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Propagation of underwater wave groups in a
compressible ocean coupled with an elastic
seafloor
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The overall system of interest is an infinite half-space in which a compressible ocean is
the top layer and an elastic seafloor (together with the crust beneath) forms a semi-infinite
bottom layer. Whereas water-column compression waves and seafloor waves individually
have received considerable attention, not much is known about their propagation as groups.
This work utilizes the group behaviour of these waves to derive energy balance relations
for wavenumber spectra for wave groups propagating through a mildly non-uniform
water-column–seafloor system. Dispersion relations for the coupled system are derived
using known kinematic and kinetic conditions at the interface, and free and forced wave
solutions for the wavenumber spectra are obtained, with particular attention to the case
when certain frequency–wavenumber combinations in the forcing excite the two-media
system into resonance. Wavenumber spectra predicted using the theory for mildly
non-uniform media are found to be close to those predicted assuming uniform media,
though the effect of non-uniformity becomes more noticeable as the groups propagate
farther from the generation area. Here, nonlinear interactions among stationary, random
multi-directional surface-wave fields provide the forcing for groups of compression waves
in the water and surface waves on the seafloor. The formulation includes the cumulative
effect of multiple generation areas along the group propagation direction. Comparisons
with observational data from a sensor array in the Atlantic Ocean indicate that the theory
can be applied to reconstruct plausible combinations of generation areas and interaction
times that are consistent with the measured data, for deriving approximate predictions
at down-wave distances along the group propagation directions. Implications of this and
other findings are discussed for (i) the potential for energy conversion from water-column
compression waves on the seafloor, (ii) tracking of tropical cyclones from the seafloor,
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and (iii) quantification and comparative assessment of low-frequency mid-ocean ambient
noise and microseism activity.

Key words: geophysical and geological flows, mathematical foundations, waves/free-surface
flows

1. Introduction

Compression/pressure waves under the ocean surface may be excited by explosions
within the ocean depth or on the seafloor, large atmospheric pressure disturbances, and
nonlinear interactions of surface waves. When compression waves in the water column
excite stress waves in the half-space below (and including) a deformable seafloor, the
waves in the two media may form a coupled wave system. Of particular interest to this
work are water-column compression waves generated by nonlinear interactions among
multi-directional ocean surface waves. Nonlinearly interacting surface-wave fields may
be produced by local atmospheric pressure disturbances and changing wind patterns,
swells approaching from different storm systems, swells and wind waves in confused
seas, or swells/waves and their own reflections from the shores. Nonlinear surface-wave
interactions have received considerable attention in the literature; see, for example,
Longuet-Higgins (1950), Phillips (1960, 1981), Hasselmann (1962, 1963, 1966) and
Bretherton (1964). Seafloor waves generated by nonlinear surface-wave interactions have
been studied extensively – e.g. Longuet-Higgins (1950), Hasselmann (1963), Haubrich,
Munk & Snodgrass (1963), Hughes (1976), Webb (1986), Herbers & Guza (1994),
Kibblewhite & Wu (1991), Ardhuin et al. (2011), Ardhuin, Gualtieri & Strutzmann (2015),
Bromirski & Dunnebier (2002), Dunnebier et al. (2012).

Hasselmann (1963) analysed wave propagation in a two-layer system comprised of
the ocean water column and the deformable half-space below the seafloor, and derived
dispersion relations for the natural modes of this system. He next developed expressions
for the wavenumber–frequency spectra for the seafloor surface waves, accounting for
refraction over seafloor depth contours. He further quantified the relationship that
connected the forcing due to interacting surface waves and seafloor microseisms. This
connection had been examined previously by Longuet-Higgins (1950), who obtained
expressions for the second-order potentials and pressure oscillations (in the fluid)
due to opposing and obliquely approaching surface waves, using these to evaluate
seafloor microseism amplitudes in the far field. Hughes (1976) analysed generation
of low-frequency ambient noise by interacting multi-directional surface-wave fields.
Water-column pressure oscillations due to interacting surface waves were studied further
as a source of ambient ocean noise by Kibblewhite & Wu (1991). Both works found the
surface-wave generated underwater compression waves to be the dominant component
of low-frequency ambient ocean noise (Hughes 1976; Kibblewhite & Wu 1991), to
be accounted for in ocean acoustics applications. In addition, Kibblewhite & Ewans
(1985) used a simplified form of the seafloor frequency spectrum of Hasselmann (1963)
to correlate ocean-wave conditions to observed microseism amplitudes in the ocean.
Separately, Kibblewhite & Wu (1993) also used a multi-layer seafloor model to correlate
surface-wave spectra with seafloor deformations. Similar expressions for seafloor pressure
excitation by interacting surface-wave fields with a cos2 θ directional distribution were
used by Webb & Cox (1986) and Webb (1986).
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Ardhuin et al. (2015) and Ardhuin (2018) applied the principle underlying the
treatment of primary microseisms in Hasselmann (1963) to investigate the generation
of microseisms by surface and infragravity waves interacting with a sinusoidal seafloor,
and more generally in their identification of the mechanisms behind the Earth’s ‘hum’.
Near-shore microseisms due to obliquely intersecting surface-wave fields were investigated
theoretically and observationally by Elgar, Herbers & Guza (1994), Elgar et al. (1995) and
Herbers & Guza (1991, 1994), who made measurements of the acoustic-gravity pressures
on the seafloor and at mid-depth using arrays of pressure transducers.

Renzi & Dias (2014) solved a Cauchy–Poisson problem to show that in a slightly
compressible ocean, first-order compression waves in the ocean water column would
be co-generated along with surface gravity waves by the same surface pressure
disturbance (such as during a storm), referring to the co-generated compression waves
as ‘hydroacoustic waves’. Ardhuin & Herbers (2013) investigated compression waves
arising from second-order interactions among multi-directional surface waves and their
relationship to ocean noise and seafloor surface waves, referring to such compression
waves as ‘acoustic-gravity waves’. For groups of interacting surface waves, Ardhuin &
Herbers (2013) studied (i) the effects of nonlinear surface pressures and the resulting
seafloor pressures on ocean noise, and (ii) the generation of seismic waves due to
seafloor pressures, but did not investigate the propagation of wave groups comprised of
water-column compression waves and seafloor seismic waves.

Acoustic-gravity waves and seafloor surface waves were investigated by Eyov et al.
(2013), who derived analytical solutions to a system of wave equations for hyperbolic
waves in uniform media in a compressible ocean water column and on an elastic seafloor.
Their focus was on the natural modes of the coupled system for constant and shoaling
depths, with seafloor wave solutions decaying exponentially with depth below the seafloor.
Williams & Kadri (2023) extended the solutions of Eyov et al. (2013) to study generation
of propagating ocean surface waves, acoustic-gravity waves and seafloor surface waves
by impulsive excitation of the seafloor (e.g. due to seismic events) such as may lead to
tsunamis. Abdolali, Kadri & Kirby (2019) showed the importance of accounting for ocean
compressibility and seafloor elasticity in projections of tsunami paths and arrival times,
with both ocean compressibility and seafloor elasticity accounted for. A time-domain
approach was used recently by Meza-Valle, Kadri & Ortega (2023) to derive a means
to utilize faster travelling compression waves to estimate the location of rogue-wave
generation on the ocean surface.

Jensen et al. (2011, chapter 5) modelled an infinite half-space with the ocean forming
a finite top layer and the seafloor forming a semi-infinite bottom layer. They recognized
the system as a singular Sturm–Liouville problem, and utilized the dynamic conditions at
the water–seafloor interface to derive a depth-dependent Green’s function that admitted
wave solutions going into the semi-infinite seafloor. This approach provided the full set of
wave modes (including discrete modes and continuous spectra) for constructing solutions.
They accounted for the depth dependence of seawater density with this approach, and
using a numerical solution procedure, observed how depth dependence of density led to
spreading and dissipation (due to leaky modes) of a localized compression wave front as it
propagated through a compressible ocean over an elastic seafloor. Michele & Renzi (2020)
developed an analytical solution using a perturbation expansion up to third order of the
depth-dependent acoustic speed to study, for example, the propagation of a hydroacoustic
wave front generated by a source in the far field. For this study, they assumed the seafloor
to be rigid.
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It is noted that the group behaviour of the acoustic-gravity waves and the seafloor
seismic waves in an infinite two-media half-space is not yet fully explored in the
literature studying the propagation of these waves. A focus on wave groups of
in-water-compression-seafloor-seismic waves (as defined by the dispersion relation arising
from the interface conditions) enables unification into a single formulation of the
treatments of low-frequency ambient ocean acoustic noise amplitudes, seafloor power
densities, and the estimation of seafloor microseism amplitudes.

This paper develops such a unified formulation for groups of in-water-compression-
seafloor-seismic waves through a two-layer infinite half-space. This formulation is able to
account for all of the modes as in Jensen et al. (2011, chapter 5), but the solution procedure
of this paper is analytic, though the solutions for stationary random wave fields are derived
in the form of wavenumber–frequency spectra (which may be inverted at the last step). The
present formulation thus also admits solutions that couple compression waves with seismic
body waves (i.e. P-waves and S-waves) in addition to seafloor surface waves. However, here
detailed solutions are developed only for seismic surface waves, designated in the literature
as Scholte waves (which are essentially Rayleigh waves that propagate on a liquid–solid
interface rather than an air–solid interface).

A particular focus of the detailed solutions is on groups of coupled acoustic-gravity
and Scholte waves under resonant excitation by stationary random ocean surface-wave
fields. The acoustic-gravity and Scholte waves therefore are also treated as stationary
random processes, thus requiring a solution procedure leading to wavenumber–frequency
spectra. Additionally, this work also develops a method to account for depth-dependent
non-uniformity in the seawater density, along with non-uniformity and anisotropy in the
seafloor. As a first step, the analytic solution of this paper assumes that both media are
mildly non-uniform (i.e. slowly varying functions of the spatial variable(s)). Finally, the
dispersion relations of § 2 and the free-wave solution procedure of § 3.1 are applicable
to impulsively generated groups of compressive Scholte waves and hydroacoustic waves,
and additionally, much of the material in § 4 is also applicable to hydroacoustic
waves.

Kadri & Akylas (2016) analysed a case where two opposing surface waves interact to
produce a higher-order acoustic-gravity wave as part of a resonant triad, and determined
that the cubic terms in the expansion introduce a detuning effect in locally confined wave
packets. For the random waves in the deep ocean being studied in this work, detuning could
lead to slow changes in the wavenumber–frequency spectra of the acoustic-gravity–Scholte
waves (cf. Komen & Hasselmann (1996) for slow changes in surface-wave spectra
due to nonlinearity), but here as the fast-moving underwater wave groups move away
from the original generation area on the ocean surface, they may be reinforced along
their propagation paths by other generation areas with interacting ocean surface waves.
Higher-order detuning and changes in the spectral content are accounted for indirectly in
the present work via the inclusion in the energy balance equations of § 4 of multiple finite
generation areas with relatively short interaction times.

General solutions are derived for free waves and forced waves. Detailed forced wave
solutions are next obtained for wave systems produced by interacting surface waves
(Hasselmann 1963). Depth dependence of seawater density and horizontal dependence
of seafloor elasticity are accounted for, respectively, via the depth dependence of seawater
acoustic speed and the variation in the horizontal plane of the dilatational and distortional
wave speeds in the seafloor. The present formulation draws on the treatment of wave group
propagation through non-uniform media in Whitham (1973, chapter 11). Refraction of
acoustic-gravity waves into the atmosphere or the excitation of microbaroms by direct
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action of interacting surface waves (Posmentier 1967) are not considered at present. Wave
attenuation due to dissipation over the seafloor can be appreciable for some seafloors
(Kibblewhite 1989), but these effects also are neglected in the present study. Results
based on the proposed theory in this paper are discussed in the context of pressure
measurements from April 2013 over a sensor array in the Atlantic Ocean at 36◦N, 34◦W.
These measurements were conducted as part of the MARINER research project aimed at
understanding the ‘Rainbow’ hydrothermal field near the Mid-Atlantic Ridge (Canales,
Dunn & Sohn 2013).

The present results could contribute to quantification and comparative analysis of ocean
ambient noise and seafloor microseism activity. Acoustic-gravity waves may be of interest
as a possible energy source that, if harnessed, could provide long-term power for seafloor
instrumentation or other uses (e.g. Molin et al. 2008; Grimmett, Wang & Chen 2021;
Korde & McBeth 2022). For seafloor energy research and for climate research based on
long-term observation of ocean ambient noise (e.g. Illyina, Zeebe & Brewer 2010), study
of the group behaviour of water-column compression waves and seafloor waves could
provide practical insights. Similarly, studies such as the present work also could enhance
techniques used for tracking of tropical cyclones and other storms at sea (e.g. Butler &
Aucan 2018; Fan et al. 2019; Retailleau & Gualtieri 2019).

