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COMPOUND INVARIANTS
AND MIXED F-, DF-POWER SPACES

P A. CHALOV, T. TERZIOGLU AND V. P. ZAHARIUTA

ABSTRACT. The problems on isomorphic classification and quasiequivalence of
bases are studied for the class of mixed F-, DF-power series spaces, i.e. the spaces of
the following kind

G(\,a) = JLrgoproj <(]ILTOind(£1<ai(p. q)))).

where,(p. @) = ep((p— \idai ), p.g € N, and X = (\)ien, @ = @iy @€ some
sequences of positive numbers. These spaces, up to isomorphisms, are basis subspaces
of tensor products of power series spaces of F- and DF-types, respectively. The m-
rectangle characteristic um@. g;7.1), m € N of the space G()\. a) is defined as the
number of members of the sequence (), &),y Which are contained in the union of m
rectangles Py = (6, k] X (k- t], k= 1.2,..., m. It is shown that each m-rectangle
characterigtic is an invariant on the considered class under some proper definition of
an equivalency relation. The main tool are new compound invariants, which combine
some version of the classical approximative dimensions (Kolmogorov, Petczynski)
with appropriate geometrical and interpolational operations under neighborhoods of
the origin (taken from agiven basis).

1. Introduction. Petczynski ([42]) and Kolmogorov ([31]) introduced first impor-
tant linear topological invariants (approximative dimension), dealing with non-normable
locally convex spaces. These fundamental invariants as well as their more or less direct
developments ([7, 8, 9, 36, 37, 43, 44, 23, 24, 5, 6, 17, 18, 2, 3, 32, 33, 47] et al.)
proved to be powerful instruments for studying locally convex spaces, especialy those
with some homogeneouslinear topological structure: for example, these invariants gave
a complete isomorphic classification of the class of all Fréchet spaces with a regular
absolute basis ([23, 2, 17, 32, 33, 18]). Nevertheless the classical invariants and their
traditional modifications could give only quite coarse differentiation of spaces even for
such simple (at least from thefirst view) classesas Cartesian or tensor products of power
series spaces of finite and infinite type (see, e.g., [36, 43, 23, 55, 57, 58]). Thereasonis
that the combination of spaces, so different in topological sense, might bring some sub-
tle differences between resulting spaces, non-distinguishable for those invariants. In an
effort to get more distinguishing tools for isomorphic classification of above-mentioned
and other more general classes of locally convex spaces, some new linear topological
invariants were suggested in [56, 59, 60, 61] and later on (in some new geometrical
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respect) in [62, 64, 66]; in this connection the initiative influence of Mityagin's results
[38, 39, 40] must be emphasized.

The aim of this paper isto study the topological structure (in particular, the problems
of isomorphic classifi cation and quasi equival enceof absolute bases) of another intriguing
class of spaces for which an interference of two different topological structures (of F-
and DF-types, in this case) results again some slight effects, requiring a very scrupulous
analysisof invariant properties of spacesto distinguish them. Namely, we study the class
of mixed F-, DF-power series spaces, i.e. spacesof the following kind:

@ G a) = Jim projfim ind( 3 (a(p.))) ).

where ai(p.q) = exp((p — Aig)a), p.d € N, and A = (Aiien, @ = (a)ien are some
sequencesof positive numbers.

This class, up to isomorphisms, consists of basis subspaces (step subspaces[25]) of
projective tensor products (with respect to the canonical bases of them)

@ Ex(Q)OE,(d)

of apower series space of infinite type:

©) Eoo(c) = limproj (1 (exp(pc)).
with a dual power series space of infinite type:

4) E..(d) = limind (1(exp(—pd:)).

where ¢ = (¢j), d = (di) may be arbitrary sequencesof positive numbers.

Tensor products (2), belonging to the class (1), were investigated in [28, 26, 27],
where some necessary and sufficient conditions of isomorphism for such spaces were
obtained.

The main difficulty in studying of the spaces (1) is how to separate two collided
features of their nature: F- and DF-topological structures. To this end we consider
some more complicated linear topological invariants (following [12, 11] we use the
term compound invariants for them). With these invariants, described in the end of
Section 4 and in Section 5 (within the proofs of Lemma 8 and Theorem 9), we show
that any m-rectangle characteristic is an invariant on the class (1). Following [1], the
term m-rectangle characteristic is used for the function (cf. [10, 13, 14, 15, 16, 12, 11])
30, €; 7, 1), which calculates how many points of the sequence (A, a) = {(\i. &) }ien
are situated in the union of m rectangles Py = (k. ex] X (k. t&], k = 1,2,....m. The
notions of equivaence (for individual m-rectangle characteristics: px & pxX and for
the systems of these characteristics: (uX) ~ (uX)), considered in Section 4, play an
important part in the concept of invariance. It should be pointed out that the applying
of interpolational constructions in compound invariants considerations (for example
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using of “interpolational blocks” in Section 5) linked to arow of results connected with
generalizations of Dragilev classesd;, d, [23, 25, 45, 46, 49, 50, 51, 52, 53, 55, 57, 58,
63, 65] et al.

In Section 5 it is shown that the system (um)men fOrms a complete invariant in
respect to quasidiagonal isomorphisms (Theorem 7). Although it remainsagap between
results on the isomorphic and quasidiagonally isomorphic invariants (1) (see Problem 1
below), we prove the invariance of the system of m-rectangle characteristics under some
weakened relation of equival ence (Section 6). It should be noticed that all the results
mentioned in the beginning paragraph (see also [21, 30]) were within the framework of
one-rectangular characteristic considerations.

Some applications to concrete subclasses of spaces (1) are considered in Section 7.
Applying of many-rectangular characteristics gives some new results for tensor products
(2). Thesubclassof theclass (1), consisting (up toisomorphismes) of all Cartesian products
of spaces(3), (4), admits (Theorem 11) the complete isomorphic characterization by the
use of two-rectangle characteristics only (cf. [12, 11]).

2. Preliminaries.

2.1. Let X, Y belocaly convex spacesand {x; }icn and {yi }ien unconditional basesfor
the spaces X and Y, respectively. We say that these bases are quasiequivalent if there
existsanisomorphism T: X — Y such that Tx; = tiy,), where (t) is asequenceof scalars
and o: N — N isahijection. In this case the isomorphism T is called quasidiagonal, the
spaces X and Y are called quasidiagonally isomor phic (with respect to those fixed bases)

and we write shortly X qN_d Y; inthe particular caset; = 1 for al i € N, the operator T is
said to be permutational, the spaces are called per mutationally isomor phic and we write
X2y,

2.2. Let E beaclassof localy convex spacesand I" a set with an equivalence relation
~.Wesay that v: E — I isa(linear topological) invariant if X >~ X = v(X) ~ Y(X), X,
X € E. Theinvariantsto be studied are based on the following well-known characteristic

of acouple of absolutely convex sets.
Let X bealinear space, U, V absolutely convex subsetsin X. Consider

(5) B(V.U) :=sup{dimL:UNL C V},

where L runs along the set of al finite-dimensional subspaces of Xy, = spanV. This
characteristic relates with so-called Bernstein diameters b,(V, U) [48] in the following

way:
B(V.U) = [{n: bn(V.U) > 1}].

