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Abstract
We study covering numbers of subsets of the symmetric group 𝑆𝑛 that exhibit closure under conjugation, known
as normal sets. We show that for any 𝜖 > 0, there exists 𝑛0 such that if 𝑛 > 𝑛0 and A is a normal subset of the
symmetric group 𝑆𝑛 of density ≥ 𝑒−𝑛

2/5−𝜖 , then 𝐴2 ⊇ 𝐴𝑛. This improves upon a seminal result of Larsen and
Shalev (Inventiones Math., 2008), with our 2/5 in the double exponent replacing their 1/4.

Our proof strategy combines two types of techniques. The first is ‘traditional’ techniques rooted in character
bounds and asymptotics for the Witten zeta function, drawing from the foundational works of Liebeck–Shalev,
Larsen–Shalev, and more recently, Larsen–Tiep. The second is a sharp hypercontractivity theorem in the symmetric
group, which was recently obtained by Keevash and Lifshitz. This synthesis of algebraic and analytic methodologies
not only allows us to attain our improved bounds but also provides new insights into the behavior of general
independent sets in normal Cayley graphs over symmetric groups.

1. Introduction

This paper employs tools from analysis of Boolean functions to address problems studied independently
by group theorists and combinatorialists. The problems we study are those which can be reformulated
as investigations about independent sets in Cayley graphs over symmetric groups.

1.1. Covering numbers of subsets of symmetric groups

The covering number of a generating set A in a group G is the minimal ℓ such that 𝐴ℓ = 𝐺. The problem
of determining the covering numbers of conjugacy classes and their unions is fundamental in group
theory, with highlights including the breakthroughs of Guralnick, Larsen, Liebeck, Shalev and Tiep
[12, 24, 26, 30].

A particular question that has been studied extensively is characterizing sets A such that 𝐴2 = 𝐺. A
well-known open problem in this area is Thompson’s conjecture which asserts that every finite simple
group G contains a conjugacy class whose square is G.

Much of the research on characterizing sets whose square is the entire group has focused on the
symmetric group, where this study goes back to Gleason, who showed in 1962 that for any n-cycle
𝜎 ∈ 𝑆𝑛, the conjugacy class 𝜎𝑆𝑛 satisfies (𝜎𝑆𝑛 )2 = 𝐴𝑛 (see [13, Proposition 4]). For many years, results
of this kind were achieved only for very restricted families of conjugacy classes, like the case where 𝜎

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2024.95 Published online by Cambridge University Press

doi:10.1017/fms.2024.95
https://orcid.org/0000-0002-1591-9840
https://orcid.org/0000-0003-0437-6040
https://orcid.org/0009-0001-2213-7329
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2024.95&domain=pdf
https://doi.org/10.1017/fms.2024.95


2 N. Keller, N. Lifshitz, and O. Sheinfeld

consists of two cycles (see, for example, [1, 2, 32]). In a breakthrough paper from 2007, Larsen and
Shalev [24] showed that for a sufficiently large n, if 𝜎 ∈ 𝑆𝑛 has at most 𝑛1/128 cycles, then (𝜎𝑆𝑛 )2 = 𝐴𝑛.
As a random permutation 𝜎 ∈ 𝑆𝑛 has 𝑂 (log 𝑛) cycles a.a.s., this shows that asymptotically, (𝜎𝑆𝑛 )2 = 𝐴𝑛

holds for almost all permutations. In another breakthrough which followed shortly after, Larsen and
Shalev [23] proved the same assertion for any 𝜎 ∈ 𝑆𝑛 that has at most 𝑛1/4−𝜖 cycles. Namely, they
showed the following:

Theorem 1.1 [23, Theorem 1.10]. For any 𝜖 > 0, there exists an integer 𝑛0, such that for any 𝑛 > 𝑛0
and for any 𝜎 ∈ 𝑆𝑛 that has at most 𝑛1/4−𝜖 cycles, we have (𝜎𝑆𝑛 )2 = 𝐴𝑛.

The number of cycles of a permutation is closely related to the density of its conjugacy class.
(Throughout the paper, for finite sets 𝐴, 𝐵, the density of A inside B is 𝜇𝐵 (𝐴) = |𝐴∩𝐵 |

|𝐵 | , and when B is
clear from the context, we shorten the notation to 𝜇(𝐴)). Theorem 1.1 can be easily seen to be equivalent
to the following:

Theorem 1.2 [23, Theorem 1.20]. For any 𝜖 > 0, there exists an integer 𝑛0, such that for any 𝑛 > 𝑛0
and for any normal subset 𝐴 ⊂ 𝑆𝑛 with 𝜇(𝐴) ≥ 𝑒−𝑛

1/4−𝜖 , we have 𝐴2 ⊇ 𝐴𝑛.

Determining the minimal density 𝛼(𝑛) such that for any normal subset of 𝑆𝑛 with density ≥ 𝛼(𝑛)
we have 𝐴2 ⊇ 𝐴𝑛, remains a very challenging open problem, and the results of [23] remained the ‘state
of the art’ in the last 15 years (see, for example, [31]).

1.1.1. Our results
We show that the assertions of Theorems 1.1 and 1.2 hold under a significantly weaker assumption on
the set A.

Theorem 1.3. For any 𝜖 > 0, there exists an integer 𝑛0, such that for any 𝑛 > 𝑛0 and for any 𝜎 ∈ 𝑆𝑛

that has at most 𝑛2/5−𝜖 cycles, we have (𝜎𝑆𝑛 )2 = 𝐴𝑛.

Theorem 1.4. For any 𝜖 > 0, there exists an integer 𝑛0, such that for any 𝑛 > 𝑛0 and for any normal
subset 𝐴 ⊂ 𝑆𝑛 with 𝜇(𝐴) ≥ 𝑒−𝑛

2/5−𝜖 , we have 𝐴2 ⊇ 𝐴𝑛.

We also prove a similar strengthening of the corresponding result for subsets of 𝐴𝑛 that was recently
proved by Larsen and Tiep [25].

Theorem 1.5. For any 𝜖 > 0, there exists an integer 𝑛0, such that for any 𝑛 > 𝑛0 and for any normal
subset 𝐴 ⊂ 𝐴𝑛 with 𝜇(𝐴) ≥ 𝑒−𝑛

2/5−𝜖 , we have 𝐴2 ⊇ 𝐴𝑛 \ {1}.

Theorem 1.5 significantly improves over a recent result of Lifshitz and Marmor [28, Corollary 2.11],
which achieves the weaker conclusion 𝐴3 = 𝐴𝑛 under the stronger assumption 𝜇(𝐴) ≥ 𝑒−𝑛

1/3−𝜖 .
In terms of techniques, Larsen and Shalev [23, 24] obtained their results by establishing upper bounds

for the values of irreducible characters. Those character bounds have grown out to be fundamental to
the study of covering numbers and have found various applications in other areas of mathematics. Our
new results demonstrate the surprising role of a very different new tool – the recent result of Keevash
and Lifshitz [16] on hypercontractivity for global functions over symmetric groups.

Regarding tightness of our results, we believe that the minimal density of A which guarantees
𝐴2 ⊇ 𝐴𝑛 is significantly smaller than 𝑒−𝑛

2/5−𝜖 . In this context, it is worth noting that Garonzi and Maróti
[10] conjectured that there exists an absolute constant 𝑐 > 0, such that if 𝐴, 𝐵, 𝐶 are normal subsets
of an alternating group 𝐺 = 𝐴𝑛 of density ≥ |𝐺 |−𝑐 , then 𝐴𝐵𝐶 = 𝐺. They achieved an essentially best
possible result for four sets by showing that for any 𝜖 > 0, there exists 𝑛0 = 𝑛0 (𝜖), such that if 𝑛 > 𝑛0
and 𝐴, 𝐵, 𝐶, 𝐷 are normal sets of density ≥ |𝐺 |−1/2+𝜖 , then 𝐴𝐵𝐶𝐷 = 𝐺. Lifshitz and Marmor [28]
speculated that a far-reaching generalization of Theorem 1.4 holds: If A is a normal subset of 𝑆𝑛 of
density ≥ (𝑛!)−𝑐 , then 𝐴2 ⊇ 𝐴𝑛.
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1.2. Independent sets in normal Cayley graphs

Theorem 1.2 can be restated in a graph theoretic terminology. Recall that a subset of the vertices of a
graph is independent if it does not contain any edges. The largest size of an independent set in a graph is
called its independence number. A Cayley graph Cay(𝐺, 𝐴) is said to be normal if the set A is normal.
For a set 𝐼 ⊆ 𝑆𝑛 and for 𝜏 ∈ 𝑆𝑛, it is easy to see that 𝜏 ∉ 𝐼−1𝐼 if and only if I is an independent set in
the Cayley graph Cay(𝑆𝑛, 𝜏𝑆𝑛 ). Since for a normal set 𝐼 ⊆ 𝑆𝑛, we have 𝐼−1𝐼 = 𝐼2, it is clear that the
following theorem is a restatement of Theorem 1.2.
Theorem 1.6 (Theorem 1.2 restated). For any 𝜖 > 0, there exists an integer 𝑛0, such that for any 𝑛 > 𝑛0
and for any 𝜏 ∈ 𝐴𝑛 \ {1}, the largest normal independent set in the Cayley graph Cay(𝐴𝑛, 𝜏𝑆𝑛 ) has size
at most 𝑒−𝑛

1/4−𝜖 .
The size of the largest normal independent set in Cay(𝐴𝑛, 𝜏𝑆𝑛 ) is clearly bounded by the independence

number of Cay(𝐴𝑛, 𝜏𝑆𝑛 ). A subfield of extremal combinatorics known as Erdős–Ko–Rado type theorems
(see the book [11] and the thesis [7]) is mostly devoted to the study of the independence numbers of
graphs that that have a large group of symmetries. One breakthrough in this direction is the work of
Ellis, Friedgut and Pilpel [4] concerning the independence number of the Cayley graph Cay(𝑆𝑛, 𝐴),
where A is the set of permutations with at most 𝑡 − 1 fixed points. Independent sets I in Cay(𝐴𝑛, 𝐴) are
called t-intersecting, as in such a set I, any two permutations agree on at least t coordinates.

Ellis, Friedgut and Pilpel showed that for any 𝑛 > 𝑛0 (𝑡), the largest t-intersecting sets in 𝑆𝑛 are the
t-umvirates, which are cosets of the subgroup of all permutations that fix a given set of size t. The
minimal possible value of 𝑛0 (𝑡) was improved by Ellis and Lifshitz [6], then by Kupavskii and Zakharov
[22], and finally by Keller, Lifshitz, Minzer and Sheinfeld [20] who showed that 𝑛0 (𝑡) can be taken to
be linear in t. Furthermore, the authors of [6, 22] showed that the results of Ellis, Friedgut and Pilpel
extend to the sparser Cayley graph Cay(𝐺, 𝐴′), where 𝐴′ consists only of the permutations that have
exactly 𝑡 − 1 fixed points (though, starting at a larger value of 𝑛0 (𝑡)). The latter setting is known as the
‘forbidding one intersection’ problem; see [5].

