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Introduction. The problem of classifying the normal subgroups of the 
general linear group over a field was solved in the general case by Dieudonné 
(see 2 and 3). If we consider the problem over a ring, it is trivial to see that 
there will be more normal subgroups than in the field case. Klingenberg (4) 
has investigated the situation over a local ring and has shown that they are 
classified by certain congruence groups which are determined by the ideals 
in the ring. 

Klingenberg's solution roughly goes as follows. To a given ideal a, attach 
certain congruence groups GC(ct) and SC(ct). Next, assign a certain ideal 
(called the order) to a given subgroup G. The main result states that if G is 
normal with order a, then GC(a) ^ G ^ SC(a), that is, G satisfies the so-called 
ladder relation at a; conversely, if G satisfies the ladder relation at a, then G is 
normal and has order a. However, Klingenberg has restricted the local ring 
when dealing with two variables, by assuming that the residue class field is not 
F 3 and does not have characteristic 2 (i.e., 2 is a unit in the ring). In this paper 
we are concerned with removing these restrictions. In view of the classical 
counterexamples of GL2(F2) and GL2(F3) we cannot expect to remove all of 
Klingenberg's restrictions. However, by a delicate analysis of the situation we 
can cut the exceptional behaviour down to size, i.e., to where the residue class 
field has exactly two or exactly three elements. Indeed, in the latter case of 
three elements we surprisingly find that the exceptional behaviour is confined 
to the top step of the ladder. Our First Main Theorem, then, states that when 
the residue class field has more than two elements, Klingenberg's solution 
carries over, but for one exception, namely, when the residue class field is F 3 

and the groups have the whole ring as order. 
When the residue class field is F2, we lose the classification by means of the 

ladder relation and in fact we have no true classification. Our Second Main 
Theorem states that a normal subgroup satisfies a weak ladder relation, where 
we go down two "steps" in the ladder. However, not all groups satisfying the 
weak ladder relation need be normal. 

1. Preliminaries. 

1.1. Definitions. The inclusion sign C for sets will mean strict containment; 
otherwise we use C\ For groups, H S G means that H is a subgroup of G, and 
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H < G indicates that H is properly contained. The notation for arrows is as 
in O'Meara's book (6). 

A local ring o is a commutative ring with identity which has an absolutely 
maximal ideal p C o, i.e., a C p for every ideal a C o. We let u = o — p and 
easily see that it consists of all the units of o and is a group under multiplica­
tion, and that for a £ il, co £ p, we have that a + co £ u. A homomorphic 
image ô of o, if not the {0}-ring, is again a local ring with maximal ideal p. We 
note that every field is a local ring. 

A residue class field of o is any field isomorphic to the field o/p. We write iVp 
for the cardinality of o/p. 

Let M = M(o) be a free module of n generators over o. The general linear 
group of My GLre(M), is the group of all linear automorphisms of M = M(o). 

Let a C o be an ideal. Then the canonical map ga: o —> o/a determines a 
canonical map ga: M(o) —» ikf (o/a). When a = o, we understand Af (o/a) to be 
the {0}-module. The map ga determines the canonical surjective homo-
morphism ha: GLn(M(o)) —» GLn(M(o/a)), with the following property: 

ha<T O ga = gaOa V ^ GLn(M(o)). 

When a = o, we understand GLn(M(o/a)) to be the unit group. Let 
a Ç GLn(M). We define the order o(a) of a to be the smallest ideal a such that 
ha<r Ç centre GLW(M"(o/a)). The order o(G) of a subgroup G S GLn(M) is 
defined to be the smallest ideal a such that haG S centre GLn(M(o/a)). We 
shall soon see that these ideals do exist. 

To this effect, consider GLn(o), the group of all invertible n X n matrices 
over o. The subgroup of GLn(o) consisting of all matrices diag(a), with a Ç u, 
is called the group of radiations. We denote by E^(X), where i ^ j , the matrix 
in GLn(o) with diagonal entries 1, and with all other entries 0 except the 
iy j position which contains X. 

PROPOSITION 1.1.1. centre GLn(o) is the group of radiations. 

Proof. Every radiation falls in centre GLn(o). And if P 6 centre GLw(o), 
then the equations P E ^ ( l ) = £ ^ ( 1 ) P will show that P is a radiation. 

Let H be a base for M = M(o). The choice of 36 sets up an isomorphism / x 

from GLn{M) to GLn(o). The homomorphism ha: GLn(M) —> GLn(M(o/a)) 
gives rise to the homomorphism ha: GLw(o) —> GLn(o/a), which is defined so 
that the diagram 

GLn(M)-—*GLn(M(o/a)) 
V rla V 

fx\ * 

GLn(o) — — » GL»(o/a) 
«a 
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is commutative. If the isomorphism 0 is the one given by the base ga% for 
AT(o/ct), then ha: GLw(o) —>• GLn(o/ct) is the map which consists of taking the 
entries of the matrices of GLw(o) modulo a, independently of the base ï which 
was chosen at the start. Whenever we shall make use of such a map ha, we will 
implicitly give it the above interpretation. 

Let a 6 GLn(M) have matrix {atj) in the base 36. By Proposition 1.1.1, we 
find that o(a) is the finitely generated ideal whose generators are au — aj3; 
V i, j , together with atj, i ^ j . We can check that o(<r) does not depend on the 
base. And clearly o(G) is the ideal generated by the ideals o(o-), 
V * € G = GU(o) . 

For an ideal a C o, we set 

GCn(M, a) = Aa-1 (centre GLn(M(o/a))), 

which is a subgroup of GLn(M), called the general congruence group mod a. We 
have that 

GCn(M,a) « GL„(AT), 

GCn(M,o) = GLn(M), 

GC„(AT, 0) = centre GLn(M), 

where centre GLn(M) consists of the radiations 

<JX = ax for some a £ u and V x Ç M. 

For an ideal a C o, we define the special congruence group mod a to be the 
subgroup SCn(Af, a) of GLn(M) consisting of the elements a with 

det ( 7 = 1 and ha<r = identity. 

We have that 

SCw(Af, a) <\ GL„(AT), SCn(M, a) g GCn(M, a), 
SCW (AT, 0) = {1}, SC„ (AT, o) = SLn (AT), 

and SLn(AT) is the special linear group of AT. The same congruence groups 
GCw(ct) and SCn(ct) can de defined in GLn(o). The term ''congruence" is 
justified from the fact that 

5 € GCn(a) <=> S = a radiation mod a, 

T G SCw(a) <=> r == identity mod a, and det T = 1. 

And for any base 36 for AT, the isomorphism f% yields 

/ x (GCW (AT, a) ) = GCW (a), ^ (SCB (AT, a) ) = SCW (a). 

We can verify that the congruence groups mod a have order a; the key 
observation is that £12 (X) is in SCn(a), V X £ a. 

1.2. Notation and remarks. Our study deals with dimension 2, although a 
few points will be discussed for dimension n. In the context of dimension 2, 
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matrices are used extensively. In general, we implicitly understand that the 
entries of an element a are given by 

-t :)• 
unless otherwise specified. If p G GL2(o), then by ap and (p, a) we mean the 
conjugate pcrp-1 and the commutator ptrp_1o--1, respectively. 

For the matrices E^(X) mentioned earlier, we have the rule: 

The following standard matrices are used in forming conjugates and com­
mutators: 

rfc,)-C°;). efeW-G J). 

The usual facts about commutator and mixed commutator subgroups will 
be used; seeZassenhaus (7, pp. 78-81). We mention, in particular, that 

B<\A, [A,B]£G ^B=ÏG<\ A. 

When we say that a subgroup G ^ GL2(o) is invariant under SL2(o), we mean 
that G is stable under conjugation by the elements of SL2(o). 

We list some lemmas to formalize some naturally expected facts. 

LEMMA 1.2.1. Let p and a be elements of GLw(o) or GLn(M). Then: (i) 
o- G GCn(o(a)); (ii) flO"1) = o(<r); (iii) o(pap-1) = o(<r); (iv) o(pa) Ç o(p) + 
o(a). 

The proof is straightforward. 

LEMMA 1.2.2, Let G S GL2(o) with o(G) = coo. Then G contains elements of 
order coo. If G is invariant under SL2 (o), there are elements a and <J! in G with 

do = wo = c'o. 

Proof. Clearly we cannot have o(a) C cop, V <r G G. If a G G has o(a) = coo, 
then at least one of a — b, c, or d generates coo. Depending on the cases occurr­
ing, form aT or <7$ with T( — 1 , 1) and 3>(1, 1, 1), to obtain the required 
elements. 

