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COMPOUND INVARIANTS
AND MIXED F-, DF-POWER SPACES

P. A. CHALOV, T. TERZIOĞLU AND V. P. ZAHARIUTA

ABSTRACT. The problems on isomorphic classification and quasiequivalence of
bases are studied for the class of mixed F-, DF-power series spaces, i.e. the spaces of
the following kind

G(ïÒ a) = lim
p!1

proj

0
@ lim

q!1
ind
�
‡1

�
ai(pÒ q)

��1AÒ
where ai(pÒ q) = exp

�
(p � ïiq)ai

�
, pÒ q 2 N, and ï = (ïi)i2N, a = (ai)i2N are some

sequences of positive numbers. These spaces, up to isomorphisms, are basis subspaces
of tensor products of power series spaces of F- and DF-types, respectively. The m-
rectangle characteristic ñ

ïÒa
m (éÒ ¢; úÒ t), m 2 N of the space G(ïÒ a) is defined as the

number of members of the sequence (ïiÒ ai)i2N which are contained in the union of m
rectangles Pk = (ékÒ ¢k] ð (úkÒ tk], k = 1Ò 2Ò    Òm. It is shown that each m-rectangle
characteristic is an invariant on the considered class under some proper definition of
an equivalency relation. The main tool are new compound invariants, which combine
some version of the classical approximative dimensions (Kolmogorov, Pełczynski)
with appropriate geometrical and interpolational operations under neighborhoods of
the origin (taken from a given basis).

1. Introduction. Pełczynski ([42]) and Kolmogorov ([31]) introduced first impor-
tant linear topological invariants (approximative dimension), dealing with non-normable
locally convex spaces. These fundamental invariants as well as their more or less direct
developments ([7, 8, 9, 36, 37, 43, 44, 23, 24, 5, 6, 17, 18, 2, 3, 32, 33, 47] et al.)
proved to be powerful instruments for studying locally convex spaces, especially those
with some homogeneous linear topological structure: for example, these invariants gave
a complete isomorphic classification of the class of all Fréchet spaces with a regular
absolute basis ([23, 2, 17, 32, 33, 18]). Nevertheless the classical invariants and their
traditional modifications could give only quite coarse differentiation of spaces even for
such simple (at least from the first view) classes as Cartesian or tensor products of power
series spaces of finite and infinite type (see, e.g., [36, 43, 23, 55, 57, 58]). The reason is
that the combination of spaces, so different in topological sense, might bring some sub-
tle differences between resulting spaces, non-distinguishable for those invariants. In an
effort to get more distinguishing tools for isomorphic classification of above-mentioned
and other more general classes of locally convex spaces, some new linear topological
invariants were suggested in [56, 59, 60, 61] and later on (in some new geometrical
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COMPOUND INVARIANTS 1139

respect) in [62, 64, 66]; in this connection the initiative influence of Mityagin’s results
[38, 39, 40] must be emphasized.

The aim of this paper is to study the topological structure (in particular, the problems
of isomorphic classification and quasiequivalenceof absolute bases)of another intriguing
class of spaces for which an interference of two different topological structures (of F-
and DF-types, in this case) results again some slight effects, requiring a very scrupulous
analysis of invariant properties of spaces to distinguish them. Namely, we study the class
of mixed F-, DF-power series spaces, i.e. spaces of the following kind:

G(ïÒ a) = lim
p!1

proj
 

lim
q!1

ind
�
‡1

�
ai(pÒ q)

��!
Ò(1)

where ai(pÒ q) = exp
�
(p � ïiq)ai

�
, pÒ q 2 N, and ï = (ïi)i2N, a = (ai)i2N are some

sequences of positive numbers.
This class, up to isomorphisms, consists of basis subspaces (step subspaces [25]) of

projective tensor products (with respect to the canonical bases of them)

E1(c)
̂E
0

1(d)(2)

of a power series space of infinite type:

E1(c) = lim
p

proj ‡1

�
exp(pci)

�
Ò(3)

with a dual power series space of infinite type:

E
0

1(d) = lim
p

ind ‡1

�
exp(�pdi)

�
Ò(4)

where c = (ci), d = (di) may be arbitrary sequences of positive numbers.
Tensor products (2), belonging to the class (1), were investigated in [28, 26, 27],

where some necessary and sufficient conditions of isomorphism for such spaces were
obtained.

The main difficulty in studying of the spaces (1) is how to separate two collided
features of their nature: F- and DF-topological structures. To this end we consider
some more complicated linear topological invariants (following [12, 11] we use the
term compound invariants for them). With these invariants, described in the end of
Section 4 and in Section 5 (within the proofs of Lemma 8 and Theorem 9), we show
that any m-rectangle characteristic is an invariant on the class (1). Following [1], the
term m-rectangle characteristic is used for the function (cf. [10, 13, 14, 15, 16, 12, 11])
ñïÒam (éÒ ¢; úÒ t), which calculates how many points of the sequence (ïÒ a) = f(ïiÒ ai)gi2N

are situated in the union of m rectangles Pk = (ékÒ ¢k] ð (úkÒ tk], k = 1Ò 2Ò    Òm. The
notions of equivalence (for individual m-rectangle characteristics: ñX

m ³ ñX̃
m and for

the systems of these characteristics: (ñX
m) ³ (ñX̃

m)), considered in Section 4, play an
important part in the concept of invariance. It should be pointed out that the applying
of interpolational constructions in compound invariants considerations (for example
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1140 P. A. CHALOV, T. TERZIOĞLU AND V. P. ZAHARIUTA

using of “interpolational blocks” in Section 5) linked to a row of results connected with
generalizations of Dragilev classes d1, d2 [23, 25, 45, 46, 49, 50, 51, 52, 53, 55, 57, 58,
63, 65] et al.

In Section 5 it is shown that the system (ñm)m2N forms a complete invariant in
respect to quasidiagonal isomorphisms (Theorem 7). Although it remains a gap between
results on the isomorphic and quasidiagonally isomorphic invariants (1) (see Problem 1
below), we prove the invariance of the system of m-rectangle characteristics under some

weakened relation of equivalence
w³ (Section 6). It should be noticed that all the results

mentioned in the beginning paragraph (see also [21, 30]) were within the framework of
one-rectangular characteristic considerations.

Some applications to concrete subclasses of spaces (1) are considered in Section 7.
Applying of many-rectangular characteristics gives some new results for tensor products
(2). The subclass of the class (1), consisting (up to isomorphisms) of all Cartesian products
of spaces (3), (4), admits (Theorem 11) the complete isomorphic characterization by the
use of two-rectangle characteristics only (cf. [12, 11]).

2. Preliminaries.

2.1. Let X, Y be locally convex spaces and fxigi2N and fyigi2N unconditional bases for
the spaces X and Y, respectively. We say that these bases are quasiequivalent if there
exists an isomorphism T: X ! Y such that Txi = tiyõ(i), where (ti) is a sequence of scalars
and õ:N ! N is a bijection. In this case the isomorphism T is called quasidiagonal, the
spaces X and Y are called quasidiagonally isomorphic (with respect to those fixed bases)

and we write shortly X
qd' Y; in the particular case ti � 1 for all i 2 N, the operator T is

said to be permutational, the spaces are called permutationally isomorphic and we write

X
p' Y.

2.2. Let E be a class of locally convex spaces and Γ a set with an equivalence relation
¾. We say that ç: E ! Γ is a (linear topological) invariant if X ' X̃ ) ç(X) ¾ ç(X̃), X,
X̃ 2 E. The invariants to be studied are based on the following well-known characteristic
of a couple of absolutely convex sets.