The following properties follow immediately from the definition (5):
(6) (@ ifVicVandU c Uy, thenp(Vi, Up) < B(V,U);
1
@) (b) B(aV.U) = 5(v, —u), a>0.
o
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Let X bealocally convex space, e = {& }ien an unconditional basisin X. A set
B(@) = {x=) ¢e € X3 lala <1
i=1 i=1

isthe weighted ¢;-ball in X, defined with a given weight sequence of positive numbers
a = (a)ien. For weighted balls the characteristic (5) admits a simple computation.

PROPOSITION 1 (SEE, e.g., [36, 20]). For a couple of weights a, b we have
B(B%(b).B%(@)) = {i : b < &}

2.3 Intheconstruction of compound invariants (see Section 5) we shall usethefollowing
geometrical facts.
For acouple A, = Bé@™), » = 0, 1, we consider the following one-parameter family
of weighted balls
(Ao)' ™" (A)” = BY(a)).

wherea(® := ((q?o))lfa(alil))“)ieN, a € R. Thefollowing elementary fact is well-known
(see, for example, [4, 34, 41]

PrROPOSITION 2. Let e and f be unconditional bases of locally convex space X and
A, =B%@"), A, =B (&"), » = 0. 1. Then

A CA,. v=01
implies
(Po)' (A1) C (A0} " (A)". € (0.1).

PROPOSITION 3. Let e be an unconditional basis of a locally convex space X, al) =
(a,-(‘)),j =1,...,r,sequencesof positive numbersandc = (¢), d = (d;) sequences, defined
by the following formulae: 6 = max{a? : j = 1,....r},d =min{a® : j =1,....r},
i € N. Then the following relations hold:

UBE)).

B%(c) C (r] B°@Y) c rB%c). B(d) = conv(
j=1 =1

where conv(M) means the convex hull of a set M.

2.4 For two sequences of positive numbersa = (&) and a = (&) we shall writea < a
or g =< g if there exists a constant ¢ > 1 such that %a < & < cg. Using the notion
of counting function my(t) := |{i : & < t}|, we can write the relation a =< a in the
equivalent form Jc: mé(é) < my(t) < my(ct) if both a and & tend to co monotonically.
The following statement is well known ([36, 37]).

PrROPOSITION 4. Let a = () and & = (&) be sequences of positive numbers and
both of them are tending to oo monotonically. Suppose X = E..(a) (or X = E__(a)) and
X = Eoo(8) (X = E__(8), respectively). Then X ~ X if and only if a =< &. Moreover, the
spaces E.,(a) and E___(&) cannot be isomor phic if at least one of the sequencesa or ais
not bounded.
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2.5 Here we give some facts about spaces G(\, a). Without loss of generality we will
assume that parameters of spaces (1) satisfy the following requirements;

(®) a>l S<n<l
q
Indeed, one can replace any space (1) with anisomorphic space G(\. &), satisfying those
conditions: it is sufficient for thisto put & = 1 + &, Xi = max{gl_.ki}, if \j <land
& =1+\a, \i =1if x> 1.
There are the following possibilities for aspace X = G(\, &):
() X~E (@) & inf{\:i €N} >0;
(i) X~ Ex(@ < lim) =0;
(iii) Xismixed, i.e. (i), (ii) do not hold.
In the case (iii) the space X isisomorphic to a Cartesian product of spaces(3) and (4), if
and only if the set N can be divided into the sum of two non-intersecting subsequences
{ix} and {jk} such that lim\;, = 0andinf{);,} > 0O; otherwise we say that the space
X = G(\, a) is properly mixed.
Each tensor product (2) is, up to quasidiagonal isomorphism, a space of the kind (1).
Indeed, it can be represented in the form (1) with the matrix

a(p. ) = exp (PCigy — ddi))-
wherei — (Kk(i), I(i)) isany bijection from N onto N x N. It is obvious that this spaceis
isomorphic to the space G(\, a) with & := max{cy). digy} and \; := %

3. Criterion of quasidiagonal isomorphism. Here we study necessary and suffi-
cient conditions for quasidiagonal isomorphism of two given spaces of the kind (1). For
this purpose, first we describe some properties of basis subspaces of the space (1) as
follows (compare with [60, 66]).

PROPOSITION 5. Let X = G(), @), v = {ix} be any subsequenceof N,
AW =00 a” = {a ).

and X® be the subspace of X, generated by the corresponding subbasis {g, }. Then
(i) X ~E (@) if \j — 0,i €v;
(i) X ~E_@)ifinf{\ :i€v}>0.

If X*) js Montel spacethen “if” in the both items can be changed to “ iff” .

PROCF. If \j — 0,ievthenp—1<p—-XNg<pfordliev,i>iy=ipq).
Therefore we get that

X®) ~ ||’|;n proj gl(exp(pa'k)) = Eoo(a(’/)).

If \j >é6 > 0forali € v, then under the condition q > % we have

6 6
—A<P-a=p-AQ=p-040<59-09=—50
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Thus,
X ~ Iicr"n ind ¢1(exp(—da;,)) = E.,(a")).

To finish the proof we have to use what have been proved above together with the
fact that E.,.(a®) cannot be isomorphic to E__(a®) as X*) is aMontel space, i.e. asthe
sequencea®) tends to oo.

REMARK. If X is Montel and both (i), (i) do not hold then the subspace X®) is as
complicated as the whole space.

THEOREM 6. Let X = G(\,a), X = G(S\.ﬁ) be Montel spaces. Then the following
conditions are equivalent:
@ X2 X:
qd ~
(b) X~ X
(c) thereexistsahijection o: N — N such that

(9) & = (i)
and for any subsequence (iy)
(10) (M) = 0 (M) — 0.

PROOF. Therelation (a) = (b) is evident. Let us show that (b) = (c). Let T: X — X
be an isomorphism, defined by
(11) Te = tiey).

It is sufficient to prove that the condition (c) holds with the same bijection o.

First we show (10). Assuming that (10) is not true, we see that there exists a subse-
quence v = (i) such that one of the sequences A*) or A™ := {},,} tendsto O, while
another is restricted from 0. Then by Propositions 5, 4 the corresponding subspaces X*)
and X® cannot be isomorphic, which contradicts the assumption that (11) defines an
isomorphism.

L et us show that for the same bijection ¢ the relation (9) holds. Supposingit fails, we
find a subsequencer = {ix} such that a, % &, and both the sequences \®) = {\;, }
and A0 = {X,4,} simultaneously tend or not to 0. Then both of the corresponding
basis subspaces X*) and X are isomorphic spaces of the same kind (3) or (4), which
by Proposition 4 contradicts our supposition.

Now let us show that (c) = (a). Obviously it is enough to prove that under conditions
o(i) =iand & = g the operator I: G(\, a) — G(S\. a) is anisomorphism. First we prove
that | is continuous, i.e.

