
Ergod. Th. & Dynam. Sys., (2023), 43, 515–544 © The Author(s), 2021. Published by Cambridge
University Press.
doi:10.1017/etds.2021.153

515

Statistical stability and linear response
for random hyperbolic dynamics
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Abstract. We consider families of random products of close-by Anosov diffeomorphisms,
and show that statistical stability and linear response hold for the associated families of
equivariant and stationary measures. Our analysis relies on the study of the top Oseledets
space of a parametrized transfer operator cocycle, as well as ad-hoc abstract perturbation
statements. As an application, we show that, when the quenched central limit theorem
(CLT) holds, under the conditions that ensure linear response for our cocycle, the variance
in the CLT depends differentiably on the parameter.
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1. Introduction
The aim of this paper is to study stability for the families of equivariant and station-
ary measures associated with a random product of (uniformly) hyperbolic diffeomor-
phisms. Those stability properties are related to the following question: in the context of
non-autonomous dynamics, how do the statistical properties change when one perturbs the
dynamics?

More precisely, we consider here a family of random hyperbolic diffeomorphisms, Tω,ε,
acting on some Riemannian manifold M and indexed by ω ∈ � and ε ∈ I , where (�, F, P)
is some probability space, and 0 ∈ I ⊂ R is some interval. Endowing the probability space
with an invertible map σ : � � that is measure-preserving and ergodic, we may form the
random products over σ , defined by

T nω,ε := Tσnω,ε ◦ · · · ◦ Tω,ε. (1)
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Assuming that this random product admits a physical equivariant measure, that is, a
measure hεω satisfying the equivariance condition

T ∗
ω,εh

ε
ω = hεσω, (2)

and such that P-almost surely, the ergodic basin of hεω has positive Riemannian volume
(meaning that for P-almost every ω ∈ �, the set {x ∈ M , (1/n)

∑n−1
k=0 δT kω,εx

−→ hεω
weakly} has positive Riemannian volume), we ask the following questions: is the map
ε ∈ I �→ hεω continuous at ε = 0 in some suitable sense? Is it differentiable? If so, can one
derive an explicit formula for its derivative?

The first question is the statistical stability problem, the last two are called the linear
response problem.

Linear response has received extensive attention, in various context: in the deterministic
case (which corresponds, in our setting, to the case where � is reduced to a singleton
and one considers a smooth family of maps (Tε)ε∈I ), expanding maps of the circle [6]
or in higher dimension [7, 29], piecewise expanding maps of the interval [5, 9] or more
general unimodal maps [10], and intermittent maps [3, 11, 27] have been studied. In
the setting of hyperbolic dynamics, the problem of linear response was first considered
by Ruelle [28] for uniformly hyperbolic maps. A different approach, the so-called weak
spectral perturbation (or Gouëzel–Keller–Liverani) theory, was devised by [26] (see also
[7]). Finally, we mention the paper [18], where linear response is established for a wide
class of partially hyperbolic systems.

The random case may be divided into two different subcases, the annealed case and
the quenched case, the latter of which is the focus of this paper. The annealed case
may be studied by methods very similar to the deterministic case, namely weak spectral
perturbation for the associated family of transfer operators, and often enjoy a convenient
‘regularization property’ (see, e.g., [23] or [24]). We also mention [2], where the authors
deal with annealed perturbation of uniformly and non-uniformly expanding maps. For
annealed perturbation of Anosov diffeomorphisms, very general results were obtained
in [26].

The study of the quenched case is more recent, and the literature on the subject is
sparse. Indeed, in this situation one cannot use the tools devised in the deterministic
or annealed case, as the dynamically relevant objects shift from the spectral data of
individual transfer operators to the Lyapunov–Oseledets spectra associated with a cocycle
of such transfer operators. For the statistical stability problem in this context, we refer
to [4, 8, 12, 21]. Recently, the interesting preprint [14] develops an analogue of the
Gouëzel–Keller–Liverani theory to study regularity of the exceptional Oseledets spectrum,
for quasi-compact cocycles having a dominated splitting, but only up to Lipschitz
regularity. This machinery could, in principle, be applied to our setting, to obtain a result
similar to our Theorem 8. We observe that, although our result is less general because
it only concerns the top Oseledets space, it has the nice property of giving an explicit
modulus of continuity, and to have an elementary proof.

For the response problem, a very general study is presented in [30], in the case
of a random products of uniformly expanding maps, with a finite or countable number
of branches, and in any finite dimension. The idea is to express the equivariant family of

https://doi.org/10.1017/etds.2021.153 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.153


Statistical stability and linear response 517

measures of the random product as the fixed point of a family of cone-contracting maps
that exhibits suitable regularity properties, and to deduce the wanted smoothness of the
equivariant measures by some implicit-function-like argument.

We emphasize that the results we present here rely on methods that are quite different
from those in the previously discussed paper, as they do not rely on Birkhoff cone
contraction techniques. We also remark that, in contrast to the expanding case, the use of
the Gouëzel–Liverani scale of anisotropic spaces (or, for that matter, any of the available
scale of anisotropic spaces) limits us to products of nearby (in the Cr+1 topology)
diffeomorphisms.

A few months after the present paper was made available as a preprint, the
Gouëzel–Keller–Liverani theory for cocycles [14] was further generalized in [15], to
cover the case of quenched linear, as well as higher-order, response. In particular, [15,
Theorem 3.6] generalizes our Theorem 12 to higher-order Taylor expansions, as remarked
in [15, Remark 3.8]. The main idea behind this generalization, namely lifting the cocycle to
the so-called Mather operator (to which the deterministic Gouëzel–Keller–Liverani theory
is then applied), is somehow present in our approach (see, e.g., the proof of Proposition 7),
although the latter is independent of weak spectral perturbation theory. We finally remark
that, although it should be possible in principle, [15] does not state any linear response
formula.

Before going any further, we would like to point out a subtle issue, that is peculiar to
the quenched case, and related to the ‘suitable sense’ for which the question of statistical
stability and linear response may be answered. In the deterministic case, this means finding
a suitable topology into which the invariant measure will live (e.g.Cr(S1, R), r > 1 for the
absolutely continuous invariant probability measure of an expanding map of the circle, or
as a distribution of order one for smooth deformations of unimodal maps, see [10]). In the
quenched case, one also has to take care of the random parameter ω ∈ �. There are several
natural possibilities: the almost sure sense (i.e. one studies the almost sure regularity of
ε ∈ I �→ hεω ∈ B, with B a suitable Banach space in the range), the essentially bounded
sense (where one studies the regularity of ε ∈ I �→ hεω ∈ L∞(�, B)), and the L1 sense
(where the map of interest is ε ∈ I �→ hεω ∈ L1(�, B)). It is easy to see that the L∞ sense
is the strongest one. Furthermore, given the relation between the equivariant measures and
the stationary measure, the L1 sense implies asking the questions of stability and response
for the stationary measure of the skew product. However, an ambiguity arises when one
considers the ‘almost sure’ sense: indeed, it may be that the set of random parameters
for which certain estimates on the equivariant measure hεω holds (let us denote it by �ε)
depends on ε. In this situation, it is not clear whether a statement such as ‘hεω → h0

ω when
ε → 0, P-almost surely’ has any probabilistic meaning, because it would hold on

⋂
ε∈I �ε,

which may be non-measurable set (as the intersection is taken over an uncountable set). For
this reason, we refrain from considering the ‘almost sure’ sense for the regularity results
we present, and instead focus on the L∞-sense.

The paper is organized as follows. In §2, after recalling useful properties of the
Gouëzel–Liverani anisotropic Banach spaces, we present and discuss our setup (Hypoth-
esis 1), we state our main result (Theorem 1) as well as a quenched linear response
formula (3), reminiscent of [28, 30], and give explicit examples of systems to which
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this setting apply (§2.3). In §3, we present abstract theorems on quenched statistical
stability (Theorem 8) and quenched linear response (Theorem 12), applicable in particular
to the equivariant measure associated with a (sufficiently) smooth family of Anosov
diffeomorphisms cocycles. In §4, we give the proof of the main theorem (Theorem 1).
In §5, we give various applications of the previous results: first, we remark in Theorem 15
that Theorem 12 easily implies a response for the stationary measure of the skew product
associated with the cocycle, and that this can be used to establish linear response for a
class of deterministic, partially hyperbolic systems. In §5.2, we prove Theorem 17 which
gives the differentiability with respect to the parameter of the variance in the quenched
central limit theorem (satisfied by the Birkhoff sum of random observable satisfying
certain conditions).

Finally, in §6, we discuss applications of our approach to other type of random
hyperbolic systems: random compositions of uniformly expanding maps, or random
two-dimensional piecewise hyperbolic maps.

2. Main theorem
2.1. A class of anisotropic Banach spaces introduced by Gouëzel and Liverani. The
purpose of this subsection is to briefly summarize the main results from [26]. More
precisely, we recall the properties of the so-called scale of anisotropic Banach spaces, on
which the transfer operator associated to a transitive Anosov diffeomorphism has a spectral
gap. The discussion we present here is relevant when building examples under which the
abstract results of the present paper are applicable.

Let M denote a C∞ compact and connected Riemannian manifold. Furthermore, let
T be a transitive Anosov diffeomorphism on M of class Cr+1 for r > 1. We denote the
transfer operator associated with T by LT . We recall that the action of LT on smooth
functions h ∈ Cr(M , R) is given by

LT h = (h|det(DT )|−1) ◦ T −1.