In these contexts, the present results should (a) help to quantify the potential for
utilizing acoustic-gravity waves on the seafloor for energy conversion, and (b) enable
use of seafloor-based hydrophones and seismometers to observe tropical cyclone activity
from the seafloor. Specifically, this work may provide insights into optimal placement of
arrays of small energy converters on the seafloor, and facilitate coordinated use of seafloor
seismometers (and hydrophones where available) to identify unrecorded historical tropical
cyclones and to track tempests (‘storm tracking’).

This paper is organized as follows. Section 2 discusses the present two-media
coupled system, the interface boundary conditions, and the dispersion surfaces for the
compression–Scholte wave groups propagating through the two media. Purely vertically
propagating acoustic-gravity waves on a deformable seafloor and on a rigid seafloor are
derived as special cases. Section 3 discusses the propagation of the compression–Scholte
wave groups when the seawater and seafloor material properties (as reflected by acoustic
phase speeds) are mildly non-uniform, with expressions derived for the wavenumber
spectra of the free-wave groups of compression–Scholte waves. Section 4 examines
the evolution and propagation of forced wave groups when the forcing is quantified
by wavenumber–frequency spectra, and wavenumber spectra for the acoustic-gravity
and Scholte waves are derived, for single and multiple generation areas along a
group’s propagation path. Section 5 adopts the approach of Hasselmann (1963) in
determining the wavenumber–frequency spectra for the second-order surface pressure due
to interacting multi-directional surface waves, and discusses the relevance of favourable
three-wave interactions involving two surface waves and one acoustic-gravity wave. That
treatment provides the forcing wavenumber–frequency spectrum for § 4, while accounting
for surface-wave wavenumber–direction combinations over (−π,π) radians. Sections
6 and 7 discuss results of calculations based on surface-wave hindcasts relative to
observational data for seafloor pressures and deformations at multiple stations at the
Atlantic Ocean site. Section 7 also considers implications of the present findings for
seafloor energy conversion, storm tracking, and characterization of ocean ambient noise
and microseisms. Principal conclusions are included in § 8. Supplementary material
§ 1.1 (available at https://doi.org/10.1017/jfm.2024.682) presents the context for the mild
non-uniformity assumption for wave propagation in the two-media system of this paper,
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Figure 1. Schematic sketch (not to scale) providing an overview of the system being studied, along with some
definitions.

and supplementary material § 1.2 develops the method of § 3 for purely vertically
propagating compression waves.

2. Waves in the ocean–seafloor system

Waves in the two media are coupled together by the boundary conditions at the interface.
The two media are considered to be mildly non-uniform, in that the acoustic speed in
ocean water is a slowly varying function of the vertical coordinate, and the acoustic
speeds in the seafloor are slowly varying functions of the horizontal coordinates (see
supplementary material § 1.1). For the present analysis, the water depth h is assumed to be
uniform. Although a typical seafloor may be comprised of several layers that could play
a role in the overall dynamics, here the seafloor is assumed to be made up of a single
semi-infinite layer with averaged properties. Energy dissipation effects in water and along
the seafloor are assumed to be negligible. In this and the following sections, consistent
with the representations in Phillips (1960) and Hasselmann (1963), the symbols dC1, dC2,
dA1, dA2, dA′

1, dB′
1 are used to denote the Fourier coefficients in the Fourier–Stieltjes

integral representations of the stationary random waves being analysed.
As shown in figure 1, the origin is located on the seafloor, with (x1, x2) representing two

mutually orthogonal horizontal directions, and with the y axis pointing vertically upwards.
However, a more insightful and compact representation is possible if a particular wave
group is followed, with the x axis along the propagation direction as represented by a
wavenumber k. For a propagation direction θp in the (x1, x2) plane,

x = x1 cos θp + x2 sin θp, (2.1a)

k1 = k cos θp, k2 = k sin θp, (2.1b)

and k · x = kx, k2 = k2
1 + k2

2. (2.1c)

Equation (2.1b) follows because the wave group has no propagation in the direction
perpendicular to θp.

The acoustic-gravity–Scholte wave system is constrained by boundary conditions at
y = 0 and y = h, and the radiation conditions at x → ±∞. Here, the attention is
on an acoustic-gravity–Scholte wave system propagating from left to right along the
positive x direction. Hence for x → −∞, the waves are incoming, while as x → ∞, the
radiation condition for outgoing waves applies. Viscous forces in water are neglected
in this analysis (Kibblewhite 1989), and the water column is thought to support only
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compression/extension waves but not shear waves (Webb 1986; Kibblewhite 1989). Energy
dissipation over the seafloor is also neglected (but see Kibblewhite 1989).

The vertical component of the particle velocity at y = 0 must be equal across the
boundary, so that water particles adjacent to the seafloor move with the same vertical
velocity as the solid particles attached to the seafloor. In addition, the normal stresses on
the seafloor on the water side and the seafloor side must be equal. The seafloor supports
both extensional (dilatational) waves and shear (distortional) waves. Hence since the water
column does not support shear waves, the shear stress in the solid at the seafloor must be
zero. At the top of the water column, the pressure under quiescent conditions just equals
the atmospheric pressure. Since the seafloor also feels this atmospheric pressure, it can
be subtracted out of the normal stress on both y = 0 and y = h surfaces. Compression
waves through the water column and seafloor waves can exist even in the absence of
excitation from below or above. These waves are referred to as free waves, and may
owe their existence to impulsive forcing due to explosions or past surface-wave activity.
Their properties are constrained by the properties of the two media, their frequencies and
wavenumbers being related together by a dispersion relation. The immediate objective
below is to derive the dispersion relation for the two-media system that is consistent with
the interface boundary conditions.

The treatment below is based on Graff (1991, chapter 6). Compression wave motion
in the water column is assumed to be irrotational and hence is described by a scalar
displacement potential φ(x, y; t). On the other hand, the motion in the solid is not purely
irrotational and in general includes a rotational component because the solid can support
shear deformation. Hence the solid medium requires a scalar potential φ′(x, y; t) and
an additional vector potential H ′(x, y, z; t). The purpose here is to study a wave system
propagating in the (x, y) plane, so H ′ is restricted to be H ′ = (0, 0,H′

z).
The displacement u(x, y; t) as represented by components (u, v) of the water particles

is given by

u = ∇φ ⇒ u = ∂φ

∂x
and v = ∂φ

∂y
. (2.2a,b)

The displacement u′(x, y; t) in the solid is given by

u′ = ∇φ′ + ∇ × H ′. (2.3)

The horizontal and vertical components of u′ are given by

u′ = ∂φ′

∂x
+ ∂Hz

∂y
and v′ = ∂φ′

∂y
− ∂Hz

∂x
. (2.4a,b)

The kinematic boundary condition at the seafloor is

v = v′ ⇒ ∂φ

∂y
= ∂φ′

∂y
− ∂Hz

∂x
, at y = 0. (2.5)

The stress component due to the acoustic-gravity waves in the water that is normal to the
seafloor is

τyy = λ
(
∂u
∂x

+ ∂v

∂y

)
, (2.6)

while the equal and opposing normal stress component in the solid is (cf. Eyov et al. 2013)

τ ′
yy = λ′

(
∂u′

∂x
+ ∂v′

∂y

)
+ 2μ′ ∂v′

∂y
. (2.7)
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Here, λ denotes the Lamé constant for water, and λ′ and μ′ represent the Lamé constants
for the seafloor; λ, λ′ and μ′ may all be slowly varying spatially, consistent with the
discussion in supplementary material § 1.1. The first of the kinetic boundary conditions
at the seafloor is

τyy = τ ′
yy, at y = 0. (2.8)

The shear stress component along the propagation direction in the y-plane on the seafloor
is given by

τ ′
xy = μ′

(
∂u′

∂y
+ ∂v′

∂x

)
. (2.9)

The second kinetic boundary condition on the seafloor is

τ ′
yx = τ ′

xy = μ′
(
∂u′

∂y
+ ∂v′

∂x

)
= 0, at y = 0. (2.10)

A kinetic boundary condition can also be specified for the top of the water column, y = h.
For free-wave propagation, the pressure at y = h is set to zero, with the static atmospheric
pressure subtracted out. For free waves, in terms of the components (u, v), this condition
can be expressed as

λ

(
∂u
∂x

+ ∂v

∂y

)
= 0, y = h. (2.11)

As mentioned, the free-surface-wave field causing the present acoustic-gravity–Scholte
waves can be described as a stationary random process (Hasselmann 1963). With the
acoustic-gravity–Scholte wave system also treated as a stationary random process, a
Fourier–Stieltjes integral representation is used here to expand the potentials φ, φ′ and
H ′ (Phillips 1977, chapter 4). The acoustic-gravity wave field in the water column for
rightward propagating waves can be expressed as

φ(x, y; t) =
∫∫

k,ω

(
dC1 exp(iαy)+ dC2 exp(−iαy)

)
exp(i(kx − ωt)). (2.12)

It is recalled that kx = k · x. The acoustic-gravity waves travel along inclined paths,
with dC1 = dC1(ω,k) and dC2 = dC2(ω,k) representing, respectively, the Fourier
components of the potential defining the acoustic-gravity waves propagating towards the
seafloor, and the Fourier components for the acoustic-gravity waves reflected from the
seafloor. These waves propagate as pressure waves, and in a broad sense can be considered
as guided waves. Here, ω is the frequency of the acoustic-gravity and Scholte waves. When
these waves result from a second-order interaction of surface waves of frequencies σ1 and
σ2, we have ω = σ1 + σ2. Here, k denotes the horizontal wavenumber, and α is the vertical
wavenumber, given by

α =
√
(ω2/c2

1 − k2), (2.13)

where c1 represents the phase velocity of acoustic waves in the water column, and is taken
to be a mildly varying function of the depth coordinate y. Supplementary material § 1.1
discusses the type of variations for which such an approximation would be admissible,
and considers examples where the vertical distribution of acoustic speed in the ocean is
described by the Munk profile (Munk 1974).
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The combined wave field (acoustic-gravity and Scholte) is free to propagate in
the horizontal direction, and here the radiation conditions consistent with left-to-right
propagation are used. In the water column, the acoustic-gravity wave field is trapped
vertically between two boundaries, y = 0 and y = h. Hence φ(x, y; t) can be represented
alternatively as

φ(x, y; t) =
∫∫

k,ω
(dA1 cosαy + dA2 sinαy) exp(i(kx − ωt)), (2.14)

where dA1 = (dC1 + dC2) and dA2 = i(dC1 − dC2). Both representations are used in this
work.

In general, the wave field in the seafloor could be comprised of bulk waves and surface
waves. Bulk-wave components possible in the present situation are one seismic pressure
wave (P-wave) component with particle oscillation along the propagation direction, and
one shear wave (SV-wave) component with particle oscillations perpendicular to the
propagation direction but in the (x, y) plane (Graff 1991). Since the seafloor layer extends
to y → −∞, the Fourier–Stieltjes representations for the potentials φ′ and H′

z in the solid
are

φ′(x, y; t) =
∫∫

k,ω
dA′

1 exp(−iᾱy) exp(i(kx − ωt)) (2.15)

and

H′
z(x, y; t) =

∫∫
k,ω

dB′
1 exp(−iβ̄y) exp(i(kx − ωt)), (2.16)

where dA′
1 = dA′

1(ω,k) and dB′
1 = dB′

1(ω,k) are the Fourier coefficients representing
the extensional (dilatational) or P-wave and distortional SV-wave potential components,
respectively, through the seafloor (Graff 1991, chapter 6). Thus

ᾱ =
√
(ω2/c2

p − k2) and β̄ =
√
(ω2/c2

s − k2), (2.17a,b)

where cp and cs denote, respectively, the phase velocities of extensional and shear waves in
the seafloor, and are taken to be mildly varying functions of the horizontal coordinate x in
the propagation direction. The criteria for variations in cp and cs that can be included under
the mild non-uniformity approximation are discussed in supplementary material § 1.1.

