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Abstract. We consider families of random products of close-by Anosov diffeomorphisms,
and show that statistical stability and linear response hold for the associated families of
equivariant and stationary measures. Our analysis relies on the study of the top Oseledets
space of a parametrized transfer operator cocycle, as well as ad-hoc abstract perturbation
statements. As an application, we show that, when the quenched central limit theorem
(CLT) holds, under the conditions that ensure linear response for our cocycle, the variance
in the CLT depends differentiably on the parameter.
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1. Introduction

The aim of this paper is to study stability for the families of equivariant and station-
ary measures associated with a random product of (uniformly) hyperbolic diffeomor-
phisms. Those stability properties are related to the following question: in the context of
non-autonomous dynamics, how do the statistical properties change when one perturbs the
dynamics?

More precisely, we consider here a family of random hyperbolic diffeomorphisms, 7, ,
acting on some Riemannian manifold M and indexed by w € Q2 and ¢ € I, where (X2, F, P)
is some probability space, and 0 € I C R is some interval. Endowing the probability space
with an invertible map o : Q O that is measure-preserving and ergodic, we may form the
random products over o, defined by

Ta’ig = Tonpe o -0Tye. (D)
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Assuming that this random product admits a physical equivariant measure, that is, a
measure /¢, satisfying the equivariance condition

Tr he =he

wcho = hgws )

and such that P-almost surely, the ergodic basin of 4% has positive Riemannian volume
(meaning that for P-almost every w € 2, the set {x € M, (1/n) Zz;é Sk« —> hg,
weakly} has positive Riemannian volume), we ask the following questions: is the map
¢ € I — hi, continuous at ¢ = 0 in some suitable sense? Is it differentiable? If so, can one
derive an explicit formula for its derivative?

The first question is the statistical stability problem, the last two are called the linear
response problem.

Linear response has received extensive attention, in various context: in the deterministic
case (which corresponds, in our setting, to the case where €2 is reduced to a singleton
and one considers a smooth family of maps (7;).ecs), expanding maps of the circle [6]
or in higher dimension [7, 29], piecewise expanding maps of the interval [5, 9] or more
general unimodal maps [10], and intermittent maps [3, 11, 27] have been studied. In
the setting of hyperbolic dynamics, the problem of linear response was first considered
by Ruelle [28] for uniformly hyperbolic maps. A different approach, the so-called weak
spectral perturbation (or Gouézel-Keller-Liverani) theory, was devised by [26] (see also
[7]). Finally, we mention the paper [18], where linear response is established for a wide
class of partially hyperbolic systems.

The random case may be divided into two different subcases, the annealed case and
the quenched case, the latter of which is the focus of this paper. The annealed case
may be studied by methods very similar to the deterministic case, namely weak spectral
perturbation for the associated family of transfer operators, and often enjoy a convenient
‘regularization property’ (see, e.g., [23] or [24]). We also mention [2], where the authors
deal with annealed perturbation of uniformly and non-uniformly expanding maps. For
annealed perturbation of Anosov diffeomorphisms, very general results were obtained
in [26].

The study of the quenched case is more recent, and the literature on the subject is
sparse. Indeed, in this situation one cannot use the tools devised in the deterministic
or annealed case, as the dynamically relevant objects shift from the spectral data of
individual transfer operators to the Lyapunov—Oseledets spectra associated with a cocycle
of such transfer operators. For the statistical stability problem in this context, we refer
to [4, 8, 12, 21]. Recently, the interesting preprint [14] develops an analogue of the
Gouézel-Keller-Liverani theory to study regularity of the exceptional Oseledets spectrum,
for quasi-compact cocycles having a dominated splitting, but only up to Lipschitz
regularity. This machinery could, in principle, be applied to our setting, to obtain a result
similar to our Theorem 8. We observe that, although our result is less general because
it only concerns the top Oseledets space, it has the nice property of giving an explicit
modulus of continuity, and to have an elementary proof.

For the response problem, a very general study is presented in [30], in the case
of a random products of uniformly expanding maps, with a finite or countable number
of branches, and in any finite dimension. The idea is to express the equivariant family of
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measures of the random product as the fixed point of a family of cone-contracting maps
that exhibits suitable regularity properties, and to deduce the wanted smoothness of the
equivariant measures by some implicit-function-like argument.

We emphasize that the results we present here rely on methods that are quite different
from those in the previously discussed paper, as they do not rely on Birkhoff cone
contraction techniques. We also remark that, in contrast to the expanding case, the use of
the Gouézel-Liverani scale of anisotropic spaces (or, for that matter, any of the available
scale of anisotropic spaces) limits us to products of nearby (in the C’*! topology)
diffeomorphisms.

A few months after the present paper was made available as a preprint, the
Gouézel-Keller-Liverani theory for cocycles [14] was further generalized in [15], to
cover the case of quenched linear, as well as higher-order, response. In particular, [15,
Theorem 3.6] generalizes our Theorem 12 to higher-order Taylor expansions, as remarked
in [15, Remark 3.8]. The main idea behind this generalization, namely lifting the cocycle to
the so-called Mather operator (to which the deterministic Gouézel-Keller—Liverani theory
is then applied), is somehow present in our approach (see, e.g., the proof of Proposition 7),
although the latter is independent of weak spectral perturbation theory. We finally remark
that, although it should be possible in principle, [15] does not state any linear response
formula.

Before going any further, we would like to point out a subtle issue, that is peculiar to
the quenched case, and related to the ‘suitable sense’ for which the question of statistical
stability and linear response may be answered. In the deterministic case, this means finding
a suitable topology into which the invariant measure will live (e.g. C"(S', R), r > 1 for the
absolutely continuous invariant probability measure of an expanding map of the circle, or
as a distribution of order one for smooth deformations of unimodal maps, see [10]). In the
quenched case, one also has to take care of the random parameter w € 2. There are several
natural possibilities: the almost sure sense (i.e. one studies the almost sure regularity of
¢ € I — hi € B, with 8 a suitable Banach space in the range), the essentially bounded
sense (where one studies the regularity of ¢ € I = h% € L*°(2, B)), and the L' sense
(where the map of interestis ¢ € I — h{ € LYQ, B)). Itis easy to see that the L sense
is the strongest one. Furthermore, given the relation between the equivariant measures and
the stationary measure, the L' sense implies asking the questions of stability and response
for the stationary measure of the skew product. However, an ambiguity arises when one
considers the ‘almost sure’ sense: indeed, it may be that the set of random parameters
for which certain estimates on the equivariant measure /¢, holds (let us denote it by ;)
depends on ¢. In this situation, it is not clear whether a statement such as ‘i, — h% when
e — 0, P-almost surely’ has any probabilistic meaning, because it would hold on (), .; €2,
which may be non-measurable set (as the intersection is taken over an uncountable set). For
this reason, we refrain from considering the ‘almost sure’ sense for the regularity results
we present, and instead focus on the L*°-sense.

The paper is organized as follows. In §2, after recalling useful properties of the
Gouézel-Liverani anisotropic Banach spaces, we present and discuss our setup (Hypoth-
esis 1), we state our main result (Theorem 1) as well as a quenched linear response
formula (3), reminiscent of [28, 30], and give explicit examples of systems to which
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this setting apply (§2.3). In §3, we present abstract theorems on quenched statistical
stability (Theorem 8) and quenched linear response (Theorem 12), applicable in particular
to the equivariant measure associated with a (sufficiently) smooth family of Anosov
diffeomorphisms cocycles. In §4, we give the proof of the main theorem (Theorem 1).
In §5, we give various applications of the previous results: first, we remark in Theorem 15
that Theorem 12 easily implies a response for the stationary measure of the skew product
associated with the cocycle, and that this can be used to establish linear response for a
class of deterministic, partially hyperbolic systems. In §5.2, we prove Theorem 17 which
gives the differentiability with respect to the parameter of the variance in the quenched
central limit theorem (satisfied by the Birkhoff sum of random observable satisfying
certain conditions).