Let us now briefly summarize the main results from [26]. Take p ∈ N, p ≤ r and
q > 0 such that p + q < r . It is proved in [26] that there exist Banach spaces Bp,q =
(Bp,q , ‖·‖p,q) and Bp−1,q+1 = (Bp−1,q+1, ‖·‖p−1,q+1) with the following properties.
• By construction, Cr(M , R) is dense in Bi,j for (i, j) = {(p, q), (p − 1, q + 1)}.
• By [26, Lemma 2.1], Bp,q can be embedded in Bp−1,q+1 and the unit ball of Bp,q is

relatively compact in Bp−1,q+1.
• By [26, Proposition 4.1], elements of Bp,q are distributions of order at most q.
• By [26, Lemma 3.2], multiplication by aCk+q function, 1 ≤ k ≤ p, induces a bounded

operator on Bp,q . Moreover, the action of a Cr vector field induces a bounded operator
from Bp,q to Bp−1,q+1.

• Here LT acts as a bounded operator on Bi,j for (i, j) = {(p, q), (p − 1, q + 1)}.
Moreover, for each h ∈ Bi,j and ϕ ∈ Cj (M , R), we have that

(LT h)(ϕ) = h(ϕ ◦ T ),
where we denote the action of a distribution h on a test function ϕ by h(ϕ).
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• By [26, Lemma 2.2], there exist A > 0 and a ∈ (0, 1) such that

‖LnT h‖p−1,q+1 ≤ A‖h‖p−1,q+1 for n ∈ N and h ∈ Bp−1,q+1

and

‖LnT h‖p,q ≤ Aan‖h‖p,q + A‖h‖p−1,q+1 for n ∈ N and h ∈ Bp,q .

• By [26, Theorem 2.3], LT is a quasi-compact operator on Bp,q with spectral radius
1. Moreover, 1 is the only eigenvalue of LT on the unit circle. Finally, 1 is a simple
eigenvalue of LT and the corresponding eigenspace is spanned by the unique S.R.B.
measure for T.

2.2. Regularity assumptions. In this section, we state precisely our regularity assump-
tions and our main theorem. We start by fixing, once and for all, the system of C∞
coordinates chart to be (ψi)i=1,...,N , where ψi : (−ri , ri)d → M , and such that the Xi =
ψi((−ri/2, ri/2)d) cover M are given by the anisotropic norm construction (see [26]). We
also let δ be the Lebesgue number of the previous cover. Recall the following fact: if T and
S are Cr+1 maps from M to itself, such that supx∈M dM(T x, Sx) ≤ δ/2, then one has: for
any i ∈ {1, . . . , N},

JS(i) := {j ∈ {1, . . . , N}, S(Xi) ∩Xj �= ∅} = JT (i),
and one may write

dCr+1(T , S) =
N∑
i=1

∑
j∈J(i)

‖Tij − Sij‖Cr+1 ,

where J(i) = JS(i) = JT (i) and Tij = ψ−1
j ◦ T ◦ ψi : (−ri , ri)d → (−rj , rj )d is a

map between open sets in Rd .
For an interval 0 ∈ I ⊂ R, we consider a Cs mapping T : I → Cr+1(M , M), such that

T0 := T(0)(·) is a Cr+1, transitive Anosov diffeomorphism. Up to shrinking I, we may
and do assume that for all ε ∈ I , Tε := T(ε)(·) is a Cr+1 Anosov diffeomorphism, and
that supε∈I dCr+1(Tε, T0) ≤ δ/4. In particular, for any i ∈ {1, . . . , N}, the set

Jε(i) := {j ∈ {1, . . . , N}, Tε(Xi) ∩Xj �= ∅}
is independent of ε. We informally refer to this property by saying that ‘the maps Tε may
be read in the same charts’.

Consider now a 	 > 0, and set V := BCs(I ,Cr+1(M ,M))(T, 	), that is, we consider a
small ball, in Cs(I , Cr+1(M , M)) topology, centered at T. Up to shrinking 	, we may
assume that for any S ∈ V , any ε ∈ I , Sε := S(ε)(·) is an Anosov diffeomorphism, and
that supε∈I dCr+1(Tε, Sε) ≤ δ/4. In particular, for any i ∈ {1, . . . , N}, the sets

JS(i) := {j ∈ {1, . . . , N}, Sε(Xi) ∩Xj �= ∅}
are independent of ε and S both (i.e. they only depend on V).
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We may now describe the type of perturbed cocycle we will consider in the following:

Hypothesis 1. Let r > 4, s > 1, and 0 ∈ I ⊂ R an interval; let T and
V ⊂ Cs(I , Cr+1(M , M)) be as described previously. Furthermore, let (�, F, P) be a
probability space, σ : � → � an invertible, ergodic P-preserving transformation and
consider a measurable mapping

T : � → V

Set Tω,ε := T(ω)(ε)(·), ω ∈ � and ε ∈ I .

Let us make a few comments on this assumption, based on the previous discussion.
• We choose the neighborhood V sufficiently small so that for any ω ∈ �, any ε ∈ I , the

collection of Tω,ε can all be read in the same coordinate charts and share the same set
of admissible leaves. In particular, one may study their transfer operators on the same
anisotropic Banach spaces.

• Our assumption is tailored so that for each fixed ω ∈ �, ε �→ Tω,ε is a smooth curve
of Anosov diffeomorphisms, all close-by to a fixed one (namely, Tω,0).

We are now in position to formulate our main result.

THEOREM 1. Let (Tω,ε)ω∈�,ε∈I be a parametrized cocycle of Anosov diffeomorphisms,
satisfying Hypothesis 1. Then, by shrinking I if necessary, there exists a triplet of Banach
spaces

Bss ⊂ Bs ⊂ Bw,

and for each ε ∈ I a unique family (hεω)ω∈� ⊂ Bss with the following properties:
• ω �→ hεω is measurable for each ε ∈ I ;
• hεω is a probability measure for ε ∈ I and ω ∈ �;
• Lω,εh

ε
ω = hεσω for ε ∈ I and ω ∈ �, whereLω,ε denotes the transfer operator of Tω,ε;

• the map I � ε �→ hεω ∈ L∞(�, Bw) is differentiable at 0, and for φ ∈ Cr(M), we have
that

∂ε

[ ∫
M

φ dhεω

]∣∣∣∣
ε=0

=
∞∑
n=0

∫
M

∂ε[φ ◦ T n
σ−nω ◦ Tσ−n−1ω,ε]

∣∣∣∣
ε=0

dhσ−n−1ω, (3)

where hω := h0
ω, ω ∈ �.

2.3. Examples. Here we give explicit examples of systems satisfying Hypothesis 1. In
all instances, r > 4 and s > 1.

Example 2. Let q ∈ N, � = {1, . . . , q}Z, endowed with a Bernoulli measure. Con-
sider a family (T1, . . . , Tq) of (close-enough) Cr+1 Anosov diffeomorphisms of the
d-dimensional torus Td , where p : Td → Td is a Cr+1 mapping and 0 ∈ I ⊂ R is an
interval. We set

T(ω)(ε, x) := Ti(x)+ εp(x), if ω0 = i, (4)

where x ∈ Td , ε ∈ I , and ω = (ωn)n∈Z ∈ �.
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Example 3. Let q ∈ N, � = {1, . . . , q}Z, endowed with a Bernoulli measure. Consider a
Cr+1 Anosov diffeomorphism T of Td . Moreover, consider p1, . . . , pq Cr+1 mappings of
Td and 0 ∈ I ⊂ R an interval, Then we define, for ε ∈ I , x ∈ Td , and ω = (ωn)n∈Z ∈ �,
the random map

T(ω)(ε, x) = T (x)+ εpi(x) if ω0 = i. (5)

In both Examples 2 and 3, for each ω ∈ �, T(ω) ∈ Cs(I , Cr+1(M , M)). Furthermore,
because for each i ∈ {1, . . . , q}, the set {T(ω) = Ti + εp} (respectively, {T(ω) = T +
εpi}) is the 1-cylinder {ω0 = i}, one easily checks that the map is measurable.

Example 4. We now consider the following setting: for δ > 0, ω ∈ BRd (0, δ) (that is,
randomly chosen with respect to Lebesgue measure) and ε0 > 0, we consider a Cs-smooth
curve of Anosov diffeomorphisms

I := (−ε0, ε0) � ε → Tε ∈ Cr+1(Td , Td).

Finally, set

T(ω)(ε, x) := Tε(x)+ ω, x ∈ Td .

In this last instance, one easily checks that the map � � ω �→ T(ω) ∈
Cs(I , Cr+1(M , M)) is continuous and, thus, measurable.

3. Some abstract results
3.1. Quenched statistical stability for random systems. In this section, we formulate an
abstract result regarding the statistical stability of certain random dynamical systems that
applies, in particular, to random hyperbolic dynamics.

Let (�, F, P) be a probability space and consider an invertible transformation σ : � →
� which preserves P. Furthermore, let P be ergodic.

Moreover, let Bw = (Bw, ‖·‖w) and Bs = (Bs , ‖·‖s) be two Banach spaces such that
Bs is embedded in Bw and that ‖·‖w ≤ ‖·‖s on Bs . Suppose that for each ω ∈ �, Lω
is a bounded operator both on Bw and Bs . In addition, assume that ω → Lω is strongly
measurable on Bs , that is, that the map ω �→ Lωh is measurable for each h ∈ Bs . For
ω ∈ � and n ∈ N, set

Lnω := Lσn−1ω ◦ · · · ◦Lσω ◦Lω.