Substitution of the expansions (2.12) and (2.14) into the interface (boundary) conditions
of (2.5) (true for all x and t) leads to the relations (cf. Hasselmann 1963)

−λ(k2 + α2)(dA1 cosαh + dA2 sinαh) = 0, at y = h,

α dA2 + iᾱ dA′ + ik dB′ = 0, at y = 0,

−λ(k2 + α2) dA1 + [λ′(k2 + α2)+ 2μ′α2] dA′
1 + 2μ′kβ̄ dB′

1 = 0, at y = 0,

−2ikᾱ dA′ + (k2 − β̄2) dB′
1 = 0, at y = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.18)

In other words, a vector dA comprised of the four Fourier coefficients in (2.18) would
represent a free wave field when

D dA = 0, (2.19)
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U.A. Korde

where the matrix D contains terms in k, ω, h and the Lamé constants λ, λ′ and μ′, and is
given by

D =

⎡
⎢⎢⎣

−λγ 2 cosαh −λγ 2 sinαh 0 0
0 α iᾱ ik

−λγ 2 0 λ′(k2 + α2)+ 2μ′α2 2μ′kβ̄
0 0 −2kᾱ k2 − β̄2

⎤
⎥⎥⎦ , (2.20)

where

γ 2 =
(
ω

c1

)2

= k2 + α2. (2.21)

The condition for non-trivial solutions for the potentials,

‖D‖ = 0, (2.22)

leads to algebraic relations that can be used to obtain dispersion surfaces on which ω and
k for a particular propagation direction lie. Equation (2.22) has multiple roots, with each
surface (ωn,kn) defining the nth natural mode for the two-layer system under the present
interface conditions.

Some special cases arise when k = 0, such as would occur when the two interacting
surface waves producing the acoustic-gravity wave have equal wavelengths and opposite
directions (see § 5) – for instance, when surface-wave conditions are influenced by a highly
reflective shoreline. The acoustic-gravity waves then travel only vertically and generate a
disturbance into the seafloor. In this case, the matrix D reduces to Dv , where

Dv =

⎡
⎢⎢⎣

−λα2 cosαh −λα2 sinαh 0 0
0 α iᾱ 0

−λα2 0 λ′α2 + 2μ′α2 0
0 0 0 −β̄2

⎤
⎥⎥⎦ , (2.23)

and dB′
1 = 0 would mean that there is no distortional particle oscillation component in

this case. On the other hand, if the 3 × 3 determinant multiplying the term −β2 is zero,
that is, ∣∣∣∣∣∣

−λα2 cosαh −λα2 sinαh 0
0 α iᾱ

−λα2 0 λ′α2 + 2μ′α2

∣∣∣∣∣∣ = 0, (2.24)

then recognizing that λ′ + 2μ′ = C′
11 and λ = C11 represent the elastic moduli for the

seafloor and water, respectively (cf. Graff 1991, chapter 6), (2.24) would give a relation
between α, h and ᾱ that includes the elastic moduli for water and the solid:

α tanαh = −i
C′

11
C11

ᾱ. (2.25)

With appropriate changes in notation and substitutions, (2.25) is seen to match (5.81)
in Jensen et al. (2011) for the vertical part of their solution for the compression wave
(specifically, with ᾱ ≡ kz,b, α ≡ kz and C′

11/C11 = ρ′α2/ρα2), which admits dissipative
leaky modes, thereby improving near-field accuracy of the underwater wave field (Jensen
et al. 2011). The resulting improvement in near-field accuracy could be of consequence to
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ambient noise and energy conversion directly under regions where shoreward near-shore
surface gravity waves interact with their reflections.

In general, the bulk waves and leaky modes may exist alongside seafloor surface-wave
modes; here, the seafloor surface modes are studied further, given their closer relationship
with microseisms. For seafloor surface waves, potential amplitudes decrease exponentially
with depth below the seafloor surface (i.e. y < 0). Using the substitutions

α′ = −iᾱ and β ′ = −iβ̄ (2.26a,b)

in (2.15), we have

φ′(x, y; t) =
∫∫

k,ω
dA′

1 eα
′y exp(i(kx − ωt)) (2.27)

and

H′
z(x, y; t) =

∫∫
k,ω

dB′
1 eβ

′y exp(i(kx − ωt)). (2.28)

With these substitutions, the matrix in (2.20) becomes

D =

⎡
⎢⎢⎣

−λγ 2 cosαh −λγ 2 sinαh 0 0
0 α −α′ ik

−λγ 2 0 λ′(k2 − α′2)− 2μ′α′2 2iμ′kβ ′

0 0 −2ikα′ k2 + β ′2

⎤
⎥⎥⎦ . (2.29)

The dispersion relations resulting from (2.22) now can be expressed in terms of (ω,k)
with real-valued, positive α′ and β ′ related to ω and k according to

α′ =
√
(k2 − ω2/c2

p),

β ′ =
√
(k2 − ω2/c2

s ).

⎫⎪⎬
⎪⎭ (2.30)

Returning to the case k = 0, now

α tanαh = λ
′ + 2μ′

λ
α′. (2.31)

It is noted that for k = 0, α′ is still real-valued and positive for αh > 0, so the vertical
oscillations within the seafloor still decay to zero exponentially. The vertical pressure
oscillations on the seafloor in this case can still generate Rayleigh-type waves with the
Earth acting as a single semi-infinite elastic medium that is excited over a region by vertical
pressure oscillations within a heavy compressible medium (cf. Stoneley 1926).

If the seafloor is assumed to be rigid, then λ′, μ′ → ∞ in (2.31), which would imply
that for a finite α,

tanαh → ∞, or cosαh = 0. (2.32)

Equation (2.32) leads to the vertical resonance modes given by (cf. Longuet-Higgins
1950)

cosαnh = 0 ⇒ ωnh
c1

= (2n + 1)
π

2
, n = 0, 1, 2, . . . . (2.33)

The acoustic-gravity wave frequencies ωn are then

ωn =
(

n + 1
2

)
πc
h
, n = 0, 1, 2, . . . . (2.34)
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If the acoustic-gravity waves are created by a second-order interaction of like-frequency
surface waves from opposite directions – so that with σ denoting the angular frequency of
surface waves, ωn = 2σn – then

σn =
(

n + 1
2

)
πc
2h
, n = 0, 1, 2, . . . . (2.35)

This conclusion is in agreement with the result derived by Longuet-Higgins (1950) for
like-frequency waves from opposite directions over a rigid seafloor.

Returning to the original situation with a deformable seafloor, when β ′ = 0 and dB′
1 /= 0

in (2.23), the distortional potential Hz would reduce to

H′
z =

∫
ω

dB′
1 exp(−iωt), (2.36)

representing a non-propagating shear-mode oscillation within the seafloor.
Another special case arises when α = 0. Referring back to (2.21), with α = 0,

k = ω

c1
, (2.37)

and the compression waves travel only horizontally as plane waves, and span the entire
water depth (cf. Kibblewhite & Wu 1991). Since propagation then is in the horizontal
direction only, the reflected component vanishes. In this case, the compression waves do
not force the seafloor vertically. If they occur within canyons, then they may result in seiche
modes in the water and seismic modes through the canyon walls, with the appropriate
boundary conditions applied in the horizontal directions, though in the open ocean on a
flat seafloor, if viscous effects are small, then they would not couple to seafloor waves.

When k > ω/c1, α becomes imaginary, the downward component decays exponentially
with depth, and the compression waves travel horizontally, but are confined to a region
close to the water surface. Moreover, for k ≥ ω/c1, free waves in water and in solid can
exist independently of each other. Explanatory diagrams showing the different cases of
interactions between surface wavenumbers and resulting pressure-wave wavenumbers are
discussed by Kibblewhite & Wu (1991).

Within the wavenumber range 0 < k < ω/c1, the compression wave paths are inclined,
and their velocities have vertical and horizontal components. They undergo reflection at
the seafloor, and some of their energy is transferred to the Scholte waves that they generate.
However, the relations in (2.30) further restrict the wavenumber range for Scholte wave
generation, since α′ and β ′ are real only if ω/cp < k and ω/cs < k, respectively. Because
cs ≤ cp typically, the admissible wavenumber range for the acoustic-gravity–Scholte wave
system could be expressed as ω/cs < k < ω/c1, but more generally, it is needed that

ω

cs
,
ω

cp
< k <

ω

c1
. (2.38)

Over the (ω, k) range defined by (2.38), the acoustic-gravity and Scholte waves travel
horizontally along the x axis as a group, with a vertical variation as expressed in (2.14)
(and/or (2.12)).

3. Propagation in mildly non-uniform media

In the treatment below, the dispersion relations for the inclined acoustic-gravity–Scholte
wave coupled systems that result from (2.22) are cast in a form that is used next to study
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propagation in media with mild spatial non-uniformity (see Whitham (1973, chapter 11)
and supplementary material § 1.1). In particular, acoustic speed c1 in water is taken to be
a known function of the depth coordinate y, and the two propagation speeds cp and cs in
the seafloor are assumed to change mildly with horizontal position x. Water depth h is still
assumed to be uniform in this study. Free waves are considered first.

3.1. Free-wave propagation
From (2.22) and in terms of the pressure wave Fourier–Stieltjes coefficients,

dA2 = f1 dA1, dA′
1 = f2 dA1 and dB′

1 = f3 dA1, (3.1a–c)

where
f1 = − cotαh,

f2 = − α

α′ − ikC/D
f1,

f3 = −C
D

f2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

It is noted that an alternative expression for f1 can be stated:

f1 =
( −λγ 2

A + BC/D

)
÷

( −α
α′ + ikC/D

)
. (3.3)

Essentially, setting the two expressions for f1 to be equal is equivalent to expanding the
determinant ‖D‖ = 0. The quantities A, B, C and D are given by

A = λ′(k2 − α′2)− 2μ′α′2,

B = 2iμ′kβ ′,

C = −2ikα′,

D = β ′2 + k2.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

Now, dA1 represents one of the Fourier coefficients of the vertically trapped
acoustic-gravity wave field in the water column. It is recalled that the acoustic speed in
water is related to ρ, the density of seawater, and λ, the Lamé constant (elastic modulus)
of seawater. The seafloor Lamé constants λ′ and μ′,along with the material density ρ′, give
the two velocities cp and cs. Summarizing,

c2
1 = λ

ρ
, c2

p = λ
′ + 2μ′

ρ′ and c2
s = μ′

ρ′ , (3.5a–c)

where c1 and (cp, cs) are taken to be mildly varying functions of y and x, respectively (see
supplementary material § 1.1). The wavenumber is now included as a vector k = (k1, k2)
in order to bring out the propagation direction θp. For the given media (seawater and
seafloor), α, α′ and β ′ are determined for any (ω, k) on the dispersion surface for the given
boundary conditions; α′ and β ′ represent solid particle motion that decays exponentially
with depth beneath the seafloor. Specific wave groups can be tracked by following
particular (ω,k) combinations on the dispersion surface. Individual wave groups travel
at the group velocity (Ck1,Ck2), which remains constant for that group in uniform media,
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though it is a function of position in spatially non-uniform media. In spatially non-uniform
media, ω and k for a particular group also change with position, whereas they would
remain constant in uniform media. The dispersion surface in non-uniform media with
mildly changing properties can be described using ω = W(k, x, y) (Whitham 1973).
Following the general discussion in (Whitham 1973, chapter 11), for propagation of the
acoustic-gravity–Scholte wave system, if θ± = (k · x ± αy − ωt), then the consistency
conditions resulting from θtx = θxt, θx1x2 = θx2x1 , θty = θyt, and so on, yield

∂ki

∂t
+ ∂ω

∂kj

∂ki

∂xj
± ∂ω

∂α

∂ki

∂y
+ ∂ω

∂xi
= 0, i, j = 1, 2,

∂α

∂t
±

(
∂ω

∂kj

∂α

∂xj
+ ∂ω

∂α

∂α

∂y
+ ∂ω

∂y

)
= 0, j = 1, 2,

∂ki

∂xj
− ∂kj

∂xi
= 0, ± ∂α

∂xi
− ∂ki

∂y
= 0, i, j = 1, 2, i /= j,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

with summation implied over the index j in the first two conditions of (3.6). The + and
− signs indicate downward and upward propagation, respectively. The group velocity
components are defined as

∂ω

∂ki
= Cki, i = 1, 2, and

∂ω

∂α
= Cα. (3.7a,b)

Equation (3.6) then can be rewritten as

∂k1

∂t
+ Ck1

∂k1

∂x1
+ Ck2

∂k1

∂x2
± Cα

∂k1

∂y
= − ∂ω

∂x1
,

∂k2

∂t
+ Ck1

∂k2

∂x1
+ Ck2

∂k2

∂x2
± Cα

∂k2

∂y
= − ∂ω

∂x2
,

∂α

∂t
±

(
Ck1

∂α

∂x1
+ Ck2

∂α

∂x2
+ Cα

∂α

∂y

)
= ∓∂ω

∂y
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

The term on the right-hand side is non-zero in each equation because ω has an explicit
dependence on x and y in the two non-uniform media here. The characteristic curves for
this system can be described as (Whitham 1973; see also Hasselmann 1963)

dx
dt

= ∂W
∂k
,

dk
dt

= −∂W
∂x
,

with ω = W(k, α, x, y).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.9)

Because of the non-uniformity in the media, k and ω for a wave group vary with position
as the group propagates, and the characteristics are not straight lines.

