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Abstract
In the literature, some stochastic orders have been extended to the higher orders in different scenarios. In this paper,
inspired by interesting properties of the excess wealth order and its wide range application particularly in comparing
the tail variability of risks, we consider the second-order excess wealth order and study its main properties. We
obtain two results characterizing the proposed order. We also investigate its relationship with other well-known
variability orders and criteria to compare risks. An application of the results in comparing the epoch times of two
nonhomogeneous poisson processes is also given.

1. Introduction

Stochastic orders are statistical tools for comparing between random variables in the sense of ageing,
variability and other different point of views. Variability orders are the ones that are used to compare the
dispersion of random variables. Among them, the excess wealth order also known as right spread order
[15,32] is such well-known variability order which is defined through the excess wealth (or the right
spread) function. Let 𝑋 and 𝑌 be two nonnegative random variable with their distribution functions 𝐹
and 𝐺 and survival functions �̄� = 1−𝐹 and �̄� = 1−𝐺, respectively. Besides, 𝐹−1 and 𝐺−1 denote their
corresponding inverse functions. The excess wealth function associated to 𝑋 is defined as

𝑊𝑋 (𝑝) = 𝐸 [(𝑋 − 𝐹−1(𝑝))+] =
∫ ∞

𝐹−1 (𝑝)
�̄� (𝑥) d𝑥 =

∫ 1

𝑝

(1 − 𝑢) d𝐹−1(𝑢)

=
∫ 1

𝑝

[𝐹−1(𝑢) − 𝐹−1(𝑝)] d𝑢, 𝑝 ∈ (0, 1),

where (𝑍)+ = max{0, 𝑍}, which is well defined when 𝑋 has finite mean.
A random variable 𝑋 is said to be smaller than the random variable𝑌 in excess wealth order (denoted

by 𝑋 ≤ew 𝑌 ) if
𝑊𝑋 (𝑝) ≤ 𝑊𝑌 (𝑝), for all 𝑝 ∈ (0, 1).

The reader can find more details and results about this order in Belzunce [7], Muller and Stoyan
[27], Li and Shaked [24], Ahmad and Kayid [1], Kochar et al. [22], Shaked and Shanthikumar [33]
and Belzunce et al. [10]. It is also mentioned that the excess wealth order has been considered as a
method of comparing risks in actuarial sciences [11,14,34,35] and a tool used in reliability theory
[19,21]. It also has an appealing role in the context of extreme risk analysis and auction theory [20] and
analysis of packet transmission processes [25]. In addition, Belzunce et al. [8] have classified the excess
wealth order within a family of dispersion-type variability orders. Ahmad et al. [2] have given a result
characterizing the increasing mean inactivity time class of life distributions by means of the excess
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wealth order. Bartoszewicz and Skolimowska [6] have studied the preservation of the excess wealth
order under exponential mixtures. Xie and Zhuang [36] have established several stochastic comparisons
of simple spacings of generalized order statistics in the excess wealth order. Some recent results on
comparison of order statistics and related statistics based on the excess wealth order can be find in
a review paper by Balakrishnan and Zhoa [4]. Furthermore, Fernández-Ponce et al. [16] proposed
and studied a multivariate generalization of the excess wealth function and used it for a multivariate
stochastic comparison. Ortega-Jiménez et al. [28] have used the excess wealth order in providing
sufficient conditions for comparing several distances between pairs of random variables.

In the context of reliability, when the burn-in test is used in order to eliminate early failures of the
produced units and is continued until the 100𝑝 percent of the units fail, the producer uses the excess
function to obtain the expected additional lifetime of the units. In actuarial literature, the excess wealth
function is the net premium for a stop-loss contract with fixed intention 𝑥 = 𝐹−1(𝑝). Sordo [35] has
pointed out that there is growing interest in the use of certain tail conditional characteristics as measures
of risk, which are informative about the magnitude and variability of the losses beyond the value-at-risk.
In addition, Sordo [35] has suggested that the tail variabilities of risks should be compared by means
of the excess wealth order. However, as it is the nature of such partial orderings, none of the random
variables 𝑋 and𝑌 may dose not dominate the other one at the sense of the excess wealth order. Regarding
the above suggestion, it is natural to ask whether the excess wealth function can still be used, at least in
another way, for comparing the tail variabilities of risks. This leads us to the notion of the higher order
of the excess wealth order.

In the context of stochastic orders, the higher orders of the stochastic orders arise in different situations
in theoretical and applied statistics (cf. [26,38] for the higher order (inverse) stochastic dominance
and Ramos and Sordo [30] for the second-order absolute Lorenz order). In this paper, inspired by
the suggestion in Sordo [35] about the usefulness of the excess wealth order in comparing the tail
variabilities of risks and investigating another measure for this purpose, and following the definition of
the second-order stochastic dominance order, we consider the second-order excess wealth order as the
following.

Definition 1.1. A random variable 𝑋 is said to be smaller than the random variable𝑌 in the second-order
excess wealth order (denoted by 𝑋 ≤sew 𝑌 ) if

∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 ≤
∫ 1

𝑝

𝑊𝑌 (𝑢) d𝑢, for all 𝑝 ∈ [0, 1] .

To have an interpretation of this order, one can see that
∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 =
∫ 1

𝑝

𝐸 [(𝑋 − 𝐹−1(𝑢))+] d𝑢 =
∫ ∞

𝐹−1 (𝑝)
𝐸 [(𝑋 − 𝑥)+] d𝐹 (𝑥)

= 𝐸 [(𝑋2 − 𝑋1)+𝐼 (𝑋1 > 𝐹
−1(𝑝))], (1.1)

where 𝑋1 and 𝑋2 are two independent copies of 𝑋 and 𝐼 (·) is the indicator function. That is, if 𝑋 is a
risk,

∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢measures the distance between two risks beyond the value 𝐹−1(𝑝) along the tail of the

population of 𝑋 . Therefore, the second-order excess wealth order can be considered as another measure
for comparing the riskiness of two probability distributions. The longer the distance, the more dangerous
the risk. In the context of reliability, measure (1.1) gives the positive difference between the lifetime
of the two units that have survived the burn-in period. The plots of the density function, 𝑊𝑋 (𝑝) and∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢, are shown in Figure 1 for two choices of the parameters of Weibull distribution. One can

see that the heavier right tail distribution has greater
∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢. The plot also shows that

∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢

reveals the difference in right tail of the distributions better than𝑊𝑋 (𝑝), specially for small 𝑝’s.
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Figure 1. Plots of the density
∫ 1
𝑝
𝑊 (𝑢) d𝑢 and𝑊 (𝑝) for Weibull distribution.

It is worth to mention that using the degree 𝑛 stop-loss function

𝜋𝑛𝑋 (𝑥) = 𝐸 [(𝑋 − 𝑥)𝑛+], 𝑛 = 0, 1, 2 . . . , 𝜋0
𝑋 (𝑥) = �̄� (𝑥),

Hurlimann [18] has considered a generalization of the usual right spread (or excess wealth) order and
called a random variable 𝑋 precedes 𝑌 in bi-degree (𝑛, 𝑚) right spread order, written 𝑋 ≤(𝑛,𝑚)

𝑅𝑆 , if
𝜋𝑛𝑋 ((𝜋𝑚𝑋 )−1(𝑝)) ≤ 𝜋𝑛𝑌 ((𝜋𝑚𝑌 )−1(𝑝)), for, 1, 2, 3 . . ., 𝑚 = 0, 1, 2, . . . , 𝑛−1, and all 𝑝 in support of (𝜋𝑚𝑋 )−1.
Regarding Theorem 2.1 in Hurlimann [17], one can see that for 𝑛 = 2 and 𝑚 = 0, the order 𝑋 ≤(2,0)

𝑅𝑆 is
equivalent that ∫ 1

𝑝

𝑊𝑋 (𝑢) d𝐹−1(𝑢) ≤
∫ 1

𝑝

𝑊𝑌 (𝑢) d𝐺−1(𝑢),

which is not the same as the above second-order excess wealth order.
We study the basic properties of this new stochastic order. The rest of the paper is organized as

follows. First, we recall some definitions in preliminaries section. In Section 3, we give some main
results for the order. Two characterization results are also given in this section. Section 4 is devoted
to the relationship between the proposed order and some well-known variability orders and the tail
variability measures of risks. An application of the proposed order is also given in this section. Finally,
some conclusions are given in Section 5.