(12 Vrdp Vg3s3C: exp((r — Xis)é@) < CeXp((p - )\iQ)ai)-

It follows from (10) that there exists afunction ¢: (0, 1] — (0. 1] such trjat p) L0
ast | Oand for every 6 € (0, 1] theinequality A; > 6 impliesthe inequality \j > ¢(6).
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Let us take an arbitrary r.p.q, (r < p < ), any 6 € (O, p;—'), and an arbitrary
s> q,’g)".
SubposeNl ={i: A\ =6}, N2 = N\Ng; thenfori € N; we have

q—p+r
©(6)

r—Xs<r—g(@E)s<r—p©) =p—q<p-—A\d,
and _ —r
r—/\isgr:p—Tq<p—5q<p—/\iq fori € Np.

From here we obtain (12) with C = 1. In view of symmetry, we get that the operator
I~1 isalso continuous. Thus the operator | is an isomorphism.
This completes the proof.

4. mrectangle characteristicsand compound invariants. For given A = (Ai)ien,
a = (a)iey and m € N weintroduce the following function:

m
(13) ugﬁ\'a)((s.a;T.t):IU{i25k</\i§€k.7'k<ai§tk}.
k=1

defined for 6 = (6k), € = (ex), 7 = (7x), t = (), such that
0<édp<ex<2, O<mk<tx<oo, k=21,2....m

Hereafter |M| denotesthe cardinality for afinite set M and +oo for an infinite set M. We
may also write uX instead of 4@, if X = G(), a).

The function (13) will be called m-rectangle characteristic of the pair (A, a) or of the
corresponding space G(\, a). This name can be justified by the following relation

(14) P0G, &7, t) = |£]1{i (L a) € Pk}‘ = |{| (O a) € ka}‘,

where Py = (0. ex] X (me. ], k= 1,2,..., m. Hence the function (13) calculates how
many points (A, &) are contained in the union of m rectangles.

Let A = (\), a = (&), A = (\), and & = (&) be arbitrary sequences, m a fixed
natural number. We shall say that the functions 1.(® and ;- are equivalent and write
pdd s O3 if there exists a strictly increasing function ¢:[0, 2] — [0, 1], ¢(0) = 0,
p(2) = 1, and a positive constant « (in general, ¢ and o depend on m) such that the
following inequalities

(15) 6.7 ) < 1 (). ) < ).
(16) U 6.5 ) < i (0. ¢ = ).

with 0 (8) = (), () = (¢ 7ex)), £ = (%), at = (aty) hold for all collections of
parametersé, ¢, T, t.

https://doi.org/10.4153/CJM-1998-055-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-055-0

COMPOUND INVARIANTS 1145

If, moreover, the function ¢ and the constant o can be chosen so that the inequalities
(15), (16) hold for all m € N (i.e. ¢ and o are independent of m), then we say that the
systems of characteristics (u{®)men and (uf®)men are equivalent and write (1) ~
Q).

The following statement describes the quasidiagonal isomorphisms of spaces (1) in

the terms of m-rectangle characteristics.

THEOREM 7. For spaces X = G(),a) and X = G(X. a), the following statements are
equivalent:
qd ~
(@ X~X; i
(©) (1) ~ (um)-

The proof is omitted, since it is basically the same that in the case of power K 6the
spaces of the first type [16]; but, instead of Proposition 2 from [16], we have to use
Proposition 6.

Theorem 7 means that the system of al m-rectangle characteristics is a complete
invariant with respect to quasidiagonal isomorphisms.

The following problem arises:

PROBLEM 1 (cf. PROBLEM 13, [1]). Isthe statement of Theorem7 trueif the quasidi-
agonal isomorphism @ is replaced by the usual isomorphism~?

This problem still remains open. Even the question about invariance of any individual
m-rectangle characteristic (13) turns out to be quite complicated. We are studying this
guestion in the next section with the use of compound invariants.

Let us explain the main idea of compound invariants, as applied to the studied class
of spaces (1). Let T: X — X be an isomorphism. We take the following two absolute
bases of the space X: the canonical basise = {e }icy and T-image of the canonical basis
of X: f = {f;},f = Te, i € N. Then each x € X has two basis expansions:

x=>"&e = nifi.
=i =l

We consider two systems of sets (A, q) and (Apﬂq) in X, defined as follows

(a7) Ao = [xex: 2 lclae.a <1}, pach.
(18) Ap,q:{xex:zma(p.q)gl}. p.qe N.

By Grothendieck’s factorization theorem ([29], I, p. 16) the systems(17) and (18) are
equivalent in the following sense:

(19) VrIpVgasaC: Apq C CAs, Ang C CArs.
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To prove the estimate (15) we build two pairs of special absolutely convex setsU, V
and U, V in the form of certain geometrical constructions, using the sets (17) and (18)
asraw materials. On the basis of the relations (19) we provide the inclusions

(20) uoU., vcV.
which, due to the properties of the characteristic 3, get the estimate

(21) B(V.U) < BV, 0).

ThesetsU, V, U, V will befitted (applying interpolational and geometrical constructions
from subsection 2.3) so that, after some handling, the estimate (21) gives the required
inequality (15). This draft program gets its concrete realization within the proofs of
Lemma 8 and Theorem 9 in the next section.

5. Invarianceof mrectanglecharacteristic. Themain difficulties are surmounted
in the proof of Lemma 8, where, in fact, the invariance of un, is obtained with another
definition of the equivalence: namely, instead of (15), (16) the given below relation (22),
considered together with the symmetrical relation, obtained by interchanging X with X).
Then, applying this lemma, we obtain the invariance of um in the terms of Section 4
(Theorem 9).

LEMMA 8. Let X = G(\,a), X = G(X.&), m € N. If X ~ X, then there exists
an increasing function v:[0,2] — [0,1], ¥(0) = 0, ¥(2) = 1, a decreasing function
M: (0, 1] — (0, 00), and a constant « > 1 such that for each § = (&), € = (k) € (0,1]™
and 7 = (1), t = (t) € R the following estimate holds:

ME)

v+ ) L )

(22) ez < 20— 2

PROOF. We begin to manage the program, drafted in the end of previous section,
with a choice of an infinite chain of positive integers

Pl < Pt <Fmet < Fm < Pm < I < -+ < Fo < Po < Iy
(23) < <G << < Srq < Ot < Smed
<Nn<m<--- <N <

such that the following inclusions

Ao.g C CA . A,/ / CCAyq. k=0,1,....m+1;
(24) Aprml N - C:JArmﬂ Nj+19 Ar C CIAPrml Nj+1s J €N,

are valid with some constants C = C(m), Cj, j € N. Without loss of generality, we
can assume that each consequent number of the chain (23) is four times more than the
preceding one and that the sequence n; satisfies the condition 2rgn; < Nj.1.
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Let usfix the argumentsé, ¢, 7, t in (22). With the aim of dealing with values of the
parameters éy, ¢ from agiven countable set, we use the following sequence

1
(25) §o=l.g=ﬁj, J €N

Thus we can take indices v and j such that

(26) G S <Gp-1s G < ek <¢G,, k=1.2,..., m.
We can suppose that
(27) 01 <02 <+ <om.