An ‘average variational principle’ of Whitham (1973) could be used to study propagation
in the k direction. For the random wave fields being studied this work, an average
variational principle is proposed that utilizes the Fourier coefficients directly. Since the
later steps lead to the evolution of wavenumber–frequency spectra, such an approach

996 A18-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.682


Underwater wave groups, compressible ocean, elastic seafloor

seems reasonable. Thus

J =
∫∫∫

t,x1,x2

∫∫
k,ω

dL(ω, k1, k2, dA1) exp(ik · x − ωt) dt dx1 dx2, (3.10)

where the integrals over each variable are from −∞ to ∞. Here, dL is defined as

dL = G(ω,k, α, α′, β ′, x, y) dA1 dA∗
1, (3.11)

and ω itself is ω = W(k, α, α′, β ′, x, y). Since the non-uniformities are mild in the sense
of supplementary material § 1.1, an expression for G is proposed as

G = [(ω2 − c2
1( y) α2 − c2

1( y) |k|2)+ (ω2 − c2
1( y) α2 − c2

1( y) |k|2)F1(α)]

+ [(ω2 − c2
p(x) α

′2 − c2
p(x) |k|2)F2(k, α, α′, β ′)

+ (ω2 − c2
s (x) β

′2 − c2
s (x) |k|2)F3(k, α, α′, β ′)]. (3.12)

Here, to stress that f1, f2 and f3 are not constants, the functions F1,F2,F3 are introduced
such that

F1(α) = f1f ∗
1 ,

F2(k, α, α′, β ′) = f2f ∗
2 ,

F3(k, α, α′, β ′) = f3f ∗
3 .

⎫⎪⎬
⎪⎭ (3.13)

The goal of the variational approach here is to determine a function dA1(ω,k) that
minimizes the action variable as the wave group propagates horizontally. For the proposed
variational approach based on dL, the necessary conditions for the minimum are

∂(dL)
∂(dA1)

= 0,
∂(dL)
∂(dA∗

1)
= 0,

∂

∂t

(
∂(dL)
∂ω

)
− ∂

∂xi

(
∂(dL)
∂ki

)
− ∂

∂y

(
∂(dL)
∂α

)
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

where the repeated index i indicates a summation over i. In addition, the solutions need
to satisfy the present consistency conditions (3.6). For a non-trivial dA1, the first of the
necessary conditions (3.14) just gives

G(ω,k, α, α′, β ′, x, y) = 0, (3.15)

noting that ω = W(k, α, α′, β ′, x, y). Differentiation of (3.15) with respect to ki and α
leads to

Gω
∂ω

∂ki
+ Gki = 0 ⇒ Gki = −CkiGω,

Gω
∂ω

∂α
+ Gα = 0 ⇒ Gα = −CαGω.

⎫⎪⎪⎬
⎪⎪⎭ (3.16)

The subscripts ω and ki here indicate differentiation with the respective quantities.
Similarly, differentiation with respect to xi (i = 1, 2) and y provides

Gω
∂ω

∂xi
+ Gxi = 0 ⇒ ∂ω

∂xi
= −Gxi

Gω
, i = 1, 2,

Gω
∂ω

∂y
+ Gy = 0 ⇒ ∂ω

∂y
= −Gα

Gω
.

⎫⎪⎪⎬
⎪⎪⎭ (3.17)
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For the function G in (3.12), Gxi and Gy can be evaluated as

Gxi = ∂G
∂cp

∂cp

∂xi
+ ∂G
∂cs

∂cs

∂xi
,

Gy = ∂G
∂c1

∂c1

∂y
.

⎫⎪⎪⎬
⎪⎪⎭ (3.18)

Sound speed c1 in the ocean water column may in general vary with the latitude,
longitude and depth below the surface. In this paper, only the dependence on the depth
coordinate y is accounted for.

Now,

∂(dL)
∂ω

= Gω dA1 dA∗
1 + G

∂

∂ω
(dA1 dA∗

1) = Gω dA1 dA∗
1,

∂(dL)
∂ki

= Gki dA1 dA∗
1 + G

∂

∂ki
(dA1 dA∗

1) = Gki dA1 dA∗
1 = −Gω(Cki dA1 dA∗

1),

⎫⎪⎪⎬
⎪⎪⎭

(3.19)

since G = 0, by the necessary condition (3.15). The second of the necessary conditions
(3.14) now can be expressed as

∂

∂t
(Gω dA1 dA∗

1)+ ∂

∂xi
(GωCki dA1 dA∗

1)+ ∂

∂y
(GωCα dA1 dA∗

1) = 0. (3.20)

The non-uniformity of the media is taken into account in the following steps. The first
term in (3.20) can be expanded as

∂

∂t
(Gω dA1 dA∗

1) = ∂Gω
∂t

dA1 dA∗
1 + Gω

(
∂

∂t
dA1 dA∗

1

)

= ∂Gω
∂ki

∂ki

∂t
dA1 dA∗

1 + ∂Gω
∂α

∂α

∂t
dA1 dA∗

1 + Gω

(
∂

∂t
dA1 dA∗

1

)
. (3.21)

The second term in (3.20) implies, for each xi in the summation,

∂

∂xi
(GωCki dA1 dA∗

1) = ∂Gω
∂ki

∂ki

∂xi
Cki dA1 dA∗

1 + ∂Gω
∂α

∂α

∂xi
Cki dA1 dA∗

1

+ ∂Gω
∂xi

Cki dA1 dA∗
1 + Gω

∂

∂xi
(Cki dA1 dA∗

1). (3.22)

The third term on the right-hand side of (3.22) arises because of the explicit dependence
of Gω on x. The third term in (3.20) becomes

∂

∂y
(GωCα dA1 dA∗

1) = ∂Gω
∂ki

∂ki

∂y
Cα dA1 dA∗

1 + ∂Gω
∂α

∂α

∂y
Cα dA1 dA∗

1

+ ∂Gω
∂y

Cα dA1 dA∗+Gω
∂

∂y
(Cα dA1 dA∗

1). (3.23)
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Underwater wave groups, compressible ocean, elastic seafloor

Now, combining the first term in the second line of (3.21) with the first terms on the
right-hand side of (3.22) and (3.23), and utilizing the consistency conditions (3.8), we
have

∂Gω
∂ki

(
∂ki

∂t
dA1 dA∗

1 + Ckj

∂ki

∂xj
dA1 dA∗

1 + ∂ki

∂y
dA1 dA∗

1

)

+ ∂Gω
∂α

(
Ckj

∂α

∂xj
dA1 dA∗

1 + ∂α

∂t
dA1 dA∗

1 + ∂α

∂y
Cα dA1 dA∗

)

= −∂Gω
∂ki

∂ω

∂xi
− ∂Gω

∂α

∂ω

∂y
. (3.24)

The final form of the second of the necessary conditions (3.20) is, for a non-zero Gω,

∂

∂t
(dA1 dA∗

1)+ ∂

∂xi
(Cki dA1 dA∗

1)+ ∂

∂y
(Cα dA1 dA∗

1)

+ 1
Gω

(
−∂Gω
∂ki

∂ω

∂xi
dA1 dA∗

1 + ∂Gω
∂xi

Cki dA1 dA∗
1

)

+ 1
Gω

(
−∂Gω
∂α

∂ω

∂y
dA1 dA∗

1 + ∂Gω
∂y

Cα dA1 dA∗
1

)
= 0. (3.25)

A wavenumber spectrum in terms of the propagating component k can be written as
(Hasselmann 1963; Phillips 1977, chapter 3)

SA(k, t) = dA1 dA∗
1

dk
, dk = dk1 dk2. (3.26)

Hence, dividing both sides of (3.25) by dk, a relationship for the free-wave wavenumber
spectrum for the acoustic-gravity waves propagating in the mildly non-uniform two-media
system can be found:

∂

∂t
SA(k, t)+ ∂

∂xi
(Cki SA(k, t))+ 1

Gω

(
−∂Gω
∂ki

∂ω

∂xi
SA(k, t)+ ∂Gω

∂xi
Cki SA(k, t)

)

+ ∂

∂y
(Cα SA(k, t))+ 1

Gω

(
−∂Gω
∂α

∂ω

∂y
SA(k, t)+ ∂Gω

∂y
Cα SA(k, t)

)
= 0. (3.27)

Equation (3.27) describes how the wavenumber spectrum describing the potential φ
evolves for free waves. Here, SA is a measure of energy over a small ball around (ω,k),
and although SA remains constant along a group line in the absence of dissipation, the
energy spreads horizontally over time. Equation (3.27) thus also represents the energy
conservation (balance) relation for the wave system. The terms within the large parentheses
represent the effect of the non-uniformities in the media, through Gω and its derivatives
with respect to xi and y, as well as through the xi and y derivatives of the frequency ω. As
the wave group (ω,k) propagates in the k direction, both ω and k change along the group
line. The group velocity components Cki also change along the group line. This contrasts
with propagation in uniform media, for which (ω,k) and Cki for a group remain unchanged
along the group line. The changes in group velocity signify continuous refraction of the
acoustic-gravity–Scholte wave system as it propagates through the two media.

Equation (3.27) can be developed further by arguing that the partial derivative with
respect to time in the first term, together with the partial derivatives with respect to xi
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and y, represents the material derivative of SA(ω,k) along the group trajectory. In addition,
Gωki = Gωω(∂ω/∂ki), ∂ω/∂ki = Cki, and so on. Hence

dSA(k, t)
dt

+ 1
Gω

[
−Gωω

∂ω

∂xi
+ ∂Gω
∂xi

]
Cki SA(k, t)+ 1

Gω

[
−Gωω

∂ω

∂y
+ ∂Gω

∂y

]
Cα SA(k, t)

+ SA(k, t)
(
∂Cki

∂xi
+ ∂Cα

∂y

)
= 0. (3.28)

Now, Gω, Gki, Gα , Cki, Cα , Gωω, Gxi, Gy, ∂ω/∂xi and ∂ω/∂y can be expressed analytically
(and evaluated in computer code) from (3.12), (3.16), (3.17), (3.18) and the assumed
acoustic speed variations in (6.1). Further, for mildly non-uniform media (Whitham 1973),

Cki = xi

t
, (3.29)

∂Cki

∂xi
= 1

t
+ ∂̄Cki

∂̄xi
, (3.30)

where ∂̄ defines rate of change in Cki along the xi direction due to non-uniformity in the
media. Similarly,

∂Cα
∂y

= 1
t

+ ∂̄Cα
∂̄y

, (3.31)

where the overbar defines rate of change in Cα due to vertical non-uniformity. It is
evident that for small t, the first term in (3.30) and (3.31) dominates other terms
associated with non-uniformities, and SA varies as in uniform media. The effect of
non-uniformities becomes more obvious as t increases. Whereas in the horizontal plane
the acoustic-gravity–Scholte waves can propagate to xi → ∞, the acoustic-gravity waves
are confined within 0 ≤ y ≤ h in the y direction, undergoing a number of reflections off
the two boundaries as the system propagates horizontally. Since some of the refraction
effects during downward travel maybe undone during upward travel (the media properties
are assumed to remain constant over time), an averaged quantity is used in the present
calculations to represent the net effect of Cα dependence on y.

The Fourier coefficients dA1 can be recovered from SA using the relation
dA1 = √

SA(ω,k) dk dω. The Fourier coefficients for acoustic-gravity pressure are related
to dA1 as

dP1 = ρω2 dA1, or dP1 = λγ 2 dA1, (3.32)

where γ = ω/c1 = √
k2 + α2. From (3.32), the wavenumber spectrum SP(k) for the

pressure variation in the water column can be found as

SP(k, t) = dP1 dP∗
1

dk
= (λγ 2)2 SA(k, t). (3.33)

The wavenumber spectra SP can be used as estimates of low-frequency ambient noise
spectra. The wavenumber spectrum (convertible to frequency spectrum) for the power
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density is then

SW(k, t) = SP(k, t)
ρc1

. (3.34)

The areal density of power Π(ω,k) for the (ω,k) group on the dispersion surface can be
evaluated as

Π(k, t) =
√

SW(k, t) dk. (3.35)

Here, Π is in units such as watts per square metre. Although the wavenumber–frequency
spectra are used directly in calculations in this paper, the magnitude of the Fourier
coefficient dP gives an idea of second-order pressure amplitudes:

|dP| =
√

SP(k, t) dk, dk = dk1 dk2. (3.36)

Next, the wavenumber–frequency spectrum for the Scholte waves forming part of this
group can be found as,

SR(k, t) = [γ 2
p F2(k, α, α′, β)+ γ 2

s F3(k, α, α′, β ′)]
dA1 dA∗

1
dk

= ω2

[
F2(k, α, α′, β ′)

c2
p

+ F3(k, α, α′, β ′)
c2

s

]
SA(k, t),

|dR| =
√

SR(k, t) dk,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.37)

where dR represents the Fourier coefficient for the Scholte wave displacement amplitudes.
Here, the relations (3.1a–c), (3.2) and (3.13) have been used, with γp = √

k2 − α′2 and
γs =

√
k2 − β ′2. Also, SR(ω,k) is the wavenumber–frequency spectrum for Scholte wave

amplitudes, which can be evaluated using the solution for SA(ω,k); and SR is derived from
Fourier coefficients dA′

1 and dB′
1, which satisfy both the kinematic and kinetic boundary

conditions on the seafloor, in which dA1 and dA2 also play a part (see (2.18)). It is noted
that a single formulation leading to the solution to (3.27) here provides the wavenumber
spectra for the pressure in the compression waves (also representing ambient acoustic
noise) (3.33), the power density (3.35), and the wavenumber spectra for the seafloor
Scholte waves (3.37), with the non-uniformities assumed to be mildly varying.