Finally, in §6, we discuss applications of our approach to other type of random
hyperbolic systems: random compositions of uniformly expanding maps, or random
two-dimensional piecewise hyperbolic maps.

2. Main theorem
2.1. A class of anisotropic Banach spaces introduced by Gouézel and Liverani. The
purpose of this subsection is to briefly summarize the main results from [26]. More
precisely, we recall the properties of the so-called scale of anisotropic Banach spaces, on
which the transfer operator associated to a transitive Anosov diffeomorphism has a spectral
gap. The discussion we present here is relevant when building examples under which the
abstract results of the present paper are applicable.

Let M denote a C* compact and connected Riemannian manifold. Furthermore, let
T be a transitive Anosov diffeomorphism on M of class C"*! for r > 1. We denote the
transfer operator associated with T by L7. We recall that the action of L7 on smooth
functions h € C" (M, R) is given by

Lrh = (h|det(DT)|™ Yo T\

Let us now briefly summarize the main results from [26]. Take p e N, p <r and
g > 0 such that p + ¢ < r. It is proved in [26] that there exist Banach spaces 879 =
(BP4, |||l pg) and BP~L4FL = (BP=Latl 1y, 1) with the following properties.
e By construction, C" (M, R) is dense in B for G, jp=1{p,q),p-—1,q9+ 1}
e By [26, Lemma 2.1], 8”9 can be embedded in 87~ 19*! and the unit ball of 879 is
relatively compact in 8P~ 14+,
e By [26, Proposition 4.1], elements of 874 are distributions of order at most q.
By [26, Lemma 3.2], multiplication by a Ck+4 function, 1 <k < p,induces a bounded
operator on 874, Moreover, the action of a C” vector field induces a bounded operator
from BP9 to B~ L4+,
e Here L7 acts as a bounded operator on B for (i, j) ={(p,q), (p — 1,9 + D}.
Moreover, for each h € 8>/ and peC J (M, R), we have that

(Lrh)(9) = h(poT),

where we denote the action of a distribution % on a test function ¢ by i(¢).
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e By [26, Lemma 2.2], there exist A > 0 and a € (0, 1) such that
I LRl p—1g+1 < Allkllp—14+1 forn € Nand h € BP~ 14!
and

L0 pg < Ad" 1]l pg + Allhllp—1411 forn € Nand h € B,

e By [26, Theorem 2.3], L7 is a quasi-compact operator on 874 with spectral radius
1. Moreover, 1 is the only eigenvalue of L7 on the unit circle. Finally, 1 is a simple
eigenvalue of L7 and the corresponding eigenspace is spanned by the unique S.R.B.
measure for 7.

2.2. Regularity assumptions. In this section, we state precisely our regularity assump-
tions and our main theorem. We start by fixing, once and for all, the system of C*°
coordinates chart to be (v;);=1,.. n, Where ¥; : (—ri, ri)d — M, and such that the X; =
Vi ((—ri /2, ri /2)?) cover M are given by the anisotropic norm construction (see [26]). We
also let § be the Lebesgue number of the previous cover. Recall the following fact: if 7 and
S are C" 1! maps from M to itself, such that sup, .y, dp (T x, Sx) < 6/2, then one has: for
anyi € {l,..., N},

Is@) :={jefl,....N}, S(Xp)NX; # 0} =7 @),

and one may write

N
deri (T, ) =Y > ITyj = Sijllcr,s
i=1 jeJ()

where J(i) = (i) = Jr(i) and Tjj =y o T oty : (=risr)? — (=rjir)? is a
map between open sets in RY.

For an interval 0 € I C R, we consider a C* mapping 7 : I — C"+'(M, M), such that
Tp := T(0)(-) is a C"*!, transitive Anosov diffeomorphism. Up to shrinking /, we may
and do assume that for all ¢ € I, T, := 7(¢)(-) is a C"t! Anosov diffeomorphism, and
that sup,c; der+1(Tg, To) < 8/4. In particular, for any i € {1, ..., N}, the set

Je@) :={j efl,.... N}, To(Xi) N X # I}

is independent of £. We informally refer to this property by saying that ‘the maps 7, may
be read in the same charts’.

Consider now a A > 0, and set V := By crt1(y.m)) (7, A), that is, we consider a
small ball, in C*(I, C"*' (M, M)) topology, centered at 7. Up to shrinking A, we may
assume that for any S € V, any ¢ € I, S, := S(¢)(-) is an Anosov diffeomorphism, and
that sup,c; der+1(Tg, Sg) < §/4. In particular, forany i € {1, ..., N}, the sets

Js@):={jef{l,.... N}, Se(Xi) N X; # )}

are independent of ¢ and S both (i.e. they only depend on V).
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We may now describe the type of perturbed cocycle we will consider in the following:

Hypothesis 1. Let r>4, s>1, and 0el CR an interval; let 7 and
V c C5(I,C"™t (M, M)) be as described previously. Furthermore, let (2, 7, P) be a
probability space, o: Q@ — Q an invertible, ergodic P-preserving transformation and
consider a measurable mapping

T:-Q—>V
Set Ty, := T(w)(e)(:), w € Qand € € I.

Let us make a few comments on this assumption, based on the previous discussion.

e We choose the neighborhood V sufficiently small so that for any w € €2, any ¢ € I, the
collection of T, can all be read in the same coordinate charts and share the same set
of admissible leaves. In particular, one may study their transfer operators on the same
anisotropic Banach spaces.

e Our assumption is tailored so that for each fixed w € @, ¢ — T, is a smooth curve
of Anosov diffeomorphisms, all close-by to a fixed one (namely, 7, 0).

We are now in position to formulate our main result.

THEOREM 1. Let (T, ¢)weq.ccr be a parametrized cocycle of Anosov diffeomorphisms,
satisfying Hypothesis 1. Then, by shrinking I if necessary, there exists a triplet of Banach
spaces

Bss C Bs C Bw,

and for each ¢ € I a unique family (hi)pcq C Bss with the following properties:

o o> hi is measurable for each ¢ € I;

o 1 is a probability measure for ¢ € I and o € ;

o L,chi =hi, foreelandw e Q where L, , denotes the transfer operator of T, ¢
o themapl > e hi € L®(Q, By,) is differentiable at 0, and for ¢ € C" (M), we have

that
85[/ ¢)dhfoi|
M

where hy, = h0, ® € Q.

o0
=y / delpo T 0 Tyniy,l|  dhgni, (3
e=0 oYM e=0

2.3. Examples. Here we give explicit examples of systems satisfying Hypothesis 1. In
all instances, r > 4 and s > 1.

Example 2. Let g €N, Q={1,... ,q}Z, endowed with a Bernoulli measure. Con-
sider a family (71, ..., T;) of (close-enough) C" +1 Anosov diffeomorphisms of the
d-dimensional torus T¢, where p : TY — T¢ is a C"*! mapping and 0 € I C R is an
interval. We set

T(w)(e, x) :=T;(x) +epx), ifwy=1, @

where x € T, ¢ € I, and @ = (wy)nez, € Q.
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Example 3. Letq e N,Q={1,..., q}Z, endowed with a Bernoulli measure. Consider a
C"*! Anosov diffeomorphism 7 of T¢. Moreover, consider py, . . . , pq C "+ mappings of
T4 and 0 € I C R an interval, Then we define, fore € I, x € T, and w = (wp)nez € 2,
the random map

T(w)(e,x) =T(x)+¢epi(x) ifwy=1i. (@)

In both Examples 2 and 3, for each w € @, T(w) € C*({, Cc™tY(M, M)). Furthermore,
because for each i € {1, ..., g}, the set {T(w) = T; + ep} (respectively, {T(w) =T +
ep;}) is the 1-cylinder {wy = i}, one easily checks that the map is measurable.