LEMMA 1.2.3. Suppose that N)p > 2 and let G ^ GL2(o) be invariant under 
SL2(o), with o(G) = coo. Then 

o(Gr\ SC2(coo)) = coo, G C\ SC2(coo) < SL2(o). 

If G < GL2(o), then G Pi SC2(coo) < GL2(o). 

Proof. Pick a G G with co = coo. 
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If Np ^ 4, we can pick y £ u with 

7 ^ ± 1 mod p, i.e. y2 ^ 1 mod p. 

We may assume that a has a £ u. We have det c G u; hence, if co = coo £ p, 
then a 6 u. Therefore, the case & £ p can occur only when coo = o, and then 
c, d £ u to preserve det a- 6 U. Now, one easily checks that cr$ with $(1 , 1, 1) 
gives us a new a- with the desired property. Now, the lemma follows from the 
fact that ( 0 ( Y , Y - 1 )> <T) falls in G H SC2(coo) and has order coo, as we now 
verify. 

We have that 

(6, (7) (det a)'1 £ G. 
ab — y cd a(y — \)c 

\_b{y~ — \)d ab — y~ cdj 

The 1, 2 entry is a unit multiple of c, so that 

co ç o((0, a)) c o(G) = coo = co; 

hence, our commutator has order coo. I t also has determinant 1; hence, if 
coo = o, then (G, v) <^ G C\ SL2(o) and o(G C\ SL2(o)) = o. And if coo Ç p, 
then we easily see that (0, <r) is congruent to identity mod coo, since c and d 
are in coo. Thus (9, a) Ç SC2(coo), which establishes our assertion. 

If iVp = 3, then 2 G U and the two classes of units are represented by 1 and 
— 1. We can force our a to have a — b Ç cop, for if a — b — ec with e G u, we 
form 0-$, where $(1 , 1, v) has 

p = — 1 i f e = 1 mod p, 

v = 1 if e = — 1 mod p. 

Now, the commutator (E2 i ( l) , <r) yields what is required, with arguments 
similar to the above. 

1.3. Transvections. A hyper plane of M is a free {n — 1)-dimensional direct 
summand of M. A transvection r is an element of GLn(M) which satisfies the 
following: (i) There is a hyperplane H of M such that T\H is the identity 
mapping on H] (ii) TX — x £ H,\/ x £ M. If r is a transvection, then r _ 1 is a 
transvection with hyperplane H and prp~l is a transvection with hyperplane 
PH,VPe GLn(M). 

Transvections are important because they generate the special congruence 
groups used to classify normal subgroups of GLn(M) or GLw(o). What follows 
are appropriate details, including the notion of matrix transvections in GLn(o). 

We shall frequently mention matrices of type E, 

1 aln 

0 

E = 

1 
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Now fix an ideal a C o and let {r*} iei, I a suitable index set, be the set of all 
transvections which are contained in GCn(M, a), that is, all transvections in 
GLn(M) which have order Ç a. Fix a base X for M, and let n have matrix Tt 

in the base 36. What does the set {Ti}iei actually consist of? Every matrix 
of type E with o(E) Ç a falls in {Tt) i€I since it defines some transvection n 
by means of base 36. Every conjugate P~lEP with o{E) Ç a and P £ GLre(o), 
falls in {Tt} iei, as is seen by defining some transvection n on M with matrix 
E in a suitable base different from 36, and then by taking the matrix of n with 
respect to £. Now look at an arbitrary n with hyperplane H, say. We can 
write M = H © oxn; hence, if we let Xi, . . . , xn_i be a base for H, then 
Xi, . . . , xw_i, xw is a base for ikf. Since TiXn — xn is in H, then r* has some 
matrix E with #(£) ÇI a, in this base. Then in the base 36, r* has matrix 
Tt = P"XEP for some P G GLn(o). 

Thus, {Ti)iU consists of all matrices of type E with o(E) Ç a, together 
with their conjugates in GLw(o). Clearly, this set remains the same if the base 
26 is changed. If we agree to call the elements of { 7 \ } ^ 7 transvections in 
GL^(o) of order Q a, then we can state the following proposition. 

PROPOSITION 1.3.1. For any ideal a Q o, SCn(M, a) and SCw(a) are the sub­
groups of Ghn(M) and GLn(o), respectively, generated by the transvections of 
order Ç a. 

Proof. See Klingenberg (4, p. 138) for GLn(M). 

When n = 2, the order of every transvection is a principal ideal since the 
transvections are the matrices £i2(X) together with their conjugates in 
GL2(o). E2i(\) is a transvection, being the conjugate of E12(\) by T(l , 1). 
We refer to the matrices E^(X) as elementary transvections. 

For any n we can likewise consider the Etj(\) as elementary transvections. 
This becomes clear when we see that a transvection of type E factors into 

E = Ein(ain) . . . En-1>n(an-itn) 

and that £^(X) is conjugate to Ein(\). We may consider elementary trans­
vections in Ghn(M)y relative to a base: they are the transformations which have 
the matrices £^(X) in that base. 

A line of M is a one-dimensional direct summand of M. When n — 2, 
hyperplanes of M are lines. 

LEMMA 1.3.2. SL2(ilf) is transitive on the lines of M. 

Proof. Given a line L in M and a Ç SL2(ikf), aL is also a line of M. Now, is 
there a a G SL2 (M) which carries a given line ox to a given line o^? We can 
write 

M = ox © ox2, M = oy 0 oy2. 
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The matrix expressing the change of base is in GL2(o) ; hence, if y = ax + fix2, 
at least one of a, 0 is a unit. Then a is defined either by 

ax = ax + /3x2, 0^2 = a~1X2, 
or by 

o-x = ax + /3x2, c7X2 = —fi~lx. 

LEMMA 1.3.3. Any transvection is conjugate in SL2(Af), or SL2(o), to some 
elementary transvection. 

Proof. Pick a base X\, x2 for M. If r is a transvection with line L, there is a 
a Ç SL2 (ikf) such that aL = oxi (by Lemma 1.3.2), so that ara-1 is a trans­
vection with line o#i, hence is elementary. Therefore, we have that 

r = a~1((Tra~1)a. 

LEMMA 1.3.4. SC2(Af, a) and SC2(a) are the normal subgroups ofSL2(M) and 
SL2(o), respectively, generated by the elementary transvections of order C a, in 
fact, generated by either the transvections Ei2(X) or E2i(X), where X Ç a. 

Proof. Note that E21(\) = TE12(-\)T-\ where T ( - l , 1) is in SL2(o). 
The remainder is trivial, using Lemma 1.3.3. 

PROPOSITION 1.3.5. Let I be an index set and let {T^ i€7 be a set of transvections 
of orders a*: Q o. Let a be the ideal generated by the ait i G L Then the normal 
subgroup of GLw(o) [GLn(M)] which is generated by the set {n} *<=/ is the group 
SCn(a)[SCn(M,a)]. 

Proof. For n ^ 3, the result is found in (4, p. 139) ; in this case it is sufficient 
to assume invariance under SLW to get the conclusion. 

Thus, we assume that n = 2. Consider a single transvection r and let G be 
the normal subgroup of GL2(o) generated by r. We may assume that 
r = E12(\). Then G ^ SC2(Xo). For each e £ u, form r0 with 9(e, 1) to obtain 
Ei2(eX) in G. If f € p, then - 1 + f 6 u , and we easily deduce that G contains 
Eu(y\) V 7 6 o. Hence, by Lemma 1.3.4, G è SC2(Xo). 

Now let G be the normal subgroup of GL2(o) generated by {r^j iei. We have 
that G S SC2(ct). We wish to show that every transvection r whose order 
C a falls in G. We may assume that r = Ei2(n)- By the first part of the proof, 

SC2(aO ^G Vie L 

Since IJL £ a, there is an expression 

M = 2 Mi, Mi G a«, 
fin 

and we also have that 

Ei2(/*<) € SC2(a,) ^ G, 
so that 

r = £12(M) = E[ £«(/**) G G. 
fin 
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When we step down to a homomorphic image of o, everything behaves 
naturally as expected. More precisely, if b C o is an ideal and if the bar " " 
stands for both homomorphisms 

gh\ o —> o/b and h: GL2(o) —> GL2(o/b), 

then o(â) = o(a) for elements, o(G) = o(G) for subgroups; the local ring o 
has maximal ideal p and Np = iVp; for any ideal a ÇI o, 

S C ^ = SC2(a), 

which follows from Proposition 1.3.1 (i.e., look at elementary generators). 

PROPOSITION 1.3.6. Let a C o be an ideal. Then 

SCn(a) = [GL,(o),GC,(a)] 

but for one exception: when n = 2, o/p = F2, a = o, we have that 

DGL2(o) < SL2(o). 

