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Abstract

Let G be a finite group and let χ be an irreducible character of G. The number |G : kerχ|/χ(1) is called the
codegree of the character χ. We provide several relations between the structure of G and the codegrees of
the characters in a given subset of Irr(G), where Irr(G) is the set of all complex irreducible characters of
G. For example, we show that if the codegrees of all strongly monolithic characters of G are odd, then G
is solvable, analogous to the well-known fact that if all irreducible character degrees of a finite group are
odd, then that group is solvable.
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1. Introduction

All groups in this paper are finite. We use the notation of [3]. Let χ be an irreducible
character of a group G. Initially, the codegree of χ was defined as |G|/χ(1) in [1],
whereas later, it was defined as |G : kerχ|/χ(1) in [6]. We will follow the latter
definition and take advantage of [6, Lemma 2.1]. The codegree of χ will be denoted
by a(χ).

There are several results connecting the structure of the group G and the code-
gree values of certain subsets of irreducible characters of the group. For example,
[7, Theorem 1] shows that if G is solvable and the codegrees of all irreducible
nonlinear, monomial, monolithic characters of G are p-power, where p is a fixed
prime, then G has a normal Sylow p-subgroup. Let N � G. In [6], the codegree graph
Γ(G|N) is defined. The vertex set V(G|N) of Γ(G|N) consists of all primes dividing
some integer in cod(G|N), where cod(G|N) = {a(χ) : χ ∈ Irr(G), N � ker(χ)}. There is
an edge between distinct primes p, q ∈ V(G|N) if pq divides some integer in cod(G|N).
Several connections between this graph and the structure of both G and N are proved.
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For instance, [6, Theorem B] shows that if Γ(G|N) is disconnected, then it has exactly
two connected components and the vertex set of Γ(G|N) coincides with the set of prime
divisors of the order of G when 1 < N � G.

The notion of ‘strongly monolithic character’ was introduced in [2, Definition 2.2].
Recall that an irreducible character χ is monolithic if G/kerχ has a unique minimal
normal subgroup.

DEFINITION 1.1. Let G be a group. A monolithic character χ of G is called strongly
monolithic if one of the following conditions is satisfied:

(i) Z(χ) = ker χ, where Z(χ) = {g ∈ G : |χ(g)| = χ(1)};
(ii) G/ker χ is a p-group whose commutator group is its unique minimal normal

subgroup.

Groups all of whose nonlinear irreducible characters are monolithic and having
exactly two strongly monolithic characters are classified in [5, Theorem C].

In this paper, we provide some relations between the structure of a group G and the
codegrees of (monomial) strongly monolithic characters of G.

2. Theorems and proofs

Let Irrsm(G) denote the set of strongly monolithic characters of a group G and let
Irrmsm(G) denote the set of monomial characters in Irrsm(G). We also set codsm(G) =
{a(χ) : χ ∈ Irrsm(G)} and codmsm(G) = {a(χ) : χ ∈ Irrmsm(G)}.

Let N � G and χ be an irreducible character of G with N ≤ ker χ. Then, χ may
be viewed as an irreducible character of G/N. It is known that χ is a (monomial)
strongly monolithic character of G if and only if it is a (monomial) strongly monolithic
character of G/N. Thus, Irrsm(G/N) ⊆ Irrsm(G) and Irrmsm(G/N) ⊆ Irrmsm(G). In the
proofs, we use these facts without further reference.

Let h(G) denote the Fitting length of a solvable group G.

LEMMA 2.1. Let G be a nonabelian group, N � G and m a fixed positive integer.

(a) Then, h(N) ≤ m if and only if h(N ker χ/kerχ) ≤ m for all strongly monolithic
characters χ of G.

(b) Assume further G is solvable. Then, h(N) ≤ m if and only if h(N ker χ/kerχ) ≤ m
for all monomial, strongly monolithic characters χ of G.

