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Abstract

The Voronoi region and covering radius of the lattice Eg are determined, and the normalised second
moment is calculated, confirming the estimate given by Conway and Sloane.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 10 E 30; secondary 10 E 05, 52
A 25, 52 A 45.

0. Introduction

For an n-dimensional lattice A c R " the Voronoi region is the convex polytope

FA= ( x e R " : |xj < |x - 11 for all 1 e A}

where |x| = Jx • x denotes the length of x. Conway and Sloane [2, 3] have
investigated the Voronoi regions of certain special lattices, and calculated their
second moments in connection with use of the lattices as quantizers. The lattice
E6 is of interest because it is the best packing lattice for spheres in R6 [1], and its
dual £6* is the best known quantizer in 6 dimensions. Conway and Sloane
calculated the second moment of 2s6* by Monte Carlo integration as its Voronoi
region was not known. In this paper the Voronoi region is determined. Its
automorphism group is transitive on the set of vertices. The vertices have distance
(8/9\/J)1/6 from the origin when the lattice is normalised to have determinant 1,
so for spheres it provides a lattice covering in R6 of density J6 • 8/9/3~ =
.5132... J6, where J6 is the volume of a sphere in R6 of radius 1. This is not
quite as good as the lattice A% which has covering density .4936... J6.
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[2] The Voronoi region of £6* 269

The determination of the Voronoi region V for £6* makes use of the quantizing
algorithm of [3]. A polytope W containing V is defined, and its vertices calcu-
lated. The quantizing algorithm is applied to the vertices, showing the vertices lie
in V, so W = V.

1. The lattice E? and its isometries

Points of R6 will be represented by row vectors x = (xv...,x6).
generated by the rows e ^ . . . , e6 of the matrix
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This is the generating matrix given in [3], except that e4 has been changed in sign
and the lattice has been doubled in scale.

An isometry of the lattice is an automorphism of the lattice that preserves
length. This makes it an automorphism of the Voronoi region. There are some
obvious isometries of £6* that arise from its representation as a complex lattice
depending on the cube root of unity. These are:

(i) central symmetry, given by C: x -> - x,
(ii) reflection in the plane x2i = 0 (arising from complex conjugacy) given by

Mi- x2i *- —x2i, xk «- xk (k # /') for / = 1,2,3,
(iii) transposition of two complex pairs, given by

2i-1 j, X2k_1 <- X2k_x, X2k
2k

for 1 < i'• <j < 3,

(iv) multiplication of one coordinate pair by a complex cube root of unity,
given by Rt: x2i_^ * (x2i_x - x2,V3)/2, x2i * {x2i_^S + x2i)/2, other
xk remaining fixed (/ = 1,2,3).

The coordinates of points of £6* can be split into pairs (x2k-i, x2k) and the
pairs that occur belong to the 2-dimensional lattice generated by (1, ^3) and
(2,0). Rk cycles ( - 2 , 0 ) to (l , \ /3) to (1, - v^) and back to ( - 2 , 0 ) , while Mk

leaves ( — 2,0) fixed and swaps (1, \/3~) with (1, - v^). By combining Mk and Rk

either of (1, ^T) or (1, - J5) may be kept fixed and the other pair interchanged.
In all cases only one (x2k_v x2k) position is altered in the point of £6*. Thus

https://doi.org/10.1017/S1446788700029402 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029402


270 R. T. Worley [31

these obvious isometries move (2, 0, 0, 0, 0, 0) to + (2, 0, 0, 0, 0, 0),
± ( - 1, ± i/T, 0, 0, 0, 0), ± (0, 0, 2, 0, 0, 0), + (0, 0, - 1, + v/I, 0, 0),
±(0,0,0,0,2,0), +(0,0,0,0, - 1 , + v/3).

There is a further isometry of Eg which is of importance. The lattice vectors
iij = ( - 1 , ^3 ,2,0,2,0) and u2 = (0,0,0,0,3, - ^3) meet at an angle of n/3. Let
U denote the plane spanned by ux, u2 and Ux its orthogonal complement. Let S
denote the isometry of R6 which keeps Ux fixed and rotates U by an angle of
2 77/3. If we write x as

x = aux + bu2 + v where v e £/x

then the image x' of x under S is given by

x' = a(u2 - ux) — bu1 + v.

