, yet H−1(C) ∪ C
is acyclic (note that H(C) ∩ C contains the 2-periodic orbit {(−1, 0), (1, 0)}). In fact this
last modification can be obtained using Boyles’ homeomorphism from [11] (since in her
example all points outside of S are 2-periodic), which will guarantee that all orbits are
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FIGURE 5. The construction of the orientation reversing homeomorphism H .

bounded, as promised. Clearly H has no fixed points, as all points in S are moved and
R2
\S consists of two 2-periodic disjoint closed regions U−1 and U1; that is, H(U−1)=U1

and H(U1)=U−1. �

Example 4.2. There exist an orientation reversing homeomorphism h : R2
→ R2 and a

continuum C such that h−1(C) ∪ C is an acyclic continuum and contains an infinite (non-
periodic) orbit of h, but h has no points of least period 2.

Proof. Consider the orientation reversing planar homeomorphism given by h(x, y)
= (−x − x |x |, y + y|1− y|). Then the arc C = {(x, y) : x = 0, y ∈ [0, 1]} is invariant
under h, any c ∈ C\{(0, 0), (0, 1)} has an infinite (non-periodic) orbit in C , but there are
no points of least period 2 for h. �

Note that the above example shows that in the assumptions of Bonino’s result [8] one
needs a k-periodic orbit (k > 1), and non-periodic orbits do not force linked 2-periodic
orbits. We conclude with the following question.

Question. Suppose that h : R2
→ R2 is an orientation preserving planar homeomorphism

and X is an acyclic continuum. Let C be a component of X ∩ h(X). Is there is a c ∈ C
such that {h−i (c) : i ∈ N} ⊆ C or {h−i (c) : i ∈ N} ⊆ C , must C also contain a fixed point
of h?
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