Now we define the sets serving as elementary blocks in the construction of the sets U,
V, U, V. We begin with the first couple of the sets U, V. The estimates for \; from
above and from below in (13) are linked, respectively, with the following two series of
“interpolational” blocksfor U (k=1,2,...,m):

1 1 P
Mk) = {Af%wlenjkAf%oﬂo !f J.k > 2,
Ao if jx =12,
— 1 1
\N(lk) = %1-ﬂ,/k+1%-00'

The estimates of a; by the parameterst and ty in (13) are connected with other series
of blocksforU (k=1,2,..., m):

- PoTk K — Py
WY = eXP(T)Apo,qo- W9 = ixp<_T)APm+1¢Qm+1'
W = eXp(—Cm1ti)Apnsgmr VWEY = EXP(CKt) A -
The following blocks serve both V and U:
\/\/20 = Ao g Mk) =Apq. k=1.2,....m

Each above-mentioned block W is aweighted (;-ball B®(w) (we denoteits weight by the
same but small letter). For example, WY = BS(W{Y).

To construct the set U we also use two series of interpolational blocks, responsible
for the estimatesof \; (k=1.2,..., m):

LA A, ifj>2
WO = | VG T Yo TS
éArgsé) If]k: 12,

~(K) ~1 <1
Wy = \/Ccl/k+1Af2n1+1~nnk+zAf20-So

and four series, associated with the estimatesfor & (k=1,2,...,m):

W0 = Zep( M)A, o W = Cop(—P0 A

. 1 % o A
vak) =c exp(—Qrml'[k)'A\r’m+ e W™ = Cexp(Qkti)Arg.s-
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Finally, we consider the blocks:
~ 1-~ ~(k) ~
W= ZA . Wy =CA,q. k=12....m

Each above-defined set is again aweighted ¢-ball in X, associated with the second basis
f. To denote the corresponding weight we again repeat the name of the set with small

(K
letter winstead of W, for example, Wfl) = B (W).
Putting

4 - 4 4 _ - 4 o
u® = conv(U \Nl(k)). oW = conv(U vvf")). v =AW®, T =W,
I=1 I=1 I=1 I=1
wherek =1,2,.... m, we areready to define the sets

m - m m ~ m
u=Nuk, 0=N0% v= conv(U V(k)), V= conv(U V(k)>.
k=1 k=1 k=1 k=1

By the construction, from (24) and Proposition 2 we have the inclusions
~ — (K
WO S WM, WH W, 1=1.23.4, k=12....m

Consequently, we get the inclusions (20) and then the estimate (21).

Unlike elementary blocks, the setsU, V, U and V are not weighted ¢4-balls; it iswhy
Proposition 1 cannot be used directly for the calculation of (V. U) and A(V. U). Still,
using Proposition 3, we approximate these sets with some appropriate weighted £1-balls.
To this end we consider the sequences: c® = (¢), e = (&), d® = (d), d® = (d"),
k=12,..., m, and the sequencesc = (g), € = (§;), d = (di), d = (d;), defined asfollows:

9 =minfw® :1=12.34}, & =min{&¥ :1=1,2.3.4},
d® = max{W® : 1=1,2,3.4}, d% =max{W :1=12 3,4},
g=min{d¥:k=12..., m}, & =min{d¥:k=12....m},
d =max{c®:k=12..., m}, di=max{t®:k=12..., m}.
Applying Proposition 3, we get
B(c¥) =u®, B (@W) =00, B¥d®)cv®, V® c 4B (d¥)
and then
B%c) cV. UcmB%d). Vc4B'@®., Bi(d)cU.
Therefore, using the relations (6), (7), we get

@8  s(E©.B@) <s(V.2U). 40.0) <548 ©.8 @)
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Combining (28), (21) and using (7), we obtain
(29) 3(B%(0), B%(d)) < p(amB' (8). B(d)).

Now we are going to estimate the left side of this inequality from below. Namely, we
prove the following inequality

(30) 5(B%©). B()) > (0. &:7.1)-
By Proposition 1 we have
B(B%0), B(d)) = [{i : ¢ < di}|.

Taking into account the definitions of the sequencesc and d, we abtain

a(B%(@). %) = |U Uti - ¥ <y

k=11=1

Therefore the following estimate

m
(3D 5(8%0). 8°@) > Ui ¥ < o)
istrue.
By the definition of the sequencesd® and c®, k=1, 2,....m, we get
() K K) K)
(32) {i:d® <9 ={i: E%W'(J < 1rl1||<n4w|(’ b

In view of the fact that Wi = w{ the set in the right-hand side of (32) can be written in
the following form:

@) fid <) = (10w < Wi < wih).
I=1

To provetheestimate (30) we need to bring out thefollowing inclusions (k= 1, 2. . . ., m):
(34) {i W <wi} o {i x>

(35) {i W) <wM} o it N <ead

(36) {i:w® <w®} o {ita >nd.

(37) {i W] <w} o {i:a >nl.

(38) {i W <wi} o {i:a <t}

(39) {i:w®<w®r o {ira <t}

4>5

First we consider (34). By the definitions of the weights and the matrix (ai(p. d)) the
inequality in the left member of (34) is equivalent to the following inequality

Pm+1 + Po N,+1+ 0o
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By the assumption about the chain (23) and by (25), (26) we havethe following relations

Pm+1 + Po Po Ny+1+Qo Ny+1 _ Poy, _ Po Po

2’ 2 k=g 2 2, 2

From here and (40) we gain the inclusion (34).

The inclusion (37) can be obtained by similar argumentsin the case jx > 2, and it is
trivial inthe casejy < 2.

It remains only to check the inclusion (36), since the rest can be obtained similarly.
Theleft-side inequality in (36) is equivalent to the inequality

% <[P — Pme1) + Ai(Gmer — Q)] & -
Since b
(Pl — Pr2) *+ N (Gmes — G) > 5
we get (36).

It follows from (33), (34)—(39) that

{i:d® <c®o{ito <N <enrn <a <t

Combining this with (31), we obtain (30).
Now we begin to estimate the right side of the inequality (29) from above. The
application of Proposition 1 yields

B(4mB' (©). B' @) = |{i : & < 4mdi}|.
Then, due to the definitions of the sequences€ and d, we have

(41) B(4mB'©. B @) = } kLmJl I_L"]l{i L3 < ame0y],

Let ustakeany k,1 = 1.2, ..., m. Using the definitions of the sequences&X and d®,
we deduce that

(@2) {1+ 89 < ame0y ¢ (Y4i 7 < amill, &9 < ama0) 3 {i Y < amid)}.

p=1 '

Having regard to the expressions for W9, W} and the form of matrix &y, it is easy to
see that the inequality
K ~
(43) WY < 4mif).
is equivalent to the inequality
1

TCon &

1
a3 x
etz A 050 = AMCE ¢
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which, initsturn, is equivalent to the inequality

[(w ) 5 (% - s{)]a < In(4mC,/CC, 1)

By the choice of the chain (23) we have the following relations

fme1 1o r g N+ r N4 TIg 1
m+ _ l‘| 2. vyt _ S| < Vet ) >
2 4 2 2 2n’/k+2 nl/k+2

= Cl/k+2 .