2. Preliminaries

Before proceeding to give the main results of the paper, we overview some preliminary concepts of
ageing and stochastic orders. (For more details of these concepts, see, e.g., [23,33].)

Let 𝑋 and 𝑌 be two nonnegative random variables with their density functions 𝑓 and 𝑔, distribution
functions 𝐹 and 𝐺 and survival functions �̄� = 1 − 𝐹 and �̄� = 1 − 𝐺, respectively. Furthermore,
𝑚𝑋 (𝑡) =

∫ ∞
𝑡
�̄� (𝑥) d𝑥/�̄� (𝑡) denotes the mean residual life function corresponding to random variable

𝑋 (𝑚𝑌 is defined analogously). Throughout this paper, we assume that these functions all exist and
increasing (decreasing) means nondecreasing (nonincreasing).

Definition 2.1. (i) The random variable 𝑋 is said to be new better (worse) than used in expectation,
NBUE(NWUE), if 𝑚𝑋 (𝑡) ≤ (≥)𝑚𝑋 (0), for all 𝑡 > 0.
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(ii) The random variable 𝑋 is said to be increasing (decreasing) mean residual life (IMRL(DMRL)) if
𝑚𝑋 (𝑡) is increasing (decreasing) in 𝑡.

(iii) The random variable 𝑋 is said to be smaller than 𝑌 in the usual stochastic order (denoted by
𝑋 ≤st 𝑌 ) if �̄� (𝑥) ≤ �̄� (𝑥), for all 𝑥 > 0.

(iv) The random variable 𝑋 is said to be smaller than 𝑌 in the likelihood ratio ordering (denoted by
𝑋 ≤lr 𝑌 ) if 𝑔(𝑥)/ 𝑓 (𝑥) is increasing in 𝑥.

(v) The random variable 𝑋 is said to be smaller than 𝑌 in the DMRL order (denoted by 𝑋 ≤dmrl 𝑌 ) if
𝑚𝑌 (𝐺−1(𝑢))/𝑚𝑋 (𝐹−1 (𝑢)) is increasing in 𝑢 ∈ [0, 1].

(vi) The random variable 𝑋 is said to be smaller than 𝑌 in the NBUE order (denoted by 𝑋 ≤nbue 𝑌 ) if
𝑚𝑋 (𝐹−1(𝑢))/𝑚𝑌 (𝐺−1(𝑢)) ≤ 𝐸 [𝑋]/𝐸 [𝑌 ], for all 𝑢 ∈ [0, 1].

(vii) The random variable 𝑋 is said to be smaller than 𝑌 in the increasing convex order (denoted by
𝑋 ≤icx 𝑌 ) if 𝐸 [𝜙(𝑋)] ≤ 𝐸 [𝜙(𝑌 )], for all increasing convex functions 𝜙.

(viii) The random variable 𝑋 is said to be smaller than 𝑌 is Lorenz order (denoted by 𝑋 ≤L 𝑌 ) if
(1/𝐸 (𝑋))

∫ 𝑢

0 𝐹−1(𝑣) d𝑣 ≥ (1/𝐸 (𝑌 ))
∫ 𝑢

0 𝐺−1(𝑣) d𝑣, for all 𝑢 ∈ [0, 1].

The above stochastic orders are related as the following.

𝑋 ≤lr 𝑌 ⇒ 𝑋 ≤st 𝑌 ⇒ 𝑋 ≤icx 𝑌, 𝑋 ≤dmrl 𝑌 ⇒ 𝑋 ≤nbue 𝑌 ⇒ 𝑋 ≤L 𝑌

3. Some basic properties and characterizations

In this section, we investigate the main properties of the proposed order such as its characterization and
its closure properties. First, note that

∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 =
∫ 1

𝑝

∫ ∞

𝐹−1 (𝑢)
�̄� (𝑥) d𝑥 d𝑢 =

∫ ∞

𝐹−1 (𝑝)

∫ ∞

𝑦

�̄� (𝑥) d𝑥 d𝐹 (𝑦)

=
∫ ∞

𝐹−1 (𝑝)

∫ 𝑥

𝐹−1 (𝑝)
�̄� (𝑥) d𝐹 (𝑦) d𝑥

=
∫ ∞

𝐹−1 (𝑝)
�̄� (𝑥) [𝐹 (𝑥) − 𝑝] d𝑥 (3.1)

=
∫ 1

𝑝

(1 − 𝑢)(𝑢 − 𝑝) d𝐹−1(𝑢) (3.2)

=
∫ 1

𝑝

(2𝑢 − 𝑝 − 1)𝐹−1(𝑢) d𝑢, (3.3)

where the latter equation is obtained by using the integration by parts. Belzunce et al. [9] have provided
their measure for some statistical parametric models. For comparison purposes, Table 1 gives the∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢 for the same statistical models.
It is clear that the excess wealth order implies the second-order excess wealth order. However, the

following example shows that the reverse is not necessarily true.

Example 3.1. Let 𝑋 and𝑌 be distributed as Weibull and gamma with the density functions 𝑓 (𝑥) = 2𝑥𝑒−𝑥2

and 𝑔(𝑥) = 1√
2
𝑥−0.5𝑒−𝑥 , 𝑥 > 0, respectively. Figure 2 shows that 𝑋 ≤sew 𝑌 but the excess wealth order

dose not hold.

It is easy to see that in similar with the excess wealth order, the order ≤sew is also location independent.
That is, if 𝑋 ≤sew 𝑌 then 𝑋 + 𝑐 ≤sew 𝑌 and 𝑋 ≤sew 𝑌 + 𝑐 for all 𝑐 ∈ (−∞,∞). The following theorem
gives a characterization result for the second-order excess wealth order. For a proof, we will need the
following lemma.
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Table 1. The
∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢 for some distributions.

Distribution name 𝐹 (𝑥)
∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢

Uniform(𝑎, 𝑏) 𝐹 (𝑥) = 𝑥−𝑎
𝑏−𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏 1

6 (𝑏 − 𝑎)(1 − 𝑝)3

Potential(𝛼, 𝜆) 𝐹 (𝑥) = (𝜆𝑥)𝛼, 0 ≤ 𝑥 ≤ 1
𝜆

𝛼
𝜆(𝛼+1) (2𝛼+1) [(2𝛼 + 1)(𝑝1/𝛼+1 − 𝑝) − 𝑝1/𝛼+2 + 1]

Pareto(𝛼, 𝜆) 𝐹 (𝑥) = 1 − ( 𝜆𝑥 )𝛼, 𝑥 ≥ 𝜆 𝜆𝛼
(𝛼−1) (2𝛼−1) (1 − 𝑝)−1/𝛼+2

Exponential(𝜆) 𝐹 (𝑥) = 1 − 𝑒−𝜆𝑥 , 𝑥 ≥ 0 1
2𝜆 (1 − 𝑝)2

Figure 2. Plots of𝑊 (𝑝) and
∫ 1
𝑝
𝑊 (𝑢) d𝑢 for distributions given in Example 3.1.

Lemma 3.1 (Barlow and Proschan [5, p. 120. ).] Let 𝑊 (𝑥) be a measure, not necessarily positive, for
which

∫ ∞
𝑡

d𝑊 (𝑥) ≥ 0 for all 𝑡, and let ℎ(𝑥) ≥ 0 be increasing. Then

∫ ∞

𝑡

ℎ(𝑥) d𝑊 (𝑥) ≥ 0, for all 𝑡.

Theorem 3.1. 𝑋 ≤sew 𝑌 if and only if,

∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1(𝑢) ≤

∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐺−1(𝑢), (3.4)

for any increasing convex function 𝜙 : [0, 1] → R, such that 𝜙(0) = 0.