The same holds for GLn (M). 

Proof. In view of Klingenberg (4, pp. 138-139), we only have to consider 
n = 2, o/p = F2 . 

(1) Suppose that a = 0. Let denote the homomorphism which factors 
by p. Then 

: GL2(o) ->GL2(o/p) = GL2(F2) ^ 53, 

the symmetric group; see Artin (1, p. 170). Then 

DGL2(o) = DGL2(o) < GL2(F2) = SL2(F2) = SL2(o); 

hence, we must have that DGL2(o) < SL2(o). 
(2) Now let a £ p. Write the mixed commutator group as K(a). We have 

that 
K(a) < GL2(o), K(a) S SC2(a), 

by looking at generators. If a = coo, then 

(£12(1), 9(1 , 1 + «)) = £ i 2 («( l + co)"1) 

and belongs to .K(<ao) ; hence, by Proposition 1.3.5, 

X(coo) = SC2(coo). 

For an arbitrary a, pick a typical transvection r of order C a. Since 
O(T) = wo £ a, then 

r 6 SC2(coo) = K(œo) £ K(a); 

hence SC2(a) ^ K(a), that is, K(a) = SC2(a). 

We give some criteria for finding transvections in a group. 
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LEMMA 1.3.7. Let G ^ GL2(o) be invariant under SL2(o). 
(i) If G contains S (a, b, *) or <£(a, 6, *), then G contains the transvection 

El2(a - b). 
(ii) If Np > 2 and if G contains E(*, *, co) or <£(*> *, co), co G p, £&ew G 

contains a (elementary) transvection of order coo. 
If in particular G <\ GL2(o), then G ^ SC2((a — b)o) and G ^ SC2(coo), 

respectively. 

Proof. The very last statement follows from Proposition 1.3.5. The problem 
for $ is reduced to that for E upon conjugation with T( — 1 , 1) £ SL2(o). 

(i) The problem is solved immediately by taking (Ei2( — b), E). 
(ii) Write our E as H (a, 6, co). If iVp = 3, then for the units a, b, one of 

a -{- b, a — b isinu while the other is in p. Use this fact and use step (i) after 
taking the following commutator in G: with a = 1 + co, /3 = (1 + co)-1, 
v = _-(]__|_ 0)a> w e have that (3>(a, £, ?), E) = 3KX> 3>> *)> where 

x = (ab — avbœ)det cr_1, y = (a& + a*>aa> — (Uvea(a — b) + z^2co2)det v~l. 

If iVp ^ 4, we pick y G u such that 

7 ^ ± 1 mod p, i.e., y2 fk 1 mod p. 

Taking (E, 6(7, 7-1)) = £12((1 - T 2 ) ^ 1 " ) yields the result. 

LEMMA 1.3.8. Let Np = 2 and G <\ GL2(o). If G contains E(*, *, co) or 
<£(*, *, co), then G ^ SC2(cop). 

Proof. Again we only need to work with E = E(*, b, co). For each f Ç p, 
we have that 

( E ( * , 6 , c o ) , 9 ( l - 6 f , l ) ) = £12(f«) , 

which falls in G. Now apply Proposition 1.3.5. 

1.4. The problem of classification. Given a subgroup G S GLn(o), are there 
necessary and sufficient conditions for G <\ GLw(o)? To the group G there 
corresponds the ideal o(G) Ç 0. Trivial considerations show that 

G has order 0 «=> G S centre GLn(o), 

^ G C „ ( 0 ) ^ G ^ SCB(0), 
<^G<\ GL„(o) with o(G) = 0, 

which is the same situation as over fields. Klingenberg (4) has shown that 

G < GU(o) with o(G) = a <=> GCn(a) ^ G è SCw(a), 

provided that w ^ 3 or that w = 2 together with 2 Ç it, iVp > 3, that is, 
char(o/p) 9e 2 and o/p ^ F3 . The implication "<=" is easy, if we recall 
Proposition 1.3.6. For the implication "=»", the step GCw(ct) è G is trivial, 
and the hard part is to show that G ^ SCw(a). In his situation, Klingenberg 
has done this by using only invariance over SLn(o), as it is done for fields. This 
provides a simultaneous classification of the normal subgroups of SLw(o). 
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We shall investigate the cases left open by Klingenberg. Again u<=" is easy, 
by Proposition 1.3.6, and we shall show that G ^ SC2(ct) holds most of the 
time when iVp > 2. But invariance under SL2(o) is too weak and special 
considerations (Property T) are made. When Np = 2, we discover many 
aberrations from the usual classification. In each instance of bad behaviour, 
we point out how far we have to step down before finding a congruence group 
in G, and these results are used to reduce hard cases to workable cases, in 
measuring the deviations. 

2. The case iVp > 2. 

2.1. Groups of order o. When iVp > 2, there are units e ^ 1 mod p. If 2 6 p, 
then e2 ^ 1 mod p, and so on. 

THEOREM 2.1.1. Let 2 G p, iVp > 2. If G g GL2(o) is invariant under 
SL2(o), with o{G) = o, then G ^ SL2(o). 

Proof. In view of Lemma 1.2.3, it is enough to prove the theorem for 
G S SL2(o). By Lemma 1.2.2, pick a G G with o(a) = do = o. We may 
assume that d ^ 1 mod p, for we could replaces by <JQ, where 9 (e_1, e) 6 SL2(o) 
has e ^ 1 mod p, since 0-9 has as 2, 1 entry, éd. With the elements r ( — 1, 1), 
T = E 1 2 ( - a J - 1 ) , Q(d, d'1) of SL2(o), we find that 

<n = r(e, cr^r-1 = s (d-\ d\ *) e G. 
Then for each a £ 0, 

(<rlf £ „ ( « ) ) = E12(a(d-*- 1)) 6 G, 

and this is an elementary transvection of order ao. Hence, we can obtain 
enough transvections to apply Lemma 1.3.4. 

We turn to groups of order 0 when iVp = 3. 

LEMMA 2.1.2. Let iVp = 3. Let I be an index set and let {r*} i€J be a set of trans­
vections of orders a*. Let a be the ideal generated by the aiy i € / . Then the normal 
subgroup of SL2(o) generated by {Ti}iei is SC2(a). 

Proof. Consider a single transvection r and let G be the normal subgroup 
of SL2(o) generated by r. By Lemma 1.3.3 we may assume that r = Ei2(co) £ G. 
Its inverse E i 2 ( — co) is in G. 

For each e Ç u, we have that Ei2(dze2co) 6 G, as seen by taking (r± 1)e 
with 9(e, e_1) € SL2(o). Then, for 7 6 it with 7 ^ 1 mod p, we have that 
£ i 2 ( ± ( 7 — l)2co) € G, from which we obtain Ei2(d=27co) £ G. Since 1 and 
— 1 represent the two classes of units, this shows that Ei2(27co) is in G for all 
7 6 u. Since 2 6 u, this means that E12(yœ) £ G for all 7 £ u. If f £ p, then 
- l + f 6 u, and we easily arrive at Ei2(fco) G G. An application of Lemma 
1.3.4 shows that G = SC2(coo). 
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The remainder of the proof is just the same as in Proposition 1.3.5. 

We consider the situation over the field F3 , and subsequently the results 
over our local ring will be readily obtained. 

LEMMA 2.1.3. DSL2(F3)<I GL2(F3), DSL2(F3) < SL2(F3), o(DSL2(F3)) = 
F3 . 

Proof. The order is F 3 since (Ei2( l) , E2i(2)) has off-diagonal elements 1. 
Now, PSL2(F3) is the alternating group AA (1, p. 170). If we had DSL2(F3) = 
SL2(F3), then we would have 

A, = PSL2(F3) = DPSL2(F3) = DAA, 

which is not true. 

PROPOSITION 2.1.4. If G S GL2(F3) is invariant under SL2(F3), with 
o{G) = F3 , then either 

G ^ SL2(F3) or GC\ SL2(F3) = DSL2(F3), 

which is a quaternion group, of index 3 in SL2(F3). 

Proof. In view of Lemma 1.2.3, we may assume that G ^ SL2(F3). By 
Lemma 1.2.2, pick a £ G with d as a unit. If necessary, we form aT, where 
r = Ei^ — ad-1), so that we may take 

~(ZT)"-
Suppose that b ^ 0. Then, with T( — 1 , 1) G SL2(F3), we obtain (or • cr)2 = 

En(bd) G G; hence, G = SL2(F3) by Lemma 2.1.2. 
Suppose that G < SL2(F3). Then b must be 0. If d = 1, we have the element 

r ( — 1, 1) G G. The event d = 2 yields T3, but since T4 is the identity, we still 
have r Ç G. The conjugate of T3 in G by E2i(l) gives us the element 

But T( — 1 , 1) and p generate a quaternion group Qy which is then a subgroup 

of G. Since SL2(F3) has 24 elements, then by Lagrange's theorem, 

G = Q = DSL2(F3). 