3.1.1. Alternative approach to deriving SA and SR
The wavenumber spectra for acoustic-gravity and Scholte wave amplitudes can be derived
following a shorter pathway that albeit does not elucidate the effects of non-uniformity of
the media as clearly as the more detailed approach above. Equation (3.20) can be expanded
by treating the term Gω dA1 dA∗

1 as a combined entity, so that

∂

∂t
(Gω dA1 dA∗

1)+ Cki

∂

∂xi
(Gω dA1 dA∗

1)+ Cα
∂

∂y
(Gω dA1 dA∗

1)

+
(
∂Cki

∂xi
+ ∂Cα

∂y

)
Gω dA1 dA∗

1 = 0. (3.38)

The repeated index i implies summation. Here, Gω can be derived as

Gω = 2ω[1 + F1(α)+ F2(α, k, α′, β ′)+ F3(α, k, α′, β ′)], k = |k|. (3.39)

Hence it is seen that a multiplication by Gω allows the boundary conditions to be
included directly in the following steps. Dividing (3.38) through by dk, and introducing a
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wavenumber spectrum SBC(k, t) such that

SBC(k, t) = Gω dA1 dA∗
1

dk
, (3.40)

it is found that

∂

∂t
SBC(k, t)+ Cki

∂

∂xi
SBC(k, t)+ Cα

∂

∂y
SBC(k, t)+ SBC(k, t)

(
∂Cki

∂xi
+ ∂Cα

∂y

)
= 0.

(3.41)

The first three terms represent propagation of a ‘modified’ energy term and can be
combined into a single material derivative as

d
dt

SBC(k, t)+ SBC(k, t)
(
∂Cki

∂xi
+ ∂Cα

∂y

)
= 0. (3.42)

Partial derivatives of Cki and Cα are found as expressed in (3.30) and (3.31). The other
effects of non-uniformity are embedded in the multiplication by Gω(ω,k, α, α′, β ′). For
particular wave groups, SA(k, t) can be recovered from SBC(k, t) using

SA(k, t) = SBC(k, t)
Gω

. (3.43)

Other spectra such as SP and SR, and quantities such as Π , can be found as outlined in
(3.34), (3.37) and (3.35), and so on. The alternative approach could serve as a ‘check’ in
calculations since there are fewer numerical operations involved in it.

3.2. Uniform media
The treatment above simplifies considerably when the two media are assumed to be
uniform. In particular, the second and third terms of (3.27), the second terms of (3.30)
and (3.31), and the third terms of (S21) and (S22) in supplementary material § 1.2, tend to
zero. For propagation in the horizontal plane, (3.27) and (3.42) become

d
dt

SA(k, t)+ SA(k, t)
t

= 0,

d
dt

SBC(k, t)+ SBC(k, t)
t

= 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.44)

Here, in the absence of refraction, the propagation of acoustic-gravity waves can be
accounted for in terms of cumulative distance travelled (multiples of h due to successive
reflections). Equations (3.44) are used in the present calculations to provide a comparison
for the more general case of mildly non-uniform media.

4. Forced wave response

As before, the origin of the coordinate system is at the seafloor, the x axis is along
the propagation direction k, and the y axis points vertically upwards, water depth being
assumed to be uniform. When the two-media system of §§ 2 and 3 is excited by a
stationary random external pressure distribution at its top boundary y = h, the ensuing
acoustic-gravity–Scholte wave field must be consistent with the boundary conditions at the
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top and bottom of the water column. These boundary conditions are effectively embedded
in the relationships of (3.2), and forced wave wavenumber spectra for the compression
and Scholte wave fields can be interrelated easily using the relations in (3.33) and (3.37).
Impulsive forcing at the seafloor or stationary random pressure disturbances within or
on the water column could be addressed by defining suitably the excitation term in the
analysis that follows. However, other approaches, such as that of Renzi & Dias (2014),
could be better suited for direct time-domain solutions in the case of storm-generated
hydroacoustic waves and surface waves, and the approach of Meza-Valle et al. (2023) may
be preferred in the case when time-domain understanding of rogue waves is needed using
their faster-propagating compression wave signatures.

Here, the displacement potential φe for the acoustic-gravity waves can be related to the
pressure excitation at y = h with the help of the linear forced-wave equation as,

∂2φe

∂t2
− c2

1∇2φe = p(x, h; t)
ρ

; c2
1 = λ/ρ. (4.1)

Here, as before, ρ is seawater density, and λ is the Lamé constant for seawater. We
consider ρ and λ (and hence c1) to be mildly varying functions of the y coordinate in
the sense of supplementary material § 1.1, so that (4.1) still describes the response to
first order. Here, p(x, h; t) denotes the second-order pressure due to interacting surface
waves or a sea–surface pressure disturbance due to an atmospheric phenomenon. Section 5
discusses an approach to determination of this pressure using the properties of interacting
surface-wave properties, assuming the surface-wave fields to be stationary random. The
pressure excitation can be expanded using the Fourier–Stieltjes integral as

p(x, h, t) =
∫∫

k,ω
dP(ω, k) exp(i(k · x − ωt)), (4.2)

where dP(ω, k) denotes the Fourier coefficient for the pressure excitation (k = |k|). The
forced wave potential φe(x, y; t) is next expanded as

φe(x, y; t) =
∫∫

k,ω
dBe( y, ω, k) exp(i(k · x − ωt)). (4.3)

An expansion for the vertical variation of dB( y, ω, k) in terms of the vertical
eigenfunctions ψn( y) that satisfy the boundary conditions (2.18) is proposed:

dBe =
∞∑

n=1

dA1en(cosαny + f1n sinαny). (4.4)

As indicated in § 2, the first orthogonal mode here is of most interest. Therefore letting
dA1e denote dA1e1 for convenience,

dB( y, ω, k) ≈ dA1e(ω, k)(cosαy + f1 sinαy). (4.5)

It follows that

φe(x, y; t) =
∫∫

k,ω
(dA1e (cosαy + f1 sinαy) exp(i(k · x − ωt)). (4.6)
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Substitution of φe into (4.1) leads to

∫∫
k,ω

−ω2 dA1e (cosαy + f1 sinαy) exp(i(k · x − ωt))

+ c2
1

∫∫
k,ω
γ 2 dA1e (cosαy + f1 sinαy) exp(i(k · x − ωt))

= 1
ρ

∫∫
k,ω

dP(ω, k) exp(i(k · x − ωt)), (4.7)

for all x and t in the domain. Next, both sides are multiplied by (cosαy + f1 sinαy).
Integration from 0 to h, and use of the orthogonality of the cosine and sine functions,
helps to reduce the terms inside the double integral on the left-hand side to

− ω2(1 + f1) dA1e
h
2

+ c2
1(k

2 + α2)(1 + f 2
1 ) dA1e

h
2
. (4.8)

Since the exciting pressure distribution dP(ω, k) acts on the surface y = h and is not
dependent on y, the right-hand side can be expressed as

1
ρ

∫ h

0

∫∫
k,ω

dP(ω, k) (cosαy + f1 sinαy) exp(i(k · x − ωt)) dy

= 1
ρ

∫∫
k,ω

dP(ω, k)
(

1
α

[sinαh + f1(1 − cosαh)]
)

exp(i(k · x − ωt)), (4.9)

where k and α represent the first mode of the dispersion relation. Since

λ(k2 + α2)

ρ
= λ
ρ
γ 2

1 = c2
1γ

2
1 = ω2

1, (4.10)

the temporal dynamic condition describing the Fourier coefficients for the forced waves
becomes

(−ω2 + ω2
1)(1 + f 2

1 ) dA1e(ω, k) = 2 dP(ω, k) [sinαh + f1(1 − cosαh)]
ραh

, (4.11)

where γ1 and ω1 are, respectively, the quantities
√

k2 + α2 and ω belonging to the
dispersion surface for mode 1. The Fourier coefficient dA1e describing the acoustic-gravity
component of the forced wave system thus is

dA1e(ω, k) = 2[sinαh + f1(1 − cosαh)]
ραh(1 + f 2

1 )

dP(ω, k)

−ω2 + ω2
1
. (4.12)

It is evident that close to resonance, even small excitations can lead to significant
amplitudes in the water column and on the seafloor. Hence it is worthwhile to study the
response near resonance in more detail. The total wave field at a frequency ω is a linear
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superposition of the free wave field at ω1 and the forced wave field at ω:

dA1(t) = dA1n exp(−iω1t)+ D1 dP exp(−iωt)

−ω2 + ω2
1

, (4.13)

where

D1 = 2[sinαh + f1(1 − cosαh)]
ραh(1 + f 2

1 )
. (4.14)

The system in (4.13) is reminiscent of an undamped single-degree-of-freedom
mechanical oscillator, for which the oscillation amplitude increases as t when the excitation
frequency equals the natural frequency (e.g. see Rao 2010, chapter 3). When excitation is
random as in the present, acoustic-gravity wave case for which ω1 represents the first
resonance mode, ω may approach → ω1 for random lengths of time at random intervals,
hence a steady increase in the amplitude of φ is not expected. Therefore, a relationship is
sought instead between the wavenumber spectra for the excitation and for the response. In
particular, the following representation is sought for the response,∫

k
dA1 dA∗

1 exp(ik · x), (4.15)

while for the excitation side, the following form is used,

∫∫
k,ω

D2
1 dP dP∗

(−ω2 + ω2
1)

2
(e−iωt − e−iω1t)(eiωt + eiω1t) exp(ik · x) δ(ω − ω1), (4.16)

as it leads to a real-valued expression for the acoustic-gravity spectrum and agrees with
the result in Hasselmann (1963). As ω → ω1, the integrand on the right-hand side without
the delta function approaches a 0/0 indeterminacy. On application of L’Hospital’s rule via

lim
ω→ω1

d
dω

[D2
1 dP dP∗ (e−iωt − e−iω1t)(eiωt + eiω1t)]

d
dω

[(−ω2 + ω2
1)

2]
, (4.17)

the integrand becomes

−2itD2
1 dP dP∗

(−ω2 + ω2
1)(−4ω)

exp(ik · x). (4.18)

This integrand has poles at ω = ±ω1 and at ω = 0. Next, substituting (4.18) into the
right-hand-side integral in (4.16) as

∫∫
k,ω

−2itD2
1 dP dP∗

(−ω2 + ω2
1)(−4ω)

exp(ik · x) δ(ω − ω1), (4.19)

the limit as ω → ω1 can be evaluated using contour integration, where it can be seen that
the integral along the circular path with radius approaching infinity converges to zero.
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Then using just the residue at ω = ω1, we have

R1 = lim
ω→ω1

−itD2
1 dP dP∗(k, ω)

2ω(ω + ω1)
= −itD2

1 dP dP∗(k, ω1)

4ω2
1

,

2πiR1 = πtD2
1 dP dP∗(k, ω1)

2ω2
1

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.20)

The excitation side is then seen to be

∫
k

πtD2
1

2ω2
1 dω

dP dP∗(k,ω1) exp(ik · x) =
∫

k

πtD2
1

2ω2
1

dP dP∗

dk
exp(ik · x)dk. (4.21)

The left-hand side of (4.15) can be expressed as∫
k

dA1 dA∗
1

dk
exp(i(k · x))dk, (4.22)

noting that

dA1 dA∗
1

dk
= SA(k, t), (4.23)

where SA is the wavenumber–frequency spectrum for the acoustic-gravity waves. It is
interesting to observe how the wavenumber spectrum for the acoustic-gravity potential
evolves in time. Because the wavenumber spectrum SE for the excitation pressure is related
to dP and dP∗ as

dP dP∗

dk
= SE(ω1,k), (4.24)

the acoustic-gravity wavenumber spectrum evolution in time can be related to the
excitation side as

∫
k

SA(k, t) exp(ik · x) dk =
∫

k

πtD2
1

2ω2
1

SE(ω1,k) exp(ik · x) dk. (4.25)

The spectrum SA(k, t) at resonance grows linearly with time as long as excitation SE(ω1,k)
at the natural frequency ω1 is present. Thus