Taking inner products of x with ux, u2, solving to find a and b, we have

x ' = x ~ £{(x ' u i)"i +(x • u2 - x • Ui)u2}.

For the basis ev ..., e6 of £6* we find that e, • ux, e, • u2 are integer multiples of
6, so e,' = e, — (point in £6*). Thus S maps £6* into itself. Since it is a rotation, it
is an isometry of £6*. It moves (2,0,0,0,0,0) into (5,/3,2,0, - l , i / 3 ) /3 , so in
contrast to the obvious isometries it does not keep the complex coordinate pairs
separate.

The reader may be prompted to consider rotating U by TT/3: unfortunately the
result is not an automorphism of £6*. Likewise, although (2,0, -2,0,0,0) and
(2,0,0,0, - 2,0) meet at an angle of IT/3, rotations of multiples of it are needed
to produce automorphisms of £6*.

2. The action of S on vectors of £6* of length 2

The rotation S described above is of interest because it fixes many vectors of
length 2\/2 .̂ The table below gives the action of S on various vectors of length 2/2
for future reference.

Note that in the table the distinction between x and - x has been dropped.
This is because in applications both x and — x determine the same pair of faces.
For convenience vectors have been written with the first nonzero component
positive.
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(41 The Voronoi region of £6* 271

no.
1

2

3

4

5

6

7

8

9

10

11

12

vector

(l,v/3, - 1 , ±v/3,0,0)

(1,v/3,0,0, - 1 , -v/3)

(1, -v/3,2,0,0,0)

(2,0,1, + v/3,0,0)

(2,0,0,0,1, v/3)

(0,0,1, ±v/3, - 1 , -VT)

(1, /f , 2,0,0,0)

( l , v^ ,0 ,0 , -1 ,v /3 )

(1 , -v /3 , -1 ,v /3 ,0 ,0 )

(1, -v/3", - 1 , -v/3~,0,0)

(1,-v/3",0,0,-1,v/3)

(1 , -v /3" ,0 ,0 , -1 , -v /3 )

TABLE 1

orbit under S
fixed
fixed
fixed
fixed
fixed
fixed
(2,0,0,0,-2,0), (2,0,0,0,1,-v/3)
(2,0,-2,0,0,0), (1, v/3,0,0,2,0)
(0,0,1,v/3",2,0), (0,0,1,v/3",-1,v/3")
(0,0, - 1 , - v/3", 2,0), (0,0,1,-v/3",-1, v/3)
(1, - / ?" , 0,0,2,0), (O,O,2,O,l,\/3")

(0,0,2,0,1,-v/3~), (0,0,2,0,-2,0)

3. Faces and vertices of the Voronoi region of E,*

The points of the Voronoi region satisfy x • 1 < 1̂ • 1 for all points I # 0 of the
lattice. Since -1 is in the lattice whenever 1 is we may assume 1 has first nonzero
component positive (that is, 1 > 0) and determine VA by the inequalities

| x - l | < i l -1 all 1 G A,l > 0.

In reality VA is determined using only a finite number of lattice points I > 0 close
to the origin. A pair of parallel faces of VA has equation

We shall use " the face 1" to denote either of these two faces.
£6* contains 1 = (2,0, - 2,0,0,0) close to the origin. Applying isometries to

obtain other points at distance 2\/2~ from 0 we obtain faces characterised by
equations

{xx± y/3x2)-(x3± / 3 x 4 ) = +4 (type la)

(*! + J3x2) + 2x3= ±4 (type lb)

2xx - 2x3= +4 (typelc).

Other faces may be obtained from these by applying interchanges Ttj—the
"type" is meant to distinguish the number of "2" coefficients. Application of M,
involves toggling the sign before a / J ; application of C toggles the sign of the
right side; application of /{, and S may change the type.
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272 R. T. Worley [5]

Similarly from (0, 2\/3~, 0,0,0,0) we obtain faces characterised by equations

2^2 x2 = ±6 (type 2a)

(3*! + v/3x2)= ±6 (type 2b)

(xx + v/3~x2) - 2x3 - 2x5 = +6 (type2c)

(x1 ± /3~x2) +(x3 ± v/3~x4) -2x5 = +6 (type2d)

(Xl ± J3x2)+(x3 ± J3x4) +(x5 ± /3x6) = ±6 (type2e)

2x1 + 2x3 + 2x5= +6 (type 2f).