Example 4. We now consider the following setting: for § > 0, w € Bp«(0, §) (that is,
randomly chosen with respect to Lebesgue measure) and g9 > 0, we consider a C*-smooth
curve of Anosov diffeomorphisms

I:=(—&0,80) 3 & — T € C"T1(T?, TY).
Finally, set

T(w)(e, x) =T, (x) + 0, x e T¢.

In this last instance, one easily checks that the map Q> w+ T(w) €
C5(1, crtl (M, M)) is continuous and, thus, measurable.

3. Some abstract results

3.1. Quenched statistical stability for random systems. In this section, we formulate an
abstract result regarding the statistical stability of certain random dynamical systems that
applies, in particular, to random hyperbolic dynamics.

Let (2, ¥, IP) be a probability space and consider an invertible transformation o : Q2 —
2 which preserves P. Furthermore, let P be ergodic.

Moreover, let By, = (By, ||-llw) and Bs = (B, ||-||s) be two Banach spaces such that
By is embedded in B,, and that |||, < ||-|ls on Bs. Suppose that for each w € Q, L,
is a bounded operator both on $B,, and B;. In addition, assume that  — L, is strongly
measurable on By, that is, that the map w — L,h is measurable for each i € B;. For
we QLandn € N, set

LZ) i=Lon-1,0 0Ly 0L,

We consider a fixed, non-zero ¥ € B; that admits a bounded extension to 8,, that we still
denote by v, and assume that there exist D, A > 0 such that

ILEANs < De " |hlls, 6)
for P-almost every w € Q,n € N,and h € B_?, where
B) = {h € B, : y(h) =0). (7)

Obviously, 32 depends on the choice of . However, this dependence has no bearing on
our results (see Remark 5), so we do not make it explicit in the notation itself.
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Consider now an interval / C R around 0 € R and suppose that for ¢ € I, we have
a family (L, ¢)weq of bounded linear operators on spaces B, and 8,,. Moreover, assume
that w — L, ¢ is strongly measurable on B; for each ¢ € I. Analogously to L], forw € Q,
g e l,andn € N, we define

LZ),& = '£0"’1w,s ©---0 [—ﬂa),s o -Ea),e-

We set L, 0 = L, and we suppose that there exist C > 0, 11 € (0, 1), and a measurable
Q' C Q satisfying P(2') = 1 such that for each ¢ € I:

o foreacheel,we Q. neN,and h € By,
1L chlls < CA ANy + Cllhllw: (8)

o foreache e l,we Q' and h € B;,
(Loe — L)hllw = Clel - IRl )

e foreacheel,we Q,andn €N,
1L ellw < Cs (10)

e foreache € I, w € ', we have that

Y(Lpeh) =Y (h) foreachh € B;. (11)
We can assume without any loss of generality that €’ is contained in a full measure set on
which (6) holds.
Remark 5.

e Observe that we can assume that Q' is o-invariant because we can replace €
with Q" = (iez ok (') which is clearly o-invariant and also satisfies P(Q") = 1.
Therefore, from now on we assume that ’ is o -invariant.

e We note that we can deal with the more general situation when €’ is allowed to depend
on ¢. However, because the current framework is sufficient for applications we have in
mind and for the case of simplicity, we do not explicitly deal with this case.

e The fact that almost every L, shares a left eigenvector is the reason why the
dependence on v of the space Bg has no consequence for us. In our examples, ¢ will
be ¥ (h) := h(1) for a finite-order distribution / (and where 1 denotes the constant test
function).

We first show that the above assumptions imply that all the perturbed cocycles
(Low.s)wcq also satisty the condition of the type (6) whenever |g| is sufficiently small.
More precisely, we have the following auxiliary result.

PROPOSITION 6. There exist ¢y, D' > 0 and A" > 0 such that
1L Al < D'e™*"|h]s, (12)

or e € 1 satisfying |e| < eo, w € U, neN, andh € B°.
8 s
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Proof. Let g9 > 0 be such that
4

1—x

gy < 1/2, (13)

and take an arbitrary ¢ € [ satisfying |¢| < &p.
As

n

n n o __ n—k k—1

Lw,s - 'Ea) = Z Lgkw’g('ﬁok—lw,e - Ld"—lw)'Ew >
k=1

it follows from (8), (9), and (10) that

1L . — LAl < D LR (Loiotge = Loro1,) LS Rl

okw,e
k=1
n
k—1
< C Y Lok e = Lot1,) LS
k=1

n
< C?lel D_IILE Al

k=1

n
< Clel Y (CA T Mially + CllAlw)
k=1

1
< cﬂa(mnhns +n||h||w),

and, thus,

1(Loe — Le)hllw < C3|8|< I7lls + nIIhIIw>, (14)

1—Ax
forn e N, w € @/, and h € By. Thus, (6), (8), and (14) imply that

ILE" Bls = 11 LG, Loy s
< C)»rll ||£Zgh||s + C”'£gsh”w
< CAHCAT hlls + Cllhllw) + CUALERNw + (L e — Li)hlw)

1
< CP Al 4+ C2L IR + CDe ™ |[hls + C*lel (ﬁ + m) Il
— Al
fornmeN, weQ,andh € Bg. Hence (recall also (13)), we can find (by decreasing &g
if necessary) a € (0, 1) and Ny € N (independent of ¢ and w) such that
ILNohls < allhlly, (15)

forw e Q' and h € BY.
On the other hand, it follows readily from (8) that

IL: Iy <2C forneNandw € . (16)
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Take now an arbitrary n € N and writeitasn = mNg + k form, k € NU {0},0 < k < Np.
It follows from (15) and (16) that
1L chlls = 1LLY  hlly < 2Ca™ IRl
= 2Ce™" P
— 2Cek/No) log a”! o~ (1/No) log a”! 7]l

<2CelE N oz
foroe Q,neN,he Bg. We conclude that (12) holds with
A =loga '/Ng>0 and D' =2Ce°9" >0,
which are independent on ¢. The proof of the proposition is completed. O

We are now in position to establish the existence of a random fixed point for the cocycle
(Loe)wen Whenever |e| < g.

PROPOSITION 7. For each ¢ € I satisfying |e| < &g, there exists a unique family
(hi)weqy C By such that:
o w > hi is measurable and bounded, that is

sup [|Ag,|ls < 003 A7)
e
o forwe
V(hg) = 1; (13)
o forwe Q,
Lochl, =ht . (19)

Proof. Let Y denote the set of all measurable functions v: Q' — B, such that

[vlloc = sup [[v(w)]ls < o0.
we’

Then, (¥, ||-|loo) is a Banach space. Set
Z:={velY:yww) =1forweQ).

Observe that Z is nonempty. Indeed, because 1 is non-zero, there exists g € B such that
Y(g) =1.Setvy: Q' — By by vp(w) = g for w € Q. Then, vy € Z. We claim that Z is
a closed subset of Y. Indeed, let (v,), be a sequence in Z that converges to some v € Y.
Then, we have that

[V (vp (@) — Y (@) < 1Y ls - lvn(@) —v(@)lls < 1¥ls - v = Vloos

forn € Nand w € ', where || ¢ || denotes the norm of ¥ € B;. Hence, ¥ (v(w)) = 1 for
w € ' and, thus, v € Z.
For |e| < &9, we define a linear operator L¢ : Y/ — Y by

L) (@) = Ly1,,00 '0), oeQ.
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It follows from (16) (together with our assumption that w +— L, . is strongly measurable
on B; for each ¢) that IL? is a well-defined and bounded operator. Moreover, L Z C Z.
Indeed, for each v € Z we have (using (11)) that
Y (L) (@) = Y (Ly-1,,,00 @) =Y (o w) =1,
forw € Q'. Thus, Lév € Z.
Let us now choose N € N such that D'e™*'N < 1. It follows from (12) that

1N v1 = WHYvalleo = sup 1LYy, (w16 w) —v2(6 N )l
we ’

/
< D'e™V sup |vi (e Nw) — v2(0 N w)lls
we/

< D'e™N vy — v2l00,
for |e| < & and vy, va € Z. Hence, (IL?)" is a contraction on Z and therefore, ¢ has
a unique fixed point v® € Z. Thus, the family (h),cq defined by il := v®(w) satisfies
(17), (18), and (19).