Therefore the inequality (43) is stronger than the inequality

242 In(4MC7, 11)

Ai = Gpv2 — 5
Hence,
(44) {i WY < 4amil)} { Ko > Gpap — 22 '”g‘mcikﬂ) } .
Using similar arguments we get the inclusion

45 {i: "‘k’<4mw<'>}c[ X <G2 '1)}. ifj > 2.

Y

In the casej, < 2, theinequality \K/(k) < 4mvx/(') is equivalent to the inequality Ca. ose <
4mCa” . Hence we get

(46) [(rc — o) + Ai(%o — 891& < In(4mC?).
Sincery < roand s, < S, the inequality (46) holdsfor all i € N. Thustheinclusion
(47) (WY < ami)} c {i N <G}

holdsif j, =1, 2.
Let us define an increasing function v: [0, 2] — [0, 1] so that

10)=0. 9@ =1 1(§) =Ges. j=0.1....
and a decreasing function M: (0, 1] — (0, co) so that

M(G) > 202 In(4mClyy).  j=1.2;
M(G) > 2armax{G+2IN(4mCfy), 2G-1In(4mCY )}, j=3.4.....

Then from (44), (45) and (47) it follows that

{i: Wk)<4mM'BC{ i >V(Ger) — M;;”k)}

(8 < amify 15, <720+ T2
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Hence, bringing to mind (26), we obtain

(48) (i WY < ami®)) ¢ [ Xi > V(6 — M(;k)}
(49) {i: "‘k’<4nwv<'>1}c[ N <7 e )+N('X(;')}

It will be shown below that any constant satisfying the following condition:
(50) a > max {In(4mC?), sp1 }

can be taken as a constant « in (22). First we note that the following inclusions hold:

(51) {i -0 <amill} c {i:a >%}
(52) {i: v'\?(k)<4rmv(')2}c{ a>g}.
(53) (oW <ami®)) c {i: & < ot
(54) {i W <4mi} C {i:& <ot}

We prove only theinclusion (51), since the rest can be obtained analogously. Having
regard to the concrete form of the weights, we see that the inequality in the left-hand
side of (51) is equivalent to the inequality

(55) < In(4mC?) + [(1] — Fme2) + Ai(Smea — )14

Pk7k
2
Taking into account (23), (50) and the assumption & > 1 (see subsection 2.5), we get
that the inequality (55) remains true after replacing its right-hand side by 2a:;. Since,

by (23), px > 4, we get (51).
Using the notation: T; = max{rx,n } and T2 = min{t. t; }, after combining (51)—(54),
(48) and (49), we obtain

(56) m{. WY < ami®) WY < 4mi. } C D

where

M(6k) M(5I) Tl

Dy = {i:7(k) — <A< 1( )+ —= <a|<O(T2}

Taking into account the definitions of the sequenceﬁ\ﬁgk) , v“vg') , and of the matrix (éi (p. q))

we have

(57) {i W3 < 4’} C R,

where N

(59) Ro = {i: [(re— 1) + (s — s)l& < o
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Combining (41), (42), (56) and (57) we obtain
(59) 5(4ame! @.8'@) < |U UG R
Since, by (24), the left-hand side of the inequality in (58) is negative ask > |, we have
Ra=N ifk>1.
On the other hand, for k < I, by (24),
(ne—1) + (s — s > L.

Hence,
(60) Rog Cc{i:& <a} ifk<l

L et us prove now the inclusion
(61) Dk NR C Dy

Since this relation is trivial if either the left-hand side of it is empty or k = |, we can
assumethat k # | and

(62) Dxi N R 7 0.
For conveniencewe put

M(6 M
Dy =7(0k) — ﬁ B =7"e)+ ﬂ
Tk gl
_ M(6x) a1 M(er)

Dy =7(6x) T Ex=7""(a)+ T
wherek, | =1,2,...,m. Itisclear that
(63) Ay < AkJ. E|~k <E, kI = 12..., m.
By (62) we have

T

(64) Dy < Epg. ;1 < aTs.

Suppose, first, k > 1; then, by assumption (27), 6x > 6;. From the definitions of the
functionsy and M it follows that v(6)) < Y(6k), M(6) > M(éx). Hence,

M(6 M(6
D =701) — # <7(k) — g =Dy
1
From here and (63), (64) it follows that
T

A <A <A <Bx<E, a < =<al <at.
(64 (64

Therefore we get (61) if k > .
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Now supposek < I; then (62) means that (60), (64) and

(65) A <«
a

hold. Since, as suggested, A\ > 1 forall i € N, it follows from (65) that Ai > 1. Hence,
taking into account (63) and the definitions of the numbers T; and T, we have

1. i
Dk,|ﬂRk.|C{|:a§)\i<E|.g<ai gat.}.

On the other hand, by the definitions of v and 4, we have

(66) A <) <VGo) =G = n—13

Since the constant «, depends only on m, we can assume the number ng chosen so that

1 1
67 < =
() n3 — «o

Taking into account (66) and (67), we get (61) inthecase k < | aswell. Thustherelation
(61) is proved. Together with (59) it gives the relation
- m
(68) 5(4m8'©).8'(@) < |U D
k=

This completesthe proof of Lemma.
THEOREM 9. Let X = G(\, a), X = G(X, &), me N. If X ~ X, then piX &~ pX.

PROOF. Because of symmetry we need to prove only thefirst inequality (15). Let us
rewrite it, using (14), in the form:

(©9) {irovare Ur|<[(i:Ghare Jad|
k=1 k=1

where

(70) Qe = (9(60. v H(e)] * (%.atk]. k=1.2,....m.

We cover each rectangle Py by an appropriate couple of nonintersecting rectangles P[<
and PL’ (some of them may be empty) so as to apply Lemma 8 to this new system of
2m rectangles. For construction of above-mentioned rectangles we need to define the
increasing function W: (0, 1] — (1, +o0) so that

2M(€) i}
) T2 )

whereM andy areasin Lemmas, but considered with 2minstead of m. By £, we define
the number gy

(71 W) > max{
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We are acting by different waysin the following three cases:
(@ 1 = W(ok); (b) 1 < W(0k) < t; (€) tk < W(ok).
Setting the notation
’ ’ . ’ —1 1

T = max {9, 1} t = min{WE). b} g, = rlnax{sk. Y} gtﬁgrjvigg

we put
P = 0 in the case (c),
k™ (5k- Ek] X (Tl/( tk] otherwise

and
P = 0 in the case (a),
K71 (Bks & % (.t ] otherwise.