When removing edges from a Cayley graph, its family of independent sets widens, making it
increasingly challenging to establish effective upper bounds on the independence number. We prove the
following result regarding the independence number of significantly sparser Cayley graphs, in which
the generating set is a single conjugacy class.1 In order to avoid sign issues, we restrict our attention to
the alternating group 𝐴𝑛.
Theorem 1.7. For any 𝜖 > 0, there exist 𝛿, 𝑛0, such that the following holds for any 𝑡 ∈ N and 𝑛 > 𝑛0+ 𝑡.
Let 𝜎 ∈ 𝐴𝑛 be a permutation with t fixed points. Then the largest independent set in the Cayley graph
Cay(𝐴𝑛, 𝜎𝑆𝑛 ) has density of at most max(𝑒−(𝑛−𝑡)1/3−𝜖

, (𝑛 − 𝑡)−𝛿𝑡 ).
For 𝑡 < 𝑛1/3−𝜖 , Theorem 1.7 implies that the independence number of the Cayley graph Cay(𝐴𝑛, 𝜎𝑆𝑛 )

is 𝑛−Θ(𝑡) , as in this range, the assertion matches the trivial lower bound implied by the t-umvirates. Thus,
the theorem shows that in terms of the order of magnitude, the results of [6, 22] for the ‘forbidding
one intersection’ problem extend to the much sparser setting where only intersection inside a single
conjugacy class is forbidden.

For larger values of t, our bound improves upon the bound of Larsen and Shalev in two ways. First,
our bound holds for all independent sets, while their bound applies only to normal independent sets.
Moreover, even in the broader context of arbitrary independent sets in normal Cayley graphs, we improve
the 1/4 in the double exponent to 1/3.

Our main tool, which is interesting for its own sake, is the following stability result which says that
a mild lower bound on the density of an independent set suffices to imply that it is heavily correlated
with a t-umvirate. Given a set A, we write 𝜇𝐴 for the uniform measure on A.

1We note that in the specific case of the Cayley graph Cay(𝐺, 𝐵) , where B consists of all permutations that have a single
cycle of length > 1 and arbitrarily many fixed points (which is a union of 𝑛 − 1 conjugacy classes), significantly stronger bounds
on the independence number were obtained in [3, 15]. These results, which have important applications to coding theory, are
incomparable with our results.
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Theorem 1.8. For any 𝜖 > 0, there exist 𝛿, 𝑛0, such that the following holds for any 𝑡 ∈ N and 𝑛 > 𝑛0+ 𝑡.
Let 𝜎 ∈ 𝐴𝑛 be a permutation with t fixed points. Suppose that I is an independent set in the Cayley

graph Cay(𝐴𝑛, 𝜎𝑆𝑛 ) of density ≥ 𝑒−𝑛
1/2− log𝑛 𝑡

2 −𝜖
. Then there exists ℓ > 0 and an ℓ-umvirate U, such that

𝜇𝑈 (𝐼) ≥ 𝑛𝛿ℓ𝜇𝐴𝑛 (𝐼).

1.3. Our methods: Hypercontractivity and bounds for the isotypic projections

Our proof combines character bounds with a recent tool known as ‘sharp hypercontractivity in the
symmetric group’ due to Keevash and Lifshitz [16], which improves upon the earlier work of Filmus,
Kindler, Lifshitz and Minzer [8].

The covering results of Larsen and Shalev are based upon character bounds. These can be used to show
that conjugacy classes behave (in some senses) like random sets of the same density. Hypercontractivity
serves a similar role to the character bounds for functions that are not necessarily class functions. We
make use of this by applying it to study the restrictions of the conjugacy classes to the ℓ-umvirates (for
various values of ℓ). These restrictions satisfy the following spreadness notion (see [22]), which is also
known as globalness or quasiregularity in the literature (see [17, 18]).

Let 𝛿 > 0. We say that a set 𝐴 ⊆ 𝑆𝑛 is 𝛿-spread if for each ℓ ≥ 1 and for each ℓ-umvirate U,

𝜇𝑈 (𝐴) ≤ 𝑛𝛿ℓ𝜇𝑆𝑛 (𝐴).

In words, this means that no restriction to an ℓ-umvirate increases the density of A significantly.
Theorem 1.8 can be restated as an upper bound on the size of 𝛿-spread independent sets in normal

Cayley graphs. It lies in the heart of the paper, and the rest of our theorems are reduced to it by
combinatorial arguments.

Sketch of proof for Theorem 1.8
For functions 𝑓 , 𝑔 on a finite group G, we write

𝑓 ∗ 𝑔(𝑦) = E𝑥∼𝐺 [ 𝑓 (𝑥)𝑔(𝑥−1𝑦)],

where 𝑥 ∼ 𝐴 denotes that x is chosen uniformly out of A. Denote by �̂� the set of irreducible characters
on G. For 𝜒 ∈ �̂�, we write 𝑓 =𝜒 = 𝜒(1) 𝑓 ∗ 𝜒. It is well known that f can be orthogonally decomposed
as 𝑓 =

∑
𝜒∈�̂� 𝑓 =𝜒. We denote the space of functions of the form 𝑓 =𝜒 by 𝑊𝜒.

Fix 𝜎 ∈ 𝐴𝑛 and write 𝑓 =
1(𝜎𝑆𝑛 )

𝜇𝐴𝑛 (𝜎𝑆𝑛 ) . It was known already to Frobenius that since f is a class
function, for any 𝜒 ∈ �̂�, the space 𝑊𝜒 is an eigenspace of the convolution operator 𝑔 ↦→ 𝑓 ∗ 𝑔, which
corresponds to the eigenvalue 𝜒 (𝜎)

𝜒 (1) .
Let 𝑔 = 1𝐼

𝜇𝐴𝑛 (𝐼 )
be the normalized indicator of an independent set I in the Cayley graph Cay(𝐴𝑛, 𝜎𝑆𝑛 ).

Then one can decompose

0 = 〈 𝑓 ∗ 𝑔, 𝑔〉 =
∑
𝜒∈𝐴𝑛

𝜒(𝜎)
𝜒(1) ‖𝑔

=𝜒 ‖2
2 . (1.1)

The ‘main term’ of the above sum comes from the trivial representation 𝜒 = 1, which contributes
〈𝑔, 1〉 = E[𝑔] = 1 to the sum. We proceed by showing that if 𝜎 has t fixed points and I is ‘large’ (as a
function of t) and 𝛿-spread, then the other terms are negligible compared to the main term, leading to a
contradiction.

Our proof is divided into two parts – upper bounding the terms
��� 𝜒 (𝜎)
𝜒 (1)

��� and upper bounding the

terms ‖𝑔=𝜒 ‖2
2 , for all 𝜒 ∈ 𝐴𝑛 \ {1}. To upper bound the terms

��� 𝜒 (𝜎)
𝜒 (1)

���, we use the character bounds of
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Larsen–Shalev [23] and Larsen–Tiep [25] that take the form 𝜒(𝜎) ≤ 𝜒(1)𝛽 , where 𝛽 depends only on
𝜎 and not on 𝜒. The main novel tool that we introduce in this paper is the following proposition which
allows upper bounding the terms ‖𝑔=𝜒 ‖2

2 .
Proposition 1.9. For any 𝜖 > 0, there exist 𝛿, 𝑛0 > 0, such that the following holds for all 𝑛 > 𝑛0. Let
𝛼 < 1− 𝜖 and let 𝐴 ⊆ 𝑆𝑛 be a 𝛿-spread set of density ≥ 𝑒−𝑛

𝛼 . Write 𝑔 = 1𝐴
𝜇 (𝐴) . Then ‖𝑔=𝜒 ‖2

2 ≤ 𝜒(1)𝛼+𝜖

for any 𝜒 ∈ �̂�.
We prove Proposition 1.9 by appealing to the hypercontractivity theorem of Keevash and Lifshitz [16].
Combining the Larsen–Shalev and Larsen–Tiep bounds with ours, while choosing 𝛼 appropriately,

we obtain that |〈 𝑓 ∗ 𝑔, 𝑔〉 − 1| ≤
∑

𝜒∈𝐴𝑛\1 𝜒(1)−𝑠 for an absolute constant 𝑠 > 0. At this point, we apply
the Witten zeta function estimates of Liebeck and Shalev. For a finite group G, the Witten zeta function
is given by 𝜁𝐺 (𝑠) =

∑
𝜒∈�̂� 𝜒(1)−𝑠 . Liebeck and Shalev [27] showed that 𝜁𝐴𝑛 (𝑠) = 1+𝑜(1) for any fixed

𝑠 > 0, as n tends to infinity. This estimate yields |〈 𝑓 ∗ 𝑔, 𝑔〉 − 1| = 𝑜(1) in contradiction to Equation
(1.1), thus completing the proof.2

We deduce Theorems 1.3, 1.4 and 1.5 from Proposition 1.9 by proving that certain restricted conjugacy
classes are 𝛿-spread for an absolute constant 𝛿 > 0, and then following a similar route to the above sketch.

Structure of the paper

In Section 2, we present results from works of Larsen–Shalev [23], Larsen–Tiep [25] and Liebeck–
Shalev [27] that will be used in the sequel.

In Section 3, we prove Proposition 1.9. In Section 4, we prove a key theorem (Theorem 4.2) and
deduce from it Theorems 1.7 and 1.8. In Section 5, we prove that certain restricted conjugacy classes
admit some form of spreadness. In Section 6, we prove Theorems 1.3, 1.4 and 1.5.

2. Preliminaries from the Works of Larsen–Shalev, Larsen–Tiep, and Liebeck–Shalev

2.1. Character bounds using the parameter 𝐸 (𝜎)

Recall that given a finite group G, we write 𝐺 for the set of its irreducible complex characters. Larsen
and Shalev [23] introduced the parameter 𝐸 (𝜎), defined as follows.
Definition 2.1. For 𝜎 ∈ 𝑆𝑛, let 𝑓𝜎 (𝑖) be the number of i-cycles in its cycle decomposition. Define the
orbit growth sequence 𝑒1, 𝑒2, . . . , 𝑒𝑛 via the equality

𝑒1 + · · · + 𝑒𝑘 := max
���	

log
(∑𝑘

𝑖=1 𝑖 · 𝑓𝜎 (𝑖)
)

log 𝑛
, 0
��,

for each 1 ≤ 𝑘 ≤ 𝑛. The function 𝐸 (𝜎) is defined by

𝐸 (𝜎) :=
𝑛∑
𝑖=1

𝑒𝑖
𝑖

.

The main result of Larsen and Shalev [23] is the following character bound.
Theorem 2.2 [23, Theorem 1.1]. For any 𝜖 > 0, there exists 𝑛0 ∈ N, such that the following holds. Let
𝑛 > 𝑛0, let 𝜒 be an irreducible character of 𝑆𝑛, and let 𝜎 ∈ 𝑆𝑛. Then

|𝜒(𝜎) | ≤ 𝜒(1)𝐸 (𝜎)+𝜖 .

We also make use of the following character bound of Larsen and Tiep [25].

2We note that the Witten zeta function originates in the representation theory of compact Lie groups, where 𝜁SU(2) is the
Riemann zeta function. We define it here only for finite groups for simplicity.
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Theorem 2.3 [25, Theorem 2]. For any 𝜖 > 0, there exists 𝑛0 ∈ N such that the following holds. Let
𝑛 > 𝑛0 and suppose that 𝜎 ∈ 𝐴𝑛 satisfies 𝜎𝐴𝑛 ≠ 𝜎𝑆𝑛 . Then for every character 𝜒 of 𝐴𝑛, we have
|𝜒(𝜎) | ≤ 𝜒(1) 𝜖 .

These bounds combine to yield the following variant of Theorem 2.2 for 𝐴𝑛.

Theorem 2.4. For any 𝜖 > 0, there exists 𝑛0 ∈ N, such that the following holds. Let 𝑛 > 𝑛0, let 𝜒 be an
irreducible character of 𝐴𝑛, and let 𝜎 ∈ 𝐴𝑛. Then

|𝜒(𝜎) | ≤ 𝜒(1)𝐸 (𝜎)+𝜖 .