Proof. For the only if part, it is known that (cf. [12]), given an increasing and convex function 𝜙, then
𝜙 is continuous and there exists a positive and increasing function ℎ such that

𝜙(𝑏) − 𝜙(𝑎) =
∫ 𝑏

𝑎

ℎ(𝑣) d𝑣. (3.5)
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We have ∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐺−1(𝑢) −

∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1(𝑢)

=
∫ 1

0
(1 − 𝑢)𝜙(𝑢) [d𝐺−1(𝑢) − d𝐹−1(𝑢)]

=
∫ 1

0

∫ 𝑢

0
(1 − 𝑢)ℎ(𝑣) d𝑣 [d𝐺−1(𝑢) − d𝐹−1(𝑢)]

=
∫ 1

0

∫ 1

𝑣

(1 − 𝑢) [d𝐺−1(𝑢) − d𝐹−1(𝑢)]ℎ(𝑣) d𝑣 (3.6)

where the second equality comes from (3.5) and the assumption 𝜙(0) = 0. Under the hypothesis,

∫ 1

𝑝

∫ 1

𝑣

(1 − 𝑢) [d𝐺−1(𝑢) − d𝐹−1(𝑢)] d𝑣 =
∫ 1

𝑝

[𝑊𝑌 (𝑣) −𝑊𝑋 (𝑣)] d𝑣 ≥ 0.

The result now follows from Lemma 3.1.
For the if part, note that, for a fixed 𝑝 ∈ [0, 1], the function 𝜙(𝑢) = (𝑢 − 𝑝)+ = max{𝑢 − 𝑝, 0} is

increasing and convex such that 𝜙(0) = 0 and

∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1(𝑢) =

∫ 1

𝑝

(1 − 𝑢)(𝑢 − 𝑝) d𝐹−1(𝑢) =
∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢,

where, the last equality is just Eq. (3.2). Thus, the result easily follows. �

One may consider ∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1(𝑢) =

∫ ∞

0
�̄� (𝑥)𝜙(𝐹 (𝑥)) d𝑥,

as a generalized version of the cumulative residual entropy (CRE, introduced by Rao et al. [31]) which
gives the CRE by taking 𝜙(𝑢) = − ln(1 − 𝑢).

By using the integration by parts, one can also see that the inequality (3.4) is equivalent to that

∫ 1

0
𝑊𝑋 (𝑢) d𝜙(𝑢) ≤

∫ 1

0
𝑊𝑌 (𝑢) d𝜙(𝑢), or

∫ 1

0
𝜙(𝑢) d𝑊𝑋 (𝑢) ≥

∫ 1

0
𝜙(𝑢) d𝑊𝑌 (𝑢). (3.7)

Belzunce [7] gives a characterization of the excess wealth order in terms of the increasing convex
order. In general, neither of the orders ≤sew and ≤icx implies the other (let, for example, 𝑋 be distributed
as Weibull with the shape parameter equal to 4 and 0.9 and the scale parameter 1 and 𝑌 be distributed
as gamma with the shape parameter equal to 2.2 and 0.8 and scale parameter 1). However, the following
theorem also gives a characterization of the second-order excess wealth order in terms of the increasing
convex order.

Theorem 3.2. Let 𝑋1, 𝑋2 and 𝑌1, 𝑌2 be independent copies of continuous random variables 𝑋 and 𝑌 ,
respectively. Then, 𝑋 ≤sew 𝑌 if and only if

(𝑋2 − 𝑋1)+𝐼 (𝑋1 > 𝐹
−1(𝑝)) ≤icx (𝑌2 − 𝑌1)+𝐼 (𝑌1 > 𝐺

−1(𝑝)), for all 𝑝 ∈ [0, 1] . (3.8)

Proof. The only if part follows from Eq. (1.1) and the fact that the order ≤icx implies 𝐸 (𝑋) ≤ 𝐸 (𝑌 ).
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To prove the if part, one can observe that the survival function of X𝑝 = (𝑋2 − 𝑋1)+𝐼 (𝑋1 > 𝐹
−1(𝑝))

at 𝑥 ≥ 0 is given by

�̄�X𝑝
(𝑥) =

∫ ∞

𝐹−1 (𝑝)
�̄� (𝑥 + 𝑧) d𝐹 (𝑧) =

∫ 1

𝑝

�̄� (𝑥 + 𝐹−1(𝑢)) d𝑢.

The �̄�Y𝑝
(·), the survival function of Y𝑝 = (𝑌2 −𝑌1)+𝐼 (𝑌1 > 𝐺

−1(𝑝)) is given analogously. We observe
that for a fixed 𝑝, lim𝑡→∞

∫ ∞
𝑡

[�̄�Y𝑝
(𝑥) − �̄�X𝑝

(𝑥)] d𝑥 = 0 and under the hypothesis, 𝐸 [X𝑝] ≤ 𝐸 [Y𝑝].
This implies that the number of sign changes of �̄�X − �̄�Y is at most one. The result now follows from
Theorem 4.A.22 in Shaked and Shanthikumar [33, p. 194]. �

For any nonnegative random variable 𝑋 and for any 𝑎 > 0, we have∫ 1

𝑝

𝑊𝑎𝑋 (𝑢) d𝑢 = 𝑎
∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢,

from which, for any two nonnegative random variables 𝑋 and𝑌 we get that if 𝑋 ≤sew 𝑌 , then 𝑎𝑋 ≤sew 𝑎𝑌 .
The result for a general transform of 𝑋 is given in the following theorem.

Theorem 3.3. If 𝑋 ≤sew 𝑌 , then 𝜑(𝑋) ≤sew 𝜑(𝑌 ), for all increasing convex functions 𝜑.

Proof. First, note that, the survival and quantile functions of the random variable 𝜑(𝑋) are �̄� (𝜑−1(𝑥))
and 𝜑(𝐹−1(𝑝)), respectively. Using Eqs. (3.3) and (3.5), we have∫ 1

𝑝

𝑊𝜑 (𝑌 ) (𝑢) d𝑢 −
∫ 1

𝑝

𝑊𝜑 (𝑋 ) (𝑢) d𝑢 =
∫ 1

𝑝

(2𝑢 − 𝑝 − 1) [𝜑(𝐺−1(𝑢)) − 𝜑(𝐹−1(𝑢))] d𝑢

=
∫ 1

𝑝

∫ 𝐺−1 (𝑢)

𝐹−1 (𝑢)
(2𝑢 − 𝑝 − 1)ℎ(𝑣) d𝑣 d𝑢. (3.9)

Now, we obtain a lower bound for (3.9). First, assume that 𝐺−1(𝑢) > 𝐹−1(𝑢). Then, we get∫ 𝐺−1 (𝑢)

𝐹−1 (𝑢)
ℎ(𝑣) d𝑣 ≥ ℎ(𝐹−1(𝑢)) [𝐺−1(𝑢) − 𝐹−1(𝑢)] .

On the other hand, if 𝐺−1(𝑢) < 𝐹−1(𝑢), then∫ 𝐺−1 (𝑢)

𝐹−1 (𝑢)
ℎ(𝑣) d𝑣 = −

∫ 𝐹−1 (𝑢)

𝐺−1 (𝑢)
ℎ(𝑣) d𝑣 ≥ ℎ(𝐹−1(𝑢)) [𝐺−1(𝑢) − 𝐹−1(𝑢)] .

Therefore, we obtain∫ 1

𝑝

∫ 𝐺−1 (𝑢)

𝐹−1 (𝑢)
(2𝑢 − 𝑝 − 1)ℎ(𝑣) d𝑣 d𝑢 ≥

∫ 1

𝑝

(2𝑢 − 𝑝 − 1)ℎ(𝐹−1(𝑢)) [𝐺−1(𝑢) − 𝐹−1(𝑢)] d𝑢.