Applying Lemma 8, we get

N

m / // m ~/ ~ "
[SIGASEA R ISIGATES
k=1 k=1

with
B = 0. in the case (c),
k™ (Ak. Ek] X (%. (th] otherwise
and
~0 (0, in the case (a),
K71 (A B x (Z.at]  otherwise,
where
M(6 M , o Mg,
Be=760 — M g =iy« MO g gy MED,
Tk Tk Tk
From )\ > £ and (71) it follows that
. ~. x ~ 1 . ~' = 1 / '73
(72) fi: (&) eb}c {| (&) € (72aLIJ((5k)'Ek] x (a.atk]}.

Therequired function ¢ can be defined now so that (1) < & and

(1 1
p(6) < mm{ E“/(ﬁ)a m}
if 0 <& < &. Then, taking into account (72), we get
{i: (v.&) e P UP) c{i:(\.&) e Q.

where Qy isdefined in (70). Thus (69) is proved.
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6. Weak multirectangular invariant. We say that the systems of characteristics
(1) men and (18 men are weakly equivalent and write

(73) HO?) & (15 ?)

if in the definition of the equivalency (u0®) ~ (u3-D) (see Section 4) it is demanded
only that the inequalities (15), (16) are valid under the additional restrictions that

(74) exk=1 foreachk=1,2,....m.

With so defined equivalency the system

(Nﬁq)meN = (u?ﬁ'a))meN

isalinear topological invariant on the class of al spaces X = G(A, a) asit runs out from
the following

THEOREM 10. Let X = G(\, a) and X = G(}, &). Then X ~ X implies (73).

PrROOF. Let us analyze the proof of Lemma 8 to fit it to the considered particular
case. First we come to recognize that, under the assumption (74), one can escape the
most complicated considerationsin that proof, connected with the estimation of the right
side of (59) by the right side of (68). Therefore we can use the following, shorter than
(23), chain of norms’ numbers:

<P <Hh<n< << <P<<M<MmI--<n<---

The consequent simplification is that whenever in the proof of Lemma 8 any number r,
p,r', s, q, sisindexed by k we haveto changeitsindexto Lifk = 1.2, ..., mandto 2 if
k = m+ 1. By the assumptions (74), (8) we can omit everywhere the blocks, which are
responsiblefor estimates of A from above. Finally, we consider the following expression
for the constructions U, V and U, V:

m 3 _ - 1~ o m 3 ok
U=Apq V:conv(U ﬂ\/\/,k) U=cAg V:conv(U ﬂW|).
k=11=1 k=11=1
Therefore it is easy to check that both the function ¢ and the constant « can be defined
asindependent of m, what completes the proof.

7. Applications. In this section we sketch some applications of multirectangular
invariants to the spaces (1). More detailed consideration of such applicationswill be the
object of another paper.

7.1. Cartesian products. By analogy with [12] (see also [54, 19, 20, 11]), it can be
got the following complete isomorphic classification on the subclass of all spaces (1),
isomorphic to Cartesian products of spaces(3) and (4). Therewith, asin[12], the notation
X meansany subspaceof codimension sif s > 0in X or any spaceisomorphicto X x RS
if s<O.
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THEOREM 11. Let X = G(\.a) ~ E,.(c) x E. (d) and X = G(\. &) ~ E..(€) x E__(d).
Then the foIJowi ng statements are equivalent;
(i) X~X;
.. qd ~
(i) X~ X;
(iii) thereexistsaninteger s such that

En(© = (Ex®)?.  (End)® ~ E.();

(V) u3 ~ 3.

7.2. Tensor products. Each tensor product
X = Ex(©)@E(d),

is quasidiagonally isomorphic to aspaceY = G(\, a) if we put & := max {Cr(;. dg;) } and
A= %, wherei — (r(i), (i) is any bijection from N onto N x N. Since ., does not
depend on above-mentioned bijections, we can consider this invariant as defined for X,
so that

Him(q(5-€;7'- t) = M%((S.E;T.t)
U{(r S)'5k<L < e, Tk < Max {Crgiy, d -}<tk}
k=1 T max {Cr(i)-ds(i)} - r(i)» Usi) 5 =

Some necessary and sufficient conditions of the isomorphism of tensor products (2)
were consideredin [27] (see also [28, 26]) by the use of one-rectangular invariants. Here
we describe some classes of spaces (2) such that two-rectangular invariant is complete
on each class, but one-rectangular invariant fails to be complete on certain of them.

Let a sequencec = (¢) satisfy the condition: there exists an increasing sequencei,,

v € N such that
Ciwl TOO Ci,/+l T 00

Ci,+1 ' Ci,
asv — oo. Let E; bethe class of all spaces Xy = E(C)®E,,(d), whered = (dj) is any
non-decreasing tending to oo sequence which has no point in any interval (ci, +1.Gi,,,),
v eN.

PROPOSITION 12. Let Xq4, X belong to some class E. Then the following statements
are equivalent:
(i) X4 = X,
(i) d xd,
(iii) 15~ e,
PrROOF. Since (i) = (iii) follows from Theorem 9 and (ii) = (i) istrivial, we need to
prove (iii) = (ii) only.
Let (iii) be true. Then, in the framework of the equivalency definition, the estimate
(15), (16) hold for m = 2 with some function ¢ and constant «. For given € N we put
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5(v) = (61().62(1)), e(v) = (£2(V), £2()), 7(V) = (L (V). T2(1)), (V) = (V). t2(v)),

where
d Ci ,+11TC
81(v) = 82(v) = f e1(v) = # ea(v) = 1,
(o] + + G
n)=n@) =0, t@)=c, bEF)=—"2"Tr ; |

Taking o such that aty(vo) < ti(vo) and ¢ (1) > e1(vo), we obtain that two inequalities
(15), (16) imply the following equality

3 (50). €0 7). 1)) = 1 (50). €0 7). 1)

for v > vq. From here, after some elementary computations, we get

Me(ta(v)) ma(t2()) = me(ta(v) ) mg(t(1))

and consequently
(75) My(to(v)) = My(t2(). v > vo.

Applying the inequalities (15), (16) for m = 1 and with the following values of parame-
ters: e(v) == 1, 7(v) := ata(v — 1), 6(v) := e1(vo), and any t such that

(76) (V) <t< %

we get for v > v
(77) ma(t) — Mu(7(v)) < my(at) — my(r())
if t satisfies (76). It can easily be shown that (75) and (77) imply (ii).
The following example disclosed that one-rectangular invariant is not complete on
certain classes E..

EXAMPLE. Let (n,)g° be aseguence of integer such that ny = 0 and % T co. Put

C=U{leN ngs <l <mypsp}. D= UY{lEN 1 <1 <y}
v=0 »=0

We define now sequencesc, d, d asfollows: ¢ = (¢i) is asequencewhich is obtained by
enumeration of the set C; d = (d;) is asequencesuch that the set of its elements coincides
with D and any number ny,+1 occursin it not less that ny, .+, times, while each of others
hasto be solitary; finally, d= (a,-) issuch that a,— = dj+1. One can check that for m = 1 the
inequalities (15) and (16) hold with o = 2 and any function ¢: [0, 2] — [0, 1], satisfying
the following conditions:

A N2y+1 1
< -, 0.2]; .
QP()\) - 2 )\ < [ : ] (p(n21/+2) < n21/+2

By construction the sequences d and d are not weakly equivalent. Thus from Proposi-
tion 12 it follows that the spaces Xy and X are not isomorphic.
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PROBLEM 2. s the two-rectangular invariant complete on the class E = |J, E,
where c runsthe set of all ¢ considered in Example?