Proof. Recall from the representation theory of 𝑆𝑛 and 𝐴𝑛 that every irreducible character 𝜒 of 𝑆𝑛 is
either irreducible when restricted to 𝐴𝑛 or is the sum of two irreducible characters 𝜒1, 𝜒2, such that
𝜒2 (𝜎) = 𝜒1((12)𝜎(12)) for all 𝜎 ∈ 𝐴𝑛. Moreover, any irreducible character of 𝐴𝑛 can be obtained
from an irreducible character of 𝑆𝑛 in one of these two ways.

It follows that whenever 𝜎𝐴𝑛 = 𝜎𝑆𝑛 , we have 𝜒1(𝜎) = 𝜒2(𝜎) = 𝜒(𝜎)/2, and the assertion
follows from Theorem 2.2. Otherwise, by Theorem 2.3, we have |𝜒(𝜎) | ≤ 𝜒(1) 𝜖 , which implies the
assertion. �

2.2. Upper bounds for 𝐸 (𝜎)

We now give several simple estimates for 𝐸 (𝜎). First, we treat the case where 𝜎 has t fixed points.

Lemma 2.5. For any 𝜖 > 0, there exists 𝑛0 ∈ N such that the following holds for all 𝑛 > 𝑛0. Suppose
that 𝜎 ∈ 𝑆𝑛 has t fixed points. Then 𝐸 (𝜎) ≤ 1+log𝑛 𝑡

2 .

Proof. Let 𝑒𝑖 be as in the definition of 𝐸 (𝜎). We have

𝐸 (𝜎) =
𝑛∑
𝑖=1

𝑒𝑖/𝑖 = 𝑒1 +
𝑛∑
𝑖=2

𝑒𝑖/𝑖 ≤ 𝑒1 +
∑𝑛

𝑖=2 𝑒𝑖

2
= 𝑒1 +

1 − 𝑒1
2

=
1 + 𝑒1

2
=

1 + log𝑛 𝑡

2
.

�

We now treat the case where 𝜎 has 𝑛𝑜 (1) 𝑖-cycles for each ‘small’ i.

Lemma 2.6. For any 𝜖 > 0 and any 𝑚 ∈ N, there exist 𝛿 > 0 and 𝑛0 ∈ N such that the following holds.
Let 𝑛 > 𝑛0 and suppose that 𝜎 ∈ 𝑆𝑛 has at most 𝑛𝛿 𝑖-cycles for each 𝑖 < 𝑚. Then 𝐸 (𝜎) ≤ 1/𝑚 + 𝜖 .

Proof. We have

𝐸 (𝜎) =
𝑛∑
𝑖=1

𝑒𝑖/𝑖 =
𝑚−1∑
𝑖=1

𝑒𝑖/𝑖 +
𝑛∑

𝑖=𝑚

𝑒𝑖/𝑖 ≤
𝑚−1∑
𝑖=1

𝛿 + 𝑖
log 𝑛

𝑖
+
∑𝑛

𝑖=𝑚 𝑒𝑖

𝑚

≤ 𝛿 · 2 log(𝑚) + 𝑚/log 𝑛 + 1/𝑚 ≤ 1/𝑚 + 𝜖 . �

Another estimate for 𝐸 (𝜎) that we need is the following.

Lemma 2.7. For any 𝜖 > 0, there exists 𝑛0 ∈ N, such that the following holds for all 𝑛 > 𝑛0. Let
0 < 𝛼 < 1. Suppose that 𝜎 ∈ 𝑆𝑛 has no fixed points and has at most 𝑛𝛼 cycles of length at most �2/𝜖�.
Then 𝐸 (𝜎) ≤ 𝛼/2 + 𝜖/2 + log(2/𝜖 )

log(𝑛) .
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Proof. We have

𝐸 (𝜎) =
𝑛∑
𝑖=1

𝑒𝑖/𝑖 =
�2/𝜖 �∑
𝑖=2

𝑒𝑖/𝑖 +
𝑛∑

𝑖= �2/𝜖 �+1
𝑒𝑖/𝑖 ≤

∑ �2/𝜖 �
𝑖=2 𝑒𝑖

2
+
∑𝑛

𝑖= �2/𝜖 �+1 𝑒𝑖

2/𝜖

≤ 𝛼

2
+ log(2/𝜖)

log(𝑛) + 𝜖

2
,

where the last inequality holds since 𝑒2 + . . . + 𝑒 �2/𝜖 � ≤ 𝛼 + log(2/𝜖 )
log(𝑛) . �

A similar argument yields the following lemma:

Lemma 2.8. For any 𝜖 > 0, there exists 𝑛0 ∈ N, such that the following holds for all 𝑛 > 𝑛0. Let 𝛼 > 0.
Suppose that 𝜎 ∈ 𝑆𝑛 has at most 𝑛𝛼 cycles. Then 𝐸 (𝜎) ≤ 𝛼 + 𝜖 .

Proof. We have

𝐸 (𝜎) =
𝑛∑
𝑖=1

𝑒𝑖/𝑖 ≤
�𝑛𝜖 /2 �∑
𝑖=1

𝑒𝑖 +
𝑛∑

𝑖= �𝑛𝜖 /2 �+1

𝑒𝑖/𝑛𝜖 /2 ≤ 𝛼 + 𝜖/2 + 𝑛−𝜖 /2 ≤ 𝛼 + 𝜖 . �

2.3. Squares of conjugacy classes

We use several results on squares of conjugacy classes in 𝐴𝑛 and in 𝑆𝑛, of Larsen and Shalev [23] and
of Larsen and Tiep [25].

Theorem 2.9 [25, Theorem 3]. There exists 𝑛0 ∈ N, such that the following holds for all 𝑛 > 𝑛0.
Suppose that 𝜎 ∈ 𝐴𝑛 satisfies 𝜎𝐴𝑛 ≠ 𝜎𝑆𝑛 . Then

(𝜎𝐴𝑛 )2 ⊇ 𝐴𝑛 \ {1}.

Theorem 2.10 [23, Theorem 5.1]. For any 𝜖 > 0, there exists 𝑛0 ∈ N such that the following holds for
all 𝑛 > 𝑛0. Suppose that for some 𝜎 ∈ 𝑆𝑛, 𝜏 ∈ 𝐴𝑛, we have 2𝐸 (𝜎) + 𝐸 (𝜏) < 1 − 𝜖 . Then 𝜏 ∈ (𝜎𝑆𝑛 )2.

Theorem 2.11 [23, Theorem 1.10]. For any 𝜖 > 0, there exists 𝑛0 ∈ N such that the following holds
for all 𝑛 > 𝑛0. Suppose that 𝜎 ∈ 𝑆𝑛 has no fixed points, at most 𝑛1−𝜖 2-cycles and at most (1/4 − 𝜖)𝑛
cycles overall. Then

(
𝜎𝑆𝑛

)2
= 𝐴𝑛.

For integers 𝑛, 𝑚 such that 𝑚 |𝑛, we denote by (𝑚𝑛/𝑚) the conjugacy class of all 𝜎 ∈ 𝑆𝑛 that consist
of 𝑛/𝑚 𝑚-cycles.

Theorem 2.12 [23, Theorem 1.12]. There exists 𝑛0 ∈ N such that for any 𝑛 > 𝑛0 and for any 𝑚 ≥ 4
that divides n, we have (𝑚𝑛/𝑚)2 = 𝐴𝑛.

We also make use of the following result due to Vishne [32].

Theorem 2.13 [32, Theorem 3.2]. For any even 𝑛 ∈ N, the set (2𝑛/2)2 consists of the permutations that
have an even number of i-cycles for each i.

2.4. The Witten zeta function

As was described in the introduction, we apply a result of Liebeck and Shalev [27] concerning the
Witten zeta function.

Recall that the Witten zeta function for a finite group G is defined by

𝜁 (𝑠) = 𝜁𝐺 (𝑠) =
∑
𝜒∈�̂�

𝜒(1)−𝑠 .
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Theorem 2.14 [27, Theorem 1.1, Corollary 2.7]. For any 𝜖, 𝑠 > 0, there exists 𝑛0 such that for any
𝑛 > 𝑛0, we have

2 − 𝜖 ≤
∑
𝜒∈𝑆𝑛

𝜒(1)−𝑠 ≤ 2 + 𝜖, and 1 − 𝜖 ≤
∑
𝜒∈𝐴𝑛

𝜒(1)−𝑠 ≤ 1 + 𝜖 .

3. From hypercontractivity to bounds for the finer isotypic decomposition

In this section, we prove Proposition 1.9. Let us recall its statement.

Proposition 1.9. For any 𝜖 > 0, there exist 𝛿, 𝑛0 > 0, such that the following holds for all 𝑛 > 𝑛0. Let
𝛼 < 1− 𝜖 and let 𝐴 ⊆ 𝑆𝑛 be a 𝛿-spread set of density ≥ 𝑒−𝑛

𝛼 . Write 𝑔 = 1𝐴
𝜇 (𝐴) . Then ‖𝑔=𝜒 ‖2

2 ≤ 𝜒(1)𝛼+𝜖

for any 𝜒 ∈ 𝑆𝑛.
In the proof, we use a hypercontractive inequality of Keevash and Lifshitz for global functions over

symmetric groups, as well as standard estimates for the dimensions of the characters.

3.1. The level-d inequality of Keevash and Lifshitz

Level-d inequalities bound the 𝐿2 norm of certain ‘chunks’ of the orthogonal decomposition of a func-
tion, using hypercontractivity. The first level-d inequality was obtained in 1988 by Kahn, Kalai and
Linial [14], for Boolean functions over the discrete cube {−1, 1}𝑛 endowed with the uniform measure.
It asserts that for any 𝑓 : {−1, 1}𝑛 → {0, 1} with E[ 𝑓 ] = 𝛼 and for any 𝑑 ≤ 2 ln(1/𝛼), the coeffi-
cients of the Fourier-Walsh expansion of f (namely, 𝑓 =

∑
𝑆⊂[𝑛] 𝑓 (𝑆)𝜒𝑆) satisfy | |

∑
|𝑆 |=𝑑 𝑓 (𝑆)𝜒𝑆 | |22 ≤

(2𝑒/𝑑)𝑑𝛼2 ln(1/𝛼)𝑑 (see [29, Chapter 9]). Level-d inequalities turned out to be very useful, and have
diverse applications.

In [17], Keevash, Lifshitz, Long and Minzer (see also Khot, Minzer and Safra [21]) showed that
level-d inequalities can be obtained in much more general settings under the additional assumption
that the function is ‘global’ (or ‘spread’) – i.e., that no restriction of 𝑂 (1) coordinates can increase its
𝐿2-norm significantly. Filmus, Kindler, Lifshitz and Minzer [8] were the first to use the technique of
Keevash et al. to obtain a level-d inequality for global functions over symmetric groups. Here, we use a
sharp level-d inequality which was recently proved by Keevash and Lifshitz [16], building upon a sharp
version of the inequality of Keevash et al. that was obtained by Keller, Lifshitz and Marcus [19].

In order to state the level-d inequality due to Keevash and Lifshitz [16], we need a few more notations.
The terminology we use follows [4] in providing a degree decomposition for the symmetric group, which
corresponds to the decomposition of the Fourier-Walsh expansion over the discrete cube into ‘degree
levels’ 𝑓 =𝑑 =

∑
|𝑆 |=𝑑 𝑓 (𝑆)𝜒𝑆 that appears in the original level-d inequality.