We consider a fixed, non-zero ψ ∈ B′
s that admits a bounded extension to Bw that we still

denote by ψ , and assume that there exist D, λ > 0 such that

‖Lnωh‖s ≤ De−λn‖h‖s , (6)

for P-almost every ω ∈ �, n ∈ N, and h ∈ B0
s , where

B0
s = {h ∈ Bs : ψ(h) = 0}. (7)

Obviously, B0
s depends on the choice of ψ . However, this dependence has no bearing on

our results (see Remark 5), so we do not make it explicit in the notation itself.
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Consider now an interval I ⊂ R around 0 ∈ R and suppose that for ε ∈ I , we have
a family (Lω,ε)ω∈� of bounded linear operators on spaces Bs and Bw. Moreover, assume
thatω �→ Lω,ε is strongly measurable onBs for each ε ∈ I . Analogously toLnω, forω ∈ �,
ε ∈ I , and n ∈ N, we define

Lnω,ε := Lσn−1ω,ε ◦ · · · ◦Lσω,ε ◦Lω,ε.

We set Lω,0 = Lω and we suppose that there exist C > 0, λ1 ∈ (0, 1), and a measurable
�′ ⊂ � satisfying P(�′) = 1 such that for each ε ∈ I :
• for each ε ∈ I , ω ∈ �′, n ∈ N, and h ∈ Bs ,

‖Lnω,εh‖s ≤ Cλn1‖h‖s + C‖h‖w; (8)

• for each ε ∈ I , ω ∈ �′, and h ∈ Bs ,
‖(Lω,ε −Lω)h‖w ≤ C|ε| · ‖h‖s ; (9)

• for each ε ∈ I , ω ∈ �′, and n ∈ N,

‖Lnω,ε‖w ≤ C; (10)

• for each ε ∈ I , ω ∈ �′, we have that

ψ(Lω,εh) = ψ(h) for each h ∈ Bs . (11)

We can assume without any loss of generality that �′ is contained in a full measure set on
which (6) holds.

Remark 5.
• Observe that we can assume that �′ is σ -invariant because we can replace �′

with �′′ = ⋂
k∈Z σk(�′) which is clearly σ -invariant and also satisfies P(�′′) = 1.

Therefore, from now on we assume that �′ is σ -invariant.
• We note that we can deal with the more general situation when�′ is allowed to depend

on ε. However, because the current framework is sufficient for applications we have in
mind and for the case of simplicity, we do not explicitly deal with this case.

• The fact that almost every Lω,ε shares a left eigenvector is the reason why the
dependence on ψ of the space B0

s has no consequence for us. In our examples, ψ will
be ψ(h) := h(1) for a finite-order distribution h (and where 1 denotes the constant test
function).

We first show that the above assumptions imply that all the perturbed cocycles
(Lω,ε)ω∈� also satisfy the condition of the type (6) whenever |ε| is sufficiently small.
More precisely, we have the following auxiliary result.

PROPOSITION 6. There exist ε0, D′ > 0 and λ′ > 0 such that

‖Lnω,εh‖s ≤ D′e−λ′n‖h‖s , (12)

for ε ∈ I satisfying |ε| ≤ ε0, ω ∈ �′, n ∈ N, and h ∈ B0
s .
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Proof. Let ε0 > 0 be such that

C4

1 − λ1
ε0 < 1/2, (13)

and take an arbitrary ε ∈ I satisfying |ε| ≤ ε0.
As

Lnω,ε −Lnω =
n∑
k=1

Ln−k
σ kω,ε(Lσk−1ω,ε −Lσk−1ω)Lk−1

ω ,

it follows from (8), (9), and (10) that

‖(Lnω,ε −Lnω)h‖w ≤
n∑
k=1

‖Ln−k
σ kω,ε(Lσk−1ω,ε −Lσk−1ω)Lk−1

ω h‖w

≤ C

n∑
k=1

‖(Lσk−1ω,ε −Lσk−1ω)Lk−1
ω h‖w

≤ C2|ε|
n∑
k=1

‖Lk−1
ω h‖s

≤ C2|ε|
n∑
k=1

(Cλk−1
1 ‖h‖s + C‖h‖w)

≤ C3|ε|
(

1
1 − λ1

‖h‖s + n‖h‖w
)

,

and, thus,

‖(Lnω,ε −Lnω)h‖w ≤ C3|ε|
(

1
1 − λ1

‖h‖s + n‖h‖w
)

, (14)

for n ∈ N, ω ∈ �′, and h ∈ Bs . Thus, (6), (8), and (14) imply that

‖Ln+mω,ε h‖s = ‖Lnσmω,εLmω,εh‖s
≤ Cλn1‖Lmω,εh‖s + C‖Lmω,εh‖w
≤ Cλn1(Cλ

m
1 ‖h‖s + C‖h‖w)+ C(‖Lmωh‖w + ‖(Lmω,ε −Lmω )h‖w)

≤ C2λn+m1 ‖h‖s + C2λn1‖h‖s + CDe−λm‖h‖s + C4|ε|
(

1
1 − λ1

+m

)
‖h‖s ,

for n, m ∈ N, ω ∈ �′, and h ∈ B0
s . Hence (recall also (13)), we can find (by decreasing ε0

if necessary) a ∈ (0, 1) and N0 ∈ N (independent of ε and ω) such that

‖LN0
ω,εh‖s ≤ a‖h‖s , (15)

for ω ∈ �′ and h ∈ B0
s .

On the other hand, it follows readily from (8) that

‖Lnω,ε‖s ≤ 2C for n ∈ N and ω ∈ �′. (16)
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Take now an arbitrary n ∈ N and write it as n = mN0 + k form, k ∈ N ∪ {0}, 0 ≤ k < N0.
It follows from (15) and (16) that

‖Lnω,εh‖s = ‖LmN0+k
ω,ε h‖s ≤ 2Cam‖h‖s

= 2Ce−m log a−1‖h‖s
= 2Ce(k/N0) log a−1

e−(n/N0) log a−1‖h‖s
≤ 2Celog a−1

e−(n/N0) log a−1‖h‖s ,
for ω ∈ �′, n ∈ N, h ∈ B0

s . We conclude that (12) holds with

λ′ = log a−1/N0 > 0 and D′ = 2Celog a−1
> 0,

which are independent on ε. The proof of the proposition is completed.

We are now in position to establish the existence of a random fixed point for the cocycle
(Lω,ε)ω∈� whenever |ε| ≤ ε0.

PROPOSITION 7. For each ε ∈ I satisfying |ε| ≤ ε0, there exists a unique family
(hεω)ω∈�′ ⊂ Bs such that:
• ω �→ hεω is measurable and bounded, that is

sup
ω∈�′

‖hεω‖s < ∞; (17)

• for ω ∈ �′,

ψ(hεω) = 1; (18)

• for ω ∈ �′,

Lω,εh
ε
ω = hεσω. (19)

Proof. Let Y denote the set of all measurable functions v : �′ → Bs such that

‖v‖∞ = sup
ω∈�′

‖v(ω)‖s < ∞.

Then, (Y, ‖·‖∞) is a Banach space. Set

Z := {v ∈ Y : ψ(v(ω)) = 1 for ω ∈ �′}.
Observe thatZ is nonempty. Indeed, because ψ is non-zero, there exists g ∈ Bs such that
ψ(g) = 1. Set v0 : �′ → Bs by v0(ω) = g for ω ∈ �′. Then, v0 ∈ Z. We claim that Z is
a closed subset of Y. Indeed, let (vn)n be a sequence in Z that converges to some v ∈ Y.
Then, we have that

|ψ(vn(ω))− ψ(v(ω))| ≤ ‖ψ‖s · ‖vn(ω)− v(ω)‖s ≤ ‖ψ‖s · ‖vn − v‖∞,

for n ∈ N and ω ∈ �′, where ‖ψ‖s denotes the norm of ψ ∈ B′
s . Hence, ψ(v(ω)) = 1 for

ω ∈ �′ and, thus, v ∈ Z.
For |ε| ≤ ε0, we define a linear operator Lε : Y→ Y by

(Lεv)(ω) = Lσ−1ω,εv(σ
−1ω), ω ∈ �′.
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It follows from (16) (together with our assumption that ω �→ Lω,ε is strongly measurable
on Bs for each ε) that Lε is a well-defined and bounded operator. Moreover, LεZ ⊂ Z.
Indeed, for each v ∈ Z we have (using (11)) that

ψ((Lεv)(ω)) = ψ(Lσ−1ω,εv(σ
−1ω)) = ψ(v(σ−1ω)) = 1,

for ω ∈ �′. Thus, Lεv ∈ Z.
Let us now choose N ∈ N such that D′e−λ′N < 1. It follows from (12) that

‖(Lε)Nv1 − (Lε)Nv2‖∞ = sup
ω∈�′

‖LN
σ−Nω,ε(v1(σ

−Nω)− v2(σ
−Nω))‖s

≤ D′e−λ′N sup
ω∈�′

‖v1(σ
−Nω)− v2(σ

−Nω)‖s

≤ D′e−λ′N‖v1 − v2‖∞,

for |ε| ≤ ε0 and v1, v2 ∈ Z. Hence, (Lε)N is a contraction on Z and therefore, Lε has
a unique fixed point vε ∈ Z. Thus, the family (hεω)ω∈�′ defined by hεω := vε(ω) satisfies
(17), (18), and (19).

In order to establish the uniqueness, it is sufficient to note that each family (hεω)ω∈�′
satisfying (17), (18), and (19) gives rise to a fixed point of Lε in Z, which is unique. The
proof of the proposition is complete.

Set

hω := h0
ω ω ∈ �′.

The following is our statistical stability result.