PROOF. Clearly, the ‘if’ parts of both cases are true. To prove the ‘only if’ parts,
assume that the assertions are false and let G be a minimal counterexample for both
cases. First, we will show that G has a unique minimal normal subgroup. To see why
this is true, assume that G has two distinct minimal normal subgroups E1 and E2. Then,
for all strongly monolithic characters χ of G/Ei,

(NEi/Ei)(ker χ/Ei)/(kerχ/Ei) � N ker χ/kerχ.

https://doi.org/10.1017/S0004972724000935 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000935


[3] Codegrees of strongly monolithic characters 3

By the minimality of G, we obtain h(NEi/Ei) ≤ m (i = 1, 2). Note that the 1–1
homomorphism θ : G→ G/E1 × G/E1 given by g �→ (gE1, gE2) allows us to see N
as a subgroup of NE1/E1 × NE2/E2, which yields

h(N) ≤ h(NE1/E1 × NE2/E2) ≤ max{h(NE1/E1), h(NE2/E2)} ≤ m,

which is a contradiction. Thus, G has a unique minimal normal subgroup, say M, and
so there exists a faithful irreducible character of G.

Now assume that 1 < Z(G). Then, h(N) = h(NZ(G)/Z(G)) ≤ m, which contradicts
the choice of G. Thus, G is centreless and so all faithful irreducible characters of G are
strongly monolithic by [3, Lemma 2.27]. By the hypothesis of the theorem, we obtain
the contradiction h(N) ≤ m and this completes the proof of item (a).

Now let us assume that G is solvable and prove the ‘only if’ part of item (b).
Now, G has a monomial strongly monolithic irreducible character. If 1 < Φ(G), then
h(N) = h(NΦ(G)/Φ(G)) ≤ m, which contradicts the choice of G. Thus, Φ(G) = 1 and
so F(G) = M has a complement H in G. Let 1 � λ be an irreducible character of M.
Note that M is abelian and so λ(1) = 1. Then, K := IG(λ) = MIH(λ) and M ∩ IH(λ) = 1
since M is complemented by H in G. By [3, Problem 6.18], there exists an irreducible
character α of K such that αM = λ. Note that α(1) = λ(1) = 1. By [3, Theorem 6.11],
αG is irreducible and faithful since λ � 1 is an irreducible constituent of (αG)M .
Thus, χ := αG is faithful and monomial. We have already seen that all faithful
irreducible characters of G are strongly monolithic. Thus, χ is a monomial, strongly
monolithic character of G and so by hypothesis, h(N) = h(N kerχ/ker χ) ≤ m, which
is a contradiction. This contradiction completes the proof. �

From [4, Theorem 1.3], h(G) ≤ |cod(G)| − 1 for all solvable groups G. Here, we
provide an upper bound for h(G) in terms of the number of the codegrees of just
monomial and strongly monolithic characters of a solvable group G.

THEOREM 2.2. We have h(G) ≤ |codmsm(G)| + 1 for all finite solvable groups G.

PROOF. Let G be a minimal counterexample. Assume that G has no faithful, mono-
mial, strongly monolithic character. By the minimality of G,

h(G/ker χ) ≤ |codmsm(G/ker χ)| + 1 ≤ |codmsm(G)| + 1

for all χ ∈ Irrmsm(G). However now, by using Lemma 2.1, h(G) ≤ |codmsm(G)| + 1,
which is a contradiction. Thus, G has at least one faithful, monomial, strongly
monolithic character and so G has a unique minimal normal subgroup, say M.

Now assume that N � G and h(G/N) = h(G). We argue that N = 1. Otherwise, by
the minimality of G,

h(G) = h(G/N) ≤ |codmsm(G/N)| + 1 ≤ |codmsm(G)| + 1,

which is a contradiction. Thus, N = 1. This implies that Φ(G) = 1 = Z(G) and so
F(G) = M has a complement H in G.