By the hypothesis,∫ 1

𝑝

(2𝑢 − 𝑝 − 1) [𝐺−1(𝑢) − 𝐹−1(𝑢)] d𝑢 =
∫ 1

𝑝

[𝑊𝑌 (𝑢) −𝑊𝑋 (𝑢)] d𝑢 ≥ 0.

Since ℎ(𝐹−1 (𝑢)) is a positive and increasing function, applying Lemma 3.1 now gives that∫ 1

𝑝

(2𝑢 − 𝑝 − 1)ℎ(𝐹−1(𝑢)) [𝐺−1(𝑢) − 𝐹−1(𝑢)] d𝑢 ≥ 0,

which completes the proof. �
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As an application in reliability theory, let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be the independent random lifetimes of
the components of a parallel system which are copies of 𝑋 . Consider another parallel systems with
𝑌1, 𝑌2, . . . , 𝑌𝑛 being its components lifetime which are independent and are copies of 𝑌 . The following
theorem shows that if 𝑋 ≤sew 𝑌 , then the lifetime of the systems are also ordered in the sense of ≤sew.

Theorem 3.4. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 be independent copies of 𝑋 and 𝑌 , respectively. If
𝑋 ≤sew 𝑌 , then

max{𝑋1, 𝑋2, . . . , 𝑋𝑛} ≤sew max{𝑌1, 𝑌2, . . . , 𝑌𝑛}.
Proof. It is sufficient to consider only the case 𝑛 = 2. Using Eq. (3.2), 𝑋 ≤sew 𝑌 is equivalent to∫ 1

√
𝑝

(1 − 𝑢)(𝑢 − √
𝑝) [d𝐺−1(𝑢) − d𝐹−1(𝑢)] ≥ 0, for all 𝑝 ∈ [0, 1] . (3.10)

On the other hand, the quantile functions of max{𝑋1, 𝑋2} and max{𝑌1, 𝑌2} are 𝐹−1(√𝑢) and 𝐺−1(√𝑢),
respectively. Hence, to prove max{𝑋1, 𝑋2} ≤sew max{𝑌1, 𝑌2}, we need to show that∫ 1

𝑝

(1 − 𝑢)(𝑢 − 𝑝) [d𝐺−1(√𝑢) − d𝐹−1(√𝑢)] ≥ 0, for all 𝑝 ∈ [0, 1],

or, equivalently, that∫ 1

√
𝑝

(1 + 𝑢)(𝑢 + √
𝑝)(1 − 𝑢)(𝑢 − √

𝑝) [d𝐺−1(𝑢) − d𝐹−1(𝑢)] ≥ 0, for all 𝑝 ∈ [0, 1],

which is obtained by using the inequality (3.10) and applying Lemma 3.1. �

Consider also two series systems with 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 being their components
lifetime which are independent and are copies of 𝑋 and 𝑌 , respectively. For these series sys-
tems, the following result gives the reversed preservation property of the order ≤sew; that is, if
min{𝑋1, 𝑋2, . . . , 𝑋𝑛} ≤sew min{𝑌1, 𝑌2, . . . , 𝑌𝑛}, then the lifetimes of components in two systems are
also ordered in the sense of ≤sew.

Theorem 3.5. For any integer 𝑛 > 0, if

min{𝑋1, 𝑋2, . . . , 𝑋𝑛} ≤sew min{𝑌1, 𝑌2, . . . , 𝑌𝑛},

then 𝑋 ≤sew 𝑌 .

Proof. The survival functions of min{𝑋1, 𝑋2, . . . , 𝑋𝑛} and min{𝑌1, 𝑌2, . . . , 𝑌𝑛} are given by �̄�(𝑛) (𝑥) =
�̄�𝑛 (𝑥) and �̄� (𝑛) (𝑥) = �̄�𝑛 (𝑥), respectively. Notice also that 𝐺−1

(𝑛)𝐹(𝑛) (𝑥) = 𝐺−1𝐹 (𝑥). It is not difficult to
see from Eq. (3.1) that 𝑋 ≤sew 𝑌 is equivalent to∫ ∞

𝑡

�̄� (𝑥) [�̄� (𝑡) − �̄� (𝑥)] d(𝐺−1𝐹 (𝑥) − 𝑥) ≥ 0, for all 𝑡 ≥ 0. (3.11)

Thus, the assumption is equivalent to, for all 𝑡 ≥ 0,∫ ∞

𝑡

�̄�𝑛 (𝑥) [�̄�𝑛 (𝑡) − �̄�𝑛 (𝑥)] d(𝐺−1𝐹 (𝑥) − 𝑥) ≥ 0.

Using the fact that

�̄�𝑛 (𝑡) − �̄�𝑛 (𝑥) = [�̄� (𝑡) − �̄� (𝑥)]
𝑛∑
𝑖=1

�̄�𝑛−𝑖 (𝑡)�̄�𝑖−1(𝑥),
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we obtain∫ ∞

𝑡

�̄� (𝑥) [�̄� (𝑡) − �̄� (𝑥)] d(𝐺−1𝐹 (𝑥) − 𝑥)

=
∫ ∞

𝑡

[�̄�𝑛−1 (𝑥)
𝑛∑
𝑖=1

�̄�𝑛−𝑖 (𝑡)�̄�𝑖−1(𝑥)]−1�̄�𝑛 (𝑥) [�̄�𝑛 (𝑡) − �̄�𝑛 (𝑥)] d(𝐺−1𝐹 (𝑥) − 𝑥) ≥ 0,

where, the inequality follows from Lemma 3.1 and the fact that

[
�̄�𝑛−1 (𝑥)

𝑛∑
𝑖=1

�̄�𝑛−𝑖 (𝑡)�̄�𝑖−1(𝑥)
]−1

,

is increasing in 𝑥. Thus, the proof is complete. �

Some other properties of the second excess wealth order in reliability theory can also be tracked.
For the residual random variable 𝑋𝑡 = 𝑋 − 𝑡 |𝑋 > 𝑡 with survival function �̄�𝑋𝑡

(𝑥) = �̄� (𝑥 + 𝑡)/�̄� (𝑡) and
corresponding inverse function 𝐹−1

𝑋𝑡
(𝑝) = 𝐹−1(𝑝�̄� (𝑡) + 𝐹 (𝑡)) − 𝑡, we get that

𝑊𝑋𝑡
(𝑝) = (1 − 𝑝)𝑚𝑋 (𝐹−1(𝑝�̄� (𝑡) + 𝐹 (𝑡))) = 𝑊𝑋 (𝑝�̄� (𝑡) + 𝐹 (𝑡))

�̄� (𝑡)

and ∫ 1

𝑝

𝑊𝑋𝑡
(𝑢) d𝑢 =

∫ 1

𝑝

(1 − 𝑢)𝑚𝑋 (𝐹−1(𝑢�̄� (𝑡) + 𝐹 (𝑡))) d𝑢

=
1

�̄�2 (𝑡)

∫ 1

𝑝�̄� (𝑡)+𝐹 (𝑡)
𝑊𝑋 (𝑢) d𝑢. (3.12)

Now, we have the following result which is a characterization of the DMRL(IMRL) and NBUE(NWUE)
distributions in terms of the second-order excess wealth order.

Theorem 3.6.

(a) 𝑋 ∈ DMRL(IMRL) if and only if 𝑋𝑡 ≥sew (≤sew)𝑋𝑡′ , for all 𝑡 < 𝑡 ′.
(b) 𝑋 ∈ DMRL(IMRL) if and only if 𝑋𝑡 ≥sew (≤sew)𝑋 , for all 𝑡 > 0.
(c) 𝑋 ∈ NBUE(NWUE) if and only if 𝑋 ≤sew (≥sew)𝑌 , where 𝑌 is an exponentially distributed

random variable with mean 𝐸 (𝑋).