Let X be a linear space, U, V absolutely convex subsets in X. Consider

å(VÒU) := supfdim L : U \ L ² VgÒ(5)

where L runs along the set of all finite-dimensional subspaces of XV = span V. This
characteristic relates with so-called Bernstein diameters bn(VÒU) [48] in the following
way:

å(VÒU) = jfn : bn(VÒU) ½ 1gj
The following properties follow immediately from the definition (5):

(a) if V1 ² V and U ² U1Ò then å(V1ÒU1) � å(VÒU);(6)

(b) å(ãVÒU) = å
�

VÒ 1
ãU

�
Ò ã Ù 0(7)
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Let X be a locally convex space, e = feigi2N an unconditional basis in X. A set

Be(a) :=
²

x =
1X
i=1
òiei 2 X:

1X
i=1
jòijai � 1

¦

is the weighted ‡1-ball in X, defined with a given weight sequence of positive numbers
a = (ai)i2N. For weighted balls the characteristic (5) admits a simple computation.

PROPOSITION 1 (SEE, e.g., [36, 20]). For a couple of weights a, b we have

å
�
Be(b)ÒBe(a)

�
= jfi : bi � aigj

2.3 In the construction of compound invariants (see Section 5) we shall use the following
geometrical facts.

For a couple Aó = Be(a(ó)), ó = 0Ò 1, we consider the following one-parameter family
of weighted balls

(A0)1�ã(A1)ã := Be(a(ã))Ò
where a(ã) :=

�
(a(0)

i )
1�ã

(a(1)
i )

ã�
i2N

, ã 2 R. The following elementary fact is well-known
(see, for example, [4, 34, 41]

PROPOSITION 2. Let e and f be unconditional bases of locally convex space X and
Aó = Be(a(ó)), Ãó = Bf (ã(ó)), ó = 0Ò 1. Then

Aó ² ÃóÒ ó = 0Ò 1

implies
(A0)1�ã(A1)ã ² (Ã0)1�ã(Ã1)ãÒ ã 2 (0Ò 1)

PROPOSITION 3. Let e be an unconditional basis of a locally convex space X, a(j) =
(a(j)

i ), j = 1Ò    Ò r, sequencesof positive numbers and c = (ci), d = (di) sequences,defined
by the following formulae: ci = maxfa(j)

i : j = 1Ò    Ò rg, di = minfa(j)
i : j = 1Ò    Ò rg,

i 2 N. Then the following relations hold:

Be(c) ²
r\

j=1
Be(a(j)) ² rBe(c)Ò Be(d) = conv

� r[
j=1

Be(a(j))
�
Ò

where conv(M) means the convex hull of a set M.

2.4 For two sequences of positive numbers a = (ai) and ã = (ãi) we shall write a � ã
or ai � ãi if there exists a constant c Ù 1 such that 1

c ai � ãi � cai. Using the notion
of counting function ma(t) := jfi : ai � tgj, we can write the relation a � ã in the
equivalent form 9c: mã( t

c ) � ma(t) � mã(ct) if both a and ã tend to 1 monotonically.
The following statement is well known ([36, 37]).

PROPOSITION 4. Let a = (ai) and ã = (ãi) be sequences of positive numbers and
both of them are tending to 1 monotonically. Suppose X = E1(a) (or X = E

0

1(a)) and
X̃ = E1(ã) (X̃ = E

0

1(ã), respectively). Then X ' X̃ if and only if ai � ãi. Moreover, the
spaces E1(a) and E

0

1(ã) cannot be isomorphic if at least one of the sequences a or ã is
not bounded.
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2.5 Here we give some facts about spaces G(ïÒ a). Without loss of generality we will
assume that parameters of spaces (1) satisfy the following requirements:

ai ½ 1Ò 1
ai
� ïi � 1(8)

Indeed, one can replace any space (1) with an isomorphic space G(ï̃Ò ã), satisfying those
conditions: it is sufficient for this to put ãi = 1 + ai, ï̃i = maxf 1

ãi
Ò ïig, if ïi � 1 and

ãi = 1 + ïiai, ï̃i = 1 if ïi Ù 1.
There are the following possibilities for a space X = G(ïÒ a):
(i) X ' E

0

1(a) , inffïi : i 2 Ng Ù 0;
(ii) X ' E1(a) , lim ïi = 0;

(iii) X is mixed, i.e. (i), (ii) do not hold.
In the case (iii) the space X is isomorphic to a Cartesian product of spaces (3) and (4), if
and only if the set N can be divided into the sum of two non-intersecting subsequences
fikg and fjkg such that lim ïik = 0 and inffïjkg Ù 0; otherwise we say that the space
X = G(ïÒ a) is properly mixed.

Each tensor product (2) is, up to quasidiagonal isomorphism, a space of the kind (1).
Indeed, it can be represented in the form (1) with the matrix

ai(pÒ q) = exp (pck(i) � qdl(i))Ò

where i !
�
k(i)Ò l(i)

�
is any bijection from N onto NðN. It is obvious that this space is

isomorphic to the space G(ïÒ a) with ai := maxfck(i)Ò dl(i)g and ïi := dk(i)

ai
.

3. Criterion of quasidiagonal isomorphism. Here we study necessary and suffi-
cient conditions for quasidiagonal isomorphism of two given spaces of the kind (1). For
this purpose, first we describe some properties of basis subspaces of the space (1) as
follows (compare with [60, 66]).

PROPOSITION 5. Let X = G(ïÒ a), ó = fikg be any subsequence of N,

ï(ó) := fïikgÒ a(ó) := faikgÒ

and X(ó) be the subspace of X, generated by the corresponding subbasis feikg. Then
(i) X(ó) ' E1(a(ó)) if ïi ! 0, i 2 ó;

(ii) X(ó) ' E
0

1(a(ó)) if inffïi : i 2 óg Ù 0.
If X(ó) is Montel space then “if” in the both items can be changed to “iff”.

PROOF. If ïi ! 0, i 2 ó then p � 1 � p � ïiq � p for all i 2 ó, i ½ i0 = i0(q).
Therefore we get that

X(ó) ' lim
p

proj‡1

�
exp(paik )

�
= E1(a(ó))

If ïi ½ é Ù 0 for all i 2 ó, then under the condition q Ù 2p
é

we have

�q Ú p� q � p� ïiq � p� éq Ú é
2

q� éq = �é
2

q
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Thus,
X(ó) ' lim

q
ind ‡1

�
exp(�qaik )

�
= E

0

1(a(ó))

To finish the proof we have to use what have been proved above together with the
fact that E1(a(ó)) cannot be isomorphic to E

0

1(a(ó)) as X(ó) is a Montel space, i.e. as the
sequence a(ó) tends to 1.

REMARK. If X is Montel and both (i), (ii) do not hold then the subspace X(ó) is as
complicated as the whole space.

THEOREM 6. Let X = G(ïÒ a), X̃ = G(ï̃Ò ã) be Montel spaces. Then the following
conditions are equivalent:

(a) X
p' X̃;

(b) X
qd' X̃

(c) there exists a bijection õ:N ! N such that

ai � ãõ(i)(9)

and for any subsequence (ik)

(ïik ) ! 0 , (ï̃õ(ik )) ! 0(10)

PROOF. The relation (a) ) (b) is evident. Let us show that (b) ) (c). Let T: X ! X̃
be an isomorphism, defined by

Tei = tieõ(i)(11)

It is sufficient to prove that the condition (c) holds with the same bijection õ.
First we show (10). Assuming that (10) is not true, we see that there exists a subse-

quence ó = (ik) such that one of the sequences ï(ó) or ï̃(ó̃) := fï̃õ(ik)g tends to 0, while
another is restricted from 0. Then by Propositions 5, 4 the corresponding subspaces X(ó)

and X̃(ó̃) cannot be isomorphic, which contradicts the assumption that (11) defines an
isomorphism.