A dictator 𝑈𝑖→ 𝑗 is the set of permutations that send i to j. The intersection of d distinct dictators is
called a d-umvirate if it is nonempty. The d-umvirates correspond to pairs of d-tuples 𝐼, 𝐽 and we denote
by 𝑈𝐼→𝐽 the set of permutations sending the tuple I to the tuple J. The restriction of a function f to a
d-umvirate 𝑈𝐼→𝐽 is denoted by 𝑓𝐼→𝐽 and is called a d-restriction. We write ‖ 𝑓𝐼→𝐽 ‖𝑝 for the 𝐿𝑝-norm
of f with respect to the uniform measure on the d-umvirate 𝑈𝐼→𝐽 .

A function f is said to be r-global if ‖ 𝑓𝐼→𝐽 ‖2 ≤ 𝑟 |𝐼 | ‖ 𝑓 ‖2 for all d-restrictions 𝑓𝐼→𝐽 , for all values of
d. A set A is r-global if its indicator function is r-global. Note that a set A is 𝛿-spread if and only if it is
𝑛𝛿-global.3

For a partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑡 ) � 𝑛, the strict level of a representation 𝑉𝜆 that corresponds to 𝜆 is
𝑛− 𝜆1. The level of 𝑉𝜆 is the minimum between the strict levels of 𝑉𝜆 and 𝑉𝜆′ , where 𝜆′ is the conjugate
partition of n. The space of matrix coefficients of an irreducible representation V is the space spanned

3For the sake of compliance with the notations of [16], we use the term ‘global’ below and in Section 5 where the results of
[16] are applied. In the rest of the paper, we use the term ‘spread’.
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by the functions 𝑓𝑣,𝜑 : 𝐺 → C indexed by 𝑣 ∈ 𝑉, 𝜑 ∈ 𝑉∗ that are given by

𝑓𝑣,𝜑 (𝑔) = 𝜑𝑔(𝑣).

We write 𝑊𝑑 for the sum of the spaces of matrix coefficients for all representations of level d, and denote
by 𝑓 ≈𝑑 the projection of f onto 𝑊𝑑 .

Keevash and Lifshitz proved the following:

Theorem 3.1 [16, Theorem 4.1]. There exists 𝐶 > 0, such that for any 𝑛 ∈ N and for any 𝑟 > 1, if
𝐴 ⊆ 𝑆𝑛 is r-global and 𝑑 ≤ min( 1

8 log(1/𝜇(𝐴)), 10−5𝑛), then

‖1≈𝑑𝐴 ‖2
2 ≤ 𝜇(𝐴)2

(
𝐶𝑟4𝑑−1 log(1/𝜇(𝐴))

)𝑑
.

3.2. Proof of Proposition 1.9

Recall that any irreducible character 𝜒 is the trace of a unique irreducible representation 𝜌, and that
we have 𝜒(1) = dim(𝜌). We say that the level of an irreducible character 𝜒 is the level of the unique
irreducible representation that corresponds to it.

In the proof, we use the following lower bounds on the dimensions of low level irreducible represen-
tations.

Lemma 3.2 [4, Claim 1 and Theorem 19]. There exists 𝑛0 ∈ N, such that the following holds for all
𝑛 > 𝑛0. Let 𝑑 ≤ 𝑛/200 and let 𝜒 be an irreducible character of 𝑆𝑛 of level ≥ 𝑑. Then 𝜒(1) ≥

(
𝑛
𝑒𝑑

)𝑑
.

Proof of Proposition 1.9. Let 𝐴 ⊆ 𝑆𝑛 be a 𝛿-spread set of density ≥ 𝑒−𝑛
𝛼 , let 𝑔 = 1𝐴

𝜇 (𝐴) , and let 𝜒 be a
character of level d. We may assume w.l.o.g. that 𝜇(𝐴) = 𝑒−𝑛

𝛼 . We consider two cases:

1. 𝑑 ≥ min(10−5𝑛, 1
8 𝑛𝛼). In this case, we may upper bound ‖𝑔=𝜒 ‖2 ≤ ‖𝑔‖2 = 𝑒𝑛

𝛼 ≤ 𝑒𝑛
1−𝜖 , while by

Lemma 3.2, for a sufficiently large n, we have 𝜒(1) ≥ min(
(
𝑛
𝑒𝑑

)𝑑
,
(

200
𝑒

)𝑛/200
). This implies that the

statement of the proposition holds provided that 𝑛0 is sufficiently large.
2. 𝑑 ≤ min(10−5𝑛, 1

8 𝑛𝛼). In this case, we may apply Theorem 3.1 to obtain

‖𝑔=𝜒 ‖2
2 ≤ 𝜇(𝐴)2

(
𝐶𝑛4𝛿𝑑−1 log(1/𝜇(𝐴))

)𝑑
≤

(
𝐶𝑑−1𝑛𝛼+4𝛿

)𝑑
,

and by Lemma 3.2, the right-hand side is smaller than 𝜒(1)𝛼+𝜖 , provided that 𝛿 is sufficiently small
and 𝑛0 is sufficiently large.

This completes the proof. �

3.3. Bounds for the finer isotypic decomposition over 𝐴𝑛

We shall make use also of the following variant of Proposition 1.9 for 𝐴𝑛.

Proposition 3.3. For any 𝜖 > 0, there exist 𝛿, 𝑛0 > 0, such that the following holds for all 𝑛 > 𝑛0.
Let 𝛼 < 1 − 𝜖 and let 𝐴 ⊆ 𝐴𝑛 be a 𝛿-spread set of density 𝜇𝐴𝑛 (𝐴) ≥ 𝑒−𝑛

𝛼 . Write 𝑔 = 1𝐴
𝜇𝐴𝑛 (𝐴)

. Then
‖𝑔=𝜒 ‖2

2 ≤ 𝜒(1)𝛼+𝜖 for any 𝜒 ∈ 𝐴𝑛.

Proof. For a partition 𝜆, let us write 𝜆′ for the conjugate partition obtained by replacing the roles
of the rows and the columns in its Young diagram. Recall that the corresponding characters satisfy
𝜒𝜆 = 𝜒𝜆′ · sign.

It is well known that all irreducible characters of 𝐴𝑛 are obtained from characters of 𝑆𝑛, in one of
two possible ways:
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1. Characters that correspond to partitions 𝜆 with 𝜆 ≠ 𝜆′: In this case, the characters 𝜒𝜆 and 𝜒𝜆′ restrict
to the same irreducible character of 𝐴𝑛.

2. Characters that correspond to partitions 𝜆 with 𝜆 = 𝜆′. In this case, the restriction of 𝜒𝜆 to 𝐴𝑛 splits to
the sum of two irreducible characters, which we denote by 𝜒𝜆1 and 𝜒𝜆2 , that have the same dimension.

To handle the characters of the second type, we note that for any such 𝜆, the level of 𝜒𝜆 is necessarily
≥ 𝑛/2 − 1. Therefore, by Lemma 3.2, we have

𝜒𝜆1 (1) = 𝜒𝜆2 (1) ≥
1
2

(
200
𝑒

)𝑛/200
,

which implies that

‖𝑔=𝜒 ‖2
2 ≤ ‖𝑔‖2

2 ≤ 𝑒𝑛
𝛼 ≤ 𝜒(1)𝛼+𝜖 ,

provided that n is sufficiently large with respect to 𝜖 .
We now handle the characters of the first type. Let h be the extension of g to 𝑆𝑛 whose value on the

odd permutations is 0. Write ℎ =
∑

𝜆�𝑛 ℎ=𝜒𝜆 . Let 𝜆 ≠ 𝜆′ and let 𝜒 be the restriction of 𝜒𝜆 to 𝐴𝑛. Then
𝑔=𝜒 = 𝜒(1)𝑔 ∗ 𝜒. We would like to write this convolution in terms of convolutions over 𝑆𝑛 to which we
will be able to apply Proposition 1.9.

Let �̃� = 𝜒𝜆 + 𝜒𝜆′ . Then we have �̃�(𝜎) = 2𝜒(𝜎) for all 𝜎 ∈ 𝐴𝑛 and �̃�(𝜎) = 0 for all 𝜎 ∈ 𝑆𝑛 \ 𝐴𝑛.
Therefore, the functions 𝑔 ∗ 𝜒 and ℎ ∗ �̃� agree on 𝐴𝑛 (note that the first convolution takes place in 𝐴𝑛

and the second takes place in 𝑆𝑛). Hence,

𝑔=𝜒 = 𝜒(1)𝑔 ∗ 𝜒 = 𝜒(1) (ℎ ∗ 𝜒𝜆 + ℎ ∗ 𝜒𝜆′ ) |𝐴𝑛 = (ℎ=𝜒𝜆 + ℎ=𝜒𝜆′ ) |𝐴𝑛 .

The desired upper bound on 𝑔=𝜒 now follows from the triangle inequality, when applying Proposition 1.9
to h. �

4. Upper bounding spread independent sets in normal Cayley graphs

In this section, we prove Theorem 1.8, as well as several related results. We begin with a proposition that
explains how to combine character bounds with hypercontractivity to upper bound the size of spread
independent sets.

Recall that any class function ℎ : 𝐴𝑛 → C can be uniquely represented as a linear combination of
irreducible characters: ℎ =

∑
𝜒∈𝐴𝑛

ℎ𝜒𝜒. The coefficient of 𝜒 in this expansion is denoted by ℎ̂(𝜒). Note
that if 𝐴 = 𝜎𝑆𝑛 for some 𝜎 ∈ 𝐴𝑛 and ℎ = 1𝐴, then for any 𝜒 ∈ 𝐴𝑛, we have ℎ̂(𝜒) = 𝜇𝐴𝑛 (𝐴)𝜒(𝜎).

Proposition 4.1. For any 𝜖 > 0, there exist 𝑛0 ∈ N and 𝛿 > 0 such that the following holds for
all 𝑛 > 𝑛0 and all 0 < 𝛼 < 1 − 𝜖 . Suppose that 𝐼, 𝐼 ′ ⊆ 𝐺 are 𝛿-spread subsets of 𝐴𝑛, such that
𝜇𝐴𝑛 (𝐼), 𝜇𝐴𝑛 (𝐼 ′) > 𝑒−𝑛

1−𝛼−𝜖 . Suppose additionally that 𝐴 ⊆ 𝐴𝑛 is a normal set with

1̂𝐴(𝜒)
𝜇𝐴𝑛 (𝐴)

< 𝜒(1)𝛼

for every irreducible character 𝜒 of 𝐴𝑛. Then the sets 𝐼, 𝐼 ′ span at least one edge in the Cayley graph
Cay(𝐴𝑛, 𝐴).