The following lemma is the key fact required to reduce the situation from 
o to F 3 when N$ = 3. 

LEMMA 2.1.5. Let Np = 3 and G ^ GL2(o) be invariant under SL2(o), with 
o(G) = o. Then G è SC2(p). 

Proof. As in the above proof, we take G ^ SL2(o) and 

- - (° T ) * o. 
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Let f be an arbitrary element of p, put y = d~l + f, a unit, and let 

Then (p, o-) = S(y2d2, y~2d~2, *) (î C and Lemma 1.3.7 (i) gives us an 
elementary transvection of order fo in G. Now, Lemma 2.1.2 completes the 
proof. 

THEOREM 2.1.6. Let iVp = 3 and G S GL2(o) be invariant under SL2(o), 
with o(G) = 0. Then either 

G ^ SL2(o) or G H SL2(o) = DSL2(o), 

which is of index 3 in SL2(o). 

Proof. Reduce the problem to G ^ SL2(o), by Lemma 1.2.3. Consider the 
map 

V. GL2(o) -*GL2(o/p) = GL2(F3), 

and let stand for the restriction of hp to SL2(o) and for the map 

: o —> o/p = F3. 

The kernel of is SC2(p). In view of Lemma 2.1.3, we must have that 
0(DSL2(o)) = o. Our above lemma yields 

DSL2(o) ^ SC2(p), G ^ SC2(p). 

Hence, our situation in 

SL2(o)/SC2(p) ^ SÛÏÔ) = SL2(F3) 

is that of Proposition 2.1.4 and a few logical manipulations prove our theorem. 

Our above theorem does not have a converse, as is shown by the following 
example. 

Example 2.1.7. The element 0 = T(l, 1) 6 GL2(F3) does not belong to 
DSL2(F3) (consider det 0), and <£2 is the identity; hence, 

G = DSL2(F3) U 0 D S L 2 ( F 3 ) 

is a subgroup of GL2(F3) with 

G à DSL2(F3), o(G) = F3 . 

With r = £ i 2 ( l ) , we find that 

(*. *) = ( _ ? î ) « D S MF 3 ) , 
which is described by its generators in the proof of Proposition 2.1.4. Hence, 
0T ë G, and thus G is not invariant under SL2(F3). 
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For a local ring with iVp = 3, use 

G = DSL2(o) U<?>DSL2(o) 

again, and show that it is not invariant under SL2(o) by factoring mod p, and 
thus obtaining the above situation over F3 . 

2.2. Property T. We have considered normal subgroups (in GL2(o) and in 
SL2(o)) generated by transvections, and each time we have obtained a corres­
ponding congruence group. When 2 £ p, do we get SC2(ct) as the normal 
subgroup of SL2(o) generated by a transvection of order a? Not always, as 
we will show. 

Suppose that 2 G p. Let co £ p with co g co2o + 2o. We define $(co) as the ideal 
of o which is the inverse image of the ideal 

a(w) Ç Ô = o/(co2o + 2o), 

consisting of the zero divisors of cô ^ 0. Wre have that 

co20 + 2o C g(w) and coO C g(w) C p. 

PROPOSITION 2.2.1. Suppose that 2 Ç p. L ^ co 6 p zw/A co £ co2o + 2o. i j 
/fe£re aw/5 a wwiJ 7 such that 

7 je a square mod g(a>), 

/Aew JAe normal subgroup G of SL2(o) generated by the transvection E12(œ) 
satisfies G < SC2(coo). 

Proof. Let denote the homomorphism which factors by co2o + 2o. Then 
7 ^ a square modg(cô), and G is the normal subgroup of SL2(o) = SL2(o) 
generated by Ei2(cô). With 

P , = ( ; ; « ) € S L , ( „ ) , 

a typical element of G has the form 

T 

n p^i2(cô)pi~":L, 

that is, 

Î + (âiï?i + . . . + arï?r)cô (ai + . . . + âr
2)cô \ 

0*1 + • . . + vT ) cô I + {â-J>i + . . . + ârvr) œj 

Since 2 = 0 in ô, we cannot have Ei2(fcô) Ç G, since this would contradict the 
property of 7. Hence G < SC2(côô), so that G < SC2(coo). 

Example 2.2.2. Take a local field with ring of integers 0, prime element 71-, 
and suppose that 2o C p4. Then 2o = p* with ^ 4 . There are integers m such 
that 

2 ^ m ^ k/2. 
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Pick co such that coo is any one of the ideals pm. We claim that the normal 
subgroup of SL2(o) generated by Ei2(co) is strictly contained in SC2(coo). 
Here, co2o + 2o = p2m and -K g g(co) ; that is, 

Now the unit 1 + w has quadratic defect p as shown by O'Meara (6, Proposi­

tion 63.6) ; hence 

1 + 7T ̂  a square mod g(o>), 

and Proposition 2.2.1 proves our claim. 

I t is now apparent that when 2 Ç p we cannot classify the normal subgroups 
of GL2(o) by working only with invariance under SL2(o). We make the follow­
ing definition. 

Definition 2.2.3. The local ring o is said to have Property T if for any œ Ç p 
/Ae normal subgroup 0/SL2(o) generated by the transvection £i2(o>) is SC2(coo). 

Of course, Property T is quite strong. But instead of attacking the classifi­
cation of the normal subgroups of GL2(o) in direct fashion, we give a unified 
treatment which will show that invariance under SL2(o) is enough if Property 
T holds. The ring of Example 2.2.2 does not have Property T, but there are 
interesting rings which do, as in the examples below. 

Example 2.2 A. Any local ring with 2 G p,iVp finite, and p2 = 0, has Property 
T, for instance, the local rings Z/4Z and F4[x]/(x2). 

For Ô G u, conjugate £12(co) by 9(5, Ô"1) to obtain E12(ô
2u). Using p2 = 0 

and perfectness of the residue class field we see that £12(70?) can be reached for 
all 7 G 0; hence Lemma 1.3.4 yields the result. 

Example 2.2.5. A less trivial example is a local ring with finite TVp > 2 and with 
p = 2o; an illustration is the valuation ring of Q( \ /5 ) under the prolongated 
2-adic valuation from Q; indeed, p = 2o and iVp = 4. 

Let co G p and let G be the normal subgroup of SL2(o) generated by £12(0?). 
Proceed in a way somewhat similar to the proof of Lemma 2.1.2 to show that 

G ^ SC2(2coo), i.e., G è SC2(cop). 

By perfectness of o/p, every unit 7 has the form 

7 = ô2 + 2a, for some ô G U, a G 0; 

hence £12(70?) = Ei2(ô
2co)Ei2(2ao;) G G. Now Lemma 1.3.4 completes the 

proof. 

I t will be convenient to refer to the following remark. 

Remark 2.2.6. (i) Suppose that iVp = 3 or that 2 Ç p, iVp > 2, Property T 
holds. Let / be an index set and let {r*} z€/ be a set of transvections of orders a*. 
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Let a be the ideal generated by the aiy i G / . Then the normal subgroup of 
SL2(o) generated by {r*}*€J is SC2(ct). 

This is a combination of Proposition 1.3.5 and Lemma 2.1.2. 
(ii) Suppose that iVp = 3 or that 2 G p, N$ > 2, Property T holds. Let 

G ^ GL2(o) be invariant under SL2(o). Then: (a) if G contains S (a, b, *) or 
$(a, &, *), then G ^ SC2((a — 5)o); (b) if G contains E(*, *, co) or <£>(*, *, co), 
where co G p, then G ^ SC2(coo). 

This is a restatement of Lemma 1.3.7. 
Moreover, the type of ring which we consider here is preserved under 

homomorphism. 

2.3. T H E MAIN THEOREM. We consider ideals a Ç p and the solution of the 
classification problem is reached by successively taking a with ap = 0, then 
principal, then finitely generated, and at last arbitrary. 

LEMMA 2.3.1. Suppose that Np = 3 or that 2 Ç p, iVp > 2, Property T holds. 
Let G ^ GL2(o) be invariant under SL2(o), with o{G) = a C p. If ap = 0, then 
G ^ SC2(a). 

Proof. Fix a typical element a G G. We shall show that G contains 
SC2((a - 6)o), SC2(co), and SC2(do). If d = 0, then SC2(do) g G trivially, 
and the same for c = 0 and a — b = 0. 