Proof. We give proof of parts (b) and (c). For part (b), regarding Eq. (3.12), one can see that 𝑋𝑡 ≥sew
(≤sew)𝑋 if and only if

∫ 1

𝑝

𝑊𝑋𝑡
(𝑢) d𝑢 =

∫ 1

𝑝

(1 − 𝑢)𝑚𝑋 (𝐹−1(𝑢�̄� (𝑡) + 𝐹 (𝑡))) d𝑢

≤ (≥)
∫ 1

𝑝

(1 − 𝑢)𝑚𝑋 (𝐹−1(𝑢)) d𝑢 =
∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢, for all 𝑝 ∈ [0, 1],

which holds if and only (the only if parts holds using the integral comparison theorem)𝑚𝑋 (𝐹−1(𝑢�̄� (𝑡) +
𝐹 (𝑡))) ≤ (≥)𝑚𝑋 (𝐹−1 (𝑢)) for all 𝑢 ∈ [0, 1] or equivalently 𝑚𝑋 (𝐹−1(𝑢2)) ≤ (≥)𝑚𝑋 (𝐹−1(𝑢1)) for all
𝑢1 < 𝑢2. This implies that𝑚𝑋 (𝐹−1 (𝑢)) or𝑚𝑋 (𝑢) is decreasing (increasing). That is 𝑋 ∈ DMRL(IMRL).
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To prove part (c), we see from Table 1 that if 𝑌 is distributed as exponential with mean 𝐸 (𝑋), then∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢 = (𝐸 (𝑋)(1 − 𝑝)2)/2. On the other hand, if

∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 =
∫ 1

𝑝

(1 − 𝑢)𝑚𝑋 (𝐹−1(𝑢)) d𝑢 ≤ (≥) 𝐸 (𝑋)(1 − 𝑝)2

2
, for all 𝑝 ∈ [0, 1],

then ∫ 1

𝑝

(1 − 𝑢) [𝑚𝑋 (𝐹−1(𝑢)) − 𝐸 (𝑋)] d𝑢 ≤ (≥)0,

which follows that 𝑚𝑋 (𝑥) ≤ (≥)𝐸 (𝑋) for all 𝑥 ≥ 0. This means that 𝑋 ∈ 𝑁𝐵𝑈𝐸 (𝑁𝑊𝑈𝐸) if and only
if 𝑋 ≤sew (≥sew)𝑌 , where 𝑌 is an exponentially distributed random variable with mean 𝐸 (𝑋). �

We end this section by the following result which shows that the second-order excess wealth order is
preserved under convergence.

Theorem 3.7. Let {𝑋𝑛}𝑛 and {𝑌𝑛}𝑛 be two sequences of random variables such that 𝑋𝑛 converges in
distribution to a random variable 𝑋 and 𝑌𝑛 to a random variable 𝑌 , where 𝑋 and 𝑌 are continuous
random variables with interval supports. If 𝑋𝑛 ≤sew 𝑌𝑛 for all 𝑛 ∈ 𝑁 , where 𝐸 [(𝑋𝑛)+] → 𝐸 [(𝑋)+] and
𝐸 [(𝑌𝑛)+] → 𝐸 [(𝑌 )+] then 𝑋 ≤sew 𝑌 .

Proof. Under the given conditions, Theorem 2.21 in Belzunce et al. [9] provides that 𝑊𝑋𝑛
(𝑢) and

𝑊𝑌𝑛 (𝑢) converge pointwise to 𝑊𝑋 (𝑢) and 𝑊𝑌 (𝑢), respectively, for all 𝑢 ∈ (0, 1). This along with
Theorem 15.1(iii) in Billingsley [13, p. 201] imply that

∫ 1
𝑝
𝑊𝑋𝑛

(𝑢) d𝑢 and
∫ 1
𝑝
𝑊𝑌𝑛 (𝑢) d𝑢 converge to∫ 1

𝑝
𝑊𝑋 (𝑢) d𝑢 and

∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢, respectively. The result now follows from the assumption that 𝑋𝑛 ≤sew 𝑌𝑛

for all 𝑛 ∈ 𝑁 . �

4. Relationship with other stochastic orders

It is well-known that most of the classical variability orders agree with the comparison of variances
and Gini’s mean differences. This means that if, for example, 𝑋 ≤ew 𝑌 , then Var(𝑋) ≤ Var(𝑌 ) and
GMD(𝑋) ≤ GMD(𝑌 ) (cf. [33, p. 166]), where GMD(𝑋) = 𝐸 |𝑋1 − 𝑋2 | (and analogously for GMD(𝑌 ))
is the Gini mean difference corresponding to 𝑋 with 𝑋1 and 𝑋2 being two independent copies of 𝑋 . The
Gini mean difference is a dispersion measure that shares many properties with the variance (cf. [37]).
The order ≤sew is also in agreement with comparison among the Gini mean differences. To see this, let
𝜙(𝑥) = 𝑥 which is increasing and convex with 𝜙(0) = 0. Therefore, it follows from (3.4) that if 𝑋 ≤sew 𝑌
then

GMD(𝑋) = 2
∫ ∞

0
�̄� (𝑥)𝐹 (𝑥) d𝑥 ≤ 2

∫ ∞

0
�̄� (𝑥)𝐺 (𝑥) d𝑥 = GMD(𝑌 ).

The following theorem shows that the ordered Gini mean differences along with the order ≤dmrl implies
the second-order excess wealth order.

Theorem 4.1. If 𝑋 ≤dmrl 𝑌 and GMD(𝑋) ≤ GMD(𝑌 ), then 𝑋 ≤sew 𝑌 .

Proof. First, we observed that ∫ 1

0
𝑊𝑋 (𝑢) d𝑢 =

1
2

GMD(𝑋), (4.1)
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In addition, according to the definition (cf. [33, p. 221]), 𝑋 ≤dmrl 𝑌 is equivalent to that
𝑚𝑋 (𝐹−1(𝑢))/𝑚𝑌 (𝐺−1(𝑢)) = 𝑊𝑌 (𝑢)/𝑊𝑋 (𝑢) is increasing in 𝑢 ∈ [0, 1] which is the same as the
condition

1
GMD(𝑌 )𝑊𝑌 (𝑢)

1
GMD(𝑋 )𝑊𝑋 (𝑢)

is incrasing in 𝑢 ∈ [0, 1] .

Note also that (𝑊𝑋 (𝑢)/GMD(𝑋))(𝑊𝑌 (𝑢)/GMD(𝑌 )) is a density function corresponding to a random
variable, say, 𝑍𝑋 (𝑍𝑌 ). Then, the above condition is equivalent to that 𝑍𝑋 ≤lr 𝑍𝑌 which implies that
𝑍𝑋 ≤st 𝑍𝑌 . Now, this along with the hypothesis GMD(𝑋) ≤ GMD(𝑌 ) gives that

∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢

GMD(𝑋) ≤
∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢

GMD(𝑌 ) ≤
∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢

GMD(𝑋) ,

which implies that 𝑋 ≤sew 𝑌 . �

One can also easily show that if 𝑋 ≤nbue 𝑌 and 𝐸 (𝑋) ≤ 𝐸 (𝑌 ), then 𝑋 ≤sew 𝑌 .

Remark 4.1. Asadi and Zohrevand [3] have defined the dynamic cumulative entropy by E(𝑋, 𝑡) =
−
∫ ∞

0 �̄�𝑡 (𝑥) log(�̄�𝑡 (𝑥)) d𝑥,where �̄�𝑡 (𝑥) = �̄� (𝑥 + 𝑡))/�̄� (𝑡), 𝑥, 𝑡 ≥ 0 is the survival function of the residual
lifetime 𝑋𝑡 = 𝑋 − 𝑡 |𝑋 > 𝑡 corresponding to random variable 𝑋 . It is clear that E(𝑋, 𝑡) is in the form
(3.4) with 𝜙(𝑢) = − log(1 − 𝑢). This follows that if 𝑋 ≤sew 𝑌 , then E(𝑋, 𝑡) ≤ E(𝑌, 𝑡) for all 𝑡 ≥ 0.