SA(k, t)|DS = πtD2
1

2ω2
1

SE(ω1,k)|DS. (4.26)

The symbol |DS indicates that k = |k| lies on the dispersion surface (k, ω). Equation
(4.26) shows the rate at which energy is being added to the acoustic-gravity waves (and
by extension, also Scholte waves) excited when a pressure spectrum excites a particular
(k, ω1) that lies on the dispersion surface. Multiple (k, ω1) combinations that lie on
the dispersion surface can be accounted for using linear superposition. Of the multiple
dispersion surfaces that satisfy (2.19) and (2.20), only the fundamental dispersion surface
(dispersion mode 1) is considered here for the depth range ∼1000–3500 m.
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Independently, (4.26) can be generalized to represent the cumulative effect of multiple
generation areas that particular wave groups on the dispersion surface may encounter along
their propagation paths. For the simpler case of propagation in uniform media, we have

SA(k, t) =
NG∑
n=1

π(tne − tns)D2
1

2ω2
1

SE(ω1,k)+
∫ t

tne

SA(k, τ )
τ

dτ. (4.27)

Here, t > tne denotes the present time, tns is the time at which a group enters the nth
generation area, tne is the time when it leaves that area, τ is the time integration variable,
and NG is the number of generation areas. Multiple generation areas along the propagation
path could enable reinforcement of spectral amplitudes affected by (i) higher-order
detuning effects (Kadri & Akylas 2016), and (ii) changes in surface-wave spectral content
due to nonlinearities (Komen & Hasselmann 1996). The duration under each generation
area of projected length Ln along the propagation direction can be estimated as

tne − tns = Ln

Ck
, (4.28)

where Ck is the horizontal group velocity of the wave group. The compression wave
pressure wavenumber spectra (representing ambient noise), seafloor power densities and
microseism amplitude wavenumber spectra under forcing SE can be evaluated using (3.33),
(3.35) and (3.37), respectively, with the forced response wavenumber spectra SA evaluated
using (4.27).

5. Excitation by interacting surface waves

To derive the wavenumber–frequency spectrum SE that excites the acoustic-gravity–Scholte
wave fields of § 4, the approach of Hasselmann (1963) is adopted here. Although several
alternatives estimating the surface-wave excited frequency spectra at the seafloor have
been proposed since (e.g. Hughes 1976; Webb & Cox 1986; Kibblewhite & Wu 1991), the
approach of Hasselmann (1963) is the most general since it enables a full account of all
wave periods and directions represented within available records of wave spectra. This is
particularly important for multi-mode surface-wave spectra (e.g. Ochi 1998, chapter 7),
and in wave conditions where swells and wind waves have overlapping periods and nearly
opposing directions. Such wave fields may occur when waves from different parts of a
storm’s trajectory intersect. Figure 2 shows an overview of the action of interacting waves
and acoustic-gravity and Scholte waves.

Following Hasselmann (1963), the wave profile ζ(x1, x2; t) is assumed to be a stationary
random process. It may be expanded in terms of Fourier coefficients as

ζ(x1, x2; t) =
∫∫

κ,σ

dZ(κ, σ ) exp(i(κ · x − σ t)), (5.1)

where κ and σ represent, respectively, the wavenumber vector and the angular frequency
of the surface-wave system. The velocity potential Γ (x1, x2, y; t) can be represented as

Γ (x1, x2, y; t) =
∫∫

κ,σ

dE(κ, σ ) exp(i(κ · x − σ t)) eκz, z = y − h, κ = |κ |. (5.2)

Here, ζ and Γ are related by the kinematic and kinetic boundary conditions to be satisfied
approximately at the undisturbed free surface (Hasselmann 1963). The second-order
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Surface waves Generation area

Acoustic-gravity waves

Free surface

Seafloor
Scholte

waves

Wave field

trajectory

h

U

Figure 2. Schematic overview of the dynamics, with the interacting surface waves on the free surface, the
acoustic-gravity waves and the Scholte waves. The cross-bars on the arrows provide a notional indication of the
wavelengths of the surface waves and the acoustic-gravity and Scholte waves.

pressure due to the interaction of the wavenumbers κ at frequencies σ contained within
the wave field can be represented as

p(x; t) = −ρ(∇Γ (x, y; t))2, (5.3)

with
∂Γ

∂t
= −gζ, or − iσ

g
Γ = ζ ⇒ Γ = igζ

σ
. (5.4)

Hence representing

p(x; t) = −ρg2
∫∫

κ,σ

∫∫
κ ′,σ ′

dZ dZ′ (κκ ′ − κκ ′) exp[−i((κ + κ ′) · x − (σ + σ ′)t)]
1
σσ ′ ,

(5.5)

where the term (κκ ′ − κκ) arises from the (∇Γ )2 operation (the scalar term from
differentiation in the vertical direction, the vector term from differentiation in the
horizontal plane), with the integration over κ and κ ′ allowing interactions over the entire
range of wavenumbers to be considered, the wavenumber–frequency spectrum for the
second-order pressure in (5.5) can be found by multiplying the right-hand side by the
complex conjugate of itself. Next, knowing that the surface-wave wavenumber–frequency
spectra can be expressed as

Sζ (κ, σ ) = dZ dZ∗

dκ dσ
and Sζ ′(κ ′, σ ′) = dZ′ dZ′∗

dκ ′ dσ ′ , (5.6a,b)

the wavenumber–frequency spectrum for p(x; t), which forms the excitation spectrum
SE(k, ω) of § 4, is found to be

SE(k, ω) = ρ2g4
∫∫

κ,σ

∫∫
κ ′,σ ′

Sζ (κ, σ ) S′
ζ (κ

′, σ ′) (κκ ′ − κκ ′)2

× 1
(σσ ′)2

[δ(k − (κ + κ ′))][δ(ω − (σ + σ ′))] dκ dκ ′ dσ dσ ′. (5.7)

Since only three waves κ , κ ′ and k are involved in the interaction, the k wave must
follow a dispersion relation different to that of the two surface waves κ and κ ′ for there
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k
k

κ
κ

κ′

κ′

σ + σ ′ = ω

κ + κ ′ = k
(ω, k) � ω = W(k)

σ + σ ′ = ω

κ + κ ′ = k
(ω, k) ∈ ω = W(k)

Not on dispersion surface for

practical surface-wave conditions

On dispersion surface; resonant

excitation possible in practical

surface-wave conditions

(a) (b)

Figure 3. Schematic concept diagram illustrating the interaction between two surface waves with
wavenumbers κ and κ ′ at frequencies σ1 and σ2. When two surface waves are nearly parallel, their interaction
would lead to a horizontal wavenumber k that may be too large to lie on the dispersion surface for the
acoustic-gravity–Scholte wave system (a), though with nearly opposing surface waves, the resulting horizontal
wavenumber is small enough to lie on the dispersion surface (b), so resonant energy transfer can occur. The
contribution of wave components like (b) will therefore dominate the integral in (5.7).

to be meaningful energy transfer. This is possible when k is the horizontal wavenumber
of an acoustic-gravity wave, which travels at a much greater phase velocity and follows
a dispersion relation that allows such a three-wave interaction. In order to satisfy the
acoustic-gravity dispersion relations, k must therefore be much smaller than κ and κ ′,
while ω is at least the same order of magnitude as σ . Therefore, it is mostly κ and κ ′ that
are nearly opposed in directions that would dominate the integral in (5.7) (see schematic
illustration in figure 3), in the process implying that the acoustic-gravity wave frequency
would be nearly twice the surface-wave frequency. Although multiple combinations
(κ, κ ′, σ, σ ′)would be included within the integral in (5.7), an implicit further condition is
that the relevant (κ, σ ) combinations fall within the wavenumber and frequency ranges of
practical surface-wave conditions. (See Phillips (1960, 1977, chapter 3) for a discussion
of the surface-wave dispersion relation precluding three-waveinteractions among three
surface waves but allowing four-wave surface-wave interactions.)

Here, as captured by the delta functions in (5.7), the wavenumbers and frequencies of
the interacting three-wave system are related according to e.g. Hasselmann (1966) and
Ardhuin (2018) as

κ + κ ′ = k and σ + σ ′ = ω. (5.8a,b)

It has been observed that the dominant surface-wave frequencies over long time periods
are ∼0.1–0.11 Hz (or σ, σ ′ ∼ 0.628 rad s−1), corresponding to swells of periods 9–10 s
that travel long distances over the ocean surface after being generated by one or more
storms (Webb 1986). Therefore, it is plausible that the dominant acoustic-gravity–Scholte
wave frequencies would be in the range 0.2–0.22 Hz (or ω ∼ 1.26 rad s−1). Consequently,
when two 10 s swells of wavenumbers κ ∼ 0.0162 rad m−1 interact in a depth of 2800 m
for which the acoustic-gravity–Scholte wave dispersion relationship gives k = 5.78 ×
10−4 rad m−1 for a soft rock type seafloor, there is only a small range of swell directions,
and the resulting acoustic-gravity–Scholte wave group direction for which the relationship
κ + κ ′ = k will be satisfied, giving σ + σ ′ = ω = 1.256 rad s−1. The k value from the
dispersion relation just implies resonant energy transfer. Hence when the surface-wave
directional spectra are available, it is relatively straightforward to estimate, using a formal
version of the diagram in figure 3, the direction in which bulk of the energy from
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the second-order interaction of the surface waves will travel as acoustic-gravity–Scholte
waves.

These considerations are important for siting seafloor energy converter arrays in
given geographic locations in the ocean, or when determining the angular ranges for
the seafloor or coastal seismometers that would record particular storm activity at a
particular time. As mentioned, a multi-directional wave field with overlapping wind-wave
and swell conditions could be generated by a single storm if it travels over a curved
trajectory.

Assuming that a multi-directional wave field is translating over the ocean surface at a
velocity U , which may be changing as the storm propagates (see, for instance, Marshall &
Plumb 2008, chapter 6), we have(

dU
dt

)
O

=
(

dU
dt

)
o
+ Ω × U, (5.9)

where O is the origin of an Earth-fixed reference frame, while o is the origin of
a reference frame travelling with the storm. Here, Ω = (0, 0, f3), with f3 = fe cos Lt
representing the Earth’s angular velocity component at the latitude Lt at which the
storm-centred coordinate system origin o is placed. The translation of the present
acoustic-gravity–Scholte wave system is thus referenced to the storm-centred coordinate
system o − x1x2y. The frequencies as expressed in o − x1x2y therefore need to be adjusted
according to the velocity U at which the surface-wave system is travelling (Phillips 1977,
chapter 3) as expressed relative to the Earth-fixed reference frame at O.

For instance, if a single storm causes the two interacting surface waves of frequency
σ = 0.628 rad s−1 (f = 0.1 Hz), but currently the storm is moving at U = 10 km h−1 at an
angle θu, then the two interaction equations (5.8a,b) in the moving reference frame need
to be amended as

κ + κ ′ = k,

σ + σ ′ = ω′,

ω = ω′ + k · U .

⎫⎪⎬
⎪⎭ (5.10)

The frequency recorded by a seafloor-fixed sensor will be ω, while ω′ = 1.256 rad s−1.
Since k · U = 1.6 × 10−3 cos(θp − θu), we have ω ∈ [1.2544, 1.2576] rad s−1, as
(θp − θu) ∈ [0,π]. Greater differences may be observed for fast-moving storms.

6. Results

Two sets of result are presented here: (1) results obtained to gain insight into group
propagation in the coupled two-media system and the effect of non-uniformity on the
wavenumber spectra; and (2) results examining how successfully the theory can be applied
to explain seafloor sensor observations. Results illustrating the spread of acoustic-gravity
energy with propagation distance, and the corresponding decrease in the amplitude of
acoustic-gravity waves at long distances from the generation area, are obtained for both
sets. Both sets of results are computed for locations in the Atlantic Ocean, 36◦N, 34◦W
and 36.5◦N, 32.5◦W. The former approximately represents the centre of an array of sensor
stations deployed during April 2013 as part a larger study of the ‘Rainbow’ hydrothermal
field close to the Mid-Atlantic Ridge (Canales et al. 2013; Dunn et al. 2017).

Sensor data were accessed through the IRIS interface (IRIS 2022) supported by the US
National Science Foundation. Figure 4 shows the sensor locations and the bathymetry
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Figure 4. Approximate bathymetry plot showing the location of the sensor array deployed during April 2013
as part of a wider study on the Rainbow hydrothermal field (Canales et al. 2013; Dunn et al. 2017). The array is
comprised of 46 sensor stations spanning an area 80 km × 32 km, with average inter-sensor spacing 7 km (Dunn
et al. 2017). Data from sensor station rows 2 and 3 are used further in this work, including pressure–frequency
variations for the sensors marked with circles around them. This figure was generated by Joey Stanley, Johns
Hopkins University.

around the area. Surface-wave data at these coordinates were available as hindcasts
based on the Wave Watch III (WW3) model (Tolman 2002), and made available through
the ERDDAP data repository (ERDDAP 2022). The hindcast results for both locations
(36◦, 34◦W and 36.5◦N, 32.5◦W) for the period 23–30 April 2013 were supplied to
a Python code for the pressure evaluations according to the full procedure outlined
in § 5.