Let us show that for the same bijection õ the relation (9) holds. Supposing it fails, we
find a subsequence ó = fikg such that aik 6� ãõ(ik), and both the sequences ï(ó) = fïikg
and ï̃(õ(ó)) = fï̃õ(ik)g simultaneously tend or not to 0. Then both of the corresponding
basis subspaces X(ó) and X̃(ó̃) are isomorphic spaces of the same kind (3) or (4), which
by Proposition 4 contradicts our supposition.

Now let us show that (c) ) (a). Obviously it is enough to prove that under conditions
õ(i) � i and ãi = ai the operator I: G(ïÒ a) ! G(ï̃Ò ã) is an isomorphism. First we prove
that I is continuous, i.e.

8r9p 8q9s9C: exp
�
(r � ï̃is)ãi

�
� C exp

�
(p� ïiq)ai

�
(12)

It follows from (10) that there exists a function ß: (0Ò 1] ! (0Ò 1] such that ß(t) # 0
as t # 0 and for every é 2 (0Ò 1] the inequality ïi ½ é implies the inequality ï̃i ½ ß(é).
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Let us take an arbitrary rÒ pÒ q, (r Ú p Ú q), any é 2 (0Ò p�r
q ), and an arbitrary

s Ù q�p+r
ß(é) .

Suppose N1 = fi : ïi ½ ég, N2 = NnN1; then for i 2 N1 we have

r � ï̃is � r � ß(é)s Ú r �ß(é)q � p + r
ß(é) = p� q � p� ïiqÒ

and
r � ï̃is � r = p� p� r

q
q Ú p� éq Ú p� ïiq for i 2 N2

From here we obtain (12) with C = 1. In view of symmetry, we get that the operator
I�1 is also continuous. Thus the operator I is an isomorphism.

This completes the proof.

4. m-rectangle characteristics and compound invariants. For given ï = (ïi)i2N,
a = (ai)i2N and m 2 N we introduce the following function:

ñ(ïÒa)
m (éÒ ¢; úÒ t) =

þþþþ
m[

k=1
fi : ék Ú ïi � ¢kÒ úk Ú ai � tkg

þþþþÒ(13)

defined for é = (ék), ¢ = (¢k), ú = (úk), t = (tk), such that

0 � ék Ú ¢k � 2Ò 0 Ú úk Ú tk Ú 1Ò k = 1Ò 2Ò    Òm

Hereafter jMj denotes the cardinality for a finite set M and +1 for an infinite set M. We
may also write ñX

m instead of ñ(ïÒa)
m , if X = G(ïÒ a).

The function (13) will be called m-rectangle characteristic of the pair (ïÒ a) or of the
corresponding space G(ïÒ a). This name can be justified by the following relation

ñ(ïÒa)
m (éÒ ¢; úÒ t) =

þþþþ
m[

k=1
fi : (ïiÒ ai) 2 Pkg

þþþþ =
þþþþ
²

i : (ïiÒ ai) 2
m[

k=1
Pk

¦þþþþÒ(14)

where Pk = (ékÒ ¢k] ð (úk Ò tk], k = 1Ò 2Ò    Òm. Hence the function (13) calculates how
many points (ïiÒ ai) are contained in the union of m rectangles.

Let ï = (ïi), a = (ai), ï̃ = (ï̃i), and ã = (ãi) be arbitrary sequences, m a fixed
natural number. We shall say that the functions ñ(ïÒa)

m and ñ(ï̃Òã)
m are equivalent and write

ñ(ïÒa)
m ³ ñ(ï̃Òã)

m if there exists a strictly increasing function ß: [0Ò 2] ! [0Ò 1], ß(0) = 0,
ß(2) = 1, and a positive constant ã (in general, ß and ã depend on m) such that the
following inequalities

ñ(ïÒa)
m (éÒ ¢; úÒ t) � ñ(ï̃Òã)

m

�
ß(é)Ò ß�1(¢); úãÒ ãt

�
Ò(15)

ñ(ï̃Òã)
m (éÒ ¢; úÒ t) � ñ(ïÒa)

m

�
ß(é)Ò ß�1(¢); úãÒ ãt

�
Ò(16)

with ß(é) =
�
ß(ék)

�
, ß�1(¢) =

�
ß�1(¢k)

�
, ú
ã

= ( úk
ã

), ãt = (ãtk) hold for all collections of
parameters é, ¢, ú, t.
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If, moreover, the function ß and the constant ã can be chosen so that the inequalities
(15), (16) hold for all m 2 N (i.e. ß and ã are independent of m), then we say that the
systems of characteristics (ñ(ïÒa)

m )m2N and (ñ(ï̃Òã)
m )m2N are equivalent and write (ñ(ïÒa)

m ) ³
(ñ(ï̃Òã)

m ).
The following statement describes the quasidiagonal isomorphisms of spaces (1) in

the terms of m-rectangle characteristics.

THEOREM 7. For spaces X = G(ïÒ a) and X̃ = G(ï̃Ò ã), the following statements are
equivalent:

(a) X
qd' X̃;

(b) (ñX
m) ³ (ñX̃

m).

The proof is omitted, since it is basically the same that in the case of power Köthe
spaces of the first type [16]; but, instead of Proposition 2 from [16], we have to use
Proposition 6.

Theorem 7 means that the system of all m-rectangle characteristics is a complete
invariant with respect to quasidiagonal isomorphisms.

The following problem arises:

PROBLEM 1 (cf. PROBLEM 13, [1]). Is the statement of Theorem 7 true if the quasidi-

agonal isomorphism
qd' is replaced by the usual isomorphism'?

This problem still remains open. Even the question about invariance of any individual
m-rectangle characteristic (13) turns out to be quite complicated. We are studying this
question in the next section with the use of compound invariants.

Let us explain the main idea of compound invariants, as applied to the studied class
of spaces (1). Let T: X̃ ! X be an isomorphism. We take the following two absolute
bases of the space X: the canonical basis e = feigi2N and T-image of the canonical basis
of X̃: f = ffig, fi = Tei, i 2 N. Then each x 2 X has two basis expansions:

x =
1X
i=1
òiei =

1X
i=1
ëi fi

We consider two systems of sets (ApÒq) and (ÃpÒq) in X, defined as follows

ApÒq =
²

x 2 X :
1X
i=1
jòijai(pÒ q) � 1

¦
Ò pÒ q 2 NÒ(17)

ÃpÒq =
²

x 2 X :
1X
i=1
jëijãi(pÒ q) � 1

¦
Ò pÒ q 2 N(18)

By Grothendieck’s factorization theorem ([29], I, p. 16) the systems (17) and (18) are
equivalent in the following sense:

8r9p 8q9s9C: ÃpÒq ² CArÒsÒ ApÒq ² CÃrÒs(19)
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To prove the estimate (15) we build two pairs of special absolutely convex sets U, V
and Ũ, Ṽ in the form of certain geometrical constructions, using the sets (17) and (18)
as raw materials. On the basis of the relations (19) we provide the inclusions

U ¦ ŨÒ V ² ṼÒ(20)

which, due to the properties of the characteristic å, get the estimate

å(VÒU) � å(ṼÒ Ũ)(21)

The sets U, V, Ũ, Ṽ will be fitted (applying interpolational and geometrical constructions
from subsection 2.3) so that, after some handling, the estimate (21) gives the required
inequality (15). This draft program gets its concrete realization within the proofs of
Lemma 8 and Theorem 9 in the next section.