Remark 4.2. Rajesh and Sunoj [29] have called 𝑋 is less uncertainty in cumulative Tsallis entropy than
𝑌 (denoted by 𝑋 ≤LCTU 𝑌 ) if 𝜁𝑋𝛼 (𝑡) ≤ 𝜁𝑌𝛼 (𝑡), for all 𝑡 ≥ 0, where 𝜁𝑋𝛼 (𝑡) = (1/(𝛼 − 1))

∫ ∞
0 �̄�𝑡 (𝑥) [1 −

�̄�𝛼−1
𝑡 (𝑥)] d𝑥, 𝛼 > 0, 𝛼 ≠ 1 is the cumulative Tsallis entropy corresponding to random variable 𝑋 (𝜁𝑌𝛼 (𝑡)

is defined analogously). It is readily seen that 𝜁𝑋𝛼 (𝑡) is in the form (3.4) with 𝜙(𝑢) = 1 − (1 − 𝑢)𝛼−1,
1 < 𝛼 ≤ 2. Thus, if 𝑋 ≤sew 𝑌 , then 𝑋 ≤LCTU 𝑌 , for 1 < 𝛼 ≤ 2.

It is not difficult to see that the excess wealth function can be expressed in terms of the function

𝐴𝑋 (𝑝) =
∫ 𝑝

0
[𝐹−1(𝑢) − 𝐸 (𝑋)] d𝑢, 0 ≤ 𝑝 ≤ 1,

as

𝑊𝑋 (𝑝) = −𝐴𝑋 (𝑝) − (1 − 𝑝)𝐴′
𝑋 (𝑝), (4.2)

where 𝐴′
𝑋 (𝑝) = (d/d𝑝)𝐴𝑋 (𝑝). 𝐴𝑋 (𝑝) is called the absolute Lorenz curve (cf. [30]) and takes the values

𝐴𝑋 (0) = 𝐴𝑋 (1) = 0 which follow that

𝐴𝑋 (𝑝) = −
∫ 1

𝑝

[𝐹−1(𝑢) − 𝐸 (𝑋)] d𝑢, 0 ≤ 𝑝 ≤ 1.

Now, we have the following theorem which shows that the dilation order implies the second-order excess
wealth order.

Theorem 4.2. If 𝑋 ≤dil 𝑌 , then 𝑋 ≤sew 𝑌 .
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Proof. Using Eq. (4.2) and the integration by parts, we get that∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 = −
∫ 1

𝑝

𝐴𝑋 (𝑢) d𝑢 −
∫ 1

𝑝

(1 − 𝑢) d𝐴𝑋 (𝑢)

= 𝑝𝐴𝑋 (𝑝) +
∫ 1

𝑝

𝑢 d𝐴𝑋 (𝑢) −
∫ 1

𝑝

(1 − 𝑢) d𝐴𝑋 (𝑢)

= −𝑝
∫ 1

𝑝

d𝐴𝑋 (𝑢) +
∫ 1

𝑝

𝑢 d𝐴𝑋 (𝑢) −
∫ 1

𝑝

(1 − 𝑢) d𝐴𝑋 (𝑢)

=
∫ 1

𝑝

[2𝑢 − 1 − 𝑝] d𝐴𝑋 (𝑢)

=
∫ 1

0
[2𝑢 − 1 − 𝑝] 𝐼 (𝑢 ≥ 𝑝) d𝐴𝑋 (𝑢). (4.3)

This along with Theorem 2.2 in Ramos and Sordo [30] now follow the result. �

The following example shows that the order ≤sew dose not necessarily imply 𝑋 ≤dil 𝑌 .

Example 4.1. Let 𝑋 and 𝑌 be random variables with distribution functions 𝐹 (𝑥) = 𝑥/3 and 𝐺 (𝑥) =√
𝑥/3, 0 < 𝑥 < 3, respectively. Then, we have 𝐴𝑋 (𝑝) = 3

2 (𝑝2 − 𝑝), 𝐴𝑌 (𝑝) = 𝑝3 − 𝑝, 0 ≤ 𝑝 ≤ 1. Also,
∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 = 0.5(1 − 3𝑝 − 3𝑝2 − 𝑝3),
∫ 1

𝑝

𝑊𝑌 (𝑢) d𝑢 = 0.5 − 𝑝 + 𝑝3 − 0.5𝑝4.

It is not difficult to verify that 𝐴𝑋 (𝑝) < 𝐴𝑌 (𝑝) for 𝑝 < 0.5 and 𝐴𝑋 (𝑝) > 𝐴𝑌 (𝑝) for 𝑝 > 0.5 which by
Theorem 2.2 in Ramos and Sordo [30] means that the dilation order dose not hold. Though,∫ 1

𝑝

𝑊𝑌 (𝑢) d𝑢 −
∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 = 0.5(𝑝(1 − 𝑝3) + 3𝑝3 + 3𝑝2) ≥ 0, for all 𝑝 ∈ [0, 1] .

One can see that Eq. (4.2) is a first-order differential equation in 𝐴𝑋 (𝑝) whose solution can be found
as

𝐴𝑋 (𝑝) = −(1 − 𝑝)
∫ 𝑝

0

𝑊𝑋 (𝑢)
(1 − 𝑢)2 d𝑢. (4.4)

At the case where the right endpoint of the support of 𝑋 , 𝑢𝑋 = 𝐹−1(1) = inf{𝑥 : 𝐹 (𝑥) = 1} is finite, it
can also be found that

𝐴𝑋 (𝑝) = (1 − 𝑝)
∫ 1

𝑝

𝑊𝑋 (𝑢)
(1 − 𝑢)2 d𝑢 + (1 − 𝑝) [𝐸 (𝑋) − 𝑢𝑋 ] . (4.5)

As we already mentioned, the orders ≤sew and ≤icx do not imply each other. However, using the above
equation, we are able to show that the order ≤sew implies the ≤icx for distributions with finite supports.

Theorem 4.3. Let 𝑋 and 𝑌 be two nonnegative random variables with finite corresponding right
endpoint of the support 𝑢𝑋 and 𝑢𝑌 , respectively, such that 𝑢𝑌 ≥ 𝑢𝑋 . If 𝑋 ≥sew 𝑌 , then 𝑋 ≤icx 𝑌 .

Proof. Under the hypothesise, by Eq. (4.5) and applying Lemma 3.1, we get that for all 𝑝 ∈ [0, 1]

𝐴𝑋 (𝑝) − 𝐴𝑌 (𝑝) = (1 − 𝑝)
∫ 1

𝑝

[𝑊𝑋 (𝑢) −𝑊𝑌 (𝑢)]
(1 − 𝑢)2 d𝑢

+ (1 − 𝑝) [𝐸 (𝑋) − 𝐸 (𝑌 ) + 𝑢𝑌 − 𝑢𝑋 ]
≥ (1 − 𝑝) [𝐸 (𝑋) − 𝐸 (𝑌 )],

https://doi.org/10.1017/S0269964821000516 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000516


Probability in the Engineering and Informational Sciences 147

Figure 3. Plots of
∫ 1
𝑝
𝑊 (𝑢) d𝑢 and

∫ 1
𝑡
�̄� (𝑥) d𝑥 for distributions given in Example 4.2.

or equivalently

−
∫ 1

𝑝

[𝐹−1(𝑢) − 𝐸 (𝑋)] d𝑢 +
∫ 1

𝑝

[𝐺−1(𝑢) − 𝐸 (𝑌 )] d𝑢 ≥ (1 − 𝑝) [𝐸 (𝑋) − 𝐸 (𝑌 )] .