PrROBLEM 3. Does there exist m such that um is complete invariant on the class of
tensor products of kind (2)?

It isworth noting that for the classof all spacesof kind (1) any m-rectangular invariant
is not complete and, moreover, each m+ 1-rectangular invariant is properly stronger than
mrectangular one: to be certain of this it is sufficient to consider two spaces G(\. a),
G(). a) with (A, a) and (). &), constructed in [16] as proving Theorem 4 there.

7.3. Application of weak multirectangular invariant. In studiesof power Kothe spaces
of the first type ([16], Theorem 5) it was constructed two sequences (), a) and (5\, a).
Applying the same considerations to spaces (1), we obtain that the corresponding pair
of spaces X = G(\.a) and X = G(:\. a) possessesthe following properties:

@ pm ™ pp, MEN;

(0) (k) % (m)-
Thus the spaces X and X cannot be distinguished with any m-rectangle characteristic
although they are not quasidiagonally isomorphic (by Theorem 7); the question about
the isomorphism of these spaces (and the corresponding power Kdthe spaces from [16])
could not be solved in terms of the equivalence (u)X) ~ (ufnﬂ) until itsinvariance will be
proved. However the weak rectangular invariant, introduced in Section 6, is sufficient
to answer this question. Indeed, it is easy to check that for these spaces the relation
(1X) ~ (1) fails and, by Theorem 10, we have X 2 X. The same fact takes place
also for the above-mentioned power Kothe spaces. In fact, the weak multirectangular
invariant can be applied to some quite wide class of spaces (1) (as well as of power
K 6the spaces).

In conclusion et us note that there are some more intricate examples showing that the
week multirectangular invariant is not complete on the class (1).

7.4. Quasiequivalence of bases. After Dragilev’s result [22] on quasiequivalence of
bases in the space of all analytic functions in the unit disc it arose the problem on
quasiequivalenceof basesin locally convex spaces[36]. Referring to [24, 25, 33, 35, 36,
66, 1] for information about preceding results, we display only some results concerning
with the class of spaces(1).

PrROPOSITION 13. Let a space X = G(\, &) satisfy one of two conditions:
(i) X~ E(c) x E,(d),
- qd
(i) X~ X2
Then all absolute basesin X are pairwise quasiequivalent.

To prove this proposition we have to apply basically the same considerations as in
[57] for the case (i) or asin [66] for the second case. Therewith we use the relation
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(i) < (ii) from Theorem 11 in the first case and the following statement in the latter case

d ~ d ~
PROPOSITION 14. Let X = G(), a) and X ~ X2 Then X ~ X & X = X.

PROCOF. Theinclusion < istrivial. To prove the inverseinclusion one can check that

d
one-rectangular invariant is complete on the class of all spaces (1) such that X £ x
(basically in the same manner asin [27], Theorems 3.8, 3.9 and their proofs).

10.
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13.

14.
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16.

17.
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20.
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https://doi.org/10.4153/CJM

REFERENCES

. A. Aytuna, P. B. Djakov, A. P. Goncharov, T. Terzioglu and V. P. Zahariuta, Some open problems in
the theory of locally convex spaces. In: Linear Topological Spaces and Complex Analysis, |, METU-
TUBITAK, Ankara, 1994, 147-165.

. V. |. Baran, Quasiequivalence of absolute bases in Cartesian products of some Kothe spaces. In:
Qualitative and approximative methods for operator equations, Yaroslavl 2, 1977, 8-24 (in Russian).

, On quasiequivalence of absolute bases in Cartesian products of Kothe spaces. In: Actual
Problems of Mathematical Analysis, Rostov State University, 1978, 13-21 (in Russian).

. J. Bergh and J. Lofstrom, Interpolation spaces. Springer-Verlag, 1976.

. Cz. Bessaga, Some remarks on Dragilev's theorem. Studia Math. 31(1968), 307-318.

, Geometrical methods of the theory of Fréchet spaces. World Scientific, Singapore, New Jersey,
Hong Kong, 1986.

. Cz. Bessaga and A. Petczynski, Approximative dimension of linear topological spaces and some its

applications. In: Reports of Conference on Functional Analysis, Warsaw, 1960.

Cz. Bessaga, A. Petczynski and S. Rolewicz, Some properties of the space S. Collog. Math. 7(1959),

45-51.

, On diametral approximative dimension and linear homogeneity of F-spaces. Bull. Polish Acad.
Sci. 9(1961), 677-683.

P. A. Chalov, Triples of Hilbert spaces. Manuscript 1387-81 Dep., deposited at VINITI, 1981 (in
Russian).

P. A. Chalov, P. B. Djakov, T. Terzioglu and V. P. Zahariuta, On Cartesian products of locally convex
spaces. In: Linear Topological Spaces and Complex Analysis, II, METU-TUBITAK, Ankara, 1995,
9-33.

P. A. Chalov, P. B. Djakov and V. P. Zahariuta, Compound invariants and embeddings of Cartesian
products. preprint.

P. A. Chalov and V. P. Zahariuta, On linear topological invariants. Manuscript No. 5941-85, deposited
at VINITI, 1985 (in Russian).

, On linear topological invariants on some class of families of Hilbert spaces. Manuscript
N0.3862-B 86, deposited at VINITI, 1986 (in Russian).

, On uniqueness of unconditional basisin families of Banach spaces. Preprint Seriesin Pure and
Applied Math. 26, Marmara Research Center, 1995.

, On quasi-diagonal isomorphisms of generalized power spaces. In: Linear Topological Spaces
and Complex Analysis, I, METU-TUBITAK, Ankara, 1995, 35-44,

L. Croneand W. Robinson. Every nuclear Fréchet space with a regular basis has the quasi-equivalence
property. Studia Math. 52(1974), 203-207.

P. B. Djakov, A short proof of the theorem on quasi-eguivalence of regular bases. StudiaMath. 55(1975),
269-271.

P. B. Djakov, M. Yurdakul and V. P. Zahariuta, On Cartesian products of Kothe spaces. Bull. Polish
Acad. Sci. Math. 43(1995), 113-117.

, Isomorphic classification of Cartesian products of power series spaces. Michigan Math. J.
43(1996), 221-229.

P. B. Djakov and V. P. Zahariuta, On Dragilev-type power Kothe spaces. Studia Math. 120(1996),
219-234.

M. M. Dragilev, The canonical form of a basis in a space of analytic functions. Uspekhi Mat. Nauk
15(1960), 181188 (in Russian).

, Onregular basesin nuclear spaces. Mat. Sh. 68(1965), 153-173 (in Russian).