THEOREM 8. Let ε ∈ I , |ε| ≤ ε0. Then

sup
ω∈�′

‖hεω − hω‖w ≤ C|ε||log(|ε|)|, (20)

where C > 0 is independent on ε.

Before we establish Theorem 8, we need the following auxiliary result. Let hε denote
the family (hεω)ω∈� given by Proposition 7.

LEMMA 9. We have that

sup
|ε|≤ε0

sup
ω∈�′

‖hεω‖s < ∞. (21)

Proof. We use the same notation as in the proof of Proposition 7. Take an arbitrary u ∈ Z.
It follows from Banach’s contraction principle that

hε = lim
k→∞(L

ε)kNu,

for |ε| ≤ ε0. Fix now any ε such that |ε| ≤ ε0. There exists k0 ∈ N such that

‖hε − (Lε)k0Nu‖∞ < 1.

https://doi.org/10.1017/etds.2021.153 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.153
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Hence, using (8) we have that

‖hε‖∞ ≤ 1 + ‖(Lε)k0Nu‖∞ ≤ 2C‖u‖∞ + 1,

which readily implies the conclusion of the lemma.

We are now in a position to prove Theorem 8.

Proof of Theorem 8. Take an arbitrary ε ∈ I such that |ε| ≤ ε0. Observe that

‖hεω − hω‖w = ‖Ln
σ−nω,εh

ε
σ−nω −Ln

σ−nωhσ−nω‖w
≤ ‖Ln

σ−nω,εh
ε
σ−nω −Ln

σ−nωh
ε
σ−nω‖w + ‖Ln

σ−nω(h
ε
σ−nω − hσ−nω)‖w, (22)

for each n ∈ N and ω ∈ �′. It follows from (6) and (21) that there exists D̃ > 0 such that

‖Ln
σ−nω(h

ε
σ−nω − hσ−nω)‖w ≤ ‖Ln

σ−nω(h
ε
σ−nω − hσ−nω)‖s ≤ D̃e−λn, (23)

for n ∈ N and ω ∈ �′.
On the other hand, it follows from (8), (9), and (10) that

‖Ln
σ−nω,εh

ε
σ−nω −Ln

σ−nωh
ε
σ−nω‖w

≤
n∑
j=1

‖Ln−j
σ−n+j ω(Lσ−n+j−1ω −Lσ−n+j−1ω,ε)L

j−1
σ−nω,εh

ε
σ−nω‖w

≤ C

n∑
j=1

‖(Lσ−n+j−1ω −Lσ−n+j−1ω,ε)L
j−1
σ−nω,εh

ε
σ−nω‖w

≤ C2|ε|
n∑
j=1

‖Lj−1
σ−nω,εh

ε
σ−nω‖s

≤ 2nC3|ε| · ‖hε
σ−nω‖s .

Hence, by (21) we have that

‖Ln
σ−nω,εh

ε
σ−nω −Ln

σ−nωh
ε
σ−nω‖w ≤ 2nC3|ε| sup

|ε|≤ε0

sup
ω∈�′

‖hεω‖s , (24)

for ω ∈ �′ and n ∈ N. We conclude from (22), (23), and (24) that

sup
ω∈�′

‖hεω − hω‖w ≤ 2nC3|ε| sup
|ε|≤ε0

sup
ω∈�′

‖hεω‖s+D̃e−λn,

for n ∈ N. Taking n = �|log(|ε|)|/λ�, we conclude that (20) holds.

3.2. Quenched linear response for random dynamics. Observe that Theorem 8 gives
the continuity (in the appropriate sense) of the map ε �→ (hεω)ω∈� in ε = 0. We are
now concerned with formulating sufficient conditions under which the same map is
differentiable in ε = 0.

In addition to requiring the existence of spaces Bw and Bs as in §3.1, we also require
the existence of a third space Bss = (Bss , ‖·‖ss) that can be embedded in Bs and such
that ‖·‖s ≤ ‖·‖ss on Bss . As in §3.1, we assume that ψ is a non-zero functional on Bs ,
and we shall also assume that it admits a bounded extension to Bw. We still denote its
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restriction (respectively, extension) to Bss (respectively, Bw) by ψ . Furthermore, we let
(Lω,ε)ω∈�,ε∈I be a family such that eachLω,ε is a bounded operator on each of those three
spaces. In addition, suppose that ω �→ Lω,ε is strongly measurable on both Bs and Bss for
each ε ∈ I .

In addition to (6), we also require that

‖Lnωh‖ss ≤ De−λn‖h‖ss , (25)

for P-almost every ω ∈ �, n ∈ N, and h ∈ B0
ss , where

B0
ss = {h ∈ Bss : ψ(h) = 0}.

We define B0
s and B0

w in a similar manner. In particular, B0
s is the same as in (7).

In addition, we also assume that there exist C > 0, λ1 ∈ (0, 1), and a measurable �′ ⊂
� with the property that P(�′) = 1 and:
• for each ε ∈ I , ω ∈ �′, n ∈ N, and h ∈ Bs , (8) holds;
• for each ε ∈ I , ω ∈ �′, and h ∈ Bs , (9) holds;
• for each ε ∈ I , ω ∈ �′, and n ∈ N, (10) holds;
• for each ε ∈ I , ω ∈ �′, n ∈ N, and h ∈ Bss ,

‖Lnω,εh‖ss ≤ Cλn1‖h‖ss + C‖h‖s ; (26)

• for each ε ∈ I , ω ∈ �′, and h ∈ Bss ,
‖(Lω,ε −Lω)h‖s ≤ C|ε|‖h‖ss ; (27)

• for each ε ∈ I and ω ∈ �′, we have that for h ∈ Bs (and, thus, also for h ∈ Bss)
ψ(Lω,εh) = ψ(h). (28)

As before, we can assume that �′ is contained in a full-measure set on which (6) and (25)
hold and that �′ is σ -invariant.

The following is a direct consequence of Proposition 6 (applied for the pairs (Bs , Bss)
and (Bw, Bs)).

LEMMA 10. There exist ε0, D′ > 0 and λ′ > 0 such that for ε ∈ I satisfying |ε| ≤ ε0,
ω ∈ �′, and n ∈ N, we have that

‖Lnω,εh‖ss ≤ D′e−λ′n‖h‖ss for h ∈ B0
ss , (29)

and

‖Lnω,εh‖s ≤ D′e−λ′n‖h‖s for h ∈ B0
s . (30)

By applying Proposition 7 for Bss instead of Bs , we deduce the following result.

PROPOSITION 11. For each ε satisfying |ε| ≤ ε0, there exists a unique family (hεω)ω∈�′ ⊂
Bss such that:
• ω �→ hεω is measurable and bounded, that is

sup
ω∈�′

‖hεω‖ss < ∞; (31)
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• for ω ∈ �′,

ψ(hεω) = 1; (32)

• for ω ∈ �′,

Lω,εh
ε
ω = hεσω. (33)

Let us now introduce some additional assumptions. We suppose that for ω ∈ �′, there
exists a bounded linear operator L̂ω : Bss → Bs , admitting a bounded extension (which
will also be denoted by L̂ω) from Bs to Bw, and such that⎧⎪⎨

⎪⎩
sup
ω∈�′

‖L̂ω‖Bss→Bs < ∞,

sup
ω∈�′

‖L̂ω‖Bs→Bw < ∞,
(34)

and we suppose that there is a function α : I → R+, limε→0 α(ε) = 0 such that for
ω ∈ �′, ∥∥∥∥1

ε
(Lω,ε −Lω)h− L̂ωh

∥∥∥∥
w

≤ α(ε)‖h‖ss for h ∈ Bss and ε ∈ I \ {0}. (35)

We emphasize that the inequality (35) only holds in Bw-topology. Obviously,
L̂ωB0

ss ⊂ B0
s , for ω ∈ �′, but it also follows from (35) and boundedness of ψ on Bw that

L̂ω : Bss → B0
s .

Finally, we assume that for ω ∈ �′ and every n ∈ N,

‖Lnωh‖w ≤ D′e−λ′n‖h‖w for h ∈ B0
w. (36)

We continue to denote h0
ω simply by hω. For ω ∈ �′, set

ĥω :=
∞∑
j=0

Lj
σ−j ωL̂σ−(j+1)ωhσ−(j+1)ω. (37)

It follows from (6), (31), (34), and the previous discussion that ĥω ∈ B0
s for ω ∈ �′. In

addition,

sup
ω∈�′

‖ĥω‖s < ∞. (38)

The following is our linear response result.

THEOREM 12. We have that

lim
ε→0

sup
ω∈�′

∥∥∥∥1
ε
(hεω − hω)− ĥω

∥∥∥∥
w

= 0. (39)

Proof. Let us begin by introducing some auxiliary notation. Set

h̃εω := hεω − hω and L̃ω,ε := Lω,ε −Lω.

It follows easily from (33) that

h̃εω −Lσ−1ωh̃
ε
σ−1ω

= L̃σ−1ω,εh
ε
σ−1ω

,
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and, thus,

h̃εω =
∞∑
j=0

Lj
σ−j ωL̃σ−(j+1)ω,εh

ε
σ−(j+1)ω

, (40)

for ω ∈ �′. By (37) and (40), we have that
∥∥∥∥1
ε
h̃εω − ĥω

∥∥∥∥
w

=
∥∥∥∥1
ε

∞∑
j=0

Lj
σ−j ωL̃σ−(j+1)ω,εh

ε
σ−(j+1)ω

− ĥω

∥∥∥∥
w

≤
∥∥∥∥

∞∑
j=0

Lj
σ−j ω

(
1
ε
L̃σ−(j+1)ω,ε − L̂σ−(j+1)ω

)
hε
σ−(j+1)ω

∥∥∥∥
w

+
∥∥∥∥

∞∑
j=0

Lj
σ−j ωL̂σ−(j+1)ω

(
hε
σ−(j+1)ω

− hσ−(j+1)ω

)∥∥∥∥
w

. (41)

By applying Lemma 9, we have

sup
|ε|≤ε0

sup
ω∈�′

‖hεω‖ss < ∞.