That is, ∫ 1

𝑝

𝐹−1(𝑢) d𝑢 ≤
∫ 1

𝑝

𝐺−1(𝑢) d𝑢, for all 𝑝 ∈ [0, 1],

which is equivalent to 𝑋 ≤icx 𝑌 (see Theorem 4.A.3 in [33, p. 183]). �

Example 4.2. Let 𝑋 and 𝑌 be distributed as Beta(1, 3) and Beta(3, 1) with distribution functions
𝐹 (𝑥) = 1 − (1 − 𝑥)3 and 𝐺 (𝑥) = 𝑥3, 0 < 𝑥 < 1, respectively. Then, we have

∫ 1

𝑡

�̄� (𝑥) d𝑥 =
(1 − 𝑡)4

4
,

∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 =
3
4
(1 + 𝑝)(1 − 𝑝)4/3 − 2

∫ 1

𝑝

𝑢(1 − 𝑢)1/3 d𝑢,
∫ 1

𝑡

�̄� (𝑥) d𝑥 =
1 − 𝑡4

4
,

∫ 1

𝑝

𝑊𝑌 (𝑢) d𝑢 =
6
7
(1 − 𝑝7/3) − 3

4
(1 + 𝑝)(1 − 𝑝4/3).

Figure 3 depicts that 𝑋 ≥sew 𝑌 and 𝑋 ≤icx 𝑌 .

For 𝑝 ∈ [0, 1], denote recursively 𝐹−1
1 (𝑝) = 𝐹−1(𝑝), and 𝐹−1

𝑛 (𝑝) =
∫ 1
𝑝
𝐹−1
𝑛−1 (𝑢) d𝑢, for 𝑛 = 2, 3, . . .

(and analogously for 𝐺−1
𝑛 ). For any positive integer 𝑚 and all 𝑝 ∈ [0, 1], if 𝐹−1

𝑚 (𝑝) ≤ 𝐺−1
𝑚 (𝑝), then it

is denoted 𝑋 ≤−1
𝑚 𝑌 (see [33, p. 213]). The result of the next theorem is similar with that in the above

theorem between the orders ≤sew and ≤−1
3 .

Theorem 4.4. Let 𝑋 and 𝑌 be two nonnegative random variables with finite corresponding right
endpoint of the support 𝑢𝑋 and 𝑢𝑌 , respectively, such that 𝑢𝑌 ≥ 𝑢𝑋 . If 𝑋 ≥sew 𝑌 , then 𝑋 ≤−1

3 𝑌 .
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Proof. From Eqs. (4.4) and (4.5), we have∫ 1

𝑝

𝐴𝑋 (𝑢) d𝑢 = −
∫ 1

𝑝

(1 − 𝑢)
∫ 𝑢

0

𝑊𝑋 (𝑣)
(1 − 𝑣)2 d𝑣 d𝑢

= − (1 − 𝑝)2

2

∫ 𝑝

0

𝑊𝑋 (𝑣)
(1 − 𝑣)2 d𝑣 − 1

2

∫ 1

𝑝

𝑊𝑋 (𝑣) d𝑣

=
(1 − 𝑝)

2
𝐴𝑋 (𝑝) − 1

2

∫ 1

𝑝

𝑊𝑋 (𝑣) d𝑣

=
(1 − 𝑝)2

2

∫ 1

𝑝

𝑊𝑋 (𝑣)
(1 − 𝑣)2 d𝑣 + (1 − 𝑝)2

2
[𝐸 (𝑋) − 𝑢𝑋 ] − 1

2

∫ 1

𝑝

𝑊𝑋 (𝑣) d𝑣,

=
∫ 1

𝑝

[ (1 − 𝑝)2

2(1 − 𝑣)2 − 1
2

]
𝑊𝑋 (𝑣) d𝑣 + (1 − 𝑝)2

2
[𝐸 (𝑋) − 𝑢𝑋 ] . (4.6)

where the second equality follows from integration by parts. Now, using the hypothesis and applying
Lemma 3.1, we see that for all 𝑝 ∈ [0, 1]∫ 1

𝑝

𝐴𝑋 (𝑢) d𝑢 −
∫ 1

𝑝

𝐴𝑌 (𝑢) d𝑢 =
∫ 1

𝑝

[ (1 − 𝑝)2

2(1 − 𝑣)2 − 1
2

]
[𝑊𝑋 (𝑣) −𝑊𝑌 (𝑣)] d𝑣

+ (1 − 𝑝)2

2
[𝐸 (𝑋) − 𝐸 (𝑌 ) + 𝑢𝑌 − 𝑢𝑋 ]

≥ (1 − 𝑝)2

2
[𝐸 (𝑋) − 𝐸 (𝑌 )],

or equivalently ∫ 1

𝑝

∫ 1

𝑢

𝐹−1(𝑣) d𝑣 d𝑢 ≤
∫ 1

𝑝

∫ 1

𝑢

𝐺−1(𝑣) d𝑣 d𝑢,

which completes the proof. �

As a corollary, the above theorem along with Theorem 4.A.72 in Shaked and Shanthikumar [33, p.
213] follow that if 𝑋 ≥sew 𝑌 and 𝑢𝑌 ≥ 𝑢𝑋 , then

𝐸 [max{𝑋1, 𝑋2, . . . , 𝑋𝑘 }] ≤ 𝐸 [max{𝑌1, 𝑌2, . . . , 𝑌𝑘 }], 𝑘 ≥ 2,

where 𝑋 ′
𝑖 𝑠[𝑌 ′

𝑖 𝑠] are independent copies of 𝑋 [𝑌 ].
It is known that [33, p. 165] 𝑋 ≤ew 𝑌 if and only if,

𝐺−1
2 (𝑝) − 𝐹−1

2 (𝑝)
(1 − 𝑝) =

1
(1 − 𝑝)

∫ 1

𝑝

[𝐺−1(𝑢) − 𝐹−1(𝑢)] d𝑢 is increasing in 𝑝 ∈ (0, 1). (4.7)

In the next theorem, we give a similar equivalence for the second-order excess wealth order.

Theorem 4.5. 𝑋 ≤ew 𝑌 if and only if,

𝐺−1
3 (𝑝) − 𝐹−1

3 (𝑝)
(1 − 𝑝)2 =

1
(1 − 𝑝)2

∫ 1

𝑝

∫ 1

𝑢

[𝐺−1(𝑣) − 𝐹−1(𝑣)] d𝑣d𝑢 is increasing in 𝑝 ∈ [0, 1] . (4.8)

Proof. First, we have from Eq. (4.2) that∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 = (1 − 𝑝)𝐴𝑋 (𝑝) − 2
∫ 1

𝑝

𝐴𝑋 (𝑢) d𝑢,

https://doi.org/10.1017/S0269964821000516 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000516


Probability in the Engineering and Informational Sciences 149

which implies that 𝑋 ≤sew 𝑌 if and only if, for all 𝑝 ∈ [0, 1]

2
∫ 1

𝑝

[𝐴𝑋 (𝑢) − 𝐴𝑌 (𝑢)] d𝑢 ≥ (1 − 𝑝) [𝐴𝑋 (𝑝) − 𝐴𝑌 (𝑝)], (4.9)

or, equivalently,

1
(1 − 𝑝)2

∫ 1

𝑝

[𝐴𝑋 (𝑢) − 𝐴𝑌 (𝑢)] d𝑢 is increasing in 𝑝 ∈ [0, 1] . (4.10)

On the other hand, one can write∫ 1

𝑝

[𝐴𝑋 (𝑢) − 𝐴𝑌 (𝑢)] d𝑢 =
∫ 1

𝑝

∫ 1

𝑢

[𝐺−1(𝑣) − 𝐹−1(𝑣)] d𝑣 d𝑢

+ (1 − 𝑝)2

2
[𝐸 (𝑋) − 𝐸 (𝑌 )] .

Therefore, the condition (4.10) is equivalent to that

1
(1 − 𝑝)2

∫ 1

𝑝

∫ 1

𝑢

[𝐺−1(𝑣) − 𝐹−1(𝑣)] d𝑣 d𝑢 is increasing in 𝑝 ∈ [0, 1] .

This completes the proof. �

Under Definition 3.1 in Ramos and Sordo [30], 𝑋 is said to be smaller than 𝑌 in the second-order
absolute Lorenz order if

∫ 1
𝑝
𝐴𝑋 (𝑢) d𝑢 ≥

∫ 1
𝑝
𝐴𝑌 (𝑢) d𝑢, for all 𝑝 ∈ [0, 1]. The following theorem shows

that the second-order absolute Lorenz order implies the second excess wealth order.