(1) Let d ^ 0. If iVp = 3, apply Remark 2.2.6 (ii) to 

(£12(1), a) = Z(ab + ad, ab - ad, *)(det o-)"1 G G 

to obtain SC2(do) ^ G. 
When 2 G p, we can assume our a has a = b, for if not, we just replace it by 

( ^ • « • • > - L / w °tf"lr1)c. (det cr)_1 G G, 

where /3 G U with /3 ^ 1 mod p. Then (£ i 2 ( l ) , cr) = E(*, *, —ad) G G, and 
Remark 2.2.6 (ii) yields SC2(do) ^ G. 

(2) If c 9e 0, reduce the situation to step (1) by forming or with T( — 1 , 1). 
If a — b 9^ 0, then we can make d "become" 0 as follows: if d ^ 0, then by 
step (1), 

E21{-a~H) G SC2(do) ^ G; 

hence E2\{ — a~ld) • <r = S(a, b, *) G G; then Remark 2.2.6 (ii) applies. 
(3) For every n G o(a) we have that E12(M) G G since 

/x = a (a — b) + fie + yd for some a, /3, 7 G 0, 

and since the product 

E12(a(a - b)) • Ei2(fic) • E12(yd) 

falls in G. For each fx G a, we proceed as in Proposition 1.3.5 to obtain 
£12 (A0 G G. Then Lemma 1.3.4 can be applied. 
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Formula 2.3.2. Let a have c, d G p and det a = 1 and let E = E(a, 0, /x), 
where 

0 = 1 - cWd Ç u, a = / 3 - \ /* = 1 + a. 

Thus H G SL2(o), a = 1 + ed, some e G u, and /x = 2 + ed. And (E, cr) has 

1, 2 entry = ac(a2 — 1) — ajj,a(a — b) — nd((3c + /xa), 
2, 1 entry = 0. 

LEMMA 2.3.3. Suppose that 2 G p, iVp > 2, Property T fto&fo. Lef G = GL2(o) 
&c invariant under SL2(o), with o(G) = coo C p. rAew /or awy gizœw m = 1, 
G contains elements 

(l + x c +z\ , A + x s \ 

w i ^ x, j , 2, awd w m 2wcoO and c and d any pre-assigned elements of coo. 

Proof. We may assume that G S SC2(coo) by Lemma 1.2.3. Then an element 
a G G has 

a = 1 + x, b = 1 + y, with x, y G coo. 

(1) We first establish the following fact: if com = 0 for some m = 1, /Aew 
G = SC2(coo). 

Suppose that co2 = 0. If cop 9e 0, let denote the homomorphism which 
factors by cop, and apply Lemma 2.3.1 to obtain £2i(cô) G G. Pull back to get 
an inverse image a G G with x, 3/ G cop and do = coo. Then 

(Ei2(l) , a) = E(*, *, rjd) G G for some 77 G u; 

hence, G ^ SC2(coo) by Remark 2.2.6 (ii). 
Suppose that co3 = 0, 2co2 = 0. If co2 j* 0, factor by co2o; hence, the above 

case yields £i2(cô) G G, and hence we have a a G G with x,y,d G co2o and 
co = coo. We force J to be 0 as follows: we form 

(E12(l),cr) = E(*,*,vd) G G, 

where 77 G u, as given by combining deter = 1 and 2co2 = 0; then Remark 
2.2.6 (ii) yields E2i(-a~1d) G SC2(do) ^ G. Then d becomes 0 in 

E2i( — a-1d) • a = E(*, *, c) G G, 

and Remark 2.2.6 (ii) yields G ^ SC2(coo). 
When co3 = 0 and 2co2 7^ 0, factor by 2co2o and apply the above case to 

obtain 

e f) G G. 

Pull back to G and do as above, where a G G now has x, 3/ G 2co2o, Jo = co2o, 
and co = coo. 
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Now we proceed by induction to m, with m ^ 4. If co™-1 ^ 0, factor by 
com-1o and use the induction hypothesis to obtain 

Pull back to get a G G with x, ;y G com-1o, do = com_2o, and co = coo. Again» 
force d to be 0, to reach G ^ SC2(coo). In forming the commutator (£ i 2 ( l ) , a) 
we get d2 for the 2, 1 entry and d2 G (o>w_2)20 £ œmo = 0 only if m ^ 4, which 
explains why m = 3 was treated separately. 

(2) We easily deduce that for any given m ^ 1, G contains elements 

ll+x c + z\ j / l + x z \ 
V w 1 + 3̂ 7 VcZ + ^ 1 + J / ' 

with x, y, 2, and w in cowo and c and d any pre-assigned elements of coo. For, fix­
ing m and factoring by como if com F^ 0, we obtain, from step (1), 

E12(c),E2i(d) G SC2(^5) g G, 

and the assertion follows by pulling back to G. 
(3) We are now able to prove that if 2mœ = 0 for some m è 1, then 

G ^ SC2(coo). This immediately proves our lemma, with arguments as in 
step (2). 

Suppose that 2co = 0, i.e., m = 1. By steps (1) and (2), respectively, we 
may assume that w3 9e 0 and can pick 

" O f dy)*° 
with x, y, c G co4o and do = coo. Then Formula 2.3.2 gives us an element 

H(*, *, ??co3) G G for some rj G u; 

hence, SC2(co3o) ^ G by Remark 2.2.6 (ii). Re-use step (2) to pick 

where d G co3o and co = a>o. Since 

E21(-a-id) G SC2(co3o) ^ G, 

then 

E2i( —a_1d) • <t> = E(*, *, c) G G, 

and Remark 2.2.6 (ii) shows that G ^ SC2(coo). 
The proof is completed using induction on m. We factor by 2™_1coo and pull 

back to G the element £12 (w) G G, and the details are familiar. 

We have now enough tools to complete the main theorem in the case of 
principal ideals. 
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PROPOSITION 2.3.4. Suppose that Np = 3 or that 2 G p, Np > 2, Property T 
holds. Let G S GL2(o) be invariant under SL2(o), with o(G) = coo C p. rÂm 
G ^ SC2(o>o). 

Proof. We may assume that G ^ SC2(coo), by Lemma 1.2.3. 
If Np = 3, factor by cop, use Lemma 2.3.1 to get E2i(œ) G G, pull back to G, 

and use Formula 2.3.2 and Remark 2.2.6; the details are the usual ones. 
When 2 € p, we use Lemma 2.3.3 to pick 

with x,y, c G 24coO and do = 2coo. The remainder of the proof consists of 
obtaining SC2(2

3coo) g G and re-using Lemma 2.3.3 to pick 

with d G 23coO and co = coo, with manipulations as in step (3) of Lemma 2.3.3. 

COROLLARY 2.3.4a. Let o be as in the proposition and G be invariant under 
SL2(o). If G contains an element of order coo Ç p, then G ^ SC2(coo). 

Proof. Let a G G have o(a) = coo and let G (a) be the subgroup, invariant 
under SL2(o), generated by a. Then the proposition yields 

SC2(eco) S G (a) ^ G. 

COROLLARY 2.3.4b. Le/ o and G be as above, with o(G) = a ç p, wAere a w a 
finitely generated ideal. Then G è SC2(a). 

Proof. By the proposition, we may assume that a has r ^ 2 generators 
# i > • • • y &T> 

(1) We first prove that if there is some s, 2 S s ^ r, such that û^p = 0 for 
i = 5, . . . , r, then G è SC2(a). 

We start with s = 2. Factor by aip, apply Lemma 2.3.1 to find £12(ai) £ G 
and pull back to obtain 

\ W 1 + y / 

with x, 3/, 2, w G aip. Then 0(0-) = #i0; hence, the above corollary yields 
SC2(aio) ^ G. For i = 2, . . . , r, we also find elements 

/! + *< «< + ««) €Gf 
\ wt 1 + yJ 

where x*, yu zu wt G flip. Then 

£ 2 i ( - ( l + a,)"1™,), £ « ( - * * ) G SC2(aio) rg G. 
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Now E21( — (1 + x^-iWi). ri = S(*, *, at + zt) G G, so that Remark 2.2.6 
(ii) yields E12(at + zt) G SC2((a; + zt)o) ^ G. Then 

E12(at) = Eni-z^Enidi + zt) G G, 

and we have enough transvections in G (see Remark 2.2.6 (i)) to obtain 

G ^ SC2(a). 

For 5 > 2, proceed by induction in the same way (i.e., factor by a5_ip), 
using the induction hypothesis instead of Lemma 2.3.1. 

(2) Now, if all a^p 9e 0, factor by arp, apply step (1), and pull back to G 
using similar arguments all along. 

THEOREM 2.3.5. Suppose that N$ = 3 or that 2 G p, Np > 2, Property T 
/w/ds. Le/ G g GL2(o) 5e invariant tinder SL2(o), with o(G) = a ÇZ p. 77&ew 
G ^ SC2(a). 