This, together with (35) and (36) implies that
∥∥∥∥

∞∑
j=0

Lj
σ−j ω

(
1
ε
L̃σ−(j+1)ω,ε − L̂σ−(j+1)ω

)
hε
σ−(j+1)ω

∥∥∥∥
w

≤
∞∑
j=0

D′e−λ′j
∥∥∥∥
(

1
ε
L̃σ−(j+1)ω,ε − L̂σ−(j+1)ω

)
hε
σ−(j+1)ω

∥∥∥∥
w

≤ D̃α(ε) sup
|ε|≤ε0

sup
ω∈�′

‖hεω‖ss , (42)

for ω ∈ �′, where D̃ > 0 does not depend on ω and ε. On the other hand, we have by (34)
and (36) that

∥∥∥∥
∞∑
j=0

Lj
σ−j ωL̂σ−(j+1)ω(h

ε
σ−(j+1)ω

− hσ−(j+1)ω)

∥∥∥∥
w

≤
∞∑
j=0

D′e−λ′j‖L̂σ−(j+1)ω(h
ε
σ−(j+1)ω

− hσ−(j+1)ω)‖w

≤ sup
ω∈�′

‖L̂ω‖Bs→Bw
∞∑
j=0

D′e−λ′j‖hε
σ−(j+1)ω

− hσ−(j+1)ω‖s .

Now, our assumptions ensure that we may apply Theorem 8 for the pair (Bs , Bss).
Hence, we obtain

∥∥∥∥
∞∑
j=0

Lj
σ−j ωL̂σ−(j+1)ω(h

ε
σ−(j+1)ω

− hσ−(j+1)ω)

∥∥∥∥
w

≤ C′|ε||log |ε| (43)
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for ω ∈ �′, where C′ > 0 is independent on ω and ε. It follows readily from (41), (42), and
(43) that (39) holds, which completes the proof of the theorem.

Remark 13. The purpose of this remark is to interpret Theorem 8 (as well as Theorem 12)
in the context of the multiplicative ergodic theory. In order to do so, we first need to
introduce two additional assumptions. Namely, we require that:
• Bs is separable;
• the inclusion Bs ↪→ Bw is compact.
We denote the largest Lyapunov exponent of the cocycle (Lω,ε)ω∈�, for ε ∈ I , by �(ε) ∈
R ∪ {−∞}. We stress that the existence of �(ε) is a direct consequence of (8) (applied to
n = 1) and the subadditive ergodic theorem. Moreover, we recall that

�(ε) = lim
n→∞

1
n

log‖Lnω,ε‖s for P-almost every ω ∈ �.

By using (8) together with Proposition 7, it is easy to show (see the proof of [19, Lemma
3.5]) that �(ε) = 0, for ε ∈ I with |ε| ≤ ε0. Moreover, for each such ε, the cocycle
(Lω,ε)ω∈� is quasi-compact (in the sense of [25, Definition 2.7]). Hence, it follows from
the multiplicative ergodic theorem (see [25, Theorem A]) that for each ε ∈ I with |ε| ≤ ε0,
there exists:
• 1 ≤ l = l(ε) ≤ ∞ and a sequence of exceptional Lyapunov exponents

0 = �(ε) = λ1(ε) > λ2(ε) > · · · > λl(ε) > κ(ε)

or in the case l = ∞,

0 = �(ε) = λ1(ε) > λ2(ε) > · · · with lim
n→∞ λn(ε) = κ(ε);

• a unique measurable Oseledets splitting

Bs =
( l⊕
j=1

Y εj (ω)

)
⊕ V ε(ω),

where each component of the splitting is equivariant under Lω,ε, that is,
Lω,ε(Y

ε
j (ω)) = Y εj (σω) and Lω,ε(V

ε(ω)) ⊂ V ε(σω); the subspaces Y εj (ω) are
finite-dimensional and for each y ∈ Y εj (ω) \ {0},

lim
n→∞

1
n

log ‖Lnω,εy‖ = λj (ε);

moreover, for y ∈ V (ω), limn→∞(1/n) log ‖Lnω,εy‖ ≤ κ(ε).
It follows easily from Proposition 6 (see the proof of [19, Proposition 3.6]) that Y ε1 (ω)

is one-dimensional and is spanned by hεω, for each ε ∈ I such that |ε| ≤ ε0.
Hence, Theorem 8 can be interpreted as a regularity result for the top Oseledets space

of (Lω,ε)ω∈�. Namely, it shows that it is continuous in appropriate sense in ε = 0. Taking
into account that Lyapunov exponents and corresponding Oseledets subspaces represent
non-autonomous versions of the classical notions of an eigenvalue and the corresponding
eigenspace, we conclude that Theorem 8 is a natural extension of statistical stability results
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concerned with deterministic systems. In a similar manner, Theorem 12 can be viewed as
a non-autonomous generalization linear reponse result.

4. Proof of the main theorem
In this section, we prove Theorem 1 by showing that the assumptions of our abstract
Theorems 8 and 12 are satisfied.

We place ourselves in the context of §2.2: we fix a small enough interval 0 ∈ I ⊂ R,
and we consider a Cs mapping T : I → Cr+1(M , M), such that T0 := T(0)(·) is a Cr+1,
transitive Anosov diffeomorphism.

We now let 	 > 0 and consider V := BCs(I ,Cr+1(M ,M))(T, 	). One has the following
lemma.

LEMMA 14. There exists C > 0, depending only on T and 	, such that for any S ∈ V ,
any ε ∈ I ,

dCr+1(Sε, S0) ≤ C|ε|. (44)

Proof. From the discussion in §2.2, it follows that for any S ∈ V ,

dCr+1(Sε, S0) =
N∑
i=1

∑
j∈J(i)

‖Sij (ε, ·)− Sij (0, ·)‖Cr+1 ,

where we use the notation Sij (ε, ·) = ψ−1
j ◦ Sε ◦ ψi for j ∈ J(i). From the mean value

theorem, one obtains Sij (ε, ·)− Sij (0, ·) = ∫ ε
0 ∂εSij (η, ·) dη and, hence,

‖Sij (ε, ·)− Sij (0, ·)‖Cr+1 ≤
∫ ε

0
‖∂εSij (η, ·)‖Cr+1dη

≤ C(T, 	)|ε|

from which the conclusion follows.

We consider the following triplet of Banach spaces:

Bss = B3,1(T0, M) ↪→ Bs = B2,2(T0, M) ↪→ Bw = B1,3(T0, M). (45)

We consider a measurable map T : � → V , and we write Tω,ε = T(ω)(ε)(·). Finally, we
let ψ be defined by ψ(h) = h(1), which is a bounded functional on all three spaces in (45).

Proof of Theorem 1.
(1) By Lemma 14 we have, for ε > 0, that dCr+1(Tω, Tω,ε) ≤ C|ε|, with C independent

of ε and ω. Hence, [26, Lemma 7.1] implies that (9) and (27) hold.
(2) As T is transitive, the deterministic transfer operator associated with T has a spectral

gap on all three spaces Bss , Bs and Bw. (Observe that Bw is compactly embedded
into B0,4.) Consequently, it follows from [13, Proposition 2.10] that by shrinking δ is
necessary, we have that (6), (25) and (36) hold.
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(3) The uniform Lasota–Yorke inequalities (8), (10), and (26) may be established arguing
as in [19, §3.2] or [26, §7].

(4) By arguments analogous to those in [19, §3.1], one has that the cocycle (Lω,ε)ω∈�
is strongly measurable on Bs and Bss .

The previous arguments are enough to apply Proposition 7 and Theorem 8 to our situation,
giving us an equivariant family (hεω)ω∈� ⊂ Bss , that satisfies our statistical stability
estimate (20) with respect to the norm ‖ · ‖2,2. We note that (see [19, Proposition 3.3])
for ε ∈ I , hεω is actually a positive probability measure on M for P-almost every ω ∈ �.

What is now left to do is to establish the existence and required properties of the
‘derivative operator’. Following the lines of [26, §9], we systematically abuse notation
and ignore coordinates charts.

Denote by gω(ε, ·) := 1/|det(DTω,ε)| the weight of the transfer operator Lω,ε. Under
our assumptions, when viewed in coordinates, the maps ε �→ gω(ε, ·) ∈ Cr(M , R∗)
and ε �→ Tω,ε(·)−1 are of class Cs , s > 1. In particular, we may, for φ ∈ Cr(M , R),
differentiate Lω,εφ with respect to ε and obtain

∂ε[Lω,εφ] = Lω,ε(Jω,εφ + vω,εφ), (46)

∂2
ε [Lω,εφ] = Lω,ε(J

2
ω,εφ + Jω,ε(vω,εφ)+ vω,ε(Jω,εφ)

+ vω,ε(vω,εφ)+ [∂εJω,ε] · φ + ∂ε[vω,εφ]), (47)

where

vω,εφ := −Dφ(·) · [DTω,ε(·)]−1 · ∂εTω(ε, ·), (48)

Jω,ε := ∂εgω(ε, ·)+ vω,εgω(ε, ·)
gω(ε, ·) . (49)

Note that both of these expressions are, together with their first s-derivatives with respect to
ε, in Cr−1(M , R). We also denote by vω,ε the Cr vector field associated with the operator
vω,ε. As noted in §2.1, multiplication by Jω,ε and the action of vω,ε induce the bounded
operator from Bi,j to itself (respectively, Bi,j to Bi−1,j+1), where i + j < r , and the same
goes for their derivatives with respect to ε.