Pressure data from rows 2 and 3 indicated in figure 4 as accessed from ERDDAP
(2022) are used here, as they appear to align with the acoustic-gravity–Scholte wave group
propagation directions for swell–wind–sea interactions during the day/time under study.
Although both pressure transducer data and seismometer data are available from (IRIS
2022), it was learned that the seismometer data are band-pass filtered to a pass-band
5–20 Hz to highlight the seafloor response to airgun pulses (Dunn et al. 2017). Since
the pass-band excludes the frequency band of interest to this study (∼0.1–1.0 Hz), only
the pressure gauge data are used here. Raw sensor measurement time series are Fourier
transformed numerically, after which the frequency-dependent calibration functions are
applied to convert the raw measurements into Pascal units. Summary results showing
locations of plausible generation areas and the observed pressure amplitudes for two
wave groups are shown alongside the station location in figure 15, and are discussed
further in § 7. Representative Fourier transforms of sensor measurements are shown
in figure 14.
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Hour SD (deg.) SP (s) SH (m) WD (deg.) WP (s) WH (m)

1 163 14.13 0.20 39 11.52 4.25
2 163 13.91 0.20 40 11.50 4.25
3 163 13.91 0.20 42 11.49 4.26
4 163 13.71 0.20 45 11.49 4.28
5 26 11.54 3.54 100 8.04 2.45

Table 1. Hindcast data (ERDDAP 2022) at 36.5◦N, 32.5◦W, north-east of the sensor array location (Canales
et al. 2013). Data from hour 00:00 to 01:00 UTC on 27 April 2013 (highlighted) are used to provide conditions
at generation area 1.

Here, SD means swell direction, SP means swell period, SH means swell height, WD means wind-wave
direction, WP means wind-wave period, and WH means wind-wave height.

Hour SD (deg.) SP (s) SH (m) WD (deg.) WP (s) WH (m)

1 162 11.16 0.19 27 12.30 4.49
2 162 11.13 0.18 27 12.28 4.40
3 162 11.11 0.18 28 12.24 4.35
4 161 13.78 0.19 28 12.19 4.31
5 162 11.08 0.19 29 12.15 4.28

Table 2. Hindcast data (ERDDAP 2022) at 36◦N, 34◦W (Canales et al. 2013). This is the nominal location of
the array. These data provide the conditions for generation areas 2–5. Data from hour 00:00 to 01:00 UTC on
27 April 2013 (highlighted) are used.

Here, SD means swell direction, SP means swell period, SH means swell height, WD means wind-wave
direction, WP means wind-wave period, and WH means wind-wave height.

There is a range of depths represented within the area occupied by the sensor stations
in figure 4. Two wave groups are selected for further study due to their prominence
in the frequency distributions of the pressure measurements at various stations during
the chosen time window, namely, (ω,k)1 = (1.05, 4.96 × 10−4) and (ω,k)2 = (1.2,
5.787 × 10−4), although other groups are also represented strongly in the frequency
distributions. Surface-wave conditions at a point north-east of the station array (36.5◦N,
32.5◦W) and at the point approximately above the array centre (36◦N, 34◦W), are shown
in tables 1 and 2.

For the set 1 results with a single generation area shown in figure 10, the highlighted
conditions in table 2 are used. Multiple generation areas along the propagation path are
proposed for set 2 results shown in figures 16 and 17. For these results, table 1 conditions
are used for generation area 1, which is approximately 25 km north-east of the array.
Table 2 conditions are used for the generation areas spanning the array, because the
hindcast data are available only at resolution 0.5◦ × 0.5◦, and changes over the extent
of the array are expected to be small.

The seafloor parameter values assumed in the calculations are approximately based on
known data from the literature (e.g. Dunn et al. 2017). The seafloor density is taken to
be 2.5 × 103 kg m−3, assuming a soft-rock structure. For the uniform media calculations,
the dilatational and shear wave velocities are assumed to be cp = 5.2 × 103 m s−1, and
cs = 3.0 × 103 m s−1, respectively, while the seawater acoustic speed is taken to be
1.5 × 103 m s−1. For the non-uniform media calculations, the following variations
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Figure 5. Phase velocity variations used in the seafloor half-space and in the water column. Graphs plot the
relations outlined in (6.1). (a) Seafloor phase velocities. (b) In-water phase velocity.

are assumed:

cp(x) = cpa + Δcp

|X| x, Δcp = cpb − cpa,

cp1(x) = cp(x) cos θs, cp2(x) = cp(x) sin θs,

cs(x) = csa + Δcp

|X| x, Δcs = csb − csa,

cs1(x) = cs(x) cos θs, cs2(x) = cs(x) sin θs,

c1( y) = c1o(1 + ε f ( y)),

f ( y) =
(−2( y + 1300)

1300
− 1 + exp

(
−2( y + 1300)

1300

))
, ε = 7.37 × 10−3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

The horizontal plane speed variation is assumed to occur over a line defined by
the angle θs, and in general, θs /= θp, the group propagation direction. Here, |X| is the
distance over which the changes Δcp and Δcs occur. The vertical variation of the phase
speed is approximated using the profile derived by Munk (1974). The values c1o =
1.5 × 103 m s−1, cpa = 5.2 × 103 m s−1, cpb = 2.2 × 103 m s−1, csa = 3.0 × 103 m s−1

and csb = 1.2 × 103 m s−1 are used. For the angle θs, a value θs = 20◦ is used. The cp
and cs variations of (6.1) are shown in figure 5(a), while the speed variation in the vertical
direction is shown in figure 5(b).

7. Discussion of results

Figure 6 plots the dispersion relation for the first three modes for uniform media, following
the normalization of Hasselmann (1963) for h = 2800 m. Uniform media are assumed for
this figure, with cp = 5.2 × 103 m s−1, cs = 3.0 × 103 m s−1 and c1 = 1.5 × 103 m s−1.
The first three dispersion curves along the propagation direction are shown, with the
abscissa showing the ratio ωh/2πc1, while the ordinate is cR/c1, the ratio of the Scholte
wave phase speed cR = ω/k and c1, with k = |k|. Also shown is the phase velocity of
a Rayleigh wave travelling on land with air as the upper medium, approximated here
as 0.9194cs for a Poisson ratio (νr = 0.251) (Graff 1991). The three modes here were
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Figure 6. Dispersion curves for the first three modes of the acoustic-gravity–Scholte wave system, as
represented in terms of the normalized frequency ω and the ratio of the phase speeds of the seafloor Scholte
wave and the water-column acoustic-gravity wave. Solutions for the three modes as detected by numerical
search were plotted after rejecting spurious roots and replacing clear outliers with linearly interpolated values.

detected with a numerical search procedure followed by outlier replacement with linearly
interpolated values and rejection of spurious roots. For all three modes, for a given depth
h, the phase speed of the seafloor wave increases as frequency ω decreases, approaching
a constant value as ω increases. The plots are seen to match qualitatively those of
Hasselmann (1963, figure 2) and Eyov et al. (2013, figure 2). A further match is noted
with the Eyov et al. (2013) result for mode 1, for which as the abscissa decreases towards
zero, the ratio cR/c1 is seen to approach that for the Rayleigh wave on land. This behaviour
suggests that as (ωh/2πc1) → 0 for mode 1, the Scholte wave velocity approaches that of
a Rayleigh wave on land. For a given frequency ω, this represents the situation when depth
h → 0 and a propagating Scholte wave of frequency ω loses the water layer above and
turns into a Rayleigh wave, as also observed by Eyov et al. (2013).

Since for figure 6 the media are assumed to be uniform, ωn = W(kn) for a
propagation direction defined by k = (k1, k2), with n denoting the nth eigenmode of the
acoustic-gravity–Scholte wave coupled system. The frequency ω and wavenumber k of the
acoustic-gravity–Scholte wave coupled system are determined by the interacting surface
waves as discussed in § 5. Energy transfer to mode n = 1 will be greatest when this (ω, k)
pair lies on the dispersion surface for mode 1. In addition, the amount of energy that is
available for this transfer is determined by the energy in, and the directions of, κ and κ ′, and
the length of time or spatial area over which the interacting wave field remains statistically
stationary. It is noted that cR/c1 changes rapidly in the range 0 ≤ ωh/2πc1 ≤ 1, which,
for a practically relevant surface-wave frequency range f ≤ 0.5 Hz, implies a water depth
h ∼ 3000 m for dominant energy transfer to mode 1 (which defines the fundamental
dispersion surface).

Figure 7 shows the pressure variation with frequency, over an hour-long period from
UTC 00:00 to 01:00 on 27 April for 36◦N, 34◦W. A peak is observed near ω = 1.2 rad s−1
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Figure 7. Second-order pressure evaluated at the surface with the method of § 5.
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Figure 8. Group velocity variation in the horizontal plane and in the vertical direction with mild
non-uniformity in the media. Group velocities without non-uniformities are shown for comparison.
(a) Horizontal (x1, x2) plane. (b) Vertical direction y.

(ω/2π = 0.2 Hz), corresponding to the average frequency (σ1 + σ2)/2 = 0.1 Hz for the
interacting surface waves. For well-developed wave spectra, this pressure peak could
indicate interacting swells from the directions of different storm systems. However, the
present conditions are noted for a passing storm for which considerable period overlap
is recorded between the swell and wind–sea components, with the two components
approaching each other obliquely from directions separated by over 100◦. Note that
these pressures at y = h are the driver for the acoustic-gravity–Scholte wave system. The
pressure magnitudes over the band 1.0–1.7 rad s−1 are large enough for energy transfer to
any wavenumbers that satisfy the dispersion relationship together with that frequency.

The corresponding group velocities are shown in figures 8(a,b), which compare the
group velocity variations for the two wave groups (ω,k)1 = (1.05, 4.96 × 10−4) and
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Figure 9. Comparison of terms arising from non-uniformity in the media in (3.27), relative to 1/t. The effect
of non-uniformity builds over time and eventually will exceed 1/t. Distance travelled by a group is group
velocity × time.

(ω,k)2 = (1.2, 5.787 × 10−4). The group velocities with non-uniform media are found
to be different from those for a uniform medium for both wave groups. The horizontal
and vertical group velocity components are seen to be smaller than the phase velocities.
Differences in the horizontal group velocity components along x1 and x2 emerge as
propagation distance increases. Appreciable bending of the group velocity components
along the horizontal directions is noticed, though for the vertical component, the change
in group velocity with depth is more pronounced.

Figure 9 plots the different non-uniformity related terms in (3.27) for a comparison
of their relative magnitudes. All are seen to be small compared with 1/t (see (3.30) and
(3.31)) until t becomes large enough. Thus the farther the wave system travels, the more
effect the non-uniformity in the media has on its propagation, as one would expect.

Figures 10(a–d) show the spatial variation of the wavenumber spectra with and without
non-uniformity accounted for (a logarithmic scale is used in order to bring out small
differences). The difference between the wavenumber spectra for acoustic-gravity wave
amplitudes with and without the non-uniformity accounted for is seen to be two orders of
magnitude smaller over the spatial range considered here (see figure 11). The wavenumber
spectra SA increase linearly over the generation area, with a slope proportional to the
excitation spectrum due to the interacting surface waves. Given the present focus on
investigating the dominant presence of resonant modes and seafloor surface modes for the
present depth range (1000–3000 m), not much attention has been given here to estimation
of the leaky modes noted by Jensen et al. (2011) in the presence of a depth-dependent
density non-uniformity. However, since bulk waves and leaky modes may occur alongside
the surface-wave modes, it should be noted that their dissipative effects over propagation
distances exceeding 100 km could be significant for larger depths where higher modes of
the dispersion relations would play a greater role. As in Hasselmann (1963), it is argued
that the effect of leaky modes may be less significant for mode 1 than for the higher modes
of the water-column compression wave–seafloor wave dispersion relations.
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Figure 12. Variation of the power and Scholte wave amplitudes with distance from a single generation area
north-east of the array for two wave groups.