Proof. Write ℎ = 1𝐴
𝜇𝐴𝑛 (𝐴)

. Let 𝑇𝐴 be the operator associated with the Cayley graph generated by A (i.e.,
𝑇𝐴𝑔 = ℎ ∗ 𝑔). Let 𝑊𝜒 := span{𝑔𝜒}𝑔∈𝐴𝑛 (where 𝑔𝜒 is defined as 1𝑔 ∗ 𝜒) be the isotypic component
of 𝜒. Each 𝑊𝜒 consists of the union of all the irreducible representations 𝜌𝜒 that correspond to 𝜒
in 𝐿2 (𝐴𝑛). Hence, it follows from the Peter-Weyl theorem that each 𝑊𝜒 is an irreducible 𝐴𝑛 × 𝐴𝑛

representation appearing in 𝐿2 (𝐴𝑛) exactly once. The operator 𝑇𝐴 commutes with the action of 𝐴𝑛×𝐴𝑛,
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and thus, it follows from Schur’s lemma that the restriction of 𝑇𝐴 to 𝑊𝜒 is multiplication by a scalar. To
compute the scalar it is sufficient to compute 𝑇𝐴𝜒. By Frobenius, we therefore obtain that the eigenvalue
corresponding to 𝑊𝜒 is given by ℎ̂ (𝜒)

𝜒 (1) . Write 𝑓 = 1𝐼
𝜇𝐺 (𝐼 ) and 𝑔 = 1𝐼 ′

𝜇𝐺 (𝐼 ′) . We have

〈𝑇𝐴 𝑓 , 𝑔〉 =
∑
𝜒

ℎ̂(𝜒)
𝜒(1) 〈 𝑓 =𝜒, 𝑔=𝜒〉. (4.1)

By Proposition 3.3, applied with 𝜖/2 in place of 𝜖 , and Theorem 2.14, we therefore have

|〈𝑇𝐴 𝑓 , 𝑔〉 − 1| ≤
∑

𝜒∈𝐴𝑛\{triv}

𝜒(1)𝛼−1‖ 𝑓 =𝜒 ‖2‖𝑔=𝜒 ‖2 ≤
∑

𝜒∈𝐴𝑛\{𝑡𝑟𝑖𝑣 }

𝜒(1)−𝜖 /2 = 𝑜(1).

Hence, we have 〈𝑇𝐴 𝑓 , 𝑔〉 ≠ 0, provided that n is sufficiently large, which implies that there exists an
edge between I and 𝐼 ′. �

The following theorem follows by combining Proposition 4.1 with the results of Larsen–Shalev [23]
and Larsen–Tiep [25] presented in Section 2.

Theorem 4.2. For any 𝜖 > 0, there exist 𝑛0 ∈ N and 𝛿 > 0, such that the following holds for all
𝑛 > 𝑛0. Let 𝜎 ∈ 𝐴𝑛 and write 𝐸 (𝜎) = 𝛼. Then every 𝛿-spread independent set in the Cayley graph
Cay(𝐴𝑛, 𝜎𝑆𝑛 ) has density ≤ 𝑒−𝑛

1−𝛼−𝜖
.

Proof. Let 𝐴 = 𝜎𝑆𝑛 . As 𝐸 (𝜎) = 𝛼, we may apply Theorem 2.4 to deduce that for any character 𝜒 of 𝐴𝑛,

1̂𝐴(𝜒)
𝜇𝐴𝑛 (𝐴)

= 𝜒(𝜎) ≤ 𝜒(1)𝛼+𝜖 /2.

The assertion now follows from Proposition 4.1, when substituting 𝛼 + 𝜖/2 in place of 𝛼 and 𝜖/2 in
place of 𝜖 . �

Now we are ready to present the proofs of Theorems 1.7 and 1.8.

Proof of Theorem 1.8. The theorem follows immediately by combining Theorem 4.2 with
Lemma 2.5. �

Proof of Theorem 1.7. Let 𝜖 > 0, let 𝛿, 𝑛0 (depending on 𝜖) be determined below, and let I be an
independent set in 𝐶𝑎𝑦(𝐴𝑛, 𝜎𝑆𝑛 ), where 𝑛 ≥ 𝑛0 + 𝑡 and 𝜎 ∈ 𝐴𝑛 is a permutation with t fixed points.
Assume on the contrary that 𝜇𝐴𝑛 (𝐼) > max(𝑒−(𝑛−𝑡)1/3−𝜖

, (𝑛 − 𝑡)−𝛿𝑡 ). We obtain a contradiction in a
three-step argument.

Step 1: Reducing to the case 𝑡 ≤ 𝑛1/3. We use the following observation. Let 1 ≤ ℓ ≤ 𝑡 and let 𝜎′

be obtained from 𝜎 by deleting ℓ of its fixed points. For each ℓ-umvirate 𝜏𝑈, with U the subgroup of
all permutations that fix a given set of size ℓ, the set 𝐼 ′ = 𝜏−1𝐼 ∩ 𝑈 is independent in the Cayley graph
Cay(𝑈, (𝜎′)𝑈 ) which is isomorphic to Cay(𝐴𝑛−ℓ , (𝜎′)𝑆𝑛−ℓ ).

If 𝑡 > 𝑛1/3, we may reduce the number of fixed points by applying this process with ℓ = �𝑡−(𝑛−𝑡)1/3�,
choosing an ℓ-umvirate 𝜏𝑈 such that 𝜇 (𝐼∩𝜏𝑈 )

𝜇 (𝑈 ) ≥ 𝜇𝐴𝑛 (𝐼). The resulting set 𝐼 ′ is independent in the
Cayley graph Cay(𝐴𝑛′ , (𝜎′)𝐴𝑛′ ) with 𝑛′ = 𝑛 − ℓ, where the number 𝑡 ′ = �(𝑛 − 𝑡)1/3� of fixed points of
𝜎′ satisfies (𝑛′)1/3−𝜖 /2 ≤ 𝑡 ′ ≤ (𝑛′)1/3, provided that 𝑛0 is sufficiently large as a function of 𝜖 .

To see that 𝜇𝐴𝑛′ (𝐼 ′) > max(𝑒−(𝑛′−𝑡′)1/3−𝜖
, (𝑛′ − 𝑡 ′)−𝛿𝑡′ ), note that for any 𝜖, 𝛿 > 0, for any sufficiently

large 𝑛0 (depending on 𝜖, 𝛿), and for any 𝑛, 𝑡 such that 𝑡 � 𝑛1/3−𝜖 and 𝑛− 𝑡 ≥ 𝑛0, we have 𝑒−(𝑛−𝑡)
1/3−𝜖 �
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(𝑛 − 𝑡)−𝛿𝑡 . Hence,

𝜇𝐴𝑛′ (𝐼
′) ≥ 𝜇𝐴𝑛 (𝐼) > max(𝑒−(𝑛−𝑡)1/3−𝜖

, (𝑛 − 𝑡)−𝛿𝑡 ) = 𝑒−(𝑛−𝑡)
1/3−𝜖

= 𝑒−(𝑛
′−𝑡′)1/3−𝜖

= max(𝑒−(𝑛′−𝑡′)1/3−𝜖
, (𝑛′ − 𝑡 ′)−𝛿𝑡′ ),

where the last equality holds since 𝑡 ′ ≥ (𝑛′)1/3−𝜖 /2. Therefore, 𝐼 ′ satisfies the ‘contrary assumption’ for
(𝑛′, 𝑡 ′) in place of (𝑛, 𝑡). This shows that we may assume w.l.o.g. that 𝑡 ≤ 𝑛1/3.

Step 2: Reducing to the case where I is 𝛿-spread. Similarly to the first step, we may also assume that
I is 𝛿-spread, as otherwise we may iteratively find ℓ-umvirates in which the density of A is ≥ 𝜇(𝐴)𝑛𝛿ℓ

until we are stuck. The set 𝐼 ′′ we obtain at the end of this process is an independent 𝛿-spread set in the
Cayley graph Cay(𝐴𝑛′′ , (𝜎′′)𝐴𝑛′′ ), where 𝜎′′ has 𝑡 ′′ fixed points and 𝑛′′ = 𝑛 − (𝑡 − 𝑡 ′′). Its measure
satisfies 𝜇𝐴𝑛′′ (𝐼 ′′) ≥ max(𝑒−(𝑛′′−𝑡′′)1/3−𝜖

, (𝑛′′ − 𝑡 ′′)−𝛿𝑡′′ ), as in the transition from (𝑛, 𝑡) to (𝑛′′, 𝑡 ′′), the
left term remains unchanged and the increase of the right term is less than the density increase by a factor
of 𝑛𝛿ℓ which we obtain in each ℓ-restriction. This shows that we may assume w.l.o.g. that I is 𝛿-spread.

Step 3: Applying Theorem 1.8. Assuming that 𝑡 ≤ 𝑛1/3 and that I is 𝛿-spread, we can apply Theo-
rem 1.8, with the same value of 𝜖 , to deduce that

𝜇(𝐼) < 𝑒−𝑛
1/2− log𝑛 𝑡

2 −𝜖
≤ 𝑒−𝑛

1/3−𝜖
,

which contradicts the assumption 𝜇𝐴𝑛 (𝐼) > max(𝑒−(𝑛−𝑡)1/3−𝜖
, (𝑛 − 𝑡)−𝛿𝑡 ). This completes the proof

(with 𝛿 being the same as in Theorem 1.8 and 𝑛0 being sufficiently large). �

5. The spreadness of conjugacy classes and their restrictions

In this section, we prove that ‘large’ conjugacy classes of permutations with not-too-many short cycles
are spread and that the same holds for their restrictions inside t-umvirates (under certain additional
conditions). In order to state our goal more precisely, we introduce some more terminology.

A d-restriction of a function is its restriction to a d-umvirate 𝑈𝐼→𝐽 with |𝐼 | = 𝑑. A k-chain is
a restriction of the form 𝑖1 → 𝑖2 → . . . → 𝑖𝑘+1 (i.e., 𝑖1 → 𝑖2, 𝑖2 → 𝑖3, . . . , 𝑖𝑘 → 𝑖𝑘+1), where
𝑖1, . . . 𝑖𝑘+1 are all different. In other words, a k-chain is the restriction to the k-umvirate 𝑈𝐼→𝐽 , where
𝐼 = (𝑖1, . . . , 𝑖𝑘 ), and 𝐽 = (𝑖2, . . . , 𝑖𝑘+1). We say that a 𝑘1-chain (𝑖1 → 𝑖2 → . . . → 𝑖𝑘1+1) and 𝑘2-
chain ( 𝑗1 → 𝑗2 → . . . → 𝑗𝑘2+1) are disjoint if all the coordinates 𝑖1, . . . , 𝑖𝑘1+1, 𝑗1, . . . , 𝑗𝑘2+1 are
different. We say that the length of a 𝑘1-chain is 𝑘1. A k-restriction is a k-cycle if it takes the form
𝑖1 → 𝑖2 → . . . → 𝑖𝑘 → 𝑖1. Every d-restriction can be decomposed to disjoint cycles and k-chains that
we call the parts of the restriction.

We prove the following lemma, as well as a variant of it (Lemma 5.3 below) that will be used in the
sequel. For the sake of convenience, we use the term ‘globalness’ throughout this section. Recall that a
set is 𝛿-spread if and only if it is 𝑛𝛿-global.
Lemma 5.1. There exists 𝑛0 > 0 such that the following holds for all 𝑛 > 𝑛0. Let 𝑟 ≥ 25, and let
𝐴 ⊆ 𝑆𝑛 be a conjugacy class of density at least 𝑒−𝑛, such that all the permutations in A have at most
(𝑟/2)ℓ ℓ-cycles for each ℓ. Then A is r-global.

In order to prove the lemma, we first prove the following claim which calculates the measure of
restrictions without cycles.
Claim 5.2. Let A be a normal set. Let 𝑑 > 0 and let 𝐴𝐼→𝐽 be a d-restriction that consists of t chains.
Denote the chain lengths of 𝐴𝐼→𝐽 by 𝑖1 − 1, . . . , 𝑖𝑡 − 1. Let P be the probability that for a random
permutation 𝜏 ∼ 𝐴, and for all 1 ≤ ℓ ≤ 𝑡, the length of the cycle containing ℓ in 𝜏 is at least 𝑖ℓ . Then

𝜇(𝐴𝐼→𝐽 ) = 𝜇(𝐴) · 𝑃 ·
[(

1 − 𝑡

𝑛

) (
1 − 𝑡

𝑛 − 1

)
· · ·

(
1 − 𝑡

𝑛 + 1 − |𝐼 |

)]−1
.
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Proof. Decompose the d-restriction 𝐴𝐼→𝐽 into its chain parts

𝑎11 → 𝑎12 → . . . → 𝑎1𝑖1 ,

𝑎21 → . . . → 𝑎2𝑖2 ,

...