Furthermore, by our Assumption 1, Jω,ε and vω,ε, as well as their derivatives with
respect to ε, are bounded uniformly in ω and ε, that is,

max
(

sup
ω∈�

sup
ε∈I

‖Jω,ε‖Cr−1 , sup
ω∈�

sup
ε∈I

‖∂εJω,ε‖Cr−1

)
< ∞,

max
(

sup
ω∈�

sup
ε∈I

‖vω,ε‖Cr , sup
ω∈�

sup
ε∈I

‖∂εvω,ε‖Cr
)
< ∞.

For φ ∈ Cr(M , R), set

L̂ωφ := ∂ε[Lω,εφ]|ε=0 = Lω(Jω,0φ + vω,0φ). (50)

By our previous discussion, we conclude that (34) holds.
On the other hand, using Taylor’s formula we conclude that for |ε| small enough,

Lω,εφ −Lωφ − εL̂ωφ =
∫ ε

0

∫ η

0
∂2
ε [Lω,εφ]|ε=ξ dξ dη.
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By (48) and the following discussion,

‖∂2
ε [Lω,εφ]|ε=ξ‖w ≤ C‖φ‖ss ,

where C > 0 independent of both ω and ε. Hence, (35) is satisfied, and we may apply
Theorem 12, which gives us that the map ε ∈ I �→ hεω ∈ L∞(�, Bw) is differentiable at
ε = 0. Moreover,

ĥω := [∂εhεω]|ε=0 =
∞∑
n=0

L(n)
σ−nωL̂σ−n−1ωhσ−n−1ω. (51)

To obtain (3), we note that, by the density of smooth functions in Bi,j and (35), L̂ω, as
a bounded operator from Bi,j to Bi−1,j+1, admits the representation (in fact, this formula
defines a bounded operator fromD′

j toD′
j+1, but we will not need it)

(L̂ωf )(φ) := f (∂ε[φ ◦ Tω,ε]|ε=0),

for any f ∈ Bi,j and φ ∈ Cr(M , R). Then, for φ ∈ Cr(M , R) we have that

∂ε

[ ∫
M

φ dhεω

]∣∣∣∣
ε=0

= ∂ε[hεω(φ)]|ε=0

= ĥω(φ)

=
∞∑
n=0

L(n)
σ−nωL̂σ−n−1ωhσ−n−1ω(φ)

=
∞∑
n=0

L̂σ−n−1ωhσ−n−1ω(φ ◦ T n
σ−nω)

=
∞∑
n=0

hσ−n−1ω(∂ε[φ ◦ T n
σ−nω ◦ Tσ−n−1ω,ε]|ε=0),

which gives (3). This completes the proof of Theorem 1.

5. Applications
In this section, we present two applications of our main result. Let us assume that the
assumptions in Hypothesis 1 hold. We consider the triplet of spaces given by (45).
Furthermore, for ε ∈ I sufficiently close to zero, let (hεω)ω∈� ⊂ Bss be as in §4. By
shrinking I if necessary, we can assume that hεω exists for ε ∈ I and ω ∈ �. Moreover,
recall that hεω is a probability measure on M for ω ∈ � (see §4). As previously, we write
hω instead of h0

ω.

5.1. Annealed linear response for hyperbolic dynamics. As a first application, we
establish a form of an annealed linear response.

For F ∈ L∞(�, Cr(M)) and ε ∈ I , we set

R(ε, F) =
∫
�

∫
M

F(ω, x) dhεω(x) dP(ω). (52)

The following is our annealed linear response result.
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534 D. Dragičević and J. Sedro

THEOREM 15. The map R : I × L∞(�, Cr(M)) → R is differentiable at every (0, F),
F ∈ L∞(�, Cr(M)). Furthermore, one has

∂ε[R(ε, F)]|ε=0 =
∞∑
n=0

∫
�

∫
M

∂ε[Fω ◦ T n
σ−nω ◦ Tσ−n−1ω,ε]|ε=0 dhσ−n−1ω dP(ω). (53)

Remark 16. The previous result can be interpreted as linear response for the stationary
measure of the skew product

Sε(ω, x) := (σω, Tω,εx),

acting on �×M . Indeed, the stationary measure με of this skew-product classically
admits the disintegration along fibers

με(A× B) =
∫
A

hεω(B) dP(ω),

for measurable A ⊂ �, B ⊂ M . In particular, this justifies the ‘annealed’ terminology,
because in the independent and identically distributed case, the measure defined on M by
μ̃ε(·) = με(�× ·) corresponds to the invariant measure of the Markov chain associated
with our cocycle.

We also point out that one may use this interpretation to establish a linear response for a
class of deterministic partially hyperbolic skew products: let us set� = S1, P = Lebesgue,
and σ(ω) = ω + α mod 1 for some α ∈ R\Q. Then, consider a family (Tω,ε)ω∈S1,ε∈I of
Anosov diffeomorphisms of T2, for example,

Tω,ε(x1, x2) :=
(

2 1
1 1

) (
x1

x2

)
+

(
ω

ω

)
+ ε

(
sin 2πx1

sin 2πx2

)
.

This system clearly satisfies our Hypothesis 1 (note that it belongs to the class of
Examples 4), and the skew product Sε acting on S1 × T2 � T3 is clearly a partially
hyperbolic system (with central direction tangent to the first coordinate), exhibiting linear
response by Theorem 15 and the previous discussion.

Proof of Theorem 15. Fix an arbitrary F0 ∈ L∞(�, Cr(M)). We claim that the derivative
of R in (0, F0) is given by

DR(0, F0)(ε, H) = ε

∫
�

ĥω(F0(ω)) dP(ω)+
∫
�

hω(H(ω)) dP(ω), (54)

for (ε, H) ∈ R × L∞(�, Cr(M)), where ĥω is given by (51). Indeed, observe that

R(ε, F0 +H)− R(0, F0)− ε

∫
�

ĥω(F0(ω)) dP(ω)−
∫
�

hω(H(ω)) dP(ω)

=
∫
�

(hεω − hω − εĥω)(F0(ω)) dP(ω)+
∫
�

(hεω − hω)(H(ω)) dP(ω).
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Furthermore, the continuous embedding Bp,q ↪→ D′
q entails that there is C > 0 (indepen-

dent on both ω and ε) such that∣∣∣∣1
ε

∫
�

(hεω − hω − εĥω)(F0(ω)) dP(ω)

∣∣∣∣
≤ C‖F0‖L∞(�,Cr(M)) · sup

ω∈�

∥∥∥∥1
ε
(hεω − hω)− ĥω

∥∥∥∥
w

,

and, thus, Theorem 12 implies that

lim
ε→0

1
ε

∫
�

(hεω − hω − εĥω)(F0(ω)) dP(ω) = 0.

In addition,∣∣∣∣
∫
�

(hεω − hω)(H(ω)) dP(ω)

∣∣∣∣ ≤ C‖H‖L∞(�,Cr(M)) · sup
ω∈�

‖hεω − hω‖w,

and, consequently, by applying Theorem 8 (for the pair (Bs , Bw)), we obtain that

lim
(ε,H)→(0,0)

1
‖H‖L∞(�,C0(M))

∣∣∣∣
∫
�

(hεω − hω)(H(ω)) dP(ω)

∣∣∣∣ = 0.

Thus, (54) holds and the proof of the theorem is completed. In order to establish (53), one
can argue as in the proof of formula (3).

5.2. Regularity of the variance in the central limit theorem for random hyperbolic
dynamics. In this section, we provide an application of Theorem 12 to the problem of
the regularity of the variance (under suitable perturbations) in the quenched version of the
central limit theorem for random hyperbolic dynamics.

Let F be as in the previous subsection. For ω ∈ � and ε ∈ I , set

fω,ε := Fω − hεω(Fω) = Fω −
∫
M

Fω dh
ε
ω.

Set

�2
ε :=

∫
�

∫
M

f 2
ω,ε(x) dh

ε
ω(x) dP(ω)

+ 2
∞∑
n=1

∫
�

∫
M

fω,ε(x)fσnω,ε(T
n
ω,εx) dh

ε
ω(x) dP(ω). (55)

Observe that �2
ε ≥ 0 and that �2

ε does not depend on ω. It is proved in [19, Theorem B]
that if �2

ε > 0, the process (fω,ε ◦ T nω,ε) satisfies P-almost surely a quenched central limit
theorem. More precisely, for every bounded and continuous φ : R → R and P-almost
every ω ∈ �, we have that

lim
n→∞

∫
φ

(
Sn(fω,ε)√

n

)
dhεω =

∫
φ dN(0, �2

ε ),
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where

Sn(fω,ε) :=
n−1∑
k=0

fσkω,ε ◦ T kω,ε,

and N(0, �2
ε ) denotes the normal distribution with parameters 0 and �ε. Our goal is to

establish the following result.

THEOREM 17. Under the above assumptions, the map ε �→ �2
ε is differentiable at ε = 0.