Let ψ be an irreducible character of G/M with codegree as large as possible.
Since F(G) = M ≤ kerψ, G has an irreducible character θ with a(ψ) < a(θ) by
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[4, Lemma 2.11]. Note that θ is faithful since it does not lie in Irr(G/M). Now let χ be a
faithful irreducible character of G with the largest possible codegree among the faithful
irreducible characters of G. We claim that χ is monomial. To see why this is true, let
λ be an irreducible constituent of χM . Clearly, λ � 1. Now K := IG(λ) = MIH(λ) and
M ∩ IH(λ) = 1 since M is complemented by H in G. Thus, there exists an irreducible
character α of K such that αM = λ. Note that α(1) = λ(1) = 1. From [3, Theorem
6.11], αG is irreducible and faithful since λ � 1 is an irreducible constituent of (αG)M .
Moreover, χ = βG for some β ∈ Irr(K). By the choice of χ,

|G|/|G : K| = a(αG) ≤ a(χ) = |G|/χ(1) = |G|/βG(1) = |G|/β(1)|G : K|,

which forces β(1) = 1. This means χ is monomial as desired. Therefore, χ is
a monomial strongly monolithic character of G and so a(χ) ∈ codmsm(G). How-
ever, a(χ) � codmsm(G/M) since a(ψ) < a(θ) ≤ a(χ) which means |codmsm(G/M)| ≤
|codmsm(G)| − 1. Thus,

h(G) = h(G/F(G)) + 1 = h(G/M) + 1 ≤ |codmsm(G/M)| + 2 ≤ |codmsm(G)| + 1.

This final contradiction completes the proof. �

Let G = SL(2, 3). Then, h(G) = 2 = |codmsm(G)| + 1. This example shows that the
upper bound in Theorem 2.2 is the best possible.

THEOREM 2.3. Let G be a finite nonabelian group. If there exists a fixed prime number
p such that χ(1)p = |G : ker χ|p > 1 for all strongly monolithic characters χ of G, then
h(G) ≤ |codsm(G)| + 1. In particular, G is solvable.

PROOF. Let G be a minimal counterexample and note that the hypothesis is inherited
by factor groups. Assume that G has no faithful strongly monolithic character. By the
minimality of G,

h(G/kerχ) ≤ |codsm(G/kerχ)| + 1 ≤ |codsm(G)| + 1

for every χ ∈ Irrsm(G). However now, by using Lemma 2.1, we obtain h(G) ≤
|codsm(G)| + 1, which is a contradiction. Thus, G has at least one faithful strongly
monolithic character and this implies that all faithful irreducible characters of G are
strongly monolithic. We also deduce that G has a unique minimal normal subgroup,
say M.

Let χ be an irreducible character of G which does not contain M in its kernel. Then,
χ is strongly monolithic since it is faithful and so p does not divide a(χ) by hypothesis.
Therefore, p does not divide the order of M and the action of P on M is Frobenius by
[6, Theorem A], where P is a Sylow p-subgroup of G. Hence, G is solvable since M is
nilpotent and G/M is solvable by the minimality of G.

Now we argue that Φ(G) = 1. Otherwise, we would have

h(G) = h(G/Φ(G)) ≤ |codsm(G/Φ(G))| + 1 ≤ |codsm(G)| + 1,
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which is a contradiction. Thus,Φ(G) = 1 which yields F(G) = M. By using [4, Lemma
2.11], we deduce that |codsm(G/M)| ≤ |codsm(G)| − 1 and so

h(G) = h(G/F(G)) + 1 = h(G/M) + 1 ≤ |codsm(G/M)| + 2 ≤ |codsm(G)| + 1,

which is the final contradiction completing the proof. �

It is known that if all irreducible character degrees of a finite group G are odd, then
G is solvable. We provide an analogue of this fact in terms of codegrees by having an
assumption on just the strongly monolithic characters of G.

THEOREM 2.4. Let G be a group and assume that 4 � a(χ) for all strongly monolithic
characters χ of G. Then, G is solvable. In particular, if a(χ) is odd for all strongly
monolithic characters χ of G, then G is solvable.

PROOF. Assume that the theorem is false and let G be a minimal counterexample. Let
1 < N � G. Then, since G/N is solvable by the minimality of G, we conclude that N is
not solvable. In particular, N cannot be abelian. Thus, Z(G) = 1.