Theorem 4.6. If 𝑋 ≤sew 𝑌 , then
∫ 1
𝑝
𝐴𝑋 (𝑢) d𝑢 ≥

∫ 1
𝑝
𝐴𝑌 (𝑢) d𝑢, for all 𝑝 ∈ [0, 1].

Proof. First, note that the inequality (4.9) gives that∫ 1

0
[𝐴𝑋 (𝑢) − 𝐴𝑌 (𝑢)] d𝑢 ≥ 0.

On the other hand, it follows from (4.10) that∫ 1

𝑝

[𝐴𝑋 (𝑢) − 𝐴𝑌 (𝑢)] d𝑢 ≥ (1 − 𝑝)2
∫ 1

0
[𝐴𝑋 (𝑢) − 𝐴𝑌 (𝑢)] d𝑢.

These two latter inequalities now give the result. �

Example 4.3. For the random variables in Example 4.1, we have∫ 1

𝑝

𝐴𝑋 (𝑢) d𝑢 −
∫ 1

𝑝

𝐴𝑌 (𝑢) d𝑢 = 0.25𝑝2 [1 + 2𝑝(1 − 𝑝)] ≥ 0.

We also had
∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢 ≤

∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢.

Using Eq. (3.3), one can write∫ 1

𝑝

𝑊𝑋 (𝑢) d𝑢 = 𝐸 (𝑋)
∫ 1

𝑝

(2𝑢 − 𝑝 − 1) d𝐿𝑋 (𝑢) = 𝐸 (𝑋)
∫ 1

𝑝

[1 − 2𝐿𝑋 (𝑢)] d𝑢, (4.11)
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where 𝐿𝑋 (𝑢) = (1/𝐸 (𝑋))
∫ 𝑢

0 𝐹−1(𝑣) d𝑣 is the Lorenz curve corresponding to 𝑋 . The following result
gives the relationship between the Lorenz and second-order excess wealth orders.

Theorem 4.7. If 𝑋 ≤L 𝑌 and 𝐸 (𝑋) ≤ 𝐸 (𝑌 ), then 𝑋 ≤sew 𝑌 .

Proof. Under the hypothesises and by using Eq. (4.11), we obtain
∫ 1
𝑝
𝑊𝑋 (𝑢) d𝑢

𝐸 (𝑋) =
∫ 1

𝑝

[1 − 2𝐿𝑋 (𝑢)] d𝑢 ≤
∫ 1

𝑝

[1 − 2𝐿𝑌 (𝑢)] d𝑢 =

∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢

𝐸 (𝑌 ) ≤
∫ 1
𝑝
𝑊𝑌 (𝑢) d𝑢

𝐸 (𝑋) ,

which completes the proof. �

Belzunce et al. [9] have developed a new criterion to compare risks based on the notion of expected
proportional shortfall. They have said that 𝑋 is smaller than 𝑌 in the expected proportional shortfall
order (in short, the PS order), denoted by 𝑋 ≤PS 𝑌 , if

𝑊𝑋 (𝑝)
𝐹−1(𝑝) ≤ 𝑊𝑌 (𝑝)

𝐺−1(𝑝) , for all 𝑝 ∈ 𝐷𝑋 ∩ 𝐷𝑌 ,

where 𝐷𝑋 = {𝑝 ∈ (0, 1) : 𝐹−1(𝑝) > 0} (and analogously for 𝐷𝑌 ). The following theorem connects the
second-order excess wealth order with the PS order.

Theorem 4.8. If 𝑋 ≤PS 𝑌 and 𝐸 (𝑋) ≤ 𝐸 (𝑌 ), then 𝑋 ≤sew 𝑌 .

Proof. The result easily follows from the assumption, Theorem 4.7 and Theorem 2.19 in Belzunce et
al. [9]. �

An application of the excess wealth order in comparing the epoch times of two nonhomogeneous
poisson processes (NHPP) has been given in Belzunce et al. [8]. We end this section by considering the
same comparison problem with respect to the second-order excess wealth order.

Let 𝑇1,𝑛 and 𝑇2,𝑛, 𝑛 ≥ 1 be the epoch points of two NHPPs with intensity functions 𝜆1 and 𝜆2,
respectively, such that

∫ ∞
𝑡
𝜆𝑖 (𝑢) d𝑢 = ∞, 𝑖 = 1, 2, for all 𝑡 ≥ 0. Let also 𝑋 and 𝑌 be two nonnegative

random variables with hazard rates 𝜆1 and 𝜆2 and with distribution functions 𝐹 and𝐺, respectively. The
distribution functions of 𝑇1,𝑛 and 𝑇2,𝑛 can be expressed as (see [8])

𝐹𝑛 (𝑡) = Φ𝑛 (𝐹 (𝑡)), and 𝐺𝑛 (𝑡) = Φ𝑛 (𝐺 (𝑡)), 𝑡 ≥ 0,

respectively, where Φ𝑛 (𝑝) = Γ𝑛 (− ln(1 − 𝑝)) for 𝑝 ∈ (0, 1), and Γ𝑛 is the distribution function of a
gamma distribution with scale parameter 1 and shape parameter 𝑛.

Theorem 4.9. If 𝑋 ≤sew 𝑌 , then 𝑇1,𝑛 ≤sew 𝑇1,𝑛 for all 𝑛 ≥ 1.

Proof. Regarding Theorem 3.1, the assertion follows if we show that, for any increasing and convex
function 𝜙 ∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1

𝑛 (𝑢) ≤
∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐺−1

𝑛 (𝑢),

or equivalently,
∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1(Φ−1

𝑛 (𝑢)) ≤
∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐺−1

𝑛 (Φ−1
𝑛 (𝑢)).
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Note that ∫ 1

0
(1 − 𝑢)𝜙(𝑢) d𝐹−1(Φ−1

𝑛 (𝑢)) =
∫ 1

0
Φ̄𝑛 (𝑢)𝜙(Φ𝑛 (𝑢)) d𝐹−1(𝑢)

=
∫ 1

0
(1 − 𝑢)𝜙∗(𝑢) d𝐹−1(𝑢),

where 𝜙∗(𝑢) = (Φ̄𝑛 (𝑢)𝜙(Φ𝑛 (𝑢)))/(1 − 𝑢). It is not difficult to see that 𝜙∗(𝑢) is an increasing and convex
function. Now, the assumption along with Theorem 3.1 implies that

∫ 1

0
(1 − 𝑢)𝜙∗(𝑢) d𝐹−1(𝑢) ≤

∫ 1

0
(1 − 𝑢)𝜙∗(𝑢) d𝐺−1(𝑢).

This completes the proof. �

5. Conclusion

Inspired by interesting properties of the excess wealth order and its application for tail variability
comparing in risk analysis, in this paper, we considered a new tail variability measure through extending
the excess wealth order to its second-order. At the case where the excess wealth functions of two
risks cross each other (Example 3.1), we are not able to compare tail variability of risks based on
the excess wealth order. In such cases, one may use the second-order excess wealth order for the
comparing purpose ensuring that the excess wealth function has still been involved in comparison and
the included tail variability information been used. For proposed order, we obtained the main properties
and were able to give two characterization results. Its property and an application in the reliability
theory were also given. We were able to establish the preservation property of the order under parallel
systems and its reversed preservation property under series systems. The preservation properties for the
general systems and other closure and preservation properties can be investigated as future works. The
relationship between the proposed second-order excess wealth order and some well-known stochastic
orders was studied. We have shown that the dilation order, and under a condition the ≤dmrl, ≤nbue,
the Lorenz and the expected proportional shortfall orders imply the second-order excess wealth order.
We have also demonstrated that the proposed second-order excess wealth order implies the second
Lorenz order. It was also shown that the order follows the increasing convex order for finite support
distributions. We ended up the paper by giving an application of the proposed order in comparing the
epoch times of two nonhomogeneous poisson processes. Indeed, the areas where the excess wealth
and other variability orders have been applied, can be investigated for potential applications of the
≤sew order.
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