We start the proof by making a few remarks related to the map ε �→ (fω,ε)ω∈� ∈
Cr(M).
• For each ε, ω �→ fω,ε is an element of L∞(�, Cr(M)). Moreover, by Lemma 9 we

have that

sup
|ε|≤ε0

esssupω∈� ‖fω,ε‖Cr ≤
(

1 + sup
|ε|≤ε0

esssupω∈� ‖hεω‖ss
)

esssupω∈� ‖Fω‖Cr .
(56)

• It is differentiable at ε = 0. Indeed, we have

1
ε
(fω,ε − fω) = 1

ε
(hω − hεω)(Fω),

which yields

esssupω∈�
∣∣∣∣1
ε
(fω,ε − fω)+ ĥω(Fω)

∣∣∣∣ → 0, (57)

as ε → 0, via Theorem 12. Here, we write fω instead of fω,0.
The above observations together with Theorem 12 easily imply the following lemma.

LEMMA 18. The map

ε �→
∫
�

∫
M

f 2
ω,ε(x) dh

ε
ω(x) dP(ω)

is differentiable at ε = 0.

Proof. For ε sufficiently close to zero, let H(ε) ∈ L∞(�, Cr(M)) be defined by

H(ε)(ω) = f 2
ω,ε, ω ∈ �.

Then, the discussion preceding the statement of the lemma implies that the map H is
differentiable at ε = 0. Now the conclusion of the lemma follows from Theorem 15 and
the simple observation that∫

�

∫
M

f 2
ω,ε(x) dh

ε
ω(x) dP(ω) = R(ε, H(ε)),

with R given by (52).
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We recall that (see §2.1) that for h ∈ Bp,q and f ∈ Cq(M), we can define f · h ∈ Bp,q

whose action as a distribution is given by

(f · h)(φ) = h(f φ), for φ ∈ Cq(M).
Moreover, there exists C > 0 (depending only on M) such that

‖f · h‖p,q ≤ C‖h‖p,q · ‖f ‖Cq .

The above inequality is frequently used in what follows and, thus, we do not explicitly
refer to it. Moreover, in what follows, C > 0 denotes a constant which is independent on
all parameters (ω, n, etc.) involved.

Observe that

(fω,ε · hεω)(fσnω,ε ◦ T nω,ε) = Lnω,ε(fω,ε · hεω)(fσnω,ε).

In addition, (fω,ε · hεω)(1) = hεω(fω,ε) = 0. We now write

1
ε
(Lnω,ε(fω,ε · hεω)(fσnω,ε)−Lnω(fω · hω)(fσnω)) = (I )n,ω,ε + (II )n,ω,ε + (III )n,ω,ε,

(58)

where

(I )n,ω,ε := Lnω(fω · hω)
(

1
ε
(fσnω,ε − fσnω)

)
,

(II )n,ω,ε := 1
ε
(Lnω,ε −Lnω)(fω · hω)(fσnω,ε),

(III )n,ω,ε := Lnω,ε

(
fω,ε · hεω − fω · hω

ε

)
(fσnω,ε).

LEMMA 19. For each n ∈ N,

lim
ε→0

esssupω∈�|(I )n,ω,ε − ĥσnω(Fσnω)Lnω(fω · hω)(1)| = 0.

In addition, for ε sufficiently close to zero, we have that

esssupω∈�|(I )n,ω,ε| ≤ Ce−λn.

Proof. The first assertion follows directly from (25), (56), and (57). In addition, observe
that for ε sufficiently close to zero,

esssupω∈�|(I )n,ω,ε − ĥσnω(Fσnω)Lnω(fω · hω)(1)| ≤ Ce−λn.

On the other hand, (25), (38), and (57) imply that

esssupω∈�|ĥσnω(Fσnω)Lnω(fω · hω)(1)| ≤ Ce−λn.

The above two estimates readily give the second assertion of the lemma.

LEMMA 20. For each n ∈ N,

lim
ε→0

esssupω∈� |(II )n,ω,ε − L̂n,ω(fω · hω)(fσnω)| = 0, (59)
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where

L̂n,ω =
n∑
k=1

Ln−k
σ kω
L̂σk−1ωLk−1

ω .

Furthermore, for ε sufficiently close to zero, we have that

esssupω∈�|(II )n,ω,ε| ≤ Cne−λ′n.

Proof. In order to prove (59), we first claim that∥∥∥∥1
ε
(Lnω,ε −Lnω)(fω · hω)− L̂n,ω(fω · hω)

∥∥∥∥
w

≤ α̃(ε), (60)

with α̃(ε) → 0 when ε → 0. Observe that

1
ε
(Lnω,ε −Lnω) =

n∑
k=1

Ln−k
σ kω,ε

Lσk−1ω,ε −Lσk−1ω

ε
Lk−1
ω ,

and, therefore,

1
ε
(Lnω,ε −Lnω)− L̂n,ω =

n∑
k=1

[
Ln−k
σ kω,ε

Lσk−1ω,ε −Lσk−1ω

ε
−Ln−k

σ kω
L̂σk−1ω

]
Lk−1
ω

=
n∑
k=1

[
(Ln−k

σ kω,ε −Ln−k
σ kω

)
Lσk−1ω,ε −Lσk−1ω

ε

+Ln−k
σ kω

(Lσk−1ω,ε −Lσk−1ω

ε
− L̂σk−1ω

)]
Lk−1
ω .

By the arguments in the proof of Proposition 6, (25), (27), and (56), we have that∥∥∥∥(Ln−kσ kω,ε −Ln−k
σ kω

)
Lσk−1ω,ε −Lσk−1ω

ε
Lk−1
ω (fω · hω)

∥∥∥∥
w

≤ C|ε|(n− k)

∥∥∥∥Lσk−1ω,ε −Lσk−1ω

ε
Lk−1
ω (fω · hω)

∥∥∥∥
s

≤ C|ε|(n− k)e−λ(k−1) esssupω∈� ‖fω · hω‖ss
≤ C|ε|(n− k)e−λk . (61)

Similarly, using (25), (31), (35), (36), and (56), we obtain that∥∥∥∥Ln−kσ kω

(Lσk−1ω,ε −Lσk−1ω

ε
− L̂σk−1ω

)
Lk−1
ω (fω · hω)

∥∥∥∥
w

≤ Ce−λ′(n−k)
∥∥∥∥
(Lσk−1ω,ε −Lσk−1ω

ε
− L̂σk−1ω

)
Lk−1
ω (fω · hω)

∥∥∥∥
w

≤ Ce−λ′(n−k)α(ε)‖Lk−1
ω (fω · hω)‖ss

≤ Ce−λ′nα(ε) esssupω∈� ‖fω · hω‖ss
≤ Cα(ε)e−λ′n. (62)

Then, (61) and (62) imply (60).
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Furthermore, (6), (25), (31), (34), and (56) imply that

‖L̂ω,n(fω · hω)‖w ≤
n∑
k=1

‖Ln−k
σ kω
L̂σk−1ωLk−1

ω (fω · hω)‖s

≤ C

n∑
k=1

e−λ(n−k) esssupω∈�(‖L̂σk−1ω‖Bss→Bs · ‖Lk−1
ω (fω · hω)‖ss)

≤ C

n∑
k=1

e−λ(n−k)e−λ(k−1) esssupω∈� ‖fω · hω‖ss

≤ Cne−λn. (63)

Using Theorem 8, (56), (60), and (63), we have that

esssupω∈� |(II )n,ω,ε − L̂n,ω(fω · hω)(fσnω)|
≤ esssupω∈�

∣∣∣∣1
ε
(Lnω,ε −Lnω)(fω · hω)(fσnω,ε)− L̂n,ω(fω · hω)(fσnω,ε)

∣∣∣∣
+ esssupω∈� |L̂n,ω(fω · hω)(fσnω,ε − fσnω)|

≤ α̃(ε) esssupω∈�‖fσnω,ε‖Cr + Cne−λn esssupω∈� |(hεω − hω)(Fω)|
≤ Cα̃(ε)+ Cne−λn|ε|| log(|ε|)|,

which implies the first assertion of the lemma.
On the other hand, using (36) (which also persists under small perturbations), (31), (34),

and (56), we have that for ε sufficiently small,

esssupω∈�
∥∥∥∥(Ln−kσ kω,ε −Ln−k

σ kω
)
Lσk−1ω,ε −Lσk−1ω

ε
Lk−1
ω (fω · hω)

∥∥∥∥
w

≤ Ce−λ′n. (64)

Moreover, from (62) it follows that for ε sufficiently small,

esssupω∈�
∥∥∥∥Ln−kσ kω

(Lσk−1ω,ε −Lσk−1ω

ε
− L̂σk−1ω

)
Lk−1
ω (fω · hω)

∥∥∥∥
w

≤ Ce−λ′n. (65)

By (64) and (65), we have that for sufficiently small ε,

esssupω∈�
∥∥∥∥1
ε
(Lnω,ε −Lnω)(fω · hω)− L̂n,ω(fω · hω)

∥∥∥∥
w

≤ Cne−λ′n.

The above estimate together with (63) easily implies that the second assertion of the lemma
also holds.

By using similar arguments, one can establish the following lemma.

LEMMA 21. For each n ∈ N,

lim
ε→0

esssupω∈�|(III )n,ω,ε −Lnω(ĥω(Fω)hω + fω · ĥω)(fσnω)| = 0.

Moreover, for ε sufficiently small, we have that

esssupω∈�|(III )n,ω,ε| ≤ Ce−λ′n.
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The conclusion of Theorem 17 follows from previous lemmas and the dominated
convergence theorem.

Remark 22. In [20] the authors have extended the results from [19] to the case of
vector-valued observables. In particular, the quenched version of the central limit theorem
for vector-valued observables was established. In this setting, the variance is a symmetric
matrix which is, in general, positive semi-definite (for the central limit theorem to hold it
needs to be positive-definite). One can easily establish the version of Theorem 17 in this
setting, essentially by repeating the arguments in the proof of Theorem 17 for each matrix
component.