Of particular interest are the power variations for the acoustic-gravity waves. Figure 12
shows plots for the power and Scholte wave amplitudes along with the acoustic-gravity and
Scholte wave potential amplitudes. At distances ∼40 km, the power is seen to have dropped
to less than less than 10 % of the value at the edge of the hypothesized generation area. The
fact that the power results suffer a 1/|X|2 spreading as opposed to the 1/|X| spreading for
Scholte and acoustic-gravity wave amplitudes has implications for the utilization potential
of these waves for power conversion and storm tracking, respectively. The power amounts
would be greater when the generation area is larger and when favourable surface-wave
conditions last longer. It should be noted also that the location of the generation area and
the frequency–wavenumber combinations may be shifting with time as the surface-wave
conditions change and/or the higher-orderdetuning effect grows. Hence it is necessary to
generate power data over at least a year in order to be able to provide a fair assessment
of particular sites. Furthermore, the actual power densities available at a point are to be
integrated over the range of wave groups represented in the frequency–pressure plots such
as figures 7 and 14, whereas only two wave groups are shown here. Nevertheless, an insight
into the spreading rate as gathered from figures 12 and 13 is useful in assessing the overall
power density potential of acoustic-gravity waves.

As indicated in the observational data of figure 14, pressure amplitudes peak at
approximately 1.05 and 1.2 rad s−1, both of which correspond to plausible wavenumbers
(in light of figure 3) that lie on the fundamental dispersion surface. It is noted further
that generation areas over depth 3200 m lead to a peak response at 1.05 rad s−1 at a
wavenumber 4.96 × 10−4 m−1 that lies on the fundamental dispersion surface, while
the peak 1.2 rad s−1 at a wavenumber 5.787 × 10−4 m−1 (on the fundamental dispersion
surface for this depth) is more pronounced for generation areas over a depth ∼2900 m.

Figure 15 indicates that sensors at OBS15, OBS16, OBS18, OBS27 and OBS26 show
peaks at 1.0 rad s−1 together with large amplitudes at 1.2 rad s−1, while sensors at OBS12,
OBS34, OBS33, OBS31, OBS30, OBS29 and OBS28 show peaks at 1.2 rad s−1 with large
amplitudes at 1.0 rad s−1. The pattern of pressure amplitudes in figure 15 suggests the
presence of multiple areas along the propagation direction shown (which is consistent with
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Figure 14. Representative observational data: measurements during the same hour at selected stations.

interacting swell and wind–sea components in the surface-wave spectra) that contribute
energy to the two wave groups. Thus relatively large amplitudes are followed by decreasing
amplitudes for some distance, after which larger peaks are noted again. Typically, the
peaks become large close to deeper regions (∼2900 m or ∼3200 m), suggesting that more
energy is added to the one or both of the groups near the deeper regions. Presumably,
this effect is due to smaller generation areas where surface-wave conditions are favourable
(cf. figure 3). A total of four generation areas can be identified with water depths consistent
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Figure 15. Sensor measurements during UTC 00:00 to 01:00 on 27 April 2013, showing the recorded values in
Pa for groups 1 and 2. Also shown are approximate locations of plausible generation areas and the propagation
direction of the wave groups.

with the observed frequency peaks, besides the area north-east of the array. The north-east
location is chosen based on its bathymetry (∼2900 m–∼3200 m) and its alignment with
the propagation direction along rows 2 and 3. The chosen locations of the five generation
areas are consistent with the depths shown in the bathymetry chart, and their sizes are
determined so as to be consistent with the recorded pressure peak amplitudes in Pa (see
figure 16).

7.1. Implications for seafloor energy availability
This work considers wave groups propagating as acoustic-gravity–Scholte wave systems
that are excited by interacting surface waves. The frequency and wavenumber vector of
a particular wave group are determined by the frequencies and wavenumber vectors of
the interacting waves. When the resulting acoustic-gravity–Scholte wave frequency and
wavenumber lie on a dispersion surface (representing the free wave or natural modes) at
a given depth for given material properties of the two media, resonant energy transfer
occurs from the interacting surface waves to the second-order acoustic-gravity–Scholte
wave system, with its propagation direction being determined by the vector sum in (5.10).
The interaction time and the size of the generation area depend on the speed at which
the surface-wave system (such as generated by a storm) propagates, or in other words,
by the length of time over which higher-order detuning effects remain small, and a wave
field with favourable interactions remains statistically stationary given changes in wind
patterns. Greater generation areas lead to greater energy in the acoustic-gravity–Scholte
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Figure 16. Pressure variation with multiple generation areas with areas and interaction times along with sensor
measurements in two rows in the array. (a) Sensor-recorded pressure amplitudes for the group 1 plot are for
ω = 1.04 rad s−1. (b) Sensor amplitudes for the group 2 plot are at ω = 1.2 rad s−1.
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Figure 17. Scholte wave amplitude variation with multiple generation areas with areas and interaction times:
(a) group 1, (b) group 2.

wave system. Power transfer is maximum in the direction of propagation as determined by
the resonant wavenumber vector.

With dissipation effects ignored, energy remains constant over the group line as the
group propagates. However, as group components spread over a longer distance, the power
density decreases with the square of the distance from the generation area for a group
travelling in a particular propagation direction (Whitham 1973). The results discussed
above are for two of the multiple wave groups that satisfy the fundamental dispersion
relation over different depths, and the total power density would be obtained by integration
over all available wave groups.

It is interesting to note the role a non-uniform bathymetry plays in the presence of
multiple small generation areas giving rise to broader-band distributions for power and
pressure, though uniform bathymetry would allow larger generation areas and therefore
more energy to be concentrated in a band around a single wave group. The present
formulation needs to be extended to incorporate depth non-uniformities more smoothly.
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For seafloor power conversion applications, locating a wide rectangular or circular array
of seafloor devices close to frequently observed storm tracks would be advantageous. For
utilization of ordinary wave conditions, it may be worth locating arrays of seafloor devices
in areas where swells from different storm systems have been observed to meet frequently.
Alternatively, areas where wind seas and frequently changing wind directions are more
common may also be good candidate locations. With year-long wave period, height and
direction statistics together with nearby bathymetry and seafloor properties in hand, the
method investigated above can be applied to quantify daily and monthly seafloor power
availability statistics at a given location. In all cases, widely spread arrays of converters
would be advantageous as the groups with resonant frequency–wavenumber combinations
may arrive from a range of directions as determined by the periods, directions and water
depths over interaction areas around a site. Power conversion from purely vertically
travelling acoustic-gravity waves may be practical when the interacting wave fields contain
like frequency waves from opposite directions over a duration of time. Such conditions
are more likely in near-shore regions where reflections from vertical walls, cliffs or
other bathymetric features are common. In this situation, the resonant frequency will be
determined by the local depth, and available power amounts could be appreciable during
periods of high surface-wave energy.

7.2. Implications for storm tracking
In contrast to the seafloor energy conversion application (loosely dependent on the
square of the acoustic-gravity wave amplitude), storm tracking with seafloor seismometers
depends on the seafloor amplitudes themselves, which diminish less rapidly (than
acoustic-gravity power) with distance from the generation area unless multiple generation
areas are encountered along the propagation path (see figure 17).

The computed Scholte wave amplitudes for group 1 seem somewhat larger than those
for group 2, while the opposite is true for pressure amplitudes (figure 13). This difference
stems from the parameters appearing in the boundary conditions, and could be used
to advantage in storm tracking or long-term observation of ocean properties (such as
depth-wise density distribution) when both pressure and seismometer data are available
at a given location. Even though measurable displacement amplitudes may be available at
great distances from the storm centre, the propagation direction is still dependent on the
periods and directions of the interacting surface waves, and could change over different
time periods as the constituents of (5.10) change over time. For this reason, it appears that
access to several geographically spread out pressure transducers and seismometers would
be helpful for efficient storm tracking. For historically recorded storms, when hindcast
wave data are available, a knowledge of the vector k (particularly its direction) as inferred
from the interacting κ and κ ′ could help to determine candidate seismometer locations to
study, at least over regions where a relatively flat seafloor over a large spatial scale can
be assumed. When attempting to track an unknown storm, three-dimensional seismometer
measurements on the seafloor could be used to infer the magnitude and direction of k,
when the approximate depth and seafloor material properties in the neighbourhood are
known.

7.3. Implications for ambient noise and microseism activity
It is noted that the acoustic-gravity and Scholte wave components have the same frequency
and wavenumber. The present results suggest that they travel in groups at a speed smaller
than the phase velocity of either component. The predicted wavenumber spectra for the
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acoustic-gravity and Scholte wave components decrease at the same rate with distance
along the group line. Variations in seafloor material properties and water depths may
cause the Scholte wave components to scatter and spread over a band about the group
propagation direction. Explicit incorporation of depth non-uniformities in the solution
would likely lead to a more precise understanding of this effect. Inclusion of additional
layers in the seafloor model and separation of the water column into two layers (mixed layer
and deep layer) also could lead to further enhancements in accuracy. This work represents
a step towards a more complete description.

A potentially interesting observation from an ocean acoustics standpoint could be
that low-frequency ocean ambient noise may exist in packets of high and low pressures
that propagate both horizontally and vertically. Moreover, their energy propagates at the
group velocity of the compression–Scholte wave groups. The Fourier coefficients dP
for the compression-wave pressure determine the contribution to each frequency of the
compression–Scholte wave field, with k determining the wavelength. Since the energy in
a group propagates at the group velocity, the coupling between compression waves and
Scholte waves could become important when tracing the source of a large underwater
disturbance (such as an explosion).

8. Conclusion

The main goal of this paper was to gain insights into the propagation of acoustic-gravity
and Scholte waves generated by second-order interactions among multi-directional
surface waves. A mathematical model was investigated analytically, guided by
the approach of Hasselmann (1963). That approach was extended here to study
propagation of water-column compression waves and Scholte waves travelling as a
group through a non-uniform two-media system comprised of the ocean water column
with depth-dependent density, and a non-uniform and anisotropic deformable seafloor
half-space. To simplify analytical solution, the non-uniformity in the media was assumed
to be mild. Further, because the treatment utilized the group behaviour of the water-column
compression and seafloor waves, a single formulation now allowed calculation of
water-column pressures (leading to ambient acoustic noise estimates), seafloor power
densities (for potential energy conversion) and seafloor surface-wave amplitudes (leading
to estimations of microseisms). The kinematic and kinetic interface/boundary conditions
were specified using acoustic speeds in the two media, material densities and water
depth. For application at mid-ocean depths, although acoustic speeds in water and in
the solid were assumed to be mildly varying spatially, the water depth was assumed
to be constant. Water depths were assumed to be between 1000 m and 3500 m so that
energy transfer over the mode 1 (or fundamental) dispersion surface would be dominant.
For stationary random wave fields of acoustic-gravity and Scholte waves, wavenumber
spectra for free-wave groups were derived based on the variational principle of Whitham
(1973). The free-wave solution could be used in a study of compression–Scholte wave
systems generated impulsively, for instance, by explosions in the water column or by rapid
seafloor movements. A forced wave solution accounting for multiple generation areas was
also derived, with a focus on resonant excitation of any wave groups represented on the
dispersion surface. The wavenumber–frequencyspectra for the excitation pressure due to
second-order interaction of multi-directional waves were found following the formulation
of Hasselmann (1963).

The forced wave solutions were compared with observational data, using surface-wave
hindcasts (ERDDAP 2022; to derive surface-wave conditions for a chosen time period)

996 A18-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.682


U.A. Korde

and observational data for a site in the Atlantic Ocean (36◦N, 34◦W; to obtain
seafloor pressures over that time period). Acoustic-gravity pressure data (obtained with
low-frequency differential pressure gauges) at 22 sensor stations were used for this purpose
(IRIS 2022). Surface-wave conditions were found to be suitable for resonant forcing of a
few modes on the fundamental dispersion surface. Propagation of two groups was studied.
Predicted results were found to be consistent with the observational results for both
groups. Due to the local seafloor features, potential uncertainties in the assumed seafloor
properties, and the assumption of loss-free or zero-dissipation propagation, a precise match
was not expected. It was found, however, that a combination of generation areas and their
locations could be devised approximately to reconstruct sensor measurements over a finite
area, and these results could be utilized to derive approximate estimates at down-wave
points along the propagation paths.

Available acoustic-gravity power densities at the seafloor were estimated for two wave
groups. Power density for particular groups was found to decrease rapidly with propagation
distance, though the actual power densities will be derived by integration over individual
wave groups propagating in the same direction that are consistent with the dispersion
relations over the propagation paths. The effect of media non-uniformity was found to
be small, albeit growing with propagation distance as the wave group underwent effects
of cumulative refraction. Principal implications of these findings for seafloor energy
conversion and for storm tracking were summarized in § 7. It was also found that a
combined use of pressure and seismometer measurements could enhance storm tracking
methods, while characterization of ambient noise could also benefit from accounting for
the group behaviour of acoustic-gravity and Scholte waves. Further work needed includes
extension of the present method to non-uniform water depths. A multi-layer seafloor model
to account for different types of sediment layers and inclusion of dissipation in sediment
layers could enhance the applicability of the present method.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.682.
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