𝑎𝑡1 → . . . → 𝑎𝑡𝑖𝑡 .

Consider the family of d-umvirates 𝑈𝜎 (𝐼 )→𝜎 (𝐽 ) = 𝜎𝑈𝐼→𝐽𝜎−1, for all permutations 𝜎 ∈ 𝑆𝑛 that fix each
of 𝑎11, . . . , 𝑎𝑡1. It is clear that any two non-equal d-umvirates of this form are pairwise disjoint (as sets of
permutations). Moreover, since A is normal, the measure of A inside each such d-umvirate is the same.

Without loss of generality, we may assume 𝑎11 = 1, . . . , 𝑎𝑡1 = 𝑡. Observe that 𝐴 ∩
(
⋃

𝜎∈𝑈(1,...,𝑡 )→(1,...,𝑡 ) 𝑈𝜎 (𝐼 )→𝜎 (𝐽 ) ) consists of all the permutations in A for which for all 1 ≤ ℓ ≤ 𝑡,
the length of the cycle that contains ℓ is ≥ 𝑖ℓ . Hence, we have

𝜇(𝐴)𝑃 = 𝜇(𝐴𝐼→𝐽 )𝜇(𝑈𝐼→𝐽 )#{𝑈𝜎 (𝐼 )→𝜎 (𝐽 ) : 𝜎 ∈ 𝑈(1,...,𝑡)→(1,...,𝑡) }

Therefore, in order to prove the claim, all that remains is computing the orbit of 𝑈𝐼→𝐽 with respect to
the action of the group 𝑈(1,...,𝑡)→(1,...,𝑡) on 𝑆𝑛 by conjugation. By the orbit stabilizer theorem, its size is

(𝑛 − 𝑡)!
(𝑛 − 𝑖1 − 𝑖2 − . . . − 𝑖𝑡 )!

.

As 𝜇(𝑈𝐼→𝐽 ) = [𝑛(𝑛 − 1) · . . . · (𝑛 − 𝑖1 − 𝑖2 − . . . − 𝑖𝑡 + 𝑡 + 1)]−1, the claim follows by rearranging. �

Proof of Lemma 5.1. Given a restriction 𝐴𝐼→𝐽 of A, we view it as a composition of two restrictions,
denoted by 𝐼1 → 𝐽1 and 𝐼2 → 𝐽2, where the restriction 𝐼1 → 𝐽1 consists of all the cycle parts of 𝐼 → 𝐽,
and the restriction 𝐼2 → 𝐽2 consists of the chain parts. Let us consider each restriction separately.

Density increase in a restriction consisting of cycles. By the orbit stabilizer theorem, if 𝜎 has 𝑓𝜎 (𝑖)
cycles of length i for each i, then the density of its conjugacy class 𝜎𝑆𝑛 in 𝑆𝑛 is 1/

∏
(𝑖 𝑓𝜎 (𝑖) · 𝑓𝜎 (𝑖)!).

Therefore, when removing a cycle of size ℓ from 𝜎, the measure of the corresponding conjugacy class
increases by a factor of ℓ · 𝑓𝜎 (ℓ). By assumption, we have 𝑓𝜎 (ℓ) ≤ (𝑟/2)ℓ , and hence, when deleting an
ℓ-cycle from 𝜎, the density of the corresponding conjugacy class increases by a factor of ≤ (ℓ1/ℓ𝑟/2)ℓ .
Set 𝐴′ = 𝐴𝐼1→𝐽1 , and write 𝑘 = |𝐼1 |, 𝑛′ = 𝑛 − 𝑘 . We obtain that 𝜇(𝐴′

𝐼1→𝐽1
) ≤ 𝑟𝑘𝜇(𝐴), by sequentially

removing cycles from 𝜎 and taking into account the measure increment at each step.

Density increase in a restriction consisting of chains. Denote the lengths of the chains in the restriction
by 𝑖1 − 1, 𝑖2 − 1, . . . , 𝑖𝑡 − 1. Note that we may assume that (𝑖1 − 1) + . . . + (𝑖𝑡 − 1) < 𝑛/3, for otherwise,
the lemma holds trivially. Hence, we have 1 − 𝑡

𝑛+1−|𝐼 | > 1/2, and consequently,[(
1 − 𝑡

𝑛

) (
1 − 𝑡

𝑛 − 1

)
· · ·

(
1 − 𝑡

𝑛 + 1 − |𝐼 |

)]−1
≤ 2𝑛.

Therefore, the upper bound 𝜇(𝐴𝐼→𝐽 ) = 𝜇(𝐴′
𝐼2→𝐽2

) ≤ 2 |𝐼2 |𝜇(𝐴′) ≤ 𝑟 |𝐼 |𝜇(𝐴) follows immediately from
Claim 5.2, applied with 𝐴′ in place of A. �

Lemma 5.3. There exist 𝑛0 ∈ N and 𝐶 > 0, such that the following holds for all 𝑛 > 𝑛0 and all 𝑟 ≥ 20.
Let 𝜎 ∈ 𝑆𝑛 be a permutation that has at most 𝑟/20 fixed points and 2-cycles, and at most (𝑟/20)ℓ/3 ℓ-
cycles for each ℓ ≥ 3. Suppose in addition that 𝐴 = 𝜎𝑆𝑛 has density ≥ 𝑒−

√
𝑛/𝐶 . Let 𝑑 ≤

√
𝑛

𝑟𝐶 and suppose
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that 𝐴𝐼→𝐽 is a d-restriction of A whose parts consist only of 1-chains and 2-chains. Then 𝐴𝐼→𝐽 is
r-global.

Proof. Let A be a conjugacy class that satisfies the assumptions of the lemma, and let 𝐴𝐼→𝐽 be a
d-restriction of A. Let 𝐴𝐼 ′→𝐽 ′ be an ℓ-restriction of 𝐴𝐼→𝐽 . Our goal is to show that 𝜇(𝐴𝐼 ′→𝐽 ′ ) ≤
𝑟ℓ𝜇(𝐴𝐼→𝐽 ).

Similarly to the proof of Lemma 5.1, we view the restriction 𝐼 ′ → 𝐽 ′ as a composition of two
restrictions, denoted by 𝐼1 → 𝐽1 and 𝐼2 → 𝐽2, where the restriction 𝐼1 → 𝐽1 consists of all the cycle
parts, and the restriction 𝐼2 → 𝐽2 consists of the chain parts. We will show that

𝜇(𝐴𝐼 ′→𝐽 ′ )
𝜇(𝐴𝐼→𝐽 )

=
𝜇(𝐴𝐼1→𝐽1 )

𝜇(𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) )
·

𝜇(𝐴𝐼 ′→𝐽 ′ )/𝜇(𝐴𝐼1→𝐽1 )
𝜇(𝐴𝐼→𝐽 )/𝜇(𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) )

≤ 𝑟ℓ , (5.1)

by considering each restriction separately.
Density increase in the restriction 𝐼1 → 𝐽1 consisting of cycles. Here, we have to bound the density

increase 𝜇 (𝐴𝐼1→𝐽1 )
𝜇 (𝐴(𝐼∩𝐼1 )→(𝐽∩𝐽1 ) )

. It will be more convenient for us to bound the density increase 𝜇(𝐴𝐼1→𝐽1 )/𝜇(𝐴)
instead. To see that this is sufficient, note that by Claim 5.2, we have

𝜇(𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) ) ≥ 𝜇(𝐴)/2.

Indeed, denoting the lengths of the chains in the restriction (𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) ) by 𝑖1 − 1, 𝑖2 − 1, . . . , 𝑖𝑠 − 1,
the claim implies that 𝜇(𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) ) ≥ 𝜇(𝐴) · 𝑃, where P is the probability that for a randomly
chosen 𝜏 ∼ 𝐴, for all 𝑗 = 1, . . . , 𝑠, the length of the cycle containing j in 𝜏 is at least 𝑖 𝑗 . By assumption,
𝑖 𝑗 ≤ 2 for all j, the permutations in A have at most 3𝑟/20 elements in cycles of length ≤ 2, and we have
𝑠 ≤ 𝑑 ≤ 𝑛

𝑟𝐶 . Hence,

𝑃 ≥
(
1 − 3𝑟

20𝑛

)𝑠
≥

(
1 − 3𝑟

20𝑛

)√𝑛/𝑟𝐶
> 1/2,

provided that C is sufficiently large.
In order to bound 𝜇(𝐴𝐼1→𝐽1 )/𝜇(𝐴), we observe that as the ‘old’ restriction 𝐼 → 𝐽 consists only of 1-

chains and 2-chains, each cycle of length 𝑙 ≥ 3 in 𝐼1 → 𝐽1 contains at least 𝑙/3 elements from the ‘new’
restriction 𝐼1 \ 𝐼 → 𝐽1 \ 𝐽. Similarly, each cycle of length 1 or 2 in 𝐼1 → 𝐽1 contains at least one element
from the restriction 𝐼1 \ 𝐼 → 𝐽1 \ 𝐽. As was shown in the proof of Lemma 5.1, the density increase when
removing a single cycle of length l from the conjugacy class of 𝜎 ∈ 𝑆𝑛 is at most 𝑙 · 𝑓𝜎 (𝑙). By assumption,
we have 𝑓𝜎 (𝑙) ≤ (𝑟/20)𝑙/3 for all 𝑙 ≥ 3, and also 𝑓𝜎 (𝑙) ≤ (𝑟/20)𝑙/2 for 𝑙 = 2 and 𝑓𝜎 (𝑙) ≤ (𝑟/20)𝑙 for
𝑙 = 1. It follows that the density increase when removing a cycle that contains 𝑙 ′ ‘new’ coordinates is
at most 3𝑙 ′ · (𝑟/20)𝑙′ ≤ (𝑟/8)𝑙′ . Since the number of ‘new’ coordinates is |𝐼1 \ 𝐼 | ≤ ℓ, by sequentially
removing cycles from 𝜎 and taking into account the measure increment at each step, we obtain

𝜇(𝐴𝐼1→𝐽1 )
𝜇(𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) )

≤ 2 ·
𝜇(𝐴𝐼1→𝐽1 )

𝜇(𝐴) ≤ 2(𝑟/8)ℓ ≤ 𝑟ℓ/4. (5.2)

Density increase in the restriction 𝐼2 → 𝐽2 consisting of chains. Here, we have to bound the ratio between
the density increases of the restrictions 𝐴𝐼1→𝐽1 → 𝐴𝐼1∪𝐼2→𝐽1∪𝐽2 and 𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) → 𝐴𝐼→𝐽 . As these
restrictions consist only of chains, we can estimate and compare their density increases using Claim 5.2.

As the restriction 𝐼 → 𝐽 consists only of 1 chains and 2 chains, the value P that corresponds to it in
Claim 5.2 is at least 1/2. Therefore, we may assume that ℓ = |𝐼 ′ \ 𝐼 | ≤ 4

√
𝑛/𝐶, as otherwise, we have

𝜇(𝐴𝐼 ′→𝐽 ′ ) ≤ 1 ≤ 4ℓ 1
2 𝜇(𝐴) ≤ 4ℓ𝜇(𝐴𝐼→𝐽 ). We also have |𝐼 | ≤ 4

√
𝑛/𝐶 by hypothesis.