Let W denote the polytope determined by all the faces of the nine types described
above. Then W has the isometries described in Section 1. We will show W = V,
the Voronoi region of £6*. Firstly we show that given a vertex of W isometries
may be applied to W to make that vertex (2,0,0,0,0,0).

3.1 LEMMA 1. Let a point of Wlie on two faces of type 2a,... ,2f. Then the point
can be transformed into (2,0,0,0,0,0) by applying isometries of Eg.

PROOF. We show first that isometries can be applied so the faces become the
faces (3, + /3~,0,0,0,0). Select one of the faces. If it is of type 2a apply Rt to
make it of type 2b. If it is of type 2c,..., 2f apply various Rt as necessary to make
it of type 2f, then apply S which makes it of type 2b. Hence the first face may be
taken to be of type 2b. Applying TtJ, Mj as necessary we have the face
(3, /3~, 0,0,0,0).

Now select the second face. Consider only isometries A/,, /?, (/ = 2,3), the
combination MlRl, and 5, all of which leave the first face unchanged. If the
second face is of type 2c,..., 2f apply suitable /?, to make it one of (2,0,2,0,2,0)
or (1, + ]/3, —2,0, -2,0). We may assume + ^3 occurs in the latter case by
applying MlR1 if necessary. Now S sends the first of these to (3, - v^,0,0,0,0)
and sends ( 1 , ^ , - 2 , 0 , - 2 , 0 ) to (0,2/1,0,0,0,0) , which becomes
(3, — ]/3,0,0,0,0) on applying MlRl. Thus the second face is either
(3, - fe, 0,0,0,0) or of type 2a or 2b. If the face is neither (3, - \/3~,0,0,0,0)
nor (0,2^3 ,0,0,0,0) then applying suitable Rt, TtJ the two faces may be taken to
be (0,2^,0,0,0,0) and (0,0,0,2^,0,0). This makes \x2\ = |JC4| = v^, and a
suitable choice of signs puts x on the wrong side of a type la face. If the second
face is (0,2^3", 0,0,0,0) apply /?x and we have the two faces (3, ± ^3 ,0,0,0,0).

We have transformed our faces to (3, + /3~, 0,0,0,0). By applying C if
necessary the faces may be taken as

3*! + v/3~*2 = 6,

3xx - J3x2 = ±6.
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[ 61 The Voronoi region of £6* 273

The right side of the second equation must be +6, else ^3x2 = 6 and x lies on
the wrong side of a type 2a face. Thus x1 = 2 and x2 — 0. The type la, lb
requirements are

\2x1 + x3± v/3"x4| < 4 ,

\2x1 - 2x3\ <4

and can plainly be satisfied only with x3 = x4 = 0. Similarly x5 = x6 = 0. Thus
the point has been transformed to (2,0,0,0,0,0) as required.

3.2 LEMMA 2. Let a point of W lie on five faces of type la, lb, lc. Then the point
lies on two faces of type 2a , . . . , 2f.

PROOF. The proof is similar in style to the proof of Lemma 1, selecting faces,
transforming them, and eliminating impossible combinations. The table in Sec-
tion 2 will be very useful: if the current set of faces is fixed under S, for the next
face chosen we only need to consider one out of each orbit. For example, note
that each orbit contains a representative (1, + \/3~,...).

From the five faces, there are five (0,0) coordinate pairs. Thus there is one
position which has a (0,0) pair for at most one face. A suitable Ttj makes this the
first position. There are only three possible pairs (1, + /3~), (2,0), (still assuming
the first nonzero component is positive) for the first position, so one pair must
occur twice. Applying Rx as necessary the pair (1, + V^) occurs twice. Applying
R2, JR3 as necessary, we may assume two of the faces are either

(1 ,^3 , -1 ,73,0 ,0) and (1, &, - 1 , - / 3 ,0,0), or

( 1 , ^ , - 1 , ^ 3 , 0 , 0 ) and (1, /3 ,0,0, - 1 , - ^ 3 ) .