It is not difficult to see that G has a unique minimal normal subgroup, say M.
Note that M is not abelian. Let 1 � λ be an irreducible character of M and choose
an irreducible character χ of G with [χM , λ] � 0. Note that χ is faithful and so strongly
monolithic. Since 4 � a(χ), we see that 4 � a(λ) by [6, Lemma 2.1(2)], which means M
also satisfies the hypothesis of the theorem. It turns out that M = G is a simple group.
From the equality

|G| =
∑

χ∈Irr(G)

χ(1)2 = 1 +
∑

1�χ∈Irr(G)

χ(1)2,

we deduce that G has a nonprincipal irreducible character, say χ, with odd degree.
Since G is a simple group, we see that χ is a strongly monolithic character and
so 4 does not divide a(χ) = |G|/χ(1) by hypothesis. This forces the order of the
Sylow 2-subgroup of G to be 2 since χ(1) is odd. This implies that G has a normal
2-complement. However, this contradicts the simplicity of G. �

COROLLARY 2.5. Let G be a group and assume that a(χ) is a prime power for all
irreducible characters χ of G. Then, G is solvable.

PROOF. Note that all vertices of the graph Γ(G) in [6] are isolated and so G has at most
two prime divisors by [6, Theorem E(2)]. Hence, G is solvable. �

Now we generalise Corollary 2.5 by obtaining the solvability of G with the
assumption that the codegrees of only the strongly monolithic characters of G are
prime powers.

THEOREM 2.6. Let G be a group and assume that a(χ) is a prime power for all strongly
monolithic characters χ of G. Then, G is solvable.

PROOF. Assume that the theorem is false and let G be a minimal counterexample. It
is not difficult to see that G has a unique minimal normal subgroup, say M.
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Let 1 < N � G. Then, since G/N is solvable by the minimality of G, we conclude
that N is not solvable. Thus, Z(G) = 1 and M is nonsolvable. It follows that G has a
faithful irreducible character and all such characters are strongly monolithic.

Let 1 � λ be an irreducible character of M and choose an irreducible character χ of
G with [χM , λ] � 0. Note that χ is faithful and so strongly monolithic since M is the
unique minimal normal subgroup of G. Thus, a(χ) is a prime power by hypothesis.
Now, a(λ) is a prime power too, since a(λ) | a(χ) by [6, Lemma 2.1(2)]. Thus, M
also satisfies the hypothesis of the theorem which means G = M is a simple group.
However, this contradicts [6, Lemma 2.3]. �

Let p be a prime divisor of the order of a group G and let A be either the set of non-
linear, monomial, monolithic characters in Irr(G) or the set of nonlinear, monomial,
monolithic characters in IBr(G), where IBr(G) denotes the set of irreducible p-Brauer
characters of G. If G is solvable and a(χ) is a power of p for all χ in A , then G has
a normal Sylow p-subgroup by [7, Theorem 1]. We give an analogue of this theorem.
Note that we do not assume that G is solvable. In fact, under the hypothesis of the
following theorem, we deduce the solvability of G from Theorem 2.6.

THEOREM 2.7. Let G be a group and let p be a fixed prime number. If a(χ) is a power of
p for all strongly monolithic characters χ of G, then G has a normal Sylow p-subgroup.

PROOF. Assume that the theorem is false and let G be a minimal counterexample.
First, we argue that G has a unique minimal normal subgroup. To see why this is true,
let M and N be two different minimal normal subgroups of G. By the minimality of
G, the factor groups G/M, G/N and so G/M × G/N have normal Sylow p-subgroups.
Thus, G, which is isomorphic to a subgroup of G/M × G/N, also has a normal Sylow
p-subgroup, which is a contradiction with the choice of G. Thus, G has a unique
minimal normal subgroup, say M, and so has a faithful irreducible character.

Now we claim that Z(G) = 1. Otherwise, M is contained in Z(G) and so normalises
P, where P is a Sylow p-subgroup of G. Since G is a minimal counterexample, we
obtain PM � G and so, by using a Frattini argument, we see that G = NG(P)M, which
means P is normal in G which is not the case. Thus, Z(G) = 1 as desired. This means
all faithful irreducible characters of G are strongly monolithic. It turns out that G has
a faithful strongly monolithic character, say χ. Then, |G|/χ(1) = a(χ) is a power of p
by hypothesis. Thus, Op(G) � 1 by [1, Theorem 4] and it follows that M ≤ Op(G) ≤ P,
which means P/M is a Sylow p-subgroup of G/M. By the minimality of G, we see that
P/M � G/M, which is equivalent to P � G. However, this is a contradiction. �
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