In order to establish the uniqueness, it is sufficient to note that each family (%) ,ecqr
satisfying (17), (18), and (19) gives rise to a fixed point of IL? in Z, which is unique. The
proof of the proposition is complete. O

Set
hy :=hY we.
The following is our statistical stability result.

THEOREM 8. Lete € I, |e| < &g. Then

sup [|hg, — hollw < Clelllog(leD)], (20)

we

where C > 0 is independent on ¢.

Before we establish Theorem 8, we need the following auxiliary result. Let £° denote
the family (h¢),cq given by Proposition 7.

LEMMA 9. We have that

sup sup [|A|ls < oo. 1)

le|<eq wef’

Proof. We use the same notation as in the proof of Proposition 7. Take an arbitrary u € Z.
It follows from Banach’s contraction principle that

he = lim (L)*Vu,
k— 00
for |e| < go. Fix now any ¢ such that || < gg. There exists kg € N such that

178 — (L Ny < 1.
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Hence, using (8) we have that

1 lloe < T4+ 1N ullo < 2C ulloo + 1,

which readily implies the conclusion of the lemma. O
We are now in a position to prove Theorem 8.

Proof of Theorem 8. Take an arbitrary € € I such that |¢] < g. Observe that
”hi’ B ha)”w = ”Ln’"w ahZ*"w o sznwha*"w”w
=I5 - L o + 12

o "w,e U*”a) o ”w o "w

e ny = ho=10) lw, (22)
for each n € N and w € Q. It follows from (6) and (21) that there exists D > 0 such that
”-£ (hfffnw - ho*”w)”w =< ”-LZ (h

forn e Nandw € Q'.
On the other hand, it follows from (8), (9), and (10) that

I1£; - L

o nw o ’lw”

oc"w —ngy\Itg—ngy ha*”w)”s = ﬁe—kn’ (23)

o "w,e U"w

<Z||.£ o Lantiotg = Lonti-tg ) L0 Bl

o "w,e o "w

<C Z”(LgfnJrjflw — Ly-nti- lwg).fg nwshg—nw”w

j=1
n
2 1
< Ce| ZHL’ S

< 2nC3|8| 154

el

Hence, by (21) we have that

£, — L', B, llw <2nC3e| sup sup [|AS |, (24)

o ”ws o "w o "w o "w
le]<ep we

for w € Q' and n € N. We conclude from (22), (23), and (24) that
sup [|kf, — hollw < 2nC>le| sup sup ||hS[|l;+De ",

we le|<ep we

for n € N. Taking n = | |log(|e])|/A], we conclude that (20) holds. O]

3.2. Quenched linear response for random dynamics. QObserve that Theorem 8 gives
the continuity (in the appropriate sense) of the map & — (hf)peq in € =0. We are
now concerned with formulating sufficient conditions under which the same map is
differentiable in ¢ = 0.

In addition to requiring the existence of spaces B,, and B; as in §3.1, we also require
the existence of a third space By; = (Byy, ||-||ss) that can be embedded in B and such
that ||-||s < ||-|lss on Bss. As in §3.1, we assume that v is a non-zero functional on B;,
and we shall also assume that it admits a bounded extension to B,,. We still denote its
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restriction (respectively, extension) to B, (respectively, B,,) by . Furthermore, we let
(Lo.e)weqeccr be afamily such that each L, . is a bounded operator on each of those three
spaces. In addition, suppose that w — L, ¢ is strongly measurable on both B, and B;, for
eache € I.

In addition to (6), we also require that

1L Allss < De ™ |1hlss, (25)

0

55+ Where

for P-almost every w € Q,n € N,and h € 8
B = {(h e By :yh) =0}

We define B(s) and Bg) in a similar manner. In particular, f:?g is the same as in (7).
In addition, we also assume that there exist C > 0, A1 € (0, 1), and a measurable Q' C
Q with the property that P(2") = 1 and:
o foreacheel,we Q' ,neN, andh € By, (8) holds;
e foreache e I, w e Q',and h € By, (9) holds;
e foreache € I,w e Q' ,andn € N, (10) holds;
o foreachecl,we Q,neN, and h € By,

1L el llss < CATNRNss + Cllkllss (26)

foreache € I, w € @', and h € By,

(Loe = Lo)hlls < Clellihllsss 27)

foreach e € I and w € Q/, we have that for 1 € B; (and, thus, also for h € Byy)
Y (Lyeh) = Y (h). (28)

As before, we can assume that ' is contained in a full-measure set on which (6) and (25)
hold and that Q' is o -invariant.

The following is a direct consequence of Proposition 6 (applied for the pairs (By, Bys)
and (8B,,, By)).

LEMMA 10. There exist sy, D' > 0 and A" > 0 such that for ¢ € I satisfying |g| < &,
we Q, andn € N, we have that

1L hllss < D'e ™™ lhllys  forh € B (29)

582

and

IL2 ks < D'e™* ks forh € B, (30)

By applying Proposition 7 for B;; instead of B, we deduce the following result.

PROPOSITION 11. For each ¢ satisfying |e| < o, there exists a unique family (h))yeqr C
By such that:
o o> hi is measurable and bounded, that is

sup [|Ag,llss < 003 (31)

weY
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o forwe
v(h;) =1, (32)
o forwe Q,

Locht, =he,. (33)

Let us now introduce some additional assumptions. We suppose that for w € @', there
exists a bounded linear operator £, : Bys — By, admitting a bounded extension (which
will also be denoted by L) from B; to B,,, and such that

sup | Lollg,,—8, < 00,
we’

n (34)
sup “Lw”BS%Bw < 00,
we

and we suppose that there is a function « : I — Ry, limg_,¢ o(¢) = 0 such that for

we,

< a(e)|hllss forh € Bgsande € I\ {0}. (35)

w

1 N
H E(-Zws - -Ew)h - Lwh

We emphasize that the inequality (35) only holds in $,-topology. Obviously,
£,8° c B, for w € €, but it also follows from (35) and boundedness of ¥ on B, that
.Zw : By —> Bg.