5. Invariance of m-rectangle characteristic. The main difficulties are surmounted
in the proof of Lemma 8, where, in fact, the invariance of ñm is obtained with another
definition of the equivalence: namely, instead of (15), (16) the given below relation (22),
considered together with the symmetrical relation, obtained by interchanging X with X̃).
Then, applying this lemma, we obtain the invariance of ñm in the terms of Section 4
(Theorem 9).

LEMMA 8. Let X = G(ïÒ a), X̃ = G(ï̃Ò ã), m 2 N. If X ' X̃, then there exists
an increasing function ç: [0Ò 2] ! [0Ò 1], ç(0) = 0, ç(2) = 1, a decreasing function
M: (0Ò 1] ! (0Ò1), and a constant ã Ù 1 such that for each é = (ék), ¢ = (¢k) 2 (0Ò 1]m

and ú = (úk), t = (tk) 2 Rm
+ the following estimate holds:

ñX
m(éÒ ¢; úÒ t) � ñX̃

m

 
ç(é) � M(é)

ú Ò ç�1(¢) +
M(¢)
ú ;

ú
ãÒ ãt

!
(22)

PROOF. We begin to manage the program, drafted in the end of previous section,
with a choice of an infinite chain of positive integers

rm+1 Ú pm+1 Úr
0

m+1 Ú rm Ú pm Ú r
0

m Ú Ð Ð Ð Ú r0 Ú p0 Ú r
0

0

Ú s
0

0 Ú q0 Ú s0 Ú Ð Ð Ð Ú s
0

m+1 Ú qm+1 Ú sm+1(23)

Ú n1 Ú n2 Ú Ð Ð Ð Ú nj Ú Ð Ð Ð

such that the following inclusions

Apk Òqk ² CÃrkÒsk Ò Ãr0kÒs
0

k
² CApkÒqk Ò k = 0Ò 1Ò    Òm + 1;

Apm+1Ònj ² CjÃrm+1Ònj+1 Ò Ãr0m+1Ònj
² CjApm+1Ònj+1 Ò j 2 NÒ(24)

are valid with some constants C = C(m), Cj, j 2 N. Without loss of generality, we
can assume that each consequent number of the chain (23) is four times more than the
preceding one and that the sequence nj satisfies the condition 2r

0

0nj Ú nj+1.
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Let us fix the arguments é, ¢, ú, t in (22). With the aim of dealing with values of the
parameters ék, ¢k from a given countable set, we use the following sequence

ê0 = 1Ò êj =
1
nj
Ò j 2 N(25)

Thus we can take indices ók and jk such that

êók � ék Ú êók�1Ò êjk+1 Ú ¢k � êjk Ò k = 1Ò 2Ò    Òm(26)

We can suppose that
é1 � é2 � Ð Ð Ð � ém(27)

Now we define the sets serving as elementary blocks in the construction of the sets U,
V, Ũ, Ṽ. We begin with the first couple of the sets U, V. The estimates for ïi from
above and from below in (13) are linked, respectively, with the following two series of
“interpolational” blocks for U (k = 1Ò 2Ò    Òm):

W(k)
1 =

8<
:A

1
2
pm+1Ònjk

A
1
2
p0Òq0 if jk Ù 2,

Ap0Òq0 if jk = 1Ò 2,

W̄(k)
1 = A

1
2
pm+1Ònók +1A

1
2
p0Òq0 

The estimates of ai by the parameters úk and tk in (13) are connected with other series
of blocks for U (k = 1Ò 2Ò    Òm):

W(k)
2 = exp

�p0úk
2

�
Ap0Òq0 Ò W̄(k)

2 = exp
�
�pkúk

2

�
Apm+1Òqm+1 Ò

W(k)
3 = exp(�qm+1tk)Apm+1Òqm+1 Ò W̄(k)

3 = exp(qktk)Ap0Òq0 

The following blocks serve both V and U:

W(k)
4 = Apk Òqk Ò W̄(k)

4 = ApkÒqk Ò k = 1Ò 2Ò    Òm

Each above-mentioned block W is a weighted ‡1-ball Be(w) (we denote its weight by the
same but small letter). For example, W̄(k)

3 = Be(w̄(k)
3 ).

To construct the set Ũ we also use two series of interpolational blocks, responsible
for the estimates of ï̃i (k = 1Ò 2Ò    Òm):

W̃(k)
1 =

8>><
>>:

1p
CCjk�1

Ã
1
2

r0m+1Ònjk�1
Ã

1
2

r00Òs
0

0

if jk Ù 2,

1
C Ãr00Òs

0

0
if jk = 1Ò 2,

˜̄W
(k)
1 =

q
CCók+1Ã

1
2
rm+1Ònók +2 Ã

1
2
r0Òs0

and four series, associated with the estimates for ãi (k = 1Ò 2Ò    Òm):

W̃(k)
2 =

1
C

exp
�p0úk

2

�
Ãr00Òs

0

0
Ò ˜̄W

(k)
2 = C exp

�
�pkúk

2

�
Ãrm+1Òsm+1 Ò

W̃(k)
3 =

1
C

exp(�qm+1tk)Ãr0
m+1

Òs0
m+1
Ò ˜̄W

(k)
3 = C exp(qktk)Ãr0Òs0 
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Finally, we consider the blocks:

W̃(k)
4 =

1
C

Ãr0
k
Òs0

k
Ò ˜̄W

(k)
4 = CÃrk Òsk Ò k = 1Ò 2Ò    Òm

Each above-defined set is again a weighted ‡1-ball in X, associated with the second basis
f . To denote the corresponding weight we again repeat the name of the set with small

letter w instead of W, for example, ˜̄W
(k)
4 = Bf ( ˜̄w(k)

4 ).
Putting

U(k) = conv
� 4[

l=1
W(k)

l

�
Ò Ũ(k) = conv

� 4[
l=1

W̃(k)
l

�
Ò V(k) =

4\
l=1

W̄(k)
l Ò Ṽ(k) =

4\
l=1

˜̄W
(k)
l Ò

where k = 1Ò 2Ò    Òm, we are ready to define the sets

U =
m\

k=1
U(k)Ò Ũ =

m\
k=1

Ũ(k)Ò V = conv
� m[

k=1
V(k)

�
Ò Ṽ = conv

� m[
k=1

Ṽ(k)
�


By the construction, from (24) and Proposition 2 we have the inclusions

W(k)
l ¦ W̃(k)

l Ò W̄(k)
l ² ˜̄W

(k)
l Ò l = 1Ò 2Ò 3Ò 4; k = 1Ò 2Ò    Òm

Consequently, we get the inclusions (20) and then the estimate (21).
Unlike elementary blocks, the sets U, V, Ũ and Ṽ are not weighted ‡1-balls; it is why

Proposition 1 cannot be used directly for the calculation of å(VÒU) and å(ṼÒ Ũ). Still,
using Proposition 3, we approximate these sets with some appropriate weighted ‡1-balls.
To this end we consider the sequences: c(k) = (c(k)

i ), c̃(k) = (c̃(k)
i ), d(k) = (d(k)

i ), d̃(k) = (d̃(k)
i ),

k = 1Ò 2Ò    Òm, and the sequences c = (ci), c̃ = (c̃i), d = (di), d̃ = (d̃i), defined as follows:

c(k)
i = minfw(k)

iÒl : l = 1Ò 2Ò 3Ò 4gÒ c̃(k)
i = minfw̃(k)

iÒl : l = 1Ò 2Ò 3Ò 4gÒ
d(k)

i = maxfw̄(k)
iÒl : l = 1Ò 2Ò 3Ò 4gÒ d̃(k)

i = maxf ˜̄w(k)
iÒl : l = 1Ò 2Ò 3Ò 4gÒ

ci = minfd(k)
i : k = 1Ò 2Ò    ÒmgÒ c̃i = minfd̃(k)

i : k = 1Ò 2Ò    ÒmgÒ
di = maxfc(k)

i : k = 1Ò 2Ò    ÒmgÒ d̃i = maxfc̃(k)
i : k = 1Ò 2Ò    Òmg

Applying Proposition 3, we get

Be(c(k)) = U(k)Ò Bf (c̃(k)) = Ũ(k)Ò Be(d(k)) ² V(k)Ò Ṽ(k) ² 4Bf (d̃(k))

and then
Be(c) ² VÒ U ² mBe(d)Ò Ṽ ² 4Bf (c̃)Ò Bf (d̃) ² Ũ

Therefore, using the relations (6), (7), we get

å
�
Be(c)ÒBe(d)