We consider these two cases separately.
Case 1. Assume that the point lies on the two faces (l,/3~, - 1 , ± V^,0,0),

which are fixed points of 5. Select a third face (from the representatives of the
orbits listed in Section 2). If the third face is (1, i/3~,...) it must be (1, \/3~, 2,0,0,0),
and applying C if necessary the three faces are

x1 + JJx2 — x3 + /ix4 = 4,

Xj + J3x2 - x3 - J3x4 = +4,

xx + fex2 + 2x3 = +4.

The second face must have right side + 4, else combining it with the first gives
^3x4 — 4, on the wrong side of a type 2a face. The third face must have right side
4, else subtracting the first gives \3x3 — \ / 3 \ 4 | = 8, on the wrong side of a type 2b
face. Solving the equations gives x4 = x3 = 0, xx + J3x2 = 4. But \x2\ < yfi to

https://doi.org/10.1017/S1446788700029402 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029402


274 R. T. Worley [71

be on the right side of the type 2a faces, so xx > 1, and hence 3x1 + J3x2 > 2 +
4 = 6. To stay on the right side of a type 2b face we must have xx = 1, x2 = fi,
and then x lies on two type 2 faces.

Without loss of generality we can assume none of the remaining faces can be
transformed into (1,^,2,0,0,0) by isometries fixing the first two faces. This
obviously excludes orbit 7 of Table 1, but noting that orbit 5 can be transformed
to orbit 12 by RlM1, orbit 12 can be transformed to orbit 11 by R3, and orbit 11
to (1, - /3~, 0,0,2,0) by S and then to (2,0,0,0, -2,0) by RXMV we see that
orbits 5,11 and 12 are also excluded.

If the third face is (0,0,1, - A/3 , - 1 , - /3 ) the faces are

x-x — \3XA — Xc — v 3 X/. = ~l~4.

But if the third face has right side + 4 then adding to the first face shows x is on
the wrong side of a type la face, while if the third face has right side - 4 then
subtracting from the second face shows x is on the wrong side of a type 2d face.
For similar reasons the third face cannot be (0,0,1, A/3~, - 1 , - \/3~). This eliminates
orbit 6 of Table 1, and hence also eliminates orbits 9 and 10 (apply M3 to the
third representative) and orbit 4 (apply M1R1 to give orbit 9 or 10).

Thus all three remaining faces must come from orbits 2, 3 or 8. For the third
face orbits 2 and 8 are equivalent under M3, and orbit 3 is equivalent under
MlR1. We may therefore assume the three faces are (1,JJ, -l,\/3~,0,0),
(1,A/3~, - 1 , - A/3,0,0) and (1, - /3~,2,0,0,0). Since orbit 3 has now been used
up, the fourth face must come from orbits 2 and 8 (which are still equivalent) and
may be assumed to be (l,V^,0,0, -l,/3~), leaving the fifth face to come from
orbit 8. Thus we have the faces

x + /3x2 — x3 + /3x4 = 4,

•y -4- \ / ^ V V \i "\ V — ^
.A-j T y J A i 3 V ~̂  *™4 * y

Xj - \/3~*2 + 2x3 = ± 4 ,

xx + y/Jx2 - x5 - J3x6 = +4.

The right side of the third equation is - 4 , else adding to the first puts x on the
wrong side of a type lb face. The right side of the fourth and fifth equations is 4,
else subtracting from the first face puts x on the wrong side of a type la face.
Solving these equations gives x4 = x6 = 0, xv = /, x3 = -It, x5 = 4t and
fi>x2 = 4 - 3t. Now the type lc faces require |2JC5 - 2x3\ < 4, so |;| < \, and
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[8] The Voronoi region of £6* 275

thus V^JCj ^ 3. For x to be on the correct side of the type 2a faces we must have
equality. Thus |r| = \, and x = ± ( i , \/3~, — f, 0, f, 0) which lies on the two type 2
faces (0,2/3", 0,0,0,0) and (1, - y t , 1, - fi , - 2,0).

2. Assume the point lies on the two faces (1,^3~, — 1, /3~,0,0) and
(1, /3~, 0,0, — 1, - T/3). Apply M3 and S so the second face becomes
(2 ,0 , -2 ,0 ,0 ,0 ) and then MXRX and M2R2 so the second face is
(1, — /T, 2,0,0,0). Assume also that Case 1 cannot be applied, so we can exclude
all orbits in Table 1 that can be transformed to (1, J3, - 1 , - -/3~,0,0) under
isometries that preserve the first face. This excludes orbits 7, 5,11 and 12.