Proof. Fix /x G a. Since a is generated by the ideals 0(0-), for all a G G, there 
is an expression 

M = Ml + • • • + Mr, 

where /z* G o(o-j), i = 1, . . . , r. 
Let G' be the subgroup, invariant under SL2(o), generated by 0-1, . . . , ar. 

We have that 

G' £ G, o(G') = b = o(cn) + . . . + o(ar). 

Since each 0(0-*) is finitely generated, so is 6. Then Corollary 2.3.4b provides 
us with 

E12(ji) G SC2(b) SGf ^ G, 

and the theorem follows by Lemma 1.3.4, since we have enough transvections. 

THEOREM 2.3.6. Suppose that 2 G p and iVp > 2. Let G <\ GL2(o), with 
o{G) = a c p. rften G ^ SC2(a). 

Proof. Starting with Lemma 2.3.1, one can obtain, for each result listed, a 
corollary for the situation where 2 G P, Np > 2 and G <| GL2(o), with very 
simple changes in the proofs. Then follow the proof of the above theorem, 
using for G' the normal subgroup of GL2(o) generated by <ri, . . . , ar. 

Let us recapitulate the essential facts which emerge from our discussion and 
from the particular case of 2 G U and TVp ^ 3 which was done in (4). 

FIRST MAIN THEOREM 2.3.7. Let 0 be a local ring with iVp > 2 and let G be 
a subgroup of GL2(o). Then 

G < GL2(o) with o(G) = a <=> GC2(a) ^ G è SC2(a), 

but for one exception: when iVp = 3 and o{G) = 0, the ladder relation at 0 is not 
necessarily satisfied by G <\ GL2(o). An example is DSL2(o) < SL2(o). 
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3. The case Np = 2. We shall encounter unusual behaviour in this case and 
our aim will not be to seek a general solution. I t is rather to show how these 
particular problems arise and how certain answers can be formulated. Thus, 
we shall specify our local ring considerably. From now on, o will be a local ring 
with principal maximal ideal p = iro and with N$ = 2, that is, o/p = F2. 
Every proper ideal of o which is not contained in Pi f=ip* is of the form pw and 
we shall only consider such ideals. Our ring retains some interesting cases from 
number theory; examples are the 2-adic integers of 0 and of O2. 

We have 2 G p and e = 1 mod p, <5 ± e G p, for all e, <5 in u. If a and /3 both 
generate pw, then a ± ft is in Jf+1. We also have the following: 

(i) If pw D p*+1, then (pw : p^1) = Np = 2; 
(ii) If p D p2 D . . O Pw, then (0 : pn) = (N$)n = 2n; 

(hi) If pn = 0 and pn_1 5* 0, where n ^ 2, then 0 is finite with (iVp)w = 2n 

elements and pw_1 = {0, TT^ 1}. 
An element of GL2(o) cannot have all entries in u, hence there can only be 

six types of elements in GL2(o). For G <\ GL2(o), with o{G) = 0 or o(G) = pn, 
we can always pick an element a G G with d G u or do = pw, respectively, by 
Lemma 1.2.2. 

3.1. BASIC LEMMAS. We devote a brief section to useful observations before 
studying the normal subgroups of GL2(o). 

The groups DGL2(o) and DSL2(o) both have order 0, as we can see by 
forming the commutator (E i 2 ( l ) , E 2 i ( l ) ) , which has 1 as its 2, 1 entry. 

LEMMA 3.1.1. Let G < GL2(o) with o(G) = 0. Then: 
(i) G C\ DGL2(o) < GL2(o), o(G C\ DGL2(o)) = 0; 

(ii) G contains the two types of elements given by 

( ° ± i ) 
\=Fl b/m 

Proof, (i) Pick a G G with ^ u . Then (£12(1), <r) has as 2, 1 entry 
^(de to- ) - 1 G U. 

(ii) Pick o- G G r\ DGL2(o) with d G u. Then a% is one of the required 
elements, where 3(d, 1, —a) is used. The other element is simply (ov)e, with 
e ( i , - l ) . 

Formula 3.1.2. If a G GL2(o) with & G it and if S ( l , 1— ixb~ld, y) G GL2(o), 
that is, fid must be in p, then 

(H,<r) = (o £) - (de tE<x)- \ 

where 

A - B = (1 - nb-tybdia + b) + cd(l - nb^d)] 
+ d[n(a — b) — c + n2d], 

C = ncd[ab~l — 1 + fxb~ld] — \xa{a — b) — n2ad. 
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LEMMA 3.1.3. Let pn 9* 0 and pn+1 = 0, n ^ 1. Then 

S C 2 ( p * ) ^ Z 2 0 Z 2 0 Z 2 , 

which is a group of order 8. 

Proof. Examine an arbitrary element of SC2(pw); we can find only eight 
possibilities. These elements all have order 2; hence, the result follows; see 
(5, p. 51). 

COROLLARY 3.1.3a. Suppose that pn D pw+1, n ^ 1. Then 

sc^/sc.cr-1) s z2 e z2 e z2, 
which is a group of order 8. 

Proof. If pw+1 ^ 0, let be the homomorphism which factors by pw+1. The 
kernel of restricted to SC2((f ) is SC2(pw+1). Hence 

SC2(pw)/SC2(pw+1) ^ SC2(pn) = SC2(p
w) ^ Z2 ® Z2 ® Z2. 

Among the eight elements of SC2(pn), where pn 9e 0 and pw+1 = 0, are the 
following important ones: 

* fx ^ * A + ** * M * A + ^w ° ^ 
01 = V 1A 02 " V 0 1 + W • *3 = V ^ 1 + xV • 

LEMMA 3.1.4. Le* pw ^ 0 and pw+1 = 0, » ^ 1. r i e » 

[GL2(o),SC2(p*)] = [SL2(o),SC2(p*)] = {1,01,02,0a}, 

which is a Klein group, and is normal in GL2(o). 

Proof. Let a be a typical element of SC2(pn) and let 

( ; ; ) 
be a typical element of GL2(o). Then (p, a) is a typical generator of 
[GL2(o),SC2(pre)]and 

(P,̂ ) = ( 1 + X j ^ - J , 

where X = avc + fifid, C = (a2 + l)c + /*2d, D = v2c + (/32 + l)d which are 
in p \ 

If our a has o(<r) = 0, then c = 0 = d, and (p, cr) is the identity. If 
0(0-) = pw, at least one of c or d must generate pw, that is, must be 7rw. Examine 
the three cases, each time considering X = 0 and X = 7rw. Note that adding 
the off-diagonal entries is at times useful. We find that the generators (p, a) are 
the elements 1, 0i, 02, 03, which form a Klein group. 

The commutator of T( — 1 , 1) 6 SL2(o) and E12{^n) G SC2(p
w) is 0i, whose 

conjugate by Li 2 ( l ) is 03, and 0i03 = 02; hence 

[SL2(0),SC2(PW)] è {1,01,02,08}. 
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3.2. Groups of order o. In classifying the normal subgroups of order o we will 
first investigate the situation where p ^ 0 and p2 = 0. Subsequently, the 
general solution will be readily obtained. 

If p ^ 0 and p2 = 0, then 

o = { 0 , ^ 1 , 1 + TT}, p = {0,TT}, 

and thus each of the six types of elements of GL2(o) can be formed in 16 ways. 
Hence, GL2(o) has 96 elements and SL2(o) has 48 elements (using the map det). 

In this situation, let denote the homomorphism 

: o -> o/p = F2, 

: GL2(o) -> GL2(o/p) = GL2(F2). 

Then DGL2(o) = DGL2(o) = DGL2(F2), which has order 3 and consists of 
the identity e and of 

- ( ; ; ) • '-CO-
since GL2(F2) is a representation of the symmetric group 53. Hence the 
elements of DGL2(o) are inverse images of these, and will be called of e-type, 
d-type, and/-type. 

Are there conditions under which elements of d-type and/-type have order 3? 
For 

= (l+x l + z\ 
p \l + w y J 

of d-type, a computation shows that p has order 3<F$x + y + 2 = Q and 
x + z + w — 0. For 

= / x l+z\ 
a " \ 1 + w l + yj 

of/-type, a conjugation by T(l , 1) reduces the problem to a d-type, and we 
find that a of /-type has order 3<=>x + ;y + 2 = 0 and y + z + w = 0. We 
note that e-type elements have order 2 and fall in SC2(p). 

We give a description of DGL2(o) in the form of a lemma. 

LEMMA 3.2.1. Let p ^ 0 and p2 = 0. Then DGL2(o) contains SC2(p), has 
24 elements, and has four S-Sylow groups. 