�
� å

�
VÒ 1

m
U
�
Ò å(ṼÒ Ũ) � å

�
4Bf (c̃)ÒBf (d̃)

�
(28)
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Combining (28), (21) and using (7), we obtain

å
�
Be(c)ÒBe(d)

�
� å(4mBf

�
c̃)ÒBf (d̃)

�
(29)

Now we are going to estimate the left side of this inequality from below. Namely, we
prove the following inequality

å
�
Be(c)ÒBe(d)

�
½ ñX

m(éÒ ¢; úÒ t)(30)

By Proposition 1 we have

å
�
Be(c)ÒBe(d)

�
= jfi : ci � digj

Taking into account the definitions of the sequences c and d, we obtain

å
�
Be(c)ÒBe(d)

�
=
þþþþ

m[
k=1

m[
l=1
fi : d(k)

i � c(l)
i g

þþþþ
Therefore the following estimate

å
�
Be(c)ÒBe(d)

�
½
þþþþ

m[
k=1
fi : d(k)

i � c(k)
i g

þþþþ(31)

is true.
By the definition of the sequences d(k) and c(k), k = 1Ò 2Ò    Òm, we get

fi : d(k)
i � c(k)

i g =
n
i : max

1�l�4
w̄(k)

iÒl � min
1�l�4

w(k)
iÒl

o
(32)

In view of the fact that w̄(k)
4 = w(k)

4 the set in the right-hand side of (32) can be written in
the following form:

fi : d(k)
i � c(k)

i g =
3\

l=1
fi : w̄(k)

iÒl � w(k)
iÒ4 Ò w̄(k)

iÒ4 � w(k)
iÒl g(33)

To prove the estimate (30) we need to bring out the following inclusions (k = 1Ò 2Ò    Òm):

fi : w̄(k)
iÒ1 � w(k)

iÒ4g ¦ fi : ïi Ù ékgÒ(34)

fi : w̄(k)
iÒ4 � w(k)

iÒ1g ¦ fi : ïi � ¢kgÒ(35)

fi : w̄(k)
iÒ2 � w(k)

iÒ4g ¦ fi : ai Ù úkgÒ(36)

fi : w̄(k)
iÒ4 � w(k)

iÒ2g ¦ fi : ai Ù úkgÒ(37)

fi : w̄(k)
iÒ3 � w(k)

iÒ4g ¦ fi : ai � tkgÒ(38)

fi : w̄(k)
iÒ4 � w(k)

iÒ3g ¦ fi : ai � tkg(39)

First we consider (34). By the definitions of the weights and the matrix
�
ai(pÒ q)

�
the

inequality in the left member of (34) is equivalent to the following inequality

pm+1 + p0

2
� pk � ïi

�nók+1 + q0

2
� qk

�
(40)
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By the assumption about the chain (23) and by (25), (26) we have the following relations

pm+1 + p0

2
� pk Ú

p0

2
Ò nók+1 + q0

2
� qk Ù

nók+1

4
Ù p0nók

2
=

p0

2êók

Ù p0

2ék


From here and (40) we gain the inclusion (34).
The inclusion (37) can be obtained by similar arguments in the case jk Ù 2, and it is

trivial in the case jk � 2.
It remains only to check the inclusion (36), since the rest can be obtained similarly.

The left-side inequality in (36) is equivalent to the inequality

pkúk
2

� [(pk � pm+1) + ïi(qm+1 � qk)]ai

Since
(pk � pm+1) + ïi(qm+1 � qk) Ù pk

2
Ò

we get (36).
It follows from (33), (34)–(39) that

fi : d(k)
i � c(k)

i g ¦ fi : ék Ú ïi � ¢kÒ úk Ú ai � tkg

Combining this with (31), we obtain (30).
Now we begin to estimate the right side of the inequality (29) from above. The

application of Proposition 1 yields

å
�
4mBf (c̃)ÒBf (d̃)

�
= jfi : c̃i � 4md̃igj

Then, due to the definitions of the sequences c̃ and d̃, we have

å
�
4mBf (c̃)ÒBf (d̃)

�
=
þþþþ

m[
k=1

m[
l=1
fi : d̃(k)

i � 4mc̃(l)
i g

þþþþ(41)

Let us take any kÒ l = 1Ò 2Ò    Òm. Using the definitions of the sequences c̃(k) and d̃(l),
we deduce that

fi : d̃(k)
i � 4mc̃(l)

i g ²
3\
ö=1
fi : ˜̄w(k)

iÒö � 4mw̃(l)
iÒ4Ò ˜̄w(k)

iÒ4 � 4mw̃(l)
iÒöÒ g \ fi : ˜̄w(k)

iÒ4 � 4mw̃(l)
iÒ4g(42)

Having regard to the expressions for ˜̄w(k)
iÒ1, w̃(l)

iÒ4 and the form of matrix ãpÒq, it is easy to
see that the inequality

˜̄w(k)
iÒ1 � 4mw̃(l)

iÒ4Ò(43)

is equivalent to the inequality

1q
CCók+1

ã
1
2
iÒrm+1Ònók +2

ã
1
2
iÒr0Òs0

� 4mCãiÒr0
l
Òs0

l

https://doi.org/10.4153/CJM-1998-055-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-055-0


COMPOUND INVARIANTS 1151

which, in its turn, is equivalent to the inequality
��rm+1 + r0

2
� r

0

l

�
� ï̃i

�nók+2 + s0

2
� s

0

l

�½
ãi � ln(4mC

q
CCók+1)

By the choice of the chain (23) we have the following relations

rm+1 + r0

2
� r

0

l Ù
r0

4
Ò nók+2 + s0

2
� s

0

l Ú
nók+2

2
Ò r0

2nók+2
Ù 1

nók+2
= êók+2

Therefore the inequality (43) is stronger than the inequality

ï̃i ½ êók+2 �
2êók+2 ln(4mC2

ók+1)

ãi


Hence,

fi : ˜̄w(k)
iÒ1 � 4mw̃(l)

iÒ4g ²
(

i : ï̃i Ù êók+2 �
2êók+2 ln(4mC2

ók+1)

ãi

)
(44)

Using similar arguments we get the inclusion

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ1g ²
(

i : ï̃i � êjl�2 +
4êjl�1 ln(4mC2

jl�1)

ãi

)
Ò if jl Ù 2(45)

In the case jl � 2, the inequality ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ1 is equivalent to the inequality 1
C ãiÒrkÒsk �

4mCãiÒr00Òs
0

0
. Hence we get

[(rk � r
0

0) + ï̃i(s
0

0 � sk)]ãi � ln(4mC2)(46)

Since rk Ú r
0

0 and s
0

0 Ú sk, the inequality (46) holds for all i 2 N. Thus the inclusion

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ1g ² fi : ï̃i � ê0g(47)

holds if jl = 1Ò 2.
Let us define an increasing function ç: [0Ò 2] ! [0Ò 1] so that