6. Application to other types of random systems
In this paper, we focused our efforts on studying (quenched) statistical stability and
linear response for random compositions of Anosov diffeomorphisms. Nevertheless, our
approach, or a slight modification thereof, is applicable to other types of random hyperbolic
systems.

6.1. Random uniformly expanding dynamics. In this subsection, let us describe the
application of Theorems 8 and 12 to a simple class of fiberwise perturbations of random
compositions of uniformly expanding maps of the unit circle S1. The setting is close to [24,
§6]: consider a family (Dε)ε∈I of diffeomorphisms of S1 (where 0 ∈ I ⊂ R is an interval),
satisfying

Dε = Id + εS,

where S : S1 → R is a C4 map. Letting (�, F, P) be a probability space, endowed with an
invertible, measure-preserving and ergodic map σ : � �. We consider a measurable map
ω ∈ � �→ Tω ∈ C4(S1, S1) such that:
(1) there exists λ > 1 such that for P-almost every ω ∈ �, infx∈S1 |T ′

ω(x)| ≥ λ;
(2) esssupω∈� ‖Tω‖C4 ≤ 	 for some small 	 > 0.
We then set

Tω,ε := Dε ◦ Tω for ε ∈ I and ω ∈ �,

and we review the assumptions of Theorems 8 and 12 for the spaces Bss = W 3,1(S1),
Bs = W 2,1(S1), and Bw = W 1,1(S1).
• Equations (8) and (10) are established in [14, §5].
• Equation (9) follows from [24, Proposition 35].
• By applying [13, Proposition 2.10] (provided that	 is sufficiently small), we conclude

that (6) holds on (Bss , Bs , Bw).
• To define the derivative operator L̂ω, we start by remarking that because Lω,ε =
LDεLω, one has (see [24, Eq. (51)]) that

L̂ω =
[
dLDε
dε

]∣∣∣∣
ε=0
Lω = −(Lω(·)S)′.
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It is easy to see that L̂ω defines a bounded operator from Bss to Bs (respectively, from
Bs to Bw) and satisfies (34).

As for condition (35), we have for φ ∈ Bs
‖ε−1(Lω,ε −Lω)φ − L̂ωφ‖w ≤ ‖ε−1(LDε − Id)+ (·S)′‖Bs→Bw esssupω∈� ‖Lωφ‖s

≤ Cα(ε)‖φ‖s
by using (8), with α(ε) = ‖ε−1(LDε − Id)+ (·S)′‖Bs→Bw , which goes to zero as ε →
0 by [24, Proposition 36].

6.2. Random piecewise hyperbolic dynamics. Let us discuss the application of
Theorem 8 to random compositions of close-by piecewise hyperbolic maps, defined on a
two-dimensional compact Riemann manifold X, as described in [19, §10] and [16, §2]. It
is noteworthy that one cannot directly apply Theorem 8, because, as noted in [19, §10.2.1],
the transfer operator map ω �→ Lω is not strongly measurable. Still, the conclusion of
Theorem 8 holds; let us explain why.

In [16, §2.4], the set �A of maps T satisfying the assumptions of [16, §2], with second
derivative |D2T | < A is introduced, as well as the distance γ between two such maps.

Let us fix a (small enough) ε0 > 0, a T ∈ �A and let Xε0 := {S ∈ �A : γ (T , S) < ε0}.
We let Bs and Bw be the Banach spaces defined in [16, §2.2] (where Bs is denoted B).
In particular, we recall that elements of Bs are distributions of order at most one. Letting
I := [−ε0/2, ε0/2], we set, for a fixed L > 0:

Bε0,L := {T : I → Xε0 , γ (T(ε), T(ε′)) ≤ L|ε − ε′|, for all ε, ε′ ∈ I }.
This can be viewed as a ball of Lipschitz (with respect to the distance γ ) curves from
I to Xε0 . We now consider a measurable, countably valued mapping T : � → Bε0,L. As
before, (�, F, P) is a probability space endowed with an invertible, measure-preserving,
and ergodic map σ and we use the notation Tω,ε := T(ω)(ε, ·).

We claim that for any ε ∈ I , there exists a measurable family (hεω)ω∈� ⊂ Bs such that
Lω,εh

ε
ω = hεσω for P-almost every ω ∈ � and

esssupω∈� ‖hεω − hω‖w ≤ Cεβ | log(|ε|)|,
for some C > 0, 0 < β < 1, independent on ω and ε, with hω := h0

ω.
Let us review the assumptions for Theorem 8 in this context.

• Equation (6) holds by [19, Eq. (70)], where ψ ∈ B′
s is given by ψ(h) = h(1), h ∈ Bs .

• Up to shrinking ε0, we have (8) and (10) by [19, Eq. (71)].
• Up to replacing ε by εβ , (9) follows from the definition of Bε0,L and [16, Lemma 6.1].
• As usual, (11) holds as Lω,ε is a transfer operator associated with Tω,ε.
In particular, Proposition 6 (uniform in ε and ω exponential decay of correlations) holds
in the present setting. We cannot use here the fixed-point construction of Proposition 7,
because we do not know whether the cocycle of transfer operators (Lω,ε)ω∈� is strongly
measurable. However, we can use (8), (10), and that, for each ε ∈ I , Tω,ε is countably
valued to apply the version of the MET for the so-called P-continuous cocycles (see
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[22, Theorem 17]): this gives us, as in Remark 13, that for each ε ∈ I there exists:
• 1 ≤ l = l(ε) ≤ ∞ and a sequence of exceptional Lyapunov exponents

0 = �(ε) = λ1(ε) > λ2(ε) > · · · > λl(ε) > κ(ε)

or in the case l = ∞,

0 = �(ε) = λ1(ε) > λ2(ε) > · · · with lim
n→∞ λn(ε) = κ(ε);

• a full-measure set �ε such that for each ω ∈ �ε, there is a unique measurable
Oseledets splitting

Bs =
( l⊕
j=1

Y εj (ω)

)
⊕ V ε(ω),

where each component of the splitting is equivariant under Lω,ε, that is,
Lω,ε(Y

ε
j (ω)) = Y εj (σω) and Lω,ε(V

ε(ω)) ⊂ V ε(σω). The subspaces Y εj (ω) are
finite-dimensional and for each y ∈ Y εj (ω) \ {0},

lim
n→∞

1
n

log ‖Lnω,εy‖s = λj (ε).

Moreover, for y ∈ V (ω), limn→∞(1/n) log ‖Lnω,εy‖s ≤ κ(ε).
It follows easily from Proposition 6 (see the proof of [19, Proposition 3.6]) that Y ε1 (ω) is
one-dimensional: for each ε ∈ I , we may, thus, consider a generator hεω, normalized by
ψ(hεω) = 1, which satisfies Lω,εh

ε
ω = hεσω. We now claim that

sup
ε∈I

esssupω∈� ‖hεω‖s < +∞. (66)

In order to establish (66), we start by observing that using (12) we have that

‖hεω −Ln
σ−nω,ε1‖s = ‖Ln

σ−nω,ε(h
ε
σ−nω − 1)‖s ≤ D′e−λ′n‖hε

σ−nω − 1‖s , (67)

for n ∈ N, ω ∈ � and ε ∈ I . Furthermore, because λ1(ε) = 0, we have that the random
variable ω �→ ‖hεω‖s is tempered (we recall that a random variable K : � → (0, +∞) is
tempered if limn→±∞(1/n) log K(σnω) = 0 for P-almost every ω ∈ �) for each ε ∈ I .
Hence, by [1, Proposition 4.3.3] for each ε ∈ I , there exists a random variable Kε : � →
(0, +∞) such that

‖hεω − 1‖s ≤ Kε(ω) and Kε(σ
nω) ≤ eλ

′|n|/2Kε(ω), (68)

for P-almost every ω ∈ � and n ∈ Z. By (67) and (68), we obtain that

‖hεω −Ln
σ−nω,ε1‖s ≤ D′Kε(ω)e−(λ

′n/2) for P-almost every ω ∈ � and n ∈ N,

which implies that for ε ∈ I ,

hεω = lim
n→∞ L

n
σ−nω,ε1 in Bs , for P-almost every ω ∈ �. (69)

Clearly, (66) follows readily from (8) and (69). From there, we can reproduce the proof of
Theorem 8, to obtain the announced result.
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Remark 23. It is natural to ask whether Theorem 12 can be applied in the piecewise
hyperbolic setting described above. First, we note that there is no natural candidate for
a Bss space. Indeed, as noted in the introduction of [16] (and in contrast with the situation
in [26]), considering a (piecewise) Cr or a (piecewise) Cs , r > s > 2, system yields the
same couple (Bw and Bs) of Banach spaces. In other words, the degree of the smoothness
of maps does not influence the construction of the anisotropic spaces, which makes unclear
whether this line of reasoning can produce a space Bss satisfying our requirements. In
fact, to the best of the authors’ knowledge there are currently no results dealing with the
linear response for classes of piecewise hyperbolic dynamics described above even in the
deterministic setting (that is, when we take � to be a singleton).

Second, the case of deterministic, one-dimensional piecewise expanding maps [5, 9]
suggests that, in general, the linear response does not hold in a piecewise smooth setting.

Finally, we note that for random compositions of billiard maps such as described, e.g.,
in [17] do not fall under the setup of Theorem 8, as they do not satisfy Lasota–Yorke
inequalities of the type (8) and (10) (the ‖ · ‖w carries a factor ηn for some η ≥ 1).
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