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Abstract. The detection and characterization of debris in the integral-of-motion space is a
promising avenue to uncover the hierarchical formation of the Milky Way. Yet, the fact that the
integrals do not remain constant during the assembly process adds considerable complexity to
this approach. Indeed, in time-dependent potentials tidal substructures tend to be effaced from
the integral-of-motion space through an orbital diffusion process, which naturally leads to the
formation of a ‘smooth’ stellar halo. In this talk I will introduce a new probability theory that
describes the evolution of collisionless systems subject to a time-dependent potential. The new
theory can be used to reconstruct the hierarchical assembly of our Galaxy through modelling
the observed distribution of accreted stars in the integral-of-motion space.
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1. Introduction
Astrometric surveys of our Galaxy offer a unique opportunity to test key aspects of

the current cosmological paradigm, wherein galaxies form throug a hierarchical accretion
process. In principle, remnants of the Milky Way assembly will appear as stellar clumps
in the integral-of-motion space (e.g. energy – angular momentum) that cluster around the
integrals of the orbits of the progenitor systems from which they were tidally stripped.
Hence, detecting and characterizing individual subtructures can be used to uncover the
accretion history of our Galaxy (e.g. Helmi & White 1999; Helmi & de Zeeuw 2000).
In practice, however, the fact that cosmological potentials evolve with time implies that
integrals do not remain constant. Peñarrubia (2013) shows that substructures in the
integral-of-motion space undergo collisionless diffusion, and that the inexorable cycle of
deposition, and progressive dissolution, of tidal clumps naturally leads to the formation
of a ‘smooth’ stellar halo.

There are several mechanisms that introduce a time dependence in the potential of our
Galaxy. For example, cooling and infall of gas deepen the potential well of the host (e.g.
adiabatic contraction), whereas supernova feedback may alter the density profile of the
dark matter halo (e.g. Ponzten & Governato 2013). Accretion of massive satellites leads
to the growth of the dark matter halo and break existing spatial symmetries, which in
turn induces diffusion both in the energy and angular momentum dimensions. In order
to uncover the accretion history of the Milky Way from observations of the integral-of-
motion space one needs to model such diffusion processes.

Unfortunately, the relaxation of collisionless systems is still poorly understood. The
most successful theory dates back to the violent relaxation theory of Lynden-Bell (1967),
which shows that self-gravitating systems evolve toward a unique equilibrium state which
can be accurate described by a combination of Fermi-Dirac distribution functions. The
central difficulty in accepting the distribution function derived from Lynden-Bell theory
is that it predicts infinite mass for the system. In other words, the variational problem
that determines the most probable distribution function possesses no solution for any
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finite total mass. This shortcoming may be due to the short life of the process that drives
relaxation, i.e. fluctuations of the gravitational field, which vanish on the time scale
(Gρ)−1/2 , well before the thermodynamical equilibrium is attained. As a result, in most
gravitating systems the evolution will be frozen in a subdomain of the available phase
space (a.k.a. ‘incomplete relaxation’). In addition, in the current cosmological paradigm
galaxies can be rarely found in an equilibrium state. Indeed, the detection of tidal streams
in the stellar halo of the Milky Way provides a clear-cut evidence that our Galaxy has
not yet reached dynamical equilibrium.

2. A new probability theory
Recently, Peñarrubia (2015) proposes a new probability theory that describes the non-

equilibrium state of collisionless gravitating systems subject to time-dependent gravita-
tional forces. This theory can be used, for example, to calculate the distribution func-
tion of stellar tracers orbiting in a growing potential. In a spherical potential the non-
equilibrium distribution function, f(E, t) = N(E, t)/ω(E, t), where N is the probability
to find a particle in the energy interval E,E + dE at the time t and ω is the so-called
density of states (e.g. Binney & Tremaine 1986), is found by convolving the initial DF
with a transition probability (also called ‘propagator’) pc

N(E, t) =
∫

dE0N(E0 , t0)pc(E, t|E0 , t0), (2.1)

where pc(E, t|E0 , t0) is the probability that a particle with energy E0 at the time t0 has
an energy E at the time t.

Equation (2.1) is a remarkable result, as it suggests that one can describe the dynamical
state of a gravitating system at the time t from the state at the time t0 through a single
probability convolution. This is akin to the “jumps” we are familiar with in Quantum
Mechanics! As in Stochastic Calculus, one can also construct a serial sequence of κ-jumps,
t0 < t1 <, ..., < tκ−1 � tκ , with tκ = t0 + τ ′, where the end product of a jump is used as
the initial condition for the next one. The result is a Markov chain, where

pc,κ(E, t|E0 , t0) =
∫

dE1pc(E1 , t1 |E0 , t0)
∫

dE2pc(E2 , t2 |E1 , t1)... (2.2)

×
∫

dEκ−1pc(E, t|Eκ−1 , tκ−1)pc(Eκ−1 , tκ−1 |Eκ−2 , tκ−2).