ç(0) = 0Ò ç(2) = 1Ò ç(êj) = êj+3Ò j = 0Ò 1Ò   

and a decreasing function M: (0Ò 1] ! (0Ò1) so that

M(êj) ½ 2ãêj+2 ln(4mC2
j+1)Ò j = 1Ò 2;

M(êj) ½ 2ãmaxfêj+2 ln(4mC2
j+1)Ò 2êj�1 ln(4mC2

j�1)gÒ j = 3Ò 4Ò    

Then from (44), (45) and (47) it follows that

fi : ˜̄w(k)
iÒ1 � 4mw̃(l)

iÒ4g ²
(

i : ï̃i Ù ç(êók�1) � M(êók )
ããi

)
Ò

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ1g ²
(

i : ï̃i � ç�1(êjl+1) +
M(êjl )
ããi

)

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Hence, bringing to mind (26), we obtain

fi : ˜̄w(k)
iÒ1 � 4mw̃(l)

iÒ4g ²
(

i : ï̃i Ù ç(ék) � M(ék)
ããi

)
Ò(48)

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ1g ²
(

i : ï̃i � ç�1(¢l) +
M(¢l)
ããi

)
(49)

It will be shown below that any constant satisfying the following condition:

ã Ù maxfln(4mC2)Ò sm+1g(50)

can be taken as a constant ã in (22). First we note that the following inclusions hold:

fi : ˜̄w(k)
iÒ2 � 4mw̃(l)

iÒ4g ²
²

i : ãi Ù
úk
ã
¦
Ò(51)

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ2g ²
²

i : ãi Ù
úl
ã
¦
Ò(52)

fi : ˜̄w(k)
iÒ3 � 4mw̃(l)

iÒ4g ² fi : ãi � ãtkgÒ(53)

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ3g ² fi : ãi � ãtlg(54)

We prove only the inclusion (51), since the rest can be obtained analogously. Having
regard to the concrete form of the weights, we see that the inequality in the left-hand
side of (51) is equivalent to the inequality

pkúk
2

� ln (4mC2) + [(r
0

l � rm+1) + ï̃i(sm+1 � s
0

l)]ãi(55)

Taking into account (23), (50) and the assumption ãi ½ 1 (see subsection 2.5), we get
that the inequality (55) remains true after replacing its right-hand side by 2ããi. Since,
by (23), pk Ù 4, we get (51).

Using the notation: T1 = maxfúkÒ úlg and T2 = minftkÒ tlg, after combining (51)–(54),
(48) and (49), we obtain

3\
ö=1
fi : ˜̄w(k)

iÒö � 4mw̃(l)
iÒ4Ò ˜̄w(k)

iÒ4 � 4mw̃(l)
iÒöÒ g ² DkÒlÒ(56)

where

DkÒl =
(

i : ç(ék) � M(ék)
T1

Ú ïi � ç�1(¢l) +
M(¢l)

T1
;

T1

ã Ú ãi � ãT2

)


Taking into account the definitions of the sequences ˜̄w(k)
4 , w̃(l)

4 , and of the matrix
�
ãi(pÒ q)

�
we have

fi : ˜̄w(k)
iÒ4 � 4mw̃(l)

iÒ4g ² RkÒlÒ(57)

where
RkÒl = fi : [(rk � r

0

l) + ï̃i(s
0

l � sk)]ãi � ãg(58)
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Combining (41), (42), (56) and (57) we obtain

å
�
4mBf (c̃)ÒBf (d̃)

�
�
þþþþ

m[
k=1

m[
l=1

(DkÒl \ RkÒl)
þþþþ(59)

Since, by (24), the left-hand side of the inequality in (58) is negative as k ½ l, we have

RkÒl = N if k ½ l

On the other hand, for k Ú l, by (24),

(rk � r
0

l) + ï̃i(s
0

l � sk) Ù 1

Hence,
RkÒl ² fi : ãi � ãg if k Ú l(60)

Let us prove now the inclusion

DkÒl \ RkÒl ² DlÒl(61)

Since this relation is trivial if either the left-hand side of it is empty or k = l, we can
assume that k 6= l and

DkÒl \ RkÒl 6= ;(62)

For convenience we put

∆k = ç(ék) � M(ék)
úk

Ò El = ç�1(¢l) +
M(¢l)
úl

Ò

∆kÒl = ç(ék) � M(ék)
T1

Ò ElÒk = ç�1(¢l) +
M(¢l)

T1
Ò

where kÒ l = 1Ò 2Ò    Òm. It is clear that

∆k � ∆kÒlÒ ElÒk � ElÒ kÒ l = 1Ò 2Ò    Òm(63)

By (62) we have

∆kÒl Ú ElÒkÒ
T1

ã Ú ãT2(64)

Suppose, first, k Ù l; then, by assumption (27), ék ½ él. From the definitions of the
functions ç and M it follows that ç(él) � ç(ék), M(él) ½ M(ék). Hence,

∆lÒk = ç(él) �
M(él)

T1
� ç(ék)� M(ék)

T1
= ∆kÒl

From here and (63), (64) it follows that

∆l � ∆lÒk � ∆kÒl Ú ElÒk � ElÒ
úl
ã � T1

ã Ú ãT2 � ãtl

Therefore we get (61) if k Ù l.
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Now suppose k Ú l; then (62) means that (60), (64) and

T1

ã Ú ã(65)

hold. Since, as suggested, ï̃i ½ 1
ãi

for all i 2 N, it follows from (65) that ï̃i ½ 1
ã

. Hence,
taking into account (63) and the definitions of the numbers T1 and T2, we have

DkÒl \ RkÒl ²
²

i :
1
ã � ï̃i � ElÒ

úl
ã Ú ãi � ãtl

¦


On the other hand, by the definitions of ç and ∆l, we have

∆l Ú ç(él) Ú ç(ê0) = ê3 =
1
n3
(66)

Since the constant ã, depends only on m, we can assume the number n3 chosen so that

1
n3

� 1
ã(67)

Taking into account (66) and (67), we get (61) in the case k Ú l as well. Thus the relation
(61) is proved. Together with (59) it gives the relation

å
�
4mBf (c̃)ÒBf (d̃)

�
�
þþþþ

m[
k=1

DkÒk

þþþþ(68)

This completes the proof of Lemma.

THEOREM 9. Let X = G(ïÒ a), X̃ = G(ï̃Ò ã), m 2 N. If X ' X̃, then ñX
m ³ ñX̃

m.

PROOF. Because of symmetry we need to prove only the first inequality (15). Let us
rewrite it, using (14), in the form:

þþþþ
²

i : (ïiÒ ai) 2
m[

k=1
Pk

¦þþþþ �
þþþþ
²

i : (ï̃iÒ ãi) 2
m[

k=1
Qk

¦þþþþÒ(69)

where
Qk =

�
ß(ék)Ò ß�1(¢k)

i
ð
�úk
ã Òãtk

½
Ò k = 1Ò 2Ò    Òm(70)

We cover each rectangle Pk by an appropriate couple of nonintersecting rectangles P
0

k

and P
00

k (some of them may be empty) so as to apply Lemma 8 to this new system of
2m rectangles. For construction of above-mentioned rectangles we need to define the
increasing function Ψ: (0Ò 1] ! (1Ò+1) so that

Ψ(ò) Ù max
(

2M(ò)
ç(ò)

Ò 1
2ò
)
Ò(71)

where M and ç are as in Lemma 8, but considered with 2m instead of m. By ò0 we define
the number 1

2Ψ(1) .
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We are acting by different ways in the following three cases:
(a) úk ½ Ψ(ék); (b) úk Ú Ψ(ék) Ú tk; (c) tk � Ψ(ék).
Setting the notation

ú 0k := maxfΨ(ék)Ò úkgÒ t
0

k := min fΨ(ék)Ò tkgÒ ¢
0

k =
(

maxf¢kÒΨ�1(úk)gÒ if ¢k Ú ò0,
1 otherwise,

we put

P
0

k =
( ; in the case (c),

(ékÒ ¢k]ð (ú0kÒ tk] otherwise

and

P
00

k =
( ; in the case (a),

(ékÒ ¢0k]ð (úkÒ t0k] otherwise.