Denote the chain lengths of the restrictions 𝐼2 → 𝐽2 and (𝐼 ∩ 𝐼2) → (𝐽 ∩ 𝐽2) by 𝑖′1 − 1, . . . , 𝑖′𝑠′ − 1
and 𝑖′′1 − 1, . . . , 𝑖′′𝑠′′ − 1, respectively, where 𝑖′𝑗 ≥ 𝑖′′𝑗 for any 1 ≤ 𝑗 ≤ 𝑠′′ and 𝑠′ ≥ 𝑠′′. Note that
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𝑠′′ ≤ |𝐼 ∩ 𝐼2 | ≤ 4
√
𝑛

𝐶 and that 𝑠′ − 𝑠′′ ≤ |𝐼2 \ 𝐼 | ≤ ℓ ≤ 4
√
𝑛

𝐶 . Let 𝑛′ = 𝑛 − |𝐼1 | ≥ 𝑛 − 𝑑 − ℓ and
𝑛′′ = 𝑛 − |𝐼 ∩ 𝐼1 | ≥ 𝑛 − 𝑑.

As the corresponding value of P for the restriction 𝐼 ∩ 𝐼2 → 𝐽 ∩ 𝐽2 is also ≥ 1
2 , we may apply Claim

5.2 to obtain that

𝜇(𝐴𝐼 ′→𝐽 ′ )/𝜇(𝐴𝐼1→𝐽1 )
𝜇(𝐴𝐼→𝐽 )/𝜇(𝐴(𝐼∩𝐼1)→(𝐽∩𝐽1) )

≤ 2

(
1 − 𝑠′′

𝑛′′

) (
1 − 𝑠′′

𝑛′′−1

)
· · ·

(
1 − 𝑠′′

𝑛′′+1−|𝐼∩𝐼2 |

)
(
1 − 𝑠′

𝑛′
) (

1 − 𝑠′
𝑛′−1

)
· · ·

(
1 − 𝑠′

𝑛′+1−|𝐼2 |

) ≤ 4,

provided that C is sufficiently large. Combining this with (5.1) and (5.2) completes the proof of the
lemma. �

6. Proof of Theorems 1.3, 1.4 and 1.5

In this section, we prove Theorem 1.3, which states that for a sufficiently large n, for any 𝜎 ∈ 𝑆𝑛 with
less than 𝑛2/5−𝜖 cycles, we have (𝜎𝑆𝑛 )2 = 𝐴𝑛. Then, we deduce from it Theorems 1.4 and 1.5.

The proof of Theorem 1.3 proceeds in two stages. First, we show that we may strengthen the
hypothesis of the theorem by adding the assumption that 𝜎 has only a few short cycles, and at the same
time weaken the assertion to claiming that (𝜎𝑆𝑛 )2 contains any fixed-point free 𝜏 ∈ 𝐴𝑛. Afterward, we
prove the ‘reduced’ statement.

Formally, in Sections 6.1 and 6.2, we show that it is sufficient to prove the following lemma.

Lemma 6.1. For any 𝜖 > 0, there exists 𝑛0 ∈ N such that the following holds for all 𝑛 > 𝑛0. Let 𝜏 ∈ 𝐴𝑛

be a permutation with no fixed points. Suppose that 𝜎 ∈ 𝑆𝑛 has at most 𝑛2/5−𝜖 cycles overall and less
than 10 cycles of length ℓ for each 2 ≤ ℓ ≤ log 𝑛. Then 𝜏 ∈

(
𝜎𝑆𝑛

)2
.

The proof of Lemma 6.1 is presented in Section 6.3. The proofs of Theorems 1.4 and 1.5 is presented
in Section 6.4.

6.1. Explicit computations

For 𝜎 ∈ 𝑆𝑚 and 𝜏 ∈ 𝑆𝑛−𝑚, we write 𝜎 ⊕ 𝜏 for the element in 𝑆𝑛 obtained by letting 𝜎 act on the first m
elements and 𝜏 act on the last 𝑛 −𝑚 elements. For a conjugacy class 𝐶1 of 𝑆𝑚 and a conjugacy class 𝐶2
of 𝑆𝑛−𝑚, we write 𝐶1 ⊕𝐶2 for the conjugacy class obtained by concatenating their cycle decompositions.

Lemma 6.2. Let 𝐶1, 𝐶 ′
1, 𝐶 ′′

1 be conjugacy classes of 𝑆𝑚 with 𝐶 ′′
1 ⊆ 𝐶1 · 𝐶 ′

1, and let 𝐶2, 𝐶 ′
2, 𝐶 ′′

2 be
conjugacy classes of 𝑆𝑛−𝑚 with 𝐶 ′′

2 ⊆ 𝐶2 · 𝐶 ′
2. Then the set (𝐶1 ⊕ 𝐶2) · (𝐶 ′

1 ⊕ 𝐶 ′
2) contains 𝐶 ′′

1 ⊕ 𝐶 ′′
2 .

Proof. Let 𝜋1 ∈ 𝐶 ′′
1 and write 𝜋1 = 𝜎1𝜏1 for 𝜎′

1 ∈ 𝐶1, 𝜏1 ∈ 𝐶 ′
1. Let 𝜋2 ∈ 𝐶 ′′

2 and let 𝜎2, 𝜏2 be defined
similarly. We have (𝜎1 ⊕ 𝜎2) (𝜏1 ⊕ 𝜏2) = (𝜋1 ⊕ 𝜋2). �

Lemma 6.3. There exists 𝑛0 ∈ N such that the following holds for any 𝑛 > 𝑛0. Let 𝑟, 𝑚 be integers
dividing n, with 𝑟 > 1 and 𝑛/𝑚 even. Then (𝑟𝑛/𝑟 )2 ⊇ (𝑚𝑛/𝑚).

Proof. Let 𝐵 = (𝑟𝑛/𝑟 ). For 𝑟 ≥ 4, by Theorem 2.12, we have 𝐵2 = 𝐴𝑛. For 𝑟 = 2, we may apply
Theorem 2.13 which says that 𝐵2 contains all the permutations that have an even number of cycles of
each length. As 𝑛/𝑚 is even by hypothesis, this proves the claim.

It now remains to treat the case 𝑟 = 3. For all 𝑚 ≥ 4, we may apply Theorem 2.10 to prove our
assertion, as 𝐸 (𝑚𝑛/𝑚) = 1/𝑚 by definition. The case 𝑚 = 3 is straightforward, as when squaring a
permutation of cycle type (3𝑛/3), we obtain a permutation of the same cycle type. Finally, when 𝑚 = 2
and 𝑟 = 3, we use the fact that in 𝑆12, we have

(2, 7, 5) (3, 8, 6)(1, 9, 4) (12, 11, 10) · (1, 2, 3) (7, 4, 11) (8, 5, 12) (9, 6, 10) =
= (1, 7) (2, 8) (3, 9) (4, 10) (5, 11) (6, 12).
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We now write (3𝑛/3) = 𝐶1 ⊕ · · · ⊕ 𝐶𝑛/12, where each 𝐶𝑖 is the conjugacy class of
(1, 2, 3) (4, 5, 6) (7, 8, 9) (10, 11, 12), and write (2𝑛/2) = 𝐷1 ⊕ · · · ⊕ 𝐷𝑛/12, where each 𝐷𝑖 is the conju-
gacy class of (1, 2) (3, 4) (5, 6) (7, 8), (9, 10), (11, 12). (Note that in this case, n is indeed divisible by 12
since by assumption, 𝑟 = 3 divides n and 𝑛/𝑚 = 𝑛/2 is even). Lemma 6.2 now completes the proof. �

6.2. Reducing to Lemma 6.1

In this subsection, we reduce the statement of Theorem 1.3 to the statement of Lemma 6.1.

Proof of Theorem 1.3, assuming Lemma 6.1. Our goal is to show that for a sufficiently large n, for any
𝜎 ∈ 𝑆𝑛 with at most 𝑛2/5−𝜖 cycles, the conjugacy class 𝐼 = 𝜎𝑆𝑛 satisfies 𝐼2 = 𝐴𝑛. Equivalently, we have
to show that 𝐼2 ∩ 𝜏𝑆𝑛 ≠ ∅ for each 𝜏 ∈ 𝐴𝑛. Fix such a 𝜏 and write 𝐴 = 𝜏𝑆𝑛 . We split the proof into two
cases:

◦ Case 1: The number of fixed points of 𝜎 is at most the number of fixed points of 𝜏.
◦ Case 2: The number of fixed points of 𝜎 is larger than the number of fixed points of 𝜏.

Case 1: 𝜎 has no more fixed points than 𝜏. Write t for the number of fixed points in 𝜎. We may restrict
both I and A to the t-umvirate 𝑈 = 𝑈[𝑡 ]→[𝑡 ] to obtain the conjugacy classes 𝐼 ′, 𝐴′ obtained by removing
t fixed points from 𝜎, 𝜏. It is clearly sufficient to show that (𝐼 ′)2 ⊇ 𝐴′. We may therefore assume that 𝜎
is fixed points free. As 𝜎 has less than 𝑛2/5 cycles overall, the assertion now follows from Theorem 2.11.

Case 2: 𝜎 has more fixed points than 𝜏. By the same argument as in Case 1, we may assume without
loss of generality that 𝜏 has no fixed points. By Lemma 2.8 (applied with 𝜖/3 in place of 𝜖), we have
𝐸 (𝜎) ≤ 2/5 − 2𝜖/3. Theorem 2.10 now completes the proof if 𝐸 (𝜏) < 1/5. Suppose on the contrary
that 𝐸 (𝜏) ≥ 1/5. By Lemma 2.6, applied with 𝑚 = 6 and 𝜖 = 1/60, this implies that for some 𝑖 ≤ 5, 𝜏
has at least 𝑛𝛿 𝑖-cycles, for some explicit 𝛿 > 0. (Actually, this holds for all 𝑛 > 𝑛0, but we may absorb
this into our assumption that n is sufficiently large).

Suppose that 𝜎 has at least 10 ℓ-cycles for some 2 ≤ ℓ ≤ log 𝑛, as otherwise, we are done by
Lemma 6.1. We may write 𝜎 = 𝜎1 ⊕𝜎′

1 and 𝜏 = 𝜏1 ⊕ 𝜏′
1, where 𝜏′

1 consists of 2ℓ 𝑖-cycles and 𝜎′
1 consists

of 2𝑖 ℓ-cycles. (Note that as 𝑖 ≤ 5, 𝜎 contains at least 10 ≥ 2𝑖 ℓ-cycles, and as ℓ ≤ log 𝑛, 𝜏 contains at least
𝑛𝛿 ≥ 2ℓ 𝑖-cycles, assuming n is sufficiently large. Hence, the decomposition is possible). By Lemma 6.3,
we have ((𝜎′

1)
𝑆𝑛 )2 ⊇ (𝜏′

1)
𝑆𝑛 . Hence, by Lemma 6.2, it is sufficient to show that (𝜎𝑆𝑛

1 )2 ⊇ 𝜏𝑆𝑛1 .
We can repeat the deletion process to obtain a sequence of restrictions 𝜎1, . . . , 𝜎𝑗 and 𝜏1, . . . , 𝜏𝑗 ,

until either 𝐸 (𝜏𝑗 ) < 1/5 or 𝜎𝑗 has less than 10 ℓ-cycles for all 2 ≤ ℓ ≤ log 𝑛. (Note that as 𝜎 contains
at most 𝑛2/5 cycles, the process terminates when 𝜎𝑗 , 𝜏𝑗 are permutations on at least 𝑛 − 10𝑛2/5 log 𝑛
coordinates, and thus, for all 1 ≤ 𝑙 ≤ 𝑗 , we have 𝐸 (𝜎𝑙) < 2/5 − 𝜖/2, provided that n is sufficiently
large). In the former case, we are done by Theorem 2.10. In the latter case, we are done by Lemma 6.1.
This completes the proof. �

6.3. Proving Lemma 6.1

Proof of Lemma 6.1. The proof consists of four steps.
Step 1: Reducing to the case where 𝜏 has many short cycles. If 𝜏 has at most 𝑛2/5−𝜖 /3 cycles of length

less than 10
𝜖 , then by Lemma 2.7, we have 𝐸 (𝜏) ≤ 1/5 − 𝜖/12 (provided that n is sufficiently large). As

𝐸 (𝜎) ≤ 2/5 − 𝜖/2 by Lemma 2.8, Theorem 2.10 implies that 𝜏 ∈
(
𝜎𝑆𝑛

)2
, completing the proof.