-1998-055-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-055-0

24.
25.
26.
27.
28.
29.
30.
31
32.

33.

35.

36.

37.
38.

39.

41.

42.

5&HRB

47,

49.
50.

51.

52.

53.

55.

56.

COMPOUND INVARIANTS 1161

, Bases in Kothe spaces. Rostov State University, Rostov-on-Don, 1983 (in Russian).

E. Dubinsky, The structure of nuclear Fréchet spaces. Lecture Notes in Math. 720, 1979.

A. Goncharov, T. Terzioglu and V. Zahariuta, On isomor phic classification of spacess®E. (a). In: Linear
Topological Spacesand Complex Analysis, |, METU-TUBITAK, Ankara, 1994, 14-24,

, On isomorphic classification of tensor products E.,(a)®E,,(b). Dissertationes Math., CCCL,
Warszawa, 1996, 1-27.

A. P. Goncharov and V. P. Zahariuta, Linear topological invariants for tensor products of power F- and
DF-spaces. Turkish J. Math. 19(1995), 90-101.

A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.
16(1955).

M. Kocatepeand V. Zahariuta, Kothe spaces model ed on spaces of C* functions. StudiaMath. 121(1996),
1-14.

A. N. Kolmogorov, On the linear dimension of vector topological spaces. Dokl. Acad. Nauk SSSR
120(1958), 239-241 (in Russian).

V. P. Kondakov, On quasi-equivalence of regular bases in Kothe spaces. Mat. Anal. i ego prilozheniya,
Rostov State University, Rostov-on-Don 5, 1974, 210-213 (in Russian).

, Problems of geometry of non-normable spaces. Rostov State University, Rostov-on-Don, 1983
(in Russian).

. S.G.Krein, Yu. |. Petunin and E. M. Semenov, Interpolation of linear operators. Nauka, Moscow, 1978

(in Russian).

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. Springer-Verlag, Berlin, Heidelberg,
New York, 1977.

B. S. Mityagin, Approximative dimension and basesin nuclear spaces. Russian Math. Surveys 16(1961),
59-127.

, Nuclear Riesz scales. Dokl. Akad. Nauk SSSR 137(1961), 519-522 (in Russian).

, ur I’ equivalence des bases unconditional dans les echelles de Hilbert. C. R. Acad. Sci. Paris
269(1969), 426-428.

, Equivalence of bases in Hilbert scales. Studia Math. 37(1970), 111-137 (in Russian).

, Non-Schwartzian power series spaces. Math. Z. 182(1983), 303-310.

J. Peetre, On interpolation functions. Acta Sci. Math. 27(1966), 167-171; |1, ibid. 29(1968), 91-92; 111
ibid. 30(1969), 235-239.

A. Petczynski, On the approximation of S-spaces by finite-dimensional spaces. Bull. Polish Acad. Sci.
5(1957), 879-881.

S. Rolewicz, On spaces of holomorphic functions. Studia Math. 21(1962), 135-160.

, Metric linear Spaces. Polish Scientific Publishers, Warsaw, 1984.

. T. Terzioglu, Smooth sequence spaces. In; Proceedings of Symp. on Funct. Anal., Silivri, 1974, 31-41.

, Unstable Kothe spaces and the functor Ext. Tr. J. Math. 10(1986), 227-231.
, Some invariants of Fréchet spaces and imbeddings of smooth sequence spaces. Advancesin the
Theory of Frechet Spaces, Kluwer Academic Publishers, Dordrecht-Boston-London, 1988, 305-324.

. V. M. Tikhomirov, Some problems of approximation theory. Moscow University, Moscow, 1976 (in

Russian).

D. Vogt, Charakterisierung der Unterréume von s. Math. Z. 155(1977), 109-117.

, Eine Charakterisierung der Potenzreihenrdume von endlichem Typ und ihre Folgerungen.
Manuscripta Math. 37(1982), 269-301.

, Fréchetraume, zwischen denen jede stetige lineare Abdildung beschrankt ist. J. Reine. Angew.
Math. 345(1983), 182—200.

, Power series spaces representations of nuclear Fréchet spaces. Trans. Amer. Math. Soc.
319(1990), 191-208.

M. J. Wagner, Quotientraume von stabilen Potenzreihenraumen unendlichen Typs. Manuscripta Math.
31(1980), 97-109.

M. Yurdakul and V. P. Zahariuta, Linear topological invariantsandisomor phic classification of Cartesian
products of locally convex spaces. Tr. J. Math. 19(1995), 37-47.

V. P. Zahariuta, On isomorphisms of Cartesian products of linear topological spaces. Funk. Anal. i ego
Pril. 4(1970), 87-88 (in Russian).

, Linear topological invariants and isomorphisms of spaces of analytic functions. Matem. analiz
i ego pril. 2, Rostov Univ., Rostov-on-Don, 1970, 3-13; ibid. 3, 1971, 176-180 (in Russian).

https://doi.org/10.4153/CJM-1998-055-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-055-0

1162 P.A.CHALOV, T. TERZIOGLU AND V. P ZAHARIUTA

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

, On the isomorphism of Cartesian products of locally convex spaces. Studia Math. 46(1973),
201-221.

, Some linear topological invariants and isomorphisms of tensor products of scale’'s centers. 1zv.
Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Tekhn. Nauk 4(1974), 62-64 (in Russian).

, On isomorphisms and quasi-equivalence of bases of power Kothe spaces. Soviet Math. Dokl.
16(1975), 411-414.

, On isomorphisms and quasi-equivalence of bases of power Kothe spaces. In: Proceedings of
7th winter school in Drogobych, CEMI, Moscow, 1976, 101-126 (in Russian).

, Generalized Mityagin's invariants and continuum pairwise nonisomorphic spaces of analytic
functions. Funktsional Anal. i Prilozhen 11(1977), 2430 (in Russian).

__, Synthetic diameters and linear topological invariants. School on Operator Theory in Function
Spaces, abstracts of reports, Minsk, 1978, 51-52 (in Russian).

, Compact operators and isomorphisms of Kothe spaces. In: Actual Problems of Mathematical
Analysis, Rostov State University, Rostov-on-Don, 1978, 6271 (in Russian).

, Linear topological invariants and their application to generalized power spaces. Rostov State
University, 1979 (in Russian).

—, Isomorphisms of spaces of analytic functions. Soviet Math. Dokl. 22(1980), 631-634.

, Linear topological invariants and their application to isomorphic classification of generalized
power spaces. Turkish J. Math. 20(1996), 237-289.

Department of Mechanics and Mathematics Sabanci University
Rostov Sate University Istanbul
Rostov-on-Don Turkey

Russia

e-mail: chalov@ns.math.rsu.ru

Current address:

Feza Girsey Ingtitute
Cengelkdy-1stanbul
Turkey

e-mail: zaha@mam.gov.tr

Permanent address:

Department of Mechanics and Mathematics
Rostov Sate University

Rostov-on-Don

Russia

https://doi.org/10.4153/CJM-1998-055-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-055-0