Now consider the remaining faces. None can lie on an orbit 9 or 10 face, else
forget the first face, and apply Ml to make Case 1 apply. A similar argument
eliminates the face (2,0,1, - /3~,0,0). Orbit 6 faces become orbit 9 or 10 using
Af3, so these can be eliminated. The remaining orbit 4 face yields the equations

xx + fex2 - x3 + J3x4 = 4,
xx - J3x2 + 2x3 = +4,
2xl + x3 + V/3~JC4= +4.

The right side of the second face must be - 4, else adding to the first puts x on
the wrong side of a type lb face. The right side of the third face must be - 4 else
subtracting from the second puts x on the wrong side of a type lb face. But now
subtracting the third face from the first puts x on the wrong side of a type lb
face.

This leaves orbits 2 and 8 for the remaining three faces. These are equivalent
under M3, so we can take (l,\/3~,0,0, - 1 , - \/3~) for the third face and
(1, J3, 0,0, - 1 , /3~) for the fourth. But now we have Case 1 on forgetting the first
two faces and applying T23 to the third and fourth. This completes the proof of
Lemma 2.

Since a vertex of W is determined by at least six faces, the two lemmas above
show that the vertices of W are obtained from (2,0,0,0,0,0) by applying
isometries of £6*. Plainly V c W. To show W c V and deduce V = W it is only
necessary to show that all vertices of W lie in V, and appeal to convexity. Indeed,
because the isometry group acts transitively on the vertices, it is only necessary to
show (2,0,0,0,0,0) is no closer to any other point of £6* than it is to the origin.

The quantizing algorithm for £6* given in [3] is as follows. Given a point x,
form x - a<*> where a<*> is one of (0,0,0,0,0,0), ±(2,0,-2,0,0,0) ,
+ (2,0,0,0, - 2,0), ± (0,0,2,0, - 2,0), + (2,0,2,0,2,0). Write

y<*> = x - a<*> = U1', y?\ y[2\ y?\ y?\ y^),

https://doi.org/10.1017/S1446788700029402 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029402


276 R. T. Worley [9]

and for each (y['\ y^) let (z}'\ z2
l)) be a point of the hexagonal lattice in R2

spanned by {(0,2i/J), (3, fe)} nearest (y['\ y2
w). Then a point of £6* nearest to

x is the point z w + a(/c) where

and A: is chosen so that |y(/c) - z(<r)| is minimal. Applying this to (2,0,0,0,0,0)
we find the nearest points of £6* are (0,0,0,0,0,0), (3, + v^, 0,0,0,0),
(2,0, -2 ,0 ,0 ,0 ) , (2,0,1, + v^.0,0), (2,0,0,0, - 2 , 0 ) and (2,0,0,0,1, + v/3). As
we required, (0,0,0,0,0,0) is among the nearest points—in passing we observe
that the other quantizers yield the eight faces of W on which (2,0,0,0,0,0) lies.

The lemmas above give information on the vertices, faces and edges of V.
Plainly an edge of V must be determined by exactly four type 1 faces and one
type 2 face. A vertex pair + x is uniquely determined by two type 2 faces 11; 12

with lx • 12 = 6. For any given lx there are 20 different possible 12, so on each type
2 face there are 20 vertices. There are 36 1 giving a pair of opposing type 2 faces,
so there are 720 vertices of V.

The type 1 faces have 80 vertices on each face. For example, on the face
2 x : - 2x3 = 4 t he r e are the ve r t i ces ( 2 , 0 , 0 , 0 , 0 , 0 ) ,