We shall say that a Markov chain is transitive when the transition probability between
the states t0 and t = t0 + τ ′ is independent of the number of intermediate steps, that
is if pc = pc,1 = ... = pc,κ for any value of κ. Peñarrubia (2015) shows that pc is always
transitive on time scales τ ′ � (Φ̇/Φ0)−1 , where Φ is a time-dependent gravitational
potential.

3. Transition Probabilities
The probability function pc(E, t|E0 , t0) is the result of the convolution of two Gaussians

pc(E, t|E0 , t0) =
∫

p(E, t|IR−2 , t0)p(I|E0 , t0)dI. (3.1)
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In potentials that evolve in the linear regime p is the solution to Einstein’s equation for
freely diffusing particles

p(E, t|Ea, t0) =
1√

4πD̃(Ea, t)
exp

[
− [E − Ea + C̃(Ea, t)]2

4D̃(Ea, t)

]
, (3.2)

Here Ea denotes the adiabatic energy, which varies with time, and C̃ and D̃ are the
so-called drift and diffusion coefficients, respectively. The mean and the dispersion of
the distribution are E − Ea = −C̃, and (E − Ea)2 − E − Ea

2
= 2D̃, respectively. If

the potential evolves adiabatically both coefficients C̃ and D̃ approach zero, and the
probability function (3.2) becomes sharply peaked about E = Ea , which recovers the
adiabatic solution exactly.

The second Gaussian is

p(I|E0 , t0) =
1√

4πD̃(E0 , t0)R4
0

exp
[
− [I − E0R

2
0 − C̃(E0 , t0)R2

0 ]
2

4D̃(E0 , t0)R4
0

]
; (3.3)

where I = EaR2(t) is a dynamical invariant (constant of motion), and R(t) is a scaling
factor (see §4).

Hence, to integrate (2.1) and (3.1) we only need to calculate the following functions:
C̃(E, t), C̃(E0 , t0), D̃(E, t) and D̃(E0 , t0). This implies that the problem of collisionless
relaxation in the linear regime reduces to the derivation of four coefficients!

4. Diffusion coefficients
Peñarrubia (2013, 2015) uses dynamical invariants to derive analytically the diffusion

coefficients for systems subject to power-law forces

F (r, t) = −μ(t)rn . (4.1)

In such systems the drift and diffusion coefficients can be simply written as

C̃(E, t) = −(Ṙ/R)İ, (4.2)

and
D̃(E, t) = Bn (Ṙ/R)2IT, (4.3)

where Bn is a positive constant that only depends on the power-law index of the force (4.1).
The quantities I and T are, respectively, the moment of inertia and the mean kinetic
energy of a particle ensamble with energy E, that is

I(E, t) = 〈r2/2〉 =
1
2ω

∫
r2δ(E − H)d3rd3v (4.4)

=
(4π)2

2ω

∫ rm

0
r4 [2(E − Φ)]1/2dr,

and

T (E, t) = 〈v2/2〉 =
1
ω

∫
v2

2
δ(E − H)d3rd3v (4.5)

=
(4π)2

6ω

∫ rm

0
r2 [2(E − Φ)]3/2dr,

where rm (E, t) is the maximum radius that particles with energy E can reach, that is
Φ(rm , t) = E.
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The quantity R(t) is a scaling factor, which for power-law forces is also a power law

R(t) =
[
μ(t)
μ0

]−1/(n+3)

. (4.6)

Note that Ṙ/R = −(μ̇/μ)/(n+3), and that the diffusion coefficient (4.3) is proportional
to the variation of the potential squared. This implies that the diffusion of substructures
in the integral-of-motion space is most effective during periods in which the Milky Way
potential changes quickly (e.g. during the infall of massive satellites).

5. N-body tests
As an illustration, Peñarrubia (2015) considers logarithmic potentials that evolve lin-

early with time as
μ(t)
μ0

= 1 + ε
t − t0
P0

, (5.1)

where P0 = P (E, t0) = 2
∫ rm (E )

0 dr/
√

2(E − Φ[r, t0 ]) is the radial period of an orbit with
rm = μ0 = 1 at t = t0 .