Finally, we assume that for € ' and every n € N,

1L hllw < D'e |||, forheBY. (36)
We continue to denote hg) simply by A,,. For w € €/, set
0 .
ho =Y L Lotinho-uin e (37)
j=0
It follows from (6), (31), (34), and the previous discussion that fzw € B? forwe Q. In
addition,
sup [l |5 < oo, (38)
we

The following is our linear response result.
THEOREM 12. We have that

1, .
g(hw - ha)) - hw

lim sup
e=>0 e

—0. (39)

w
Proof. Let us begin by introducing some auxiliary notation. Set
he i=hi —hy and  Loe = Lo — Lo

It follows easily from (33) that

hfo - Laflw]:‘lg = 'Z(I*la),gh“3

o~ lw o~ lw’
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and, thus,
o .
i -
= Z Lg—.fwﬁaw'“m,shi—(_m)w’ (40)

for w € . By (37) and (40), we have that

1~ A ~ N
& . € —
h § [«J joLo-iDwelg—+n, — ho

w

1~ ~
. _ . &
o= W(g o~ U+Dw,e Ly-G+1g hg—(_/+1)w

w
Lo <f+1>w<hf,</+1>w - haw)w) D)
w
By applying Lemma 9, we have
sup sup ”hz)”vr < 00.
le|<ep we!
This, together with (35) and (36) implies that
N 1
Z L. <-£o<z‘+1>w,g - £a<f+l>w> e iy
j=0 ¢ w
> 1
< Z Dle*J <;£0—</+1)w,g — LU—(_1+|)w>h2(j+1)w
j=0 w
< Da(e) sup sup [, ]ss, (42)

le|<eq wef’

for w € ', where D > 0 does not depend on w and ¢. On the other hand, we have by (34)
and (36) that

A 3
c—iw O’ (j“)a)(hg—(_i-%—l)w_ha*(/—“)w)

w

o0
/ 7}\
Z NZ,- G0 RE 41y, = PG00 Iy

-\
< sup [ Lolls,—3, ZD’e TR _(anyy, = PG ls-
we j=0

Now, our assumptions ensure that we may apply Theorem 8 for the pair (B;, Biy).
Hence, we obtain

< C'lelllog le| (43)

w

A £
i Lot i, = he=G+14)
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for w € ', where C’ > 0 is independent on w and ¢. It follows readily from (41), (42), and
(43) that (39) holds, which completes the proof of the theorem. ]

Remark 13. The purpose of this remark is to interpret Theorem 8 (as well as Theorem 12)
in the context of the multiplicative ergodic theory. In order to do so, we first need to
introduce two additional assumptions. Namely, we require that:

e B, is separable;

e the inclusion By — B, is compact.

We denote the largest Lyapunov exponent of the cocycle (Ly ¢)weq, for e € I, by A(e) €
R U {—o0}. We stress that the existence of A(¢) is a direct consequence of (8) (applied to
n = 1) and the subadditive ergodic theorem. Moreover, we recall that

1
Ae) = nlingo - log|| £}, Il for P-almost every w € Q.

By using (8) together with Proposition 7, it is easy to show (see the proof of [19, Lemma
3.5]) that A(e) =0, for ¢ € I with |¢|] < g9. Moreover, for each such ¢, the cocycle
(Lo.)weg 1s quasi-compact (in the sense of [25, Definition 2.7]). Hence, it follows from
the multiplicative ergodic theorem (see [25, Theorem A]) that for each ¢ € I with |e] < g,
there exists:

o 1 <[ =1I(¢) < o0 and asequence of exceptional Lyapunov exponents
0=A() =Xr1(e) > Xp(e) > --- > A(e) > k(e)
or in the case [ = o0,

0=A(e) = ri(e) > Ap(e) > --- with nl;rrgo M(e) =k (e);

e aunique measurable Oseledets splitting

I
By = (@ Y;(w)> G Ve (),
j=1
where each component of the splitting is equivariant under [L,., that is,
Lw,g(Y;(a)))= Y;?(oa)) and L, .(V®(w)) C V¥(ow); the subspaces Yf(a)) are
finite-dimensional and for each y € Y$ () \ {0},

1
Jim -~ log (1L, 0yl = 2(e);

moreover, for y € V(w), lim,_, o (1/n) log ||_£Z)’8y|| < k(e).

It follows easily from Proposition 6 (see the proof of [19, Proposition 3.6]) that Y7 (w)
is one-dimensional and is spanned by %, for each ¢ € I such that || < .

Hence, Theorem 8 can be interpreted as a regularity result for the top Oseledets space
of (Ly¢)weq- Namely, it shows that it is continuous in appropriate sense in ¢ = 0. Taking
into account that Lyapunov exponents and corresponding Oseledets subspaces represent
non-autonomous versions of the classical notions of an eigenvalue and the corresponding
eigenspace, we conclude that Theorem 8 is a natural extension of statistical stability results
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concerned with deterministic systems. In a similar manner, Theorem 12 can be viewed as
a non-autonomous generalization linear reponse result.

4. Proof of the main theorem
In this section, we prove Theorem | by showing that the assumptions of our abstract
Theorems 8 and 12 are satisfied.

We place ourselves in the context of §2.2: we fix a small enough interval 0 € I C R,
and we consider a C* mapping 7 : I — C" (M, M), such that Ty := 7(0)(-) isa C" 1,
transitive Anosov diffeomorphism.

We now let A > 0 and consider V := Besy cr+1(a.a1)) (7, A). One has the following
lemma.

LEMMA 14. There exists C > 0, depending only on T and A, such that for any S € V,
any e € 1,

dcr+1(Sg, So) < Clel. (44)

Proof. From the discussion in §2.2, it follows that for any S € V,
N
deri(Se, So) =Y Y 11Sij(e, ) = 8ij(0, )l crans
i=1 jeg)
where we use the notation S;; (¢, -) = w;l oS¢ o y; for j € J(i). From the mean value
theorem, one obtains S;; (e, -) — S;;(0, -) = fos 0¢S;j(n, -) dn and, hence,
&
1166, ) = 5,0, er < [ 186831
0
< C(7T, A)le]
from which the conclusion follows. O

We consider the following triplet of Banach spaces:
B, = B3N (Ty, M) — B, = B*2(Ty, M) — B, = B3 (Ty, M). (45)

We consider a measurable map T : 2 — V, and we write T, = T(w)(e)(-). Finally, we
let i be defined by ¥ (h) = h(1), which is a bounded functional on all three spaces in (45).

Proof of Theorem 1.

(1) By Lemma 14 we have, for ¢ > 0, that d¢r+1 (T, Tp¢) < Clel|, with C independent
of ¢ and w. Hence, [26, Lemma 7.1] implies that (9) and (27) hold.

(2) As T is transitive, the deterministic transfer operator associated with 7" has a spectral
gap on all three spaces By, Bs and B,,. (Observe that B,, is compactly embedded
into 8%*)) Consequently, it follows from [13, Proposition 2.10] that by shrinking § is
necessary, we have that (6), (25) and (36) hold.
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(3) The uniform Lasota—Yorke inequalities (8), (10), and (26) may be established arguing
asin [19, §3.2] or [26, §7].

(4) By arguments analogous to those in [19, §3.1], one has that the cocycle (Ly¢)wen
is strongly measurable on B; and B;;.

The previous arguments are enough to apply Proposition 7 and Theorem 8 to our situation,

giving us an equivariant family (h%),eq C Bys, that satisfies our statistical stability

estimate (20) with respect to the norm || - |[22. We note that (see [19, Proposition 3.3])

for ¢ € I, hi, is actually a positive probability measure on M for [P-almost every w € Q.

What is now left to do is to establish the existence and required properties of the
‘derivative operator’. Following the lines of [26, §9], we systematically abuse notation
and ignore coordinates charts.

Denote by g, (¢, -) := 1/|det(DTy)| the weight of the transfer operator £, .. Under
our assumptions, when viewed in coordinates, the maps ¢ > g, (e, -) € C"(M, R*)
and ¢ — Tw,g(~)_l are of class C*, s > 1. In particular, we may, for ¢ € C" (M, R),
differentiate £, ¢ with respect to ¢ and obtain

e[ Loe®] = Lore (Jured + Vo sh), (46)
2 Loe®) = Lone(J2h + JoreVoe®) + Ve (Joe®)
+ Ve (Ve ®) + [0 ] - & + s [V P, 7
where
Voed := —DP() - [DToe ()" - e Tue, ), (48)
o = 080 (&, *) + Ve 8w (&, -). 49)
’ gw(e. )

Note that both of these expressions are, together with their first s-derivatives with respect to
&,in C"~1(M, R). We also denote by v,, . the C" vector field associated with the operator
Vw,e- As noted in §2.1, multiplication by J, . and the action of v, induce the bounded
operator from B 1o itself (respectively, BiJ 1o Bi—LJ +1), where i + j < r, and the same
goes for their derivatives with respect to €.