Hence, we may assume that 𝜏 has at least 𝑛2/5−𝜖 /3 cycles of length less than 10
𝜖 . In particular, there

exists 𝑚 ≤ 10
𝜖 , such that 𝜏 has at least 𝜖

10 𝑛2/5−𝜖 /3 > 𝑛2/5−𝜖 /2 𝑚-cycles. We fix such an m and proceed
with it.

We note that this step, which allows us to assume that 𝜏 has more short cycles of a fixed length than
the total number of fixed points of 𝜎, is the only step where we crucially use the bound 𝑛2/5−𝜖 on the
number of cycles in 𝜎. The other steps can be adapted to work with up to 𝑛1/2−𝜖 cycles in 𝜎.
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Step 2: Removing almost all fixed points of 𝜎 by restrictions. We perform a sequence of 2𝑚-
restrictions intended for removing almost all fixed points of 𝜎, in exchange for removing m-cycles of 𝜏.
The restrictions are of the form 𝐼𝑆′→𝑇 ′ , 𝐼𝑆′→𝑊 ′ , and 𝐴𝑇 ′→𝑊 ′ , for appropriately chosen sets 𝑆′, 𝑇 ′, 𝑊 ′.
The way in which these restrictions are used is explained at the next step.

Assume for simplicity that m is even. Each 2𝑚-restriction involves 4𝑚 coordinates denoted by

𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑚, 𝑥 ′1, . . . , 𝑥 ′𝑚, 𝑦′1, . . . , 𝑦′𝑚,

where 𝑥𝑖 = 𝑦𝑖 and 𝑥 ′𝑖 = 𝑦′𝑖 for all odd i, and except for this, all the coordinates are pairwise distinct. We
define the restrictions by setting

𝑆′ = (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥 ′1, 𝑥 ′2, . . . , 𝑥 ′𝑚), 𝑇 ′ = (𝑦1, 𝑦2, . . . , 𝑦𝑚, 𝑦′𝑚, 𝑦′1, . . . , 𝑦′𝑚−1),
𝑊 ′ = (𝑦𝑚, 𝑦1, . . . , 𝑦𝑚−1, 𝑦′1, 𝑦′2, . . . , 𝑦′𝑚).

As a result, each of the restrictions 𝐼𝑆′→𝑇 ′ , 𝐼𝑆′→𝑊 ′ consists of 𝑚/2 1-cycles, 𝑚/2 1-chains and
𝑚/2 2-chains, while the restriction 𝐴𝑇 ′→𝑊 ′ consists of the two m-cycles (𝑦1, 𝑦2, . . . , 𝑦𝑚, 𝑦1) and
(𝑦′1, 𝑦′2, . . . , 𝑦′𝑚, 𝑦′1).

We perform 𝑠 = � 2 𝑓𝜎
𝑚 � such 2𝑚-restrictions, where 𝑓𝜎 is the number of fixed points of 𝜎. As a

result, all fixed points of 𝜎, except for at most 𝑚/2 − 1, are removed. (Note that we do not ‘get stuck’
on the side of A since the number of m-cycles in 𝜏 is much larger than the number of fixed points of 𝜎,
bounded by 𝑛2/5−𝜖 ). We let 𝐼𝑆→𝑇 , 𝐼𝑆→𝑊 and 𝐴𝑇→𝑊 be the sets obtained at the end of the process.

Step 3: Reducing to edges between vertex sets in a Cayley graph. First, we perform a simple shifting
procedure which allows us to ‘get rid’ of the coordinates in 𝑆, 𝑇 and W. We let 𝜋1 be the permutation that
fixes the set of coordinates not appearing in W and sends the tuple W to the tuple T. The permutation 𝜋1
consists of 2𝑠 𝑚-cycles on the elements appearing in W. Let 𝜋2 be an arbitrary permutation that sends
S to W. Consider the sets 𝐵1 = 𝜋2𝐼𝜋1, 𝐵2 = 𝜋2𝐼, 𝐵3 = 𝐴𝜋1. As (𝐵2)−1𝐵1 = 𝐼−1𝐼𝜋1 and 𝐼−1𝐼 = 𝐼2; it
is sufficient to prove that (𝐵2)−1𝐵1 has a nonempty intersection with 𝐵3 = 𝐴𝜋1. In fact, we show that
(𝐵−1

2 )𝑊→𝑊 (𝐵1)𝑊→𝑊 has a nonempty intersection with (𝐵3)𝑊→𝑊 .
Assume without loss of generality that 𝑊 = {(𝑛 − 2𝑠𝑚 + 1, . . . , 𝑛)} and identify 𝑆𝑛−2𝑚𝑠 with the set

of permutations in 𝑆𝑛 fixing W. Then (𝐴𝜋1)𝑊→𝑊 is the conjugacy class (𝜏′)𝑆𝑛−2𝑚𝑠 of 𝑆𝑛−2𝑚𝑠 , obtained
by deleting 2𝑠 𝑚-cycles from 𝜏. Our goal is showing that the sets (𝐵2)𝑊→𝑊 , (𝐵1)𝑊→𝑊 span an edge in
the Cayley graph Cay(𝑆𝑛, (𝜏′)𝑆𝑛−2𝑚𝑠 ). Furthermore, we can reduce the problem to 𝐴𝑛−2𝑚𝑠 (i.e., assume
w.l.o.g. that 𝐵2, 𝐵3 are contained in 𝐴𝑛−2𝑚𝑠 by multiplying all odd permutations in 𝐵2 by some fixed
permutation and multiplying all odd permutations in 𝐵3 by its inverse).

Step 4: Completing the proof using Proposition 4.1. The sets (𝐵1)𝑊→𝑊 , (𝐵2)𝑊→𝑊 are shifts of the
sets 𝐼𝑆→𝑇 , 𝐼𝑆→𝑊 , and therefore inherit their spreadness. In order to apply Proposition 4.1, we establish
the 𝛿-spreadness of 𝐼𝑆→𝑇 and 𝐼𝑆→𝑊 . We may view the restrictions 𝐼𝑆→𝑇 and 𝐼𝑆→𝑊 as a composition of
two restrictions – a restriction that removes all fixed points except for at most 𝑚/2 − 1 and a restriction
that consists only of 1-chains and 2-chains. By the assumption on 𝜎, this allows us to apply Lemma 5.3,
with any constant 𝑟 > max(10𝑚, 200), to deduce that the sets 𝐵2 and 𝐵3 are r-global. It follows that
𝐵2, 𝐵3 are 𝛿-spread for an arbitrarily small 𝛿 > 0, provided that n is sufficiently large.

As follows from Claim 5.2, a restriction that consists of 1-cycles, 1-chains and 2-chains can-
not decrease the measure of a conjugacy class by more than a factor of 2, and hence, we have
𝜇(𝐼 ′), 𝜇(𝐼 ′′) ≥ 𝑒−𝑛

2/5−2𝜖 . Furthermore, 𝜏′ is fixed-point free, and hence, by Lemma 2.5, we have
𝐸 (𝜏′) ≤ 1/2. Consequently, by Theorem 2.2, we have

1̂𝐴′ (𝜒)
𝜇(𝐴′) = 𝜒(𝜏′) < 𝜒(1)1/2+𝜖 ,

for any 𝜒 ∈ �𝐴𝑛−2𝑚𝑠 , provided that n is sufficiently large. Hence, Proposition 4.1, applied with 𝛼 = 1/2+𝜖 ,
implies that the sets 𝐼 ′, 𝐼 ′′ span an edge in the Cayley graph Cay(𝐴𝑛−2𝑚𝑠 , 𝐴′), completing the proof. �

https://doi.org/10.1017/fms.2024.95 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.95


18 N. Keller, N. Lifshitz, and O. Sheinfeld

6.4. Proving Theorems 1.4 and 1.5

In the proof of Theorem 1.4, we use the following standard fact regarding the cycle structure of random
permutations. For 𝜎 ∈ 𝑆𝑛, denote by 𝐶 (𝜎) the total number of cycles in 𝜎.

Proposition 6.4 [9, Corollary 1.6]. For any 𝑛 ∈ N and any 0 ≤ 𝑚 ≤ 𝑛, we have Pr𝜎∼𝑆𝑛 [𝐶 (𝜎) = 𝑚] ≤
(2 log(𝑛))𝑚−1

(𝑚−1)! .

Proof of Theorem 1.4. Let A be a normal set with 𝜇(𝐴) ≥ 𝑒−𝑛
2/5−𝜖 . We claim that for a sufficiently large

n, A contains a conjugacy class 𝐶 = 𝜎𝑆𝑛 with 𝜇(𝐶) ≥ 𝑒−𝑛
2/5−𝜖 /3 . Once we show this, the assertion of

the theorem follows by applying Theorem 1.3 to C.
It is clearly sufficient to show that for a sufficiently large n, the union of all conjugacy classes

𝐶 ′ = (𝜎′)𝑆𝑛 with 𝜇(𝐶 ′) < 𝑒−𝑛
2/5−𝜖 /3 has measure < 𝑒−𝑛

2/5−𝜖 .
Recall that 𝜇(𝐶 ′) = [

∏𝑛
𝑖=1(𝑖 𝑓𝜎′ (𝑖) · 𝑓𝜎′ (𝑖)!)]−1. Hence, by taking logaritheorems, the assumption

𝜇(𝐶 ′) < 𝑒−𝑛
2/5−𝜖 /3 implies

𝑛∑
𝑖=1

𝑓𝜎′ (𝑖) log(𝑖) + 𝑓𝜎′ (𝑖) log( 𝑓𝜎′ (𝑖)) ≥ 𝑛2/5−𝜖 /3,

and subsequently, 𝐶 (𝜎′) =
∑𝑛

𝑖=1 𝑓𝜎′ (𝑖) ≥ 𝑛2/5−2𝜖 /3, provided that n is sufficiently large. By Proposition
6.4, the probability that a random 𝜎′ satisfies this condition is less than 𝑒−𝑛

2/5−𝜖 , provided that n is
sufficiently large. The assertion follows. �

Proof of Theorem 1.5. Let A be a normal subset of 𝐴𝑛 of density ≥ 𝑒−𝑛
2/5−𝜖 . If A is a normal subset of

𝑆𝑛 as well, then the statement follows from Theorem 1.4. Otherwise, A contains a permutation 𝜎 with
𝜎𝐴𝑛 ≠ 𝜎𝑆𝑛 , in which case the statement follows from Theorem 2.9. �
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