Proof. We have that 

[GL2(o),SC2(p)] ^ DGL2(o) n S C 2 ( p ) S SC2(p); 

hence, DGL2(o) H SC2(p) has order 4 or 8. However, ( r ( l , 1), 6(1 + TT, 1)) 
is in SC2(p) and not in {1, <£i, <̂ 2, $3} ; see § 31. Hence, we must have that 

DGL 2 (o)HSC 2 (p) = SC2(p). 
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It follows that the restriction to DGL2(o) of the map above has kernel 
SC2(p), hence 

DGL2(o)/SC2(p) ^ D G L 2 ( o ) = DGL2(F2), 

which has order 3, while SC2(p) has order 8. Hence DGL2(o) has order 24; 
its 3-Sylow groups have order 3 and there are either one or four. Let 

p = (~i î); 

then 

a= (r(l,l),p) = (_J _j) €DGL2(o) 

is an/-type element of order 3. However, <rQ, with 0(1, 1 + w), falls in DGL2(o), 
has order 3, and does not belong to {1, a, a2} ; hence, it gives another 3-Sylow 
group. Thus, we have completed the proof. 

We shall also need a description of DSL2(o). Denote by Ku i = 1, . . . , 4, 
the four 3-Sylow groups of DGL2(o) and recall the group of Lemma 3.1.4. 

LEMMA 3.2.2. Let | 3 ^ 0 and p2 = 0. Then DSL2(o) is a subgroup of order 12 
o/DGL2(o). 

Proof. Let K stand for [GL2(o), SC2(p)] and consider the set 

H = KKJKiU ...UK±. 

We claim that H = KrK, which is a subgroup of DGL2(o), by (7, p. 24). 
Actually, KXK has order 3 X 4 = 12 since Kxr\K = { l j . Also fix some 
generator a of K\. 

Clearly, <j<j>i (? Klt and using our earlier discussion of conditions for order 3, 
we find that a^i has order 3, hence afa £ K2, say; then K2 ^ KiK. Similarly, 
using <T0I02 and 0-#i02#3, we deduce that Kz ^ K\K and K± S KXK. Hence 
H Ç K±K; since both have 12 elements, our claim is proved. 

Since U i = i ^ i exhausts the elements of order 3 in DGL2(o) and since 
K <\ GL2(o), then H <\ GL2(o). Then we can form SL2(o)/H which is a 
group of order 4, hence is commutative. Thus H ^ DSL2(o). 

Now, DSL2(o) è [SL2(o),SC2(p)], which has order 4 (Lemma 3.1.4). The 
inclusion is strict since 

o(DSL2(o)) = o D p; 

hence by Lagrange's theorem, DSL2(o) = H. 

PROPOSITION 3.2.3. Let p ^ 0 and p2 = 0. Let G < GL2(o), with o(G) = o. 
Then either 

G ^ DGL2(o) or GC\ DGL2(o) = DSL2(o). 
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Proof. By Lemma 3.1.1 we may assume that G ^ DGL2(o). Then the possible 
orders for G are 

2, 3, 4, 6, 8, 12, 24. 

Orders 2 and 4 are impossible since elements would be of e-type and in 
SC2(p). Orders 3 and 6 are impossible since DGL2(o) has four 3-Sylow groups 
of order 3. Finally, SC2(p) is the unique 2-Sylow group, of order 8. 

The statement easily follows; in the case of order 12, look at SL2(o)/G. 

At this point we turn to the situation where p2 is not necessarily 0. We 
prove the following lemma. 

LEMMA 3.2.4. Let G <\ GL2(o) with o(G) = o. Then 

G ^ SC2(p2). 

Proof. By Lemma 3.1.1 we may assume that G ^ DGL2(o) and we can pick 

j - (-Ï 0 * * 
We claim that b (z u. Let denote the homomorphism which factors by p2. 
Then 

* 6 G ;S DGL2(o) = DGL2(Ô), 

and ô has p ^ Ô and p2 = 0; hence <x is of/-type, and b and b are units. 
Now, apply Formula 3.1.2 with /z = T and then Lemma 1.3.8. 

THEOREM 3.2.5. Let G <\ GL2(o) with o(G) = o. Then either 

G è DGL2(o) or G Pi DGL2(o) = DSL2(o), 

which has index 2 and 4 in DGL2(o) and SL2(o), respectively. And we have 
that G è SC2(p) only when G è DGL2(o). 

Proof. By Lemma 3.1.1, reduce the problem to G ^ DGL2(o). Consider the 
homomorphism which factors by p2. When restricted to SL2(o), its kernel 
is SC2 (p

2). Then by Lemma 3.2.4, we see that the kernel of when restricted 
to DGL2(o), to DSL2(o), and to G, is also SC2(p2). Hence, 

DGL2(o)/SC2(p2)^DGL2(o) = DGL2(Ô), 

say under the isomorphism 0; 

DSL2(o)/SC2(p2) ^ D S L ^ ô y = DSL2(Ô), 

by restriction of the same </>; 

G / S C 2 ( p 2 ) ^ ( ? ^ D G L 2 ( ô ) , 

again by restriction of <j>. 
By Proposition 3.2.3 (applied with o) and because of this isomorphism 0, we 

deduce that DSL2(o) is the unique proper subgroup of DGL2(o) which is 

https://doi.org/10.4153/CJM-1969-011-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-011-8


130 NORBERT H. J. LACROIX 

normal in GL2(o), which has order o, and whose quotient by SC2(p2) is iso­
morphic to DSL2(5), under <j>. By Proposition 3.2.3, we have that either 
G = DGL2(ô) or G = DSL2(ô). 

Hence, either 
G/SC2(p2) = DGL2(o)/SC2(p2) 

or 
G/SC2(p2) = DSL2(o)/SC2(p2), 

so that G is as required. The remainder is quite easy. 

This theorem has no converse, as shown by the following example. 

Example 3.2.6. Let p ^ 0 and p2 = 0. The element 9(1 + ir, 1) is not in 
DSL2(o) (look at det 9) and has order 2; hence, 

G = DSL2(o) W9DSL2(o) 

is a subgroup of GL2(o) with 

G ^ DSL2(o), o(G) = o. 

Now (Ei2( l) , 9) = Ei2(7r), which has order 2. We check that 

EM & DSL2(o), 

which is described in Lemma 3.2.2; hence 

£ i 2 ( l ) 9 E 1 2 ( - l ) g G, 

so that G is not even invariant under SL2(o). 
If o does not have p2 = 0, again use 9(1 + IT, 1) and let G be the subgroup 

of GL2(o) generated by the set 

{9} UDSL 2 (o ) . 

Then G ^ DSL2(o), o{G) = o, but G is not invariant under SL2(o), as we 
can see by using the map which factors by p2 ; indeed, G reduces to the group 
just considered above. 

3.3. INCLUSION THEOREMS. We shall distinguish between two kinds of groups, 
one of which has bad behaviour. 

Example 3.3.1. Suppose that pw 9^ 0 and pw+1 = 0 for some n ^ 1. Let 

° \T" 1 + xV 
and let G be the normal subgroup of GL2(o) generated by a. Using p™+1 = 0, 
we can calculate that the conjugates of <r in GL2(o) turn out to be either <r or 

°1 = \ «n l)-
Hence G = {1, o-, ai, aai = cicr}, which is a Klein group. 
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We see that o (G) = pn and the elements in G which have order pn have 

(a — b)o = co = do = pn. 

Now, remove the assumption that pw+1 is 0. Take a as above and let H be 
the normal subgroup of GL2(o) generated by a. Then oiH) = pw and the 
elements of H which have order pn satisfy 

(a — b)o = co = do = pn. 

For, if we factor by pn+1, then H is the normal subgroup of GL2(ô) generated 
by <r. However, this is the situation discussed above; hence our statement 
follows. 

Definition 3.3.2. Let G < GL2(o) with 0(G) = pn 5* 0, » ^ 1. Then G is 
called 0/ JAe second kind if the elements of G which have order pn satisfy 

(a — b)o = co = do = pw. 

The above example shows the existence of such groups for any given n ^ 1, 
for which pw ^ 0. We call G 0/ the first kind if it is not of the second kind. 

In a (normal) group of the first kind there is always an element with 
do = pn and a — b G pw+1. For we can pick an element of order pn for which 
not all of a — b, c, d generate pw, and examining each case occurring we can 
transform elements by suitable conjugations and maneuvers. 

PROPOSITION 3.3.3. Let G <\ GL2(o) with o{G) = pn, where G is of the first 
kind. Then G C\ SC2(pn) <\ GL2(o) is of the first kind and 

o(G n sc2m) = PW, G n sc2(jf) > sc2(p
n+1). 