Applying Lemma 8, we get

þþþþ
m[

k=1
(P

0

k [ P
00

k )
þþþþ �

þþþþ
m[

k=1
(P̃

0

k [ P̃
00

k)
þþþþÒ

with

P̃
0

k =
( ;Ò in the case (c),

(∆kÒEk] ð ( úk
ã
Ò ãtk] otherwise

and

P̃
00

k =
( ;Ò in the case (a),

(∆kÒE0

k] ð ( úk
ã
Ò ãtk] otherwise,

where

∆k = ç(ék) � M(ék)
úk

Ò Ek = ç�1(¢k) +
M(¢k)
úk

Ò E
0

k = ç�1(¢0k) +
M(¢0k)
úk



From ï̃i ½ 1
ãi

and (71) it follows that

fi : (ï̃iÒ ãi) 2 P̃
00

kg ²
²

i : (ï̃iÒ ãi) 2
� 1

2ãΨ(ék)
ÒE0

k

½
ð
�úk
ã Òãtk

½¦
(72)

The required function ß can be defined now so that ß(1) � ò0 and

ß(ò) � min
(

1
2
ç(ò)Ò 1

2ãΨ(ò)

)

if 0 Ú ò Ú ò0. Then, taking into account (72), we get

fi : (ï̃iÒ ãi) 2 P̃
0

k [ P̃
00

kg ² fi : (ï̃iÒ ãi) 2 QkgÒ

where Qk is defined in (70). Thus (69) is proved.
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6. Weak multirectangular invariant. We say that the systems of characteristics
(ñ(ïÒa)

m )m2N and (ñ(ï̃Òã)
m )m2N are weakly equivalent and write

(ñ(ïÒa)
m )

w³ (ñ(ï̃Òã)
m )(73)

if in the definition of the equivalency (ñ(ïÒa)
m ) ³ (ñ(ï̃Òã)

m ) (see Section 4) it is demanded
only that the inequalities (15), (16) are valid under the additional restrictions that

¢k = 1 for each k = 1Ò 2Ò    Òm(74)

With so defined equivalency the system

(ñX
m)m2N := (ñ(ïÒa)

m )m2N

is a linear topological invariant on the class of all spaces X = G(ïÒ a) as it runs out from
the following

THEOREM 10. Let X = G(ïÒ a) and X̃ = G(ï̃Ò ã). Then X ' X̃ implies (73).

PROOF. Let us analyze the proof of Lemma 8 to fit it to the considered particular
case. First we come to recognize that, under the assumption (74), one can escape the
most complicated considerations in that proof, connected with the estimation of the right
side of (59) by the right side of (68). Therefore we can use the following, shorter than
(23), chain of norms’ numbers:

r2 Ú p2 Ú r
0

2 Ú r1 Ú Ð Ð Ð Ú s1 Ú s
0

2 Ú q2 Ú s2 Ú n1 Ú n2 Ú Ð Ð Ð Ú nj Ú Ð Ð Ð

The consequent simplification is that whenever in the proof of Lemma 8 any number r,
p, r

0

, s
0

, q, s is indexed by k we have to change its index to 1 if k = 1Ò 2Ò    Òm and to 2 if
k = m + 1. By the assumptions (74), (8) we can omit everywhere the blocks, which are
responsible for estimates of ï from above. Finally, we consider the following expression
for the constructions U, V and Ũ, Ṽ:

U = Ap1Òq1 Ò V = conv
� m[

k=1

3\
l=1

W̄k
l

�
Ò Ũ =

1
C

Ãr01Òs
0

1
Ò Ṽ = conv

� m[
k=1

3\
l=1

˜̄W
k

l

�


Therefore it is easy to check that both the function ß and the constant ã can be defined
as independent of m, what completes the proof.

7. Applications. In this section we sketch some applications of multirectangular
invariants to the spaces (1). More detailed consideration of such applications will be the
object of another paper.

7.1. Cartesian products. By analogy with [12] (see also [54, 19, 20, 11]), it can be
got the following complete isomorphic classification on the subclass of all spaces (1),
isomorphic to Cartesian products of spaces (3) and (4). Therewith, as in [12], the notation
X(s) means any subspace of codimension s if s ½ 0 in X or any space isomorphic to XðR�s

if s Ú 0.
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THEOREM 11. Let X = G(ïÒ a) ' E1(c)ðE
0

1(d) and X̃ = G(ï̃Ò ã) ' E1(c̃)ðE
0

1(d̃).
Then the following statements are equivalent:

(i) X ' X̃;

(ii) X
qd' X̃;

(iii) there exists an integer s such that

E1(c) '
�
E1(c̃)

�(s)Ò
�
E1(d)

�(s) ' E1(d̃);

(iv) ñX
2 ³ ñX̃

2 .

7.2. Tensor products. Each tensor product

X = E1(c)
̂E
0

1(d)Ò

is quasidiagonally isomorphic to a space Y = G(ïÒ a) if we put ai := maxfcr(i)Ò ds(i)g and
ïi := ds(i)

ai
, where i !

�
r(i)Ò s(i)

�
is any bijection from N onto N ðN. Since ñY

m does not
depend on above-mentioned bijections, we can consider this invariant as defined for X,
so that

ñX
m(éÒ ¢; úÒ t) := ñY

m(éÒ ¢; úÒ t)

=
þþþþþ

m[
k=1

(
(rÒ s) : ék Ú

ds(i)

max fcr(i)Ò ds(i)g
� ¢kÒ úk Ú maxfcr(i)Ò ds(i)g � tk

)þþþþþ
Some necessary and sufficient conditions of the isomorphism of tensor products (2)

were considered in [27] (see also [28, 26]) by the use of one-rectangular invariants. Here
we describe some classes of spaces (2) such that two-rectangular invariant is complete
on each class, but one-rectangular invariant fails to be complete on certain of them.

Let a sequence c = (ci) satisfy the condition: there exists an increasing sequence ió,
ó 2 N such that

ció+1

ció+1
" 1Ò ció+1

ció
" 1Ò

as ó ! 1. Let Ec be the class of all spaces Xd = E1(c)
̂E
0

1(d), where d = (dj) is any
non-decreasing tending to 1 sequence which has no point in any interval (ció+1Ò ció+1),
ó 2 N.

PROPOSITION 12. Let Xd, Xd̃ belong to some class Ec. Then the following statements
are equivalent:

(i) Xd ' Xd̃,
(ii) d � d̃,

(iii) ñXd
2 ³ ñXd̃

2 .

PROOF. Since (i) ) (iii) follows from Theorem 9 and (ii) ) (i) is trivial, we need to
prove (iii) ) (ii) only.