( I , ± 1 / v T , - 1 , ± i / y r , - e l t - e2), a , 9 l , - i, <p2, « i , o2),
(f, 0, - f, 0, - 26,, - 262), (1, ± 1 / vT, - 1, + 1 / y/3 , + 1, + 1 / v/T),
(1, + 1 / / 3 , - 1 , ± l / / 3 , 0 , +2//3~) with ( ^ , » 2 ) e { ( - ! , 0 ) , ( | , + 1 / / 3 ) }
and (<pj, <p2) G {(+ 2 / /3~, 0), (0, + 2 / ^3~)}, together with vertices obtained from
these by the transformation x -» ( — x3, —x4, —xu —x2,x5,x6). Projecting the
face into U5 by the transformation xx -» x[/ Jl + 1, x3 -» x{/J2 - 1 and
dropping the x3 coordinate we observe one vertex at xx = + -Jl, twelve vertices
at x, = ± f \Jl, fifteen vertices at xx = ± \J2 and twenty-four vertices at
x1 = 0. The automorphism group in U5 of the face includes the reflections
x'2 = —x2, x'3 = —x3 and rotation through 2TT/3 on (x4,x5). There is also the
automorphism x' = xT where T is the symmetric matrix

2
3
1

v/6
1

T
0

I

2

~2

1

0

1

1
2

2

1

0

n
3
I

I

3

0

0

0

0

0

1
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[10] The Voronoi region of £6* 277

Each vertex has twelve 4-dimensional edges from it. For example the edges from
(/2, 0,0,0,0) are to (f / 2 , + 1 / /3~, ± 1 / /3 , - 0 1 ; -0 2 ) . The eight faces of F de-
fining the vertex (2,0,0,0,0,0) project down to the seven subfaces

2 = 3,

—*! + J3x2 = 3,

]/2x1 - 2x4 = 2,

= 2

of the 5-dimensional face. These have distances /6~/ /5~ and 2 / /6~ from the
origin in R5, and the closer ones are orthogonal to each other. Details of these
faces are given in Table 2 below.

The type 2 faces (all isometric) have a simple structure. Select the face
(0,2/3~, 0,0,0,0): the 20 vertices on this face all have x2 = /3~. Projecting into R5

by dropping the x2 coordinate, the face has vertices ± ( 1 , 0 , 0 , 0 , 0 ) ,
± ( M i . M i ' . » 2 ) w h e r e (»i.»2)> («i'.*2)e { ( - 1,0), ( i ± l / i / 3 ) } . The struc-
ture of these faces is described in the table below.

By using the formulae in Theorem 3 of [2], the volume and unnormalised
second moment U for the faces can be calculated, eventually giving U =
50476/3^/315 for V. Since V has volume 72/3~ (the determinant of the generating
matrix), we get the normalised second moment G(£6*) = 12619 • 31/6/204120 =
0.0742437'"', which confirms the estimate for G(£6*) given in [3].

TABLE 2. Faces of V

dim

2

3

3

4

4

5

5

6

type

triangle

octahedron

tetrahedron

24-cell

10-cell

type-1

type-2

V

volume

1/73
6v/6/27
2v/6/27
32/9
11/5/54

496/6/315

22/45
72/3

U

1/9/F
8/6/315
/6^/315
832/405
58/J/1215

1952/6/567

86/567
50476/1/315

subfaces at distances

3 lines at h = 1/3
6 triangles at h = /2~/3
4 triangles at /i = /2 /6
24 octahedra at /i = /6^/3
5 octahedra at A = y/2/15
5 tetrahedra at /i = / J / I o
10 24-cells at A = / 2 /T
32 10-cells at h = fiJZ
12 10-cells at h = l / /5~

54 type-1 at /i = v^

72 type 2 at h = /3~
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4. Methods

The determination of V and its isometries was carried out as follows. The
quantization algorithm for 2?6* was programmed and applied to points x = £A,e,
where |\,.| < \. The nearest lattice points arising were stored and printed, and the
general pattern was noticed. However even with many fairly uniformly spaced
points x not all the points nearest 0 were found (the X, used were determined
using multiples of the point A:(l, b, b2, b3, bA, b5)/N with 0 < k < N, and N, b
were selected from Haber's integration tables [4]). Having obtained a set of points
near 0 which gave the faces of W, a program to produce the vertices was written.
This was a crude program and ran rather slowly, but produced enough vertices to
indicate that every vertex lay on exactly six type 1 faces and two type 2 faces, and
suggested looking for another isometry. Two vertices that were not obviously
related were selected, the faces on which they lay were compared and the angles
between the normals calculated. Possible isometries were produced in terms of
their effect on the face normals, their matrix representations were calculated using
the interactive MATRIX program from the University of Sydney, and the
eigenvalues and eigenvectors displayed. The isometry 5 of Section 1 was dis-
covered in this way.
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