Furthermore, by our Assumption 1, J, . and v,., as well as their derivatives with
respect to &, are bounded uniformly in w and &, that is,

max ( sup sup o llert, sup sup 13 Joellerr) < oo,
we cel we eel

max ( sup sup ||[veellcr, sup sup ”asvw,a”CV) < o0.
we2 gel we gel

For ¢ € C" (M, R), set
Lot = 0:[LocPlloc0 = Lo(Jw0d + Vw00). (50)

By our previous discussion, we conclude that (34) holds.
On the other hand, using Taylor’s formula we conclude that for || small enough,

. e[
Loeh — Lo — Lo = /O /0 [ Loed)le—s d& dn.
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By (48) and the following discussion,

102 Lare®]leelw < Cligllss,

where C > 0 independent of both w and ¢. Hence, (35) is satisfied, and we may apply
Theorem 12, which gives us that the map € € I — h., € L>(Q, 8,,) is differentiable at
e = 0. Moreover,

= [0:h% ]],—g = Z LY, Toniphyg iy (51)
n=0

To obtain (3), we note that, by the density of smooth functions in B and (35), Zw, as
a bounded operator from B/ to 8/ ~1/*1 admits the representation (in fact, this formula

defines a bounded operator from Z)’ to O, i1 but we will not need it)

Lo /(@) = f (@[ 0 Tuslle=0).
for any f € BJ and ¢ € C" (M, R). Then, for ¢ € C" (M, R) we have that

ae[ /M ¢ dhi]

= 3:[15,($)]le=0

e=0

= he(®)
Z -E((’,n)nw / o nflwho.fnflw((l))

= Z -Z:O—n—]wh —n—14(@p 0 Tn_,,w)
n=0
o

=D g1, Oclp 0 Ty 0 Tynty e lleco)s

which gives (3). This completes the proof of Theorem 1. O

5. Applications

In this section, we present two applications of our main result. Let us assume that the
assumptions in Hypothesis | hold. We consider the triplet of spaces given by (45).
Furthermore, for ¢ € I sufficiently close to zero, let (hf)yecq C Bss be as in §4. By
shrinking 7 if necessary, we can assume that 4 exists for ¢ € I and w € Q. Moreover,
recall that /) is a probability measure on M for w € Q (see §4). As previously, we write
h,, instead of 10

5.1. Annealed linear response for hyperbolic dynamics. As a first application, we
establish a form of an annealed linear response.
For F € L°°(Q, C"(M)) and ¢ € I, we set

R(e, F) = / / F(w, x) dh (x) dP(w). (52)
QJIM

The following is our annealed linear response result.
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THEOREM 15. The map R : I x L*°(Q2, C"(M)) — R is differentiable at every (0, F),
F € L>®(Q, C"(M)). Furthermore, one has

x
iR e e =3 [ [ AlFL 0T, 0Ty vty llecg digacry dP(@). (53
n=0 @IM

Remark 16. The previous result can be interpreted as linear response for the stationary
measure of the skew product

Se(w, x) := (0w, Tyyex),

acting on 2 x M. Indeed, the stationary measure . of this skew-product classically
admits the disintegration along fibers

pea x 8) = [ () dP)
A

for measurable A C 2, B C M. In particular, this justifies the ‘annealed’ terminology,
because in the independent and identically distributed case, the measure defined on M by
e () = e (82 x -) corresponds to the invariant measure of the Markov chain associated
with our cocycle.

We also point out that one may use this interpretation to establish a linear response for a
class of deterministic partially hyperbolic skew products: let us set @ = S', P = Lebesgue,
and o (w) = w + « mod 1 for some o € R\Q. Then, consider a family (Tw.e) west ecy Of
Anosov diffeomorphisms of Tz, for example,

2 1 sin 27
Toe(x1, x2) = . + © +ef .. . .
1 1 b)) w sin 27T xo
This system clearly satisfies our Hypothesis 1 (note that it belongs to the class of
Examples 4), and the skew product S, acting on S' x T? ~ T3 is clearly a partially
hyperbolic system (with central direction tangent to the first coordinate), exhibiting linear

response by Theorem 15 and the previous discussion.

Proof of Theorem 15. Fix an arbitrary Fy € L°° (2, C"(M)). We claim that the derivative
of Rin (0, Fy) is given by

DR(0, Fp)(e, H) = ¢ / fzw(Fo(a))) dP(w) +/ he(H(w)) dP(w), 54)
Q Q
for (¢, H) € R x L*°(R2, C"(M)), where ﬁw is given by (51). Indeed, observe that
R(e, Fo + H) — R(0, Fp) — S/ he(Fo(w)) dP(o) —/ he(H(w)) dP(w)
Q Q

= / (h, = hey — £hy) (Fo(@)) dP(w) +[ (hg, — ho)(H (@) dP(w).
Q Q
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Furthermore, the continuous embedding 877 < Dﬁl entails that there is C > 0 (indepen-
dent on both w and ¢) such that

! / () — hey — £ha) (Fo(@)) dP(w)’
& Jo

k)
w

1. R
g(hw - hw) - ha)

< CllFollLe(.cr (am)) - Sup
weR
and, thus, Theorem 12 implies that

1
lim —

[ = o = e (Fo(@) dPe) = 0.
e—=0¢ Jo

In addition,

' fg (h5, — ho) (H (@) dP(w)

< ClH |l L=.crmy) - sup 1A, — hellw,
we2

and, consequently, by applying Theorem 8 (for the pair (B;, B,,)), we obtain that

1
lim T
(e.H)=0.0) [|H | 100 (2,c0m))

‘ / (h%, — he)(H (w)) dP(w)| = 0.
Q

Thus, (54) holds and the proof of the theorem is completed. In order to establish (53), one
can argue as in the proof of formula (3). O

5.2. Regularity of the variance in the central limit theorem for random hyperbolic
dynamics. In this section, we provide an application of Theorem 12 to the problem of
the regularity of the variance (under suitable perturbations) in the quenched version of the
central limit theorem for random hyperbolic dynamics.

Let F be as in the previous subsection. For w € Q and ¢ € I, set

Jwe = Fo—ho(Fy) = F, — /M F, dh,
Set

2= / / f2o(x) dht,(x) dP(w)
QJIM
+22// Jooe () forwe (T, x) dhe, (x) dP(w). (55)
n=1 QJIM

Observe that X2 > 0 and that X2 does not depend on . It is proved in [19, Theorem B]
that if 2 > 0, the process (fy,.e o T, ) satisfies P-almost surely a quenched central limit
theorem. More precisely, for every bounded and continuous ¢ : R — R and P-almost
every w € 2, we have that

lim /qﬁ(%) dhfuz/qbdN(O, x2),
n—o00 n
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where

n—1

Sn (fw,s) = Z fokw,s ° Tali,a’

k=0

and N(O, 23) denotes the normal distribution with parameters 0 and .. Our goal is to
establish the following result.

THEOREM 17. Under the above assumptions, the map & +— 282 is differentiable at ¢ = 0.

We start the proof by making a few remarks related to the map ¢ = (fpe)wen €

C"(M).
e For each ¢, w — f,, is an element of L°°(2, C"(M)). Moreover, by Lemma 9 we
have that

sup es55Up,,cq |l fuueler = (14 sup esssupeq 115 ls ) esssup,eq || Fuller

lel<eo lel<eo
(56)
e It is differentiable at ¢ = 0. Indeed, we have
1 1 .
—(foe — fo) = —(he — h,)(Fb),
£ £
which yields
1 N
€SSSUP e g(fws — fo) + ho(Fy,)| — 0, (57)

as ¢ — 0, via Theorem 12. Here, we write f,, instead of f, 0.