N -body equilibrium realizations of a lowered Maxwellian distribution are generated in
a logarithmic potential

f(E0 , t0) =

{
A

[
e

−E 0 + Φ l im
σ 2 − 1

]
, E0 < Φlim ,

0 , E0 � Φlim ,
(5.2)

where A is a normalization factor, and Φlim = μ0 ln(rlim ) is an energy truncation. To
simplify our models we set σ2 = μ0/2 = 3T , where T is the kinetic energy associated
with the potential (see Table 1).

Next, velocities of all particles are multiplied by a factor q. To highlight non-equilibrium
features we choose a small value, q = 0.2, which leads to |2T/W | = q2 = 0.04. Such a low
virial ratio guarantees the collapse of the system on a time-scale comparable to its free-
fall time. Fig. 1 shows ten snap-shots of a model orbiting in a time-dependent potential
that evolves at a rate ε = −0.1. Cold collapse happens early on (τ ′ ≈ 0.2P0) and leads
to the formation of shell structures that move progressively towards larger radii with
time. By the end of the simulation, τ ′ ≈ 2.0P0 , the model has not yet reached dynamical
equilibrium. By definition the system is in a state of ‘incomplete relaxation’†.

Fig. 2 shows the drift coefficient C̃ = −(Ṙ/R)〈r·v〉 as a function of energy for the snap-
shots shown in Fig. 1. As the system begins to collapse the averaged radial velocity of the
particle ensemble is negative at all radii and ∂C̃/∂t > 0 at all energies. At slightly later
times, τ ′ � 0.2P0 , the coefficient C̃ begins to exhibit coherent fluctuations in the inner-
most regions of the potential (left side of the panels), as particles with short orbital period
go through pericentre and start moving toward larger radii. In the outskirts, however,
particles are still falling in from large distances, which translates into positive values of
C̃. The negative crests are associated with the shell features of Fig. 1. Given that in
a potential with n = −1 the orbital period decreases toward the central regions of the
potential as

P (E, t) = (2π/μ)1/2rm = (2π/μ)1/2rlim exp(E/μ),

† These models provide a useful representation of the dynamical state of the outer regions
of galactic haloes and galaxy clusters, where dynamical times are comparable to the age of the
Universe and phase mixing becomes very inefficient.
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fluctuations in C̃ damp out progressively from inside out. By τ ′ = 1.9P0 the mean radial
velocity of particles with E − Φlim � −2 is 〈r · v〉 ≈ 0, signalling that the inner regions
of the system are phase-mixed and evolving in a state of quasi-dynamical equilibrium.

Fig. 3 illustrates the complexity involved in describing the state of systems undergoing
violent relaxation. Green dots show the distribution function of the N -body models
plotted in Fig. 1 at three different snap-shots. The decreasing potential (ε < 0) shifts
the orbital energies to higher values, which leads to a non-monotonic increase of f(E, t)
at fixed energies. Interestingly, the distribution function is not completely smooth. Non-
equilibrium features arise in the inner-most regions of the potential and propagate toward
high energies as time goes by. After constructing a larger suite of N -body models (not
shown here) we find that the amplitude of these fluctuations increases for larger ε and
smaller q values, which correspond to faster growth rates and higher radial anisotropies,
respectively.

Equation (2.1) (red solid lines) is able to capture these complexities and provide an
accurate statistical description of the non-equilibrium state of the system. For simplicity
we assume that the transition probability pc(E, t|E0 , t0) corresponds to a single “jump”
between t0 and t0 +τ ′. The Green convolution is solved by setting C̃(E0 , t0) = 0 and com-
puting D̃(E0 , t0) analytically from Equation (4.3) . The coefficients C̃(E, t) and D̃(E, t)
are measured from the phase-space coordinates of the N -body particles at t = t0 + τ ′ as
C̃(E, t) = −(Ṙ/R)〈r · v〉 and D̃(E, t) = (Ṙ/R)2〈(r · v)2〉.

The lower panels of Fig. 3 plots the difference between the N -body distribution func-
tion and the adiabatic solution at fixed energy values (green dots). From Equation (5.1)
particles respond adiabatically to a time-varying force if their orbital periods obey
P (Φ̇/Φ0) = ε(P/P0) � 1. Since P increases exponentially with the particle energy
we find the distribution N evolves adiabatically (ΔNa ≈ 0) at E � Φlim , while strong
departures from the adiabatic solution (|ΔNa | ∼ N) are visible at E � Φlim , where the
potential changes significantly during an orbital period, i.e. P (Φ̇/Φ0) ∼ 1. As a result,
the linear approximation (solid magenta lines) becomes less accurate in the outskirts of
the system. Note that similar deviations are also visible in the upper panels at τ ′ = 1.8P0 ,
albeit with a lesser magnitude.