Let (iii) be true. Then, in the framework of the equivalency definition, the estimate
(15), (16) hold for m = 2 with some function ß and constant ã. For given ó 2 N we put
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é(ó) :=
�
é1(ó)Ò é2(ó)

�
, ¢(ó) :=

�
¢1(ó)Ò ¢2(ó)

�
, ú(ó) :=

�
ú1(ó)Ò ú2(ó)

�
, t(ó) :=

�
t1(ó)Ò t2(ó)

�
,

where

é1(ó) = é2(ó) :=
d1

2ció
; ¢1(ó) :=

ció�1+1 + ció

2ció
Ò ¢2(ó) := 1;

ú1(ó) = ú2(ó) := 0; t1(ó) := cióÒ t2(ó) :=
ció�1+1 + ció

2


Taking ó0 such that ãt2(ó0) Ú t1(ó0) and ß(1) Ù ¢1(ó0), we obtain that two inequalities
(15), (16) imply the following equality

ñXd
2

�
é(ó)Ò ¢(ó); ú(ó)Ò t(ó)

�
= ñXd̃

2

�
é(ó)Ò ¢(ó); ú(ó)Ò t(ó)

�

for ó ½ ó0. From here, after some elementary computations, we get

mc

�
t1(ó)

�
md

�
t2(ó)

�
= mc

�
t1(ó)

�
md̃

�
t2(ó)

�

and consequently
md

�
t2(ó)

�
= md̃

�
t2(ó)

�
Ò ó ½ ó0(75)

Applying the inequalities (15), (16) for m = 1 and with the following values of parame-
ters: ¢(ó) := 1, ú(ó) := ãt2(ó � 1), é(ó) := ¢1(ó0), and any t such that

ú(ó) Ú t Ú aió�1+1

ã Ò(76)

we get for ó Ù ó0

md(t) �md

�
ú(ó)

�
� md̃(ãt) � md̃

�
ú(ó)

�
(77)

if t satisfies (76). It can easily be shown that (75) and (77) imply (ii).
The following example disclosed that one-rectangular invariant is not complete on

certain classes Ec.

EXAMPLE. Let (nó)10 be a sequence of integer such that n0 = 0 and nó+1
nó

" 1. Put

C :=
1[
ó=0
fl 2 N : n2ó+1 Ú l � n2(ó+1)gÒ D :=

1[
ó=0
fl 2 N : n2ó Ú l � n2ó+1g

We define now sequences c, d, d̃ as follows: c = (ci) is a sequence which is obtained by
enumeration of the set C; d = (dj) is a sequence such that the set of its elements coincides
with D and any number n2ó+1 occurs in it not less that n2ó+2 times, while each of others
has to be solitary; finally, d̃ = (d̃j) is such that d̃j = dj+1. One can check that for m = 1 the
inequalities (15) and (16) hold with ã = 2 and any function ß: [0Ò 2] ! [0Ò 1], satisfying
the following conditions:

ß(ï) � ï
2
Ò ï 2 [0Ò 2]; ß

�n2ó+1

n2ó+2

�
Ú 1

n2ó+2


By construction the sequences d and d̃ are not weakly equivalent. Thus from Proposi-
tion 12 it follows that the spaces Xd and Xd̃ are not isomorphic.
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PROBLEM 2. Is the two-rectangular invariant complete on the class E :=
S

c Ec,
where c runs the set of all c considered in Example?

PROBLEM 3. Does there exist m such that ñm is complete invariant on the class of
tensor products of kind (2)?

It is worth noting that for the class of all spaces of kind (1) any m-rectangular invariant
is not complete and, moreover, each m + 1-rectangular invariant is properly stronger than
m-rectangular one: to be certain of this it is sufficient to consider two spaces G(ïÒ a),
G(ï̃Ò ã) with (ïÒ a) and (ï̃Ò ã), constructed in [16] as proving Theorem 4 there.

7.3. Application of weak multirectangular invariant. In studies of power Köthe spaces
of the first type ([16], Theorem 5) it was constructed two sequences (ïÒ a) and (ï̃Ò ã).
Applying the same considerations to spaces (1), we obtain that the corresponding pair
of spaces X = G(ïÒ a) and X̃ = G(ï̃Ò ã) possesses the following properties:

(a) ñX
m ³ ñX̃

m, m 2 N;
(b) (ñX

m) 6³ (ñX̃
m).

Thus the spaces X and X̃ cannot be distinguished with any m-rectangle characteristic
although they are not quasidiagonally isomorphic (by Theorem 7); the question about
the isomorphism of these spaces (and the corresponding power Köthe spaces from [16])
could not be solved in terms of the equivalence (ñX

m) ³ (ñX̃
m) until its invariance will be

proved. However the weak rectangular invariant, introduced in Section 6, is sufficient
to answer this question. Indeed, it is easy to check that for these spaces the relation

(ñX
m)

w³ (ñX̃
m) fails and, by Theorem 10, we have X 6' X̃. The same fact takes place

also for the above-mentioned power Köthe spaces. In fact, the weak multirectangular
invariant can be applied to some quite wide class of spaces (1) (as well as of power
Köthe spaces).

In conclusion let us note that there are some more intricate examples showing that the
week multirectangular invariant is not complete on the class (1).

7.4. Quasiequivalence of bases. After Dragilev’s result [22] on quasiequivalence of
bases in the space of all analytic functions in the unit disc it arose the problem on
quasiequivalence of bases in locally convex spaces [36]. Referring to [24, 25, 33, 35, 36,
66, 1] for information about preceding results, we display only some results concerning
with the class of spaces (1).

PROPOSITION 13. Let a space X = G(ïÒ a) satisfy one of two conditions:

(i) X ' E1(c)ð E
0

1(d),

(ii) X
qd' X2.

Then all absolute bases in X are pairwise quasiequivalent.

To prove this proposition we have to apply basically the same considerations as in
[57] for the case (i) or as in [66] for the second case. Therewith we use the relation
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(i) , (ii) from Theorem 11 in the first case and the following statement in the latter case

PROPOSITION 14. Let X = G(ïÒ a) and X
qd' X2. Then X ' X̃ , X

qd' X̃.

PROOF. The inclusion( is trivial. To prove the inverse inclusion one can check that

one-rectangular invariant is complete on the class of all spaces (1) such that X
qd' X2

(basically in the same manner as in [27], Theorems 3.8, 3.9 and their proofs).
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Rostov State University, Rostov-on-Don 5, 1974, 210–213 (in Russian).
33. , Problems of geometry of non-normable spaces. Rostov State University, Rostov-on-Don, 1983

(in Russian).
34. S. G. Krein, Yu. I. Petunin and E. M. Semenov, Interpolation of linear operators. Nauka, Moscow, 1978

(in Russian).
35. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. Springer-Verlag, Berlin, Heidelberg,

New York, 1977.
36. B. S. Mityagin, Approximative dimension and bases in nuclear spaces. Russian Math. Surveys 16(1961),

59–127.
37. , Nuclear Riesz scales. Dokl. Akad. Nauk SSSR 137(1961), 519–522 (in Russian).
38. , Sur l’equivalence des bases unconditional dans les echelles de Hilbert. C. R. Acad. Sci. Paris

269(1969), 426–428.
39. , Equivalence of bases in Hilbert scales. Studia Math. 37(1970), 111–137 (in Russian).
40. , Non-Schwartzian power series spaces. Math. Z. 182(1983), 303–310.
41. J. Peetre, On interpolation functions. Acta Sci. Math. 27(1966), 167–171; II, ibid. 29(1968), 91–92; III

ibid. 30(1969), 235–239.
42. A. Pełczynski, On the approximation of S-spaces by finite-dimensional spaces. Bull. Polish Acad. Sci.

5(1957), 879–881.
43. S. Rolewicz, On spaces of holomorphic functions. Studia Math. 21(1962), 135–160.
44. , Metric linear Spaces. Polish Scientific Publishers, Warsaw, 1984.
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Manuscripta Math. 37(1982), 269–301.
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