The above observations together with Theorem 12 easily imply the following lemma.

LEMMA 18. The map

> / / f2.(x) dhf,(x) dP(w)
QJm
is differentiable at ¢ = 0.
Proof. For ¢ sufficiently close to zero, let H(g) € L*°(2, C"(M)) be defined by

HE)(w) = 2., weQ.

,e?

Then, the discussion preceding the statement of the lemma implies that the map H is
differentiable at &¢ = 0. Now the conclusion of the lemma follows from Theorem 15 and
the simple observation that

/ / f2.(0) dhi (x) dP(w) = R(e, H(e)),
QIM

with R given by (52). O
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We recall that (see §2.1) that for h € BP9 and f € C1(M), we can define f - h € BP4
whose action as a distribution is given by

(f-h)(@) =h(f¢), forge CI(M).
Moreover, there exists C > 0 (depending only on M) such that

ILf - llpg = Cllhlipg - 1 flice

The above inequality is frequently used in what follows and, thus, we do not explicitly
refer to it. Moreover, in what follows, C > 0 denotes a constant which is independent on
all parameters (w, n, etc.) involved.

Observe that

(fa),s : hf,))(fa"w,e o Tar)l’g) = L:l,),g (fcu,e . hfu)(fa"w,e).
In addition, (fu¢ - h5,)(1) = hi (fwe) = 0. We now write

1
E(LZ)g(fws . hi))(fa"w,e) - Lz)(fw . hw)(fa"w)) = (I)n,w,s + (Il)n,w,s + (III)n,w,ea

(58)

where
1
(I)n,w,s = Lz)(fw : ha)) <g(fa”w,€ - fU"a))):

1
(Il)n,w,e = E(—L:Z)g - -ZZ))(fw : hw)(fcr”w,e)’
w,e " hé, — w ’ ha)
LZ),S (f : = f )(fa”w,e)-

(I Dpwe
&

LEMMA 19. Foreachn € N,
lim esssup, cql (Dn.o.e = hono(Foro) Li(fo - ho) (D] = 0.
In addition, for ¢ sufficiently close to zero, we have that
esssup,eal (Dnwel < Ce™ M,

Proof. The first assertion follows directly from (25), (56), and (57). In addition, observe
that for ¢ sufficiently close to zero,

esssupeql (Dnwe = honw(Fonw) Lo(fuo - ho)(D] < Ce™.
On the other hand, (25), (38), and (57) imply that
esssup,eqlfiono (Forw) L (fo - ho) (D] < Ce™™.
The above two estimates readily give the second assertion of the lemma. O
LEMMA 20. Foreachn € N,

Tim e5550p,0 | Do = Lnaolfo - ho) (fora)] =0, (59)
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where

n
% —k 5 k—1
Ln,a) = Z -[,ka.ﬁgk—lew .
k=1
Furthermore, for ¢ sufficiently close to zero, we have that

!’
esssup el (I Dpwel < Cne ™",

Proof. In order to prove (59), we first claim that

<af(e), (60)

w

1 A
H E(LZJY‘Q - Lfg)(fw : hw) - Ln,w(fw : hw)

with @(¢) — 0 when ¢ — 0. Observe that

n

1 Loi-1, . — L k-1

n ny __ n—k gt w,E oW pk—1
s (La),s - -Ea)) = ; Laka),s e ‘Ew 5
and, therefore,

n

1 ~ La*wa_‘go*w n—k —
R e A
&

ofw,e
’ &
k=1

n
_ Z (Ln—k . Ln—k)Lak*Iw,a — Lok-1,
- okw,e okw B

k=1

L1, — Lokt N
7k N —
+.1:ka< B weg R —Laklw)}ffu L

By the arguments in the proof of Proposition 6, (25), (27), and (56), we have that

B o Lo, — L ok _
H (Lo = Lop) =L o o)
w
Loity, — Lok
< Clel(n — k)‘ T L (f - ha)
S
< Clel(n —kye ™V esssup g [ for - hollss
< Cle|(n — k)e ™k, (61)
Similarly, using (25), (31), (35), (36), and (56), we obtain that
.L k—1 —L k—1 A
‘ngj( Tt STt .cak_lw)z’;l(fw ho)
w
7 L — _L (— A
< Ce Vb ( T S —Lak—'w>%‘<fw-hw)
w
< Ce_)‘/(n_k)a(S)”Lﬁ)_l(fa) “ho)llss
< Ce"v"a(s) esssup,cq | fo - hollss
< Ca(e)e ™", (62)

Then, (61) and (62) imply (60).
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Furthermore, (6), (25), (31), (34), and (56) imply that

1Lopn(for - ho)llw <D 1L

k=1

i L1y L (for - 1)

n

o
n

<C Y e esssup,eq (1 Lokt 1By 8, + 1£57" (for - ) lss)
k=1

n
<C Z e 170 =D esssup, cq Il fio - oolss
k=1

< Cne™", (63)
Using Theorem 8, (56), (60), and (63), we have that
€SSSUpP,cn |(II)n,a),8 - -Zn,w(fw : hw)(fo”w)|

1 o
g(-[:zlug - LZ,)(fw . hw)(fo"w,s) - Ln,w(fw . ha))(fa”w,a)

< €sSSUP,,cq

+esssuPyeq [ Lnow(fo - ho) (forwe = foro)l
< @(e) esssupyeqll forwellcr + Cne " esssup,cq |(hE, — hy)(Fy)|
< Ca(e) + Cne™*"|e|| log(e ],
which implies the first assertion of the lemma.

On the other hand, using (36) (which also persists under small perturbations), (31), (34),
and (56), we have that for ¢ sufficiently small,

eSSSUPcq (Lg[!;g - LZZGIE) Lgk_]w’sg_ Lak_lwﬁf)_l(fw he)| < CeTM. (64)
w
Moreover, from (62) it follows that for & sufficiently small,
esssUpP,,co .Ezk_i (LUklw’sg_ Lot - .Z:Uk—lw)_[:ﬁ)l (fo - ho)|| = Ce™. (65)
w
By (64) and (65), we have that for sufficiently small ¢,
esSSUPeq éwz),g ~ Lo ho) = Lno(fo - ho)| < Cne™™.
w

The above estimate together with (63) easily implies that the second assertion of the lemma
also holds. O

By using similar arguments, one can establish the following lemma.
LEMMA 21. Foreachn € N,
lim esssup, cql (11106 = L (ho(Fo)ho + fo - ho)(forw)] = 0.
Moreover, for ¢ sufficiently small, we have that

esssup, ol (111 )| < Ce™™™.
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The conclusion of Theorem 17 follows from previous lemmas and the dominated
convergence theorem.

Remark 22. In [20] the authors have extended the results from [19] to the case of
vector-valued observables. In particular, the quenched version of the central limit theorem
for vector-valued observables was established. In this setting, the variance is a symmetric
matrix which is, in general, positive semi-definite (for the central limit theorem to hold it
needs to be positive-definite). One can easily establish the version of Theorem 17 in this
setting, essentially by repeating the arguments in the proof of Theorem 17 for each matrix
component.

6. Application to other types of random systems

In this paper, we focused our efforts on studying (quenched) statistical stability and
linear response for random compositions of Anosov diffeomorphisms. Nevertheless, our
approach, or a slight modification thereof, is applicable to other types of random hyperbolic
systems.