The existence of internal macroscopic motions (C̃ �= 0) leads to fluctuations of the
distribution function which travel toward high energies, as shown in Fig. 2. Comparison
with the solid magenta lines shows that the ripples and troughs of the fluctuations are
located at energies where the gradient ∇(C̃N) ≡ ∂(C̃N)/∂E finds local maxima and
minima, respectively. Notice that by the end of the simulation (τ ′ = 1.8P0) relaxation is
still ‘incomplete’.

6. Summary
Peñarrubia (2015) proposes a probability theory that describes the non-equilibrium

evolution of large particle ensembles orbiting in a time-dependent gravitational field.
This theory states that in the linear regime the non-equilibrium state of collisionless
systems can be obtained by a single convolution of the initial distribution function with
a transition probability which is uniquely defined by 4 coefficients, C̃(E, t), C̃(E0 , t0),
D̃(E, t) and D̃(E0 , t0).

In principle these results provide a simple tool to determine the evolution of stellar
tracers in time-dependent potentials. In particular, it offers a simple method for modelling
the evolution of accreted clumps in the integral-of-motion space of the Milky Way as
follows: given the observed energy distribution function of the i-th clump, say Ni(E, t),
we would like to constrain the initial energy distribution Ni(Eacc , tacc), where tacc is
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Figure 1. Cold collapse of a model with |2T/W | = 0.04 at t = t0 . Particles move in a time-de-
pendent potential that varies at a constant rate ε = −0.1. The system as a whole evolves toward
an equilibrium configuration following a ‘violent relaxation’ process.

Figure 2. Drift coefficient C̃ = −(Ṙ/R)〈r · v〉 as a function of energy of the model shown in
Fig. 1. Notice that at t = t0 the system is phased mixed (i.e. 〈r · v〉 = 0) but out of virial
equilibrium, |2T/W | = 0.04. By the end of the simulation only the internal regions of the
potential have reached a state of quasi-dynamical equilibrium (C̃ ≈ 0).

the time of accretion, for a given potential evolution Φ(r, t). Both Ni(Eacc , tacc) and
Φ(r, t) are unknowns and need to be modelled. The former contains information on the
properties of the i-th progenitor system, e.g. accretion time, orbit, mass, etc. The latter
informs us how the Milky Way potential has changed from t = tacc to the present and
has the same functional form for all clumps detected in the integral-of-motion space.

In practice not all potentials admit analytical solutions to the diffusion equation. For
example, in systems that are not initially virialized a derivation of the diffusion coeffi-
cients requires precise knowledge of the trajectories of individual particles in phase space,
rendering the problem analytically intractable. In those cases the diffusion coefficients
and the integrals (2.1) and (3.1) need to be solved numerically.

As a final remark it is worth mentioning that the new probability theory has further
applications than those mentioned here. For example, we may get a deep insight into the
evolution and stability of self-gravitating collisionless systems by studying the evolution
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Figure 3. Upper panels: Distribution function f = N/ω of the models shown in Fig. 1 at three
different snap-shots. Red solid lines correspond to the Green convolution given by Equation (2.1)
with coefficients C̃(E, t) = −(Ṙ/R)〈r · v〉 and D̃(E, t) = (Ṙ/R)2 〈(r · v)2 〉 measured from the
phase-space locations of the N -body particles. Lower panels: Deviation of the N -body models
from the adiabatic distribution (green dots). Magenta solid lines show deviations from the adi-
abatic distribution function calculated with our probability theory. Note that the ripples and
troughs of the curves are located at energies where the gradient ∇(C̃N ) finds local maxima
and minima, respectively. Departures from the adiabatic solution are particularly strong in the
outskirts of the system, E � Φlim .

of particle ensembles driven by their own self-gravity, i.e.

∇2Φ(r, t) = 4πG

∫
f(r,v, t)d3v.

Also, our formalism can be straightforwardly extended to systems with a varying spatial
symmetry, where both the angular momentum and the energy of individual particles are
allowed to vary with time. In this case the Green function that solves the diffusion equa-
tion has now one extra dimension, i.e. p(E,L, t|E′, L′, t0), which defines the probability
that a particle with an energy E′ and angular momentum L′ at the time t = t0 has an
energy in the interval E,E + dE and an angular momentum in the interval L,L + dL at
the time t = t0 + τ ′. Finally, the fact that the evolution of the microcanonical distribu-
tion has the same form as Einstein’s equation for purely stochastic processes offers the
tantalizing possibility to incorporate the effects of random particle-particle collisions into
our probability theory in a natural way. Such an extension may be useful, for example,
to study a range of dynamical processes taking place in planetary systems, dense stellar
objects and/or self-interacting dark matter (SIDM) haloes.
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