Proof. Pick a G G as described above. The element 

(£12(l),cr) G G 

shows that G is of the first kind and that G P\ SC2(p
w) has order pn. Secondly, 

applying Formula 3.1.2 with a and fi = 1 yields 

E(*, *, ?77rn) G G:, where 77 G u, 

and Lemma 1.3.8 yields SC2(p
w+1) ^ G. 

PROPOSITION 3.3.4. Let G <\ GL2(o) with o(G) = pn and pn+1 ^ 0. Suppose 
that G is of the second kind. Then G C\ SC2 (p

n+1) <\ GL2 (0) w 0/ the first kind and 

o(GC\ SC2(pw+1)) = pw+1, G H SCaCp1^1) > SC 2 (^ + 2 ) . 

Proqf. Pick cr G G with o(a) = pw. Then 

(a — 6)0 = co = do = pw. 

Now examine (£12(71-), o-), and secondly, make applications of Formula 3.1.2 
(with \x — w) and Lemma 1.3.8. 
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The following result may have some interest in number theory. 

Remark 3.3.5. Suppose that p = 2o. Let G <\ GL2(o) with o(G) = pw, n ^ 2,, 
where G is of the second kind. Then G ^ SC2(pw+1). 

Proof. Pick a of order $n in G. Note that 

a + b = a-b + 2b 

generates p. Now apply Formula 3.1.2 with /x = 1, and then Lemma 1.3.7 (i)„ 

For the sake of completion we try to find some conditions under which a 
normal subgroup G of order pn actually contains SC2(pw). A necessary condition 
is that G be of the first kind. 

An element Œ £ GL2(o), of order pw, is one of the following types: 

Tn\. (a- b)o = y, c 6 y+\ d e y+1. 
Tn2. (a- b)o = y, co = y, d e y+1. 
Lnz: (a- b)o = y, c € pn+1, do = y. 
Tn±. a - b € y+1, co = y, do = pn. 
Tn*>: a -be pn+1, co = y, d e y+1-
TUG: a -be y+1, c € y+1, do = y. 
Lni'. (a- b)o = y, co = y, do = y. 

When we say that ilG has Tni" or "Tni exists in G", we shall mean that the 
group G has elements of type Tni. 

LEMMA 3.3.6. Let G < GL2(o). Then: 
(i) G has Tni <=> G has Tn2 <=> G has Tn%; 

(ii) G has Tn± <=> G has Tn5 <=> G has TnQ. 

Proof. Trivial, using suitable conjugations. 

PROPOSITION 3.3.7. Let G <\ GL2(o) with o{G) = pw, and suppose that G is 
of the first kind. 

(i) A sufficient condition that G ^ SC2(p
w) is that Tn\ exist in G, which is 

equivalent to the existence of Tnll Tn2l Tn% in G. The condition is not necessary. 
(ii) A sufficient condition that G ̂  SC2(p

w) is that Tn4: and Tni exist in G, 
which is equivalent to the existence of Tn±, Tn5, TnQ, and Tnl in G. The condition is 
not necessary. 

Proof. Let a G G be of type Tnl. By Proposition 3.3.3, we have that 

r = E21(-a~H) G S C , ^ 1 ) ^ G; 

hence, ra = S (a, b — a~lcd, *) 6 G, and hence G ^ SC2(p
w) by Lemma 

1.3.7 (i). 
Now let o-, p G G have type Tn± and Tnl, respectively. Verify that ap £ G 

has type Tni and apply the above step. 
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To show that the conditions of (i) and (ii) are not necessary, we consider 
SC2()f) itself. Its elements can never satisfy the condition (a — b)o = pw, 
hence SC2(|f) has neither Tnl nor Tnl. 

One can use Propositions 3.3.4 and 3.3.7 to obtain conditions under which G 
of the second kind contains SC2(pw+1). 

3.4. CLASSIFICATION THEOREMS. A few remarks are in order; then we will be 
ready for our theorems. 

Suppose that pn ^ 0 and pw+1 = 0. Lemma 3.1.3 gave us a description of 
SC2(}f ). What subgroups of order $n of SC2(p

w) are normal in GL2(o)? Those 
of two elements are not normal in GL2(o) as we can easily verify with con­
jugations by r ( l , 1) or £ i 2 ( l ) . Those of four elements are Klein groups, 
determined by pairs of non-identity elements. We can list seven, and six of 
them are easily found to be not normal. The only survivor is 

[GL2(o),SC2(p*)] = {1,01,02,0s}. 

When pw+1 9e 0, the homomorphism " which factors by (f+1 provides us 
with 

]GL2(o),SC2(pn)] = [GL2(Ô), SC 2 ( r ) ] , 

and we can deduce that [GL2(o), SC2(^f )] has order pn and is of the first kind. 

THEOREM 3.4.1. Let G <\ GL2(o) with o(G) = pn, where G is of the first kind. 
Then either 

G ^ S C 2 ( | f ) or GHSC 2 ( ) f ) = [GL2(o), SC2(pw)], 

which is of index 2 in SC2()f ). 

Proof. If pn T^ 0 and pw+1 = 0, Proposition 3.3.3 and the above remarks 
complete the result. 

Now the general case. By Proposition 3.3.3, we may assume that 
G ^ SC2()f), and we also obtain that the restrictions to SL2(o), to [GL2(o), 
SC2($f )], and to G, of the homomorphism ' which factors by pw+1, all have 
kernel SC2(pw+1)- In ô we have pn+1 = 0; hence, we use the above result and 
arguments as in the proof of Theorem 3.2.5 to complete our proof. 

THEOREM 3.4.2. Let G <\ GL2 (o) with o (G) = )f, where G is of the second kind. 
Suppose that pn+1 9^ 0. Then either 

G ^ S C ^ 1 ) or G H S C ^ 1 ) = [GL2(o), SCsfo**1)], 

which is of index 2 in SC2(pw+1). 

Proof. Apply Theorem 3.4.1 to GP\SC2(pn + 1) , which is described by 
Proposition 3.3.4. 

Our two theorems have no converse. This is easy to see for Theorem 3.4.2. 
Relative to Theorem 3.4.1 we offer the following example. 
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Example 3.4.3. Take 9(1 + 7rn, 1) and let G be the subgroup of GL2(o) 
generated by the set 

{9} U[GL2(o),SC2(*»)]. 

Then G ^ [GL2(o), SC2(pw)]. Proceeding as in Example 3.2.6, first considering 
pw ^ 0 and pw+1 = 0, we easily find that o(G) = pw and that G is not invariant 
under SL2(o). 

For a normal subgroup G of the second kind, with o(G) = p" and where 
jf+i = 0, there is nothing interesting, as SC2(pw+1) = {1}, and there is no 
possibility for a converse. We may mention that £P iSC 2 (p n ) consists of 
the identity and of the radiation diag(l + irn), which is no contribution. 

The core of our efforts to measure the eccentricity of the situation where 
Np = 2 can be stated as our Second Main Theorem. 

SECOND MAIN THEOREM 3.4.4. Let o be a local ring with principal maximal 
ideal p and with Np = 2. Suppose that we are given G <\ GL2(o) with o(G) = pw, 
where n = 0, 1, 2, Then G ^ SC2(pn+2). 

Note that we have some better estimates. With G as in the theorem we find, 
in particular, that when n = 0, G ^ SC2(p) <=> G ^ DGL2(o), and when. 
n ^ 1, G ^ SC2(pw+1) if G is of the first kind. Still sharper estimates are given 
by mixed commutator groups. 

S u m m a r y . When iVp = 3, normal subgroups of order o are "almost" 
classified by DSL2(o) which is of index 3 in SL2(o). That is, we obtain a theorem 
but it has no converse, as we find counterexamples. Normal subgroups of order 
a Ç f are classified by SC2(ct). For these results it is enough to assume only 
invariance under SL2(o). 

For Np ^ 4, invariance under SL2(o) is sufficient to classify normal sub­
groups of order o (by means of SL2(o) as usual). But when the order a £ p, 
invariance under SL2(o) is not enough and we need additional conditions on 
the ring (Property T) to achieve a classification by SC2(ct) ; however, normality 
in GL2(o) yields the classification by SC2(a), and there is no need for special 
conditions on the ring. 

When iVp = 2, with our particular local ring, normal subgroups of order o 
are "almost" classified by DSL2(o), of index 4 in SL2(o). Normal subgroups of 
order pw are separated into two kinds. Those of the first kind are "almost" 
classified by [GL2(o), SC2(pw)], of index 2 in SC2(pw). Those of the second 
kind have a still weaker "pseudo-classification". 
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