6.1. Random uniformly expanding dynamics. 1In this subsection, let us describe the
application of Theorems 8 and 12 to a simple class of fiberwise perturbations of random
compositions of uniformly expanding maps of the unit circle S'. The setting is close to [24,
§6]: consider a family (D;)¢<; of diffeomorphisms of S! (where 0 € I C R s an interval),
satisfying

D, =1d+ &S,

where S : S' — Ris a C* map. Letting (2, 7, IP) be a probability space, endowed with an
invertible, measure-preserving and ergodic map o : 2 (. We consider a measurable map
we Qe T, e CHS!L, S such that:

(1) there exists A > 1 such that for P-almost every € Q, inf, g1 |7, (x)| > A;

(2) esssup,ecq ITwllcs < A for some small A > 0.

We then set

Tye =DgoT, foreelandw e 2,

and we review the assumptions of Theorems 8 and 12 for the spaces B,; = w3Lsh),

B, = W>!(Sh), and B, = WhI(Sh).

e Equations (8) and (10) are established in [14, §5].

e Equation (9) follows from [24, Proposition 35].

e By applying [13, Proposition 2.10] (provided that A is sufficiently small), we conclude
that (6) holds on (B,,, By, Buw).

e To define the derivative operator zw, we start by remarking that because L, =
Lp. Ly, one has (see [24, Eq. (51)]) that

. [dLp,
L= |22

Lo=~(Lu()S).
0

=
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It is easy to see that I, defines a bounded operator from B, to B; (respectively, from
B; to B,,) and satisfies (34).
As for condition (35), we have for ¢ € B

le™! (Loe — Lo)$ — Lodllw < lle™ (Lp, —1d) + (-5)'||, 8, esssup,cq Lol
< Ca(e)llolls

by using (8), with a(¢) = ||¢~! (Lp, —Id) + (-:8)'|lg,—8,,» Which goes to zero as ¢ —
0 by [24, Proposition 36].

6.2. Random piecewise hyperbolic dynamics. Let us discuss the application of
Theorem 8 to random compositions of close-by piecewise hyperbolic maps, defined on a
two-dimensional compact Riemann manifold X, as described in [19, §10] and [16, §2]. It
is noteworthy that one cannot directly apply Theorem 8, because, as noted in [19, §10.2.1],
the transfer operator map w — L, is not strongly measurable. Still, the conclusion of
Theorem 8 holds; let us explain why.

In [16, §2.4], the set I'4 of maps T satisfying the assumptions of [16, §2], with second
derivative | D?T| < A is introduced, as well as the distance y between two such maps.

Let us fix a (small enough) g9 > 0,aT € 'y and let Xo :={S €'y : y(T, §) < &o}.
We let B; and B,, be the Banach spaces defined in [16, §2.2] (where B; is denoted B).
In particular, we recall that elements of B; are distributions of order at most one. Letting
I :=[—¢&0/2, 9/2], we set, for a fixed L > O:

Begr :={T: 1 = Xg, v(T(e),T(")) < Lle —¢'|, foralle, &' € I}.

This can be viewed as a ball of Lipschitz (with respect to the distance y) curves from
I to X,. We now consider a measurable, countably valued mapping T : 2 — By 1. As
before, (€2, ¥, IP) is a probability space endowed with an invertible, measure-preserving,
and ergodic map ¢ and we use the notation 7, . := T(®)(e, -).

We claim that for any ¢ € I, there exists a measurable family (h.),co C Bs such that
Ly ohé, = hi,, for P-almost every w € €2 and

esssup,cq 115, — hollw < CeP|log(le))],

for some C > 0,0 < 8 < 1, independent on w and ¢, with A, := h?u.

Let us review the assumptions for Theorem 8 in this context.
Equation (6) holds by [19, Eq. (70)], where ¥ € B, is given by ¥ (h) = h(1), h € Bs.
Up to shrinking &g, we have (8) and (10) by [19, Eq. (71)].
Up to replacing ¢ by e#, (9) follows from the definition of By, and [16, Lemma 6.1].
As usual, (11) holds as L, is a transfer operator associated with 7, ..

In particular, Proposition 6 (uniform in ¢ and @ exponential decay of correlations) holds
in the present setting. We cannot use here the fixed-point construction of Proposition 7,
because we do not know whether the cocycle of transfer operators (L ¢)weq is strongly
measurable. However, we can use (8), (10), and that, for each ¢ € I, T, is countably
valued to apply the version of the MET for the so-called P-continuous cocycles (see
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[22, Theorem 17]): this gives us, as in Remark 13, that for each ¢ € I there exists:
o 1 <[ =1I(¢) < o0 and asequence of exceptional Lyapunov exponents

0=A() =Xr1(e) > Aa(e) > - - - > Aj(e) > k(&)
or in the case [ = oo,

0=A(e) = Xri(e) > Ap(e) > --- with nl;rr;o M(e) =k (e);

e a full-measure set 2, such that for each w € €2, there is a unique measurable
Oseledets splitting

1
By = (EB Yf@)) o VE(w),

Jj=1
where each component of the splitting is equivariant under L., that is,

Lw,s(Y;(w)) = Y;(oa)) and L, (V¥(w)) C Vé(ow). The subspaces Y;(a)) are
finite-dimensional and for each y € Y ]g (w) \ {0},

. 1
Jim_ = log 125yl = 2(e).

Moreover, for y € V(w), lim,_, 5 (1/n) log ||Lfo’€y||s < «(e).
It follows easily from Proposition 6 (see the proof of [19, Proposition 3.6]) that Y} () is
one-dimensional: for each ¢ € I, we may, thus, consider a generator 4%, normalized by
Y (h) = 1, which satisfies L, chl, = h% . We now claim that

SUp esssup,,cq 15l < +00. (66)
el

In order to establish (66), we start by observing that using (12) we have that

1S = L2y Mg = 1Ly (S — DIy < D'e ™[, — 15, (67)

—w,e —ng —n gy

forn € N, w € Q and ¢ € I. Furthermore, because Ai(¢) = 0, we have that the random
variable w — ||kl |5 is tempered (we recall that a random variable K : Q — (0, 4+-00) is
tempered if lim,—, +o0(1/n) log K (6" w) = 0 for P-almost every w € 2) for each ¢ € I.
Hence, by [1, Proposition 4.3.3] for each ¢ € I, there exists a random variable K,: Q —
(0, +00) such that

IhE, — 1]y < Ke(w) and  Ko(0"w) < "2 K, (w), (68)

for P-almost every w € Q and n € Z. By (67) and (68), we obtain that

hé, — L s < D'K; (a))e_()‘,”/z) for P-almost every w € Q andn € N,

o "w,e

which implies that for ¢ € I,

he, = lim L

n—o0

1 in By, for P-almost every w € 2. (69)

“w,e

Clearly, (66) follows readily from (8) and (69). From there, we can reproduce the proof of
Theorem 8, to obtain the announced result.
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Remark 23. Tt is natural to ask whether Theorem 12 can be applied in the piecewise
hyperbolic setting described above. First, we note that there is no natural candidate for
a By, space. Indeed, as noted in the introduction of [16] (and in contrast with the situation
in [26]), considering a (piecewise) C" or a (piecewise) C*, r > s > 2, system yields the
same couple (8, and B;) of Banach spaces. In other words, the degree of the smoothness
of maps does not influence the construction of the anisotropic spaces, which makes unclear
whether this line of reasoning can produce a space B, satisfying our requirements. In
fact, to the best of the authors’ knowledge there are currently no results dealing with the
linear response for classes of piecewise hyperbolic dynamics described above even in the
deterministic setting (that is, when we take €2 to be a singleton).

Second, the case of deterministic, one-dimensional piecewise expanding maps [5, 9]
suggests that, in general, the linear response does not hold in a piecewise smooth setting.

Finally, we note that for random compositions of billiard maps such as described, e.g.,
in [17] do not fall under the setup of Theorem 8, as they do not satisfy Lasota—Yorke
inequalities of the type (8) and (10) (the || - ||, carries a factor " for some n > 1).
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