Equivalence Relations and Reductions

1.1 Generalities on Equivalence Relations

Let E be an equivalence relation onaset X.If A C X, welet E | A = E N A?
be its restriction to A. We also let [A]g = {x € X: Jy € A(xEy)} be its
E-saturation. The set A is E-invariant if A = [A]g. In particular, for each
x € X, [x]g is the equivalence class, or E-class, of x. A function f: X — Y
is E-invariant if xEy = f(x) = f(y). Finally, X/E = {[x]g: x € X} is
the quotient space of X modulo E.

Suppose that E, F are equivalence relations on sets X, Y, respectively, and
f: (X/E)* = Y/F,n > 1,isafunction. A lifting of f is a function f: X" — Y
such that f(([x;]£)i<n) = [f((xi)i<n)]F,Vx € X. Similarly if R € (X/E)",
its lifting is R C X", where (x;)i<n € R &= ([xi]E)i<n € R.

If E;,i € I, is a family of equivalence relations, with E; living on X;,
we define the direct sum EBl. E; to be the equivalence relation on @I. X; =
{(x,i): x € X;} defined by

x.) EDE (5.k) & j=k&xE;y.

In particular, we let forn > 1, nE = ,_, E. Also let NE = (P, E.
We define the direct product []; E; to be the equivalence relation on the
space [[; X; defined by

(x;) ]f[Ei (vj) = Yj(xEjy)).

In particular, we let forn > 1, E" = [],., E. Also let EN = [],c E.

If E, F are equivalence relations on X, then £ C F means that E is a
subset of F, when these are viewed as subsets of X2, i.e., E is finer than F or
equivalently F is coarser than E. The index of F over E, in symbols [F: E],
is the supremum of the cardinalities of the sets of E-classes contained in an
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2 Equivalence Relations and Reductions

F-class. Thus [F : E] < 8y means that every F-class contains only countably
many E-classes.

We denote by Ax = {(x,y): x = y} the equality relation on a set X, and we
also let Iy = X2. Note that if E, = E,y €Y, where E is an equivalence relation
onaset X, then (B Ey = E X Ay.

If E;, i € I, are equivalence relations on X, we denote by A; E; = (); E; the
largest (under inclusion) equivalence relation contained in all E; and by \/; E;
the smallest (under inclusion) equivalence relation containing each E;. We call
A\ E; the meet and \/; E; the join of (E;).

If E is an equivalence relation on X, a set S C X is a complete section of £
if S intersects every E-class. Moreover, if S intersects every E-class in exactly
one point, then S is a transversal of E.

Consider now an action a: G X X — X of a group G on a set X. We often
write g-x = a(g, x), if there is no danger of confusion. Let G-x = {g-x: g € G}
be the orbit of x € X. The action a induces an equivalence relation E, on X
whose classes are the orbits, i.e., xE;y <= dg(g-x = y). When a is
understood, sometimes the equivalence relation E,, is also denoted by E g The
actiona is freeif g - x £ x foreveryx € X,g € G, g # 1.

1.2 Morphisms

Let E, F be equivalence relations on spaces X,Y, resp. Amap f: X —» Yisa
homomorphism from E to F if xEy = f(x)F f(y). In this case we write
f:(X,E) > (Y,F) orjust f: E — F, if there is no danger of confusion.
A homomorphism f is a reduction if moreover xEy — f(x)Ff(y). We
denote this by f: (X,E) < (Y,F) or just f: E < F. Note that a homomor-
phism as above induces a map from X/E to Y/F, which is an injection if f
is a reduction. In other words, a homomorphism is a lifting of a map from
X/E to Y/F, and a reduction is a lifting of an injection of X/E into Y/F. An
embedding is an injective reduction. This is denoted by f: (X,E) C (Y, F)
or just f: E C F. An invariant embedding is an injective reduction whose
range is an F-invariant subset of Y. This is denoted by f: (X,E) C' (Y, F)
orjust f: E C! F. Finally, an isomorphism is a surjective embedding. This is
denoted by f: (X,E) = (Y,F)orjust f: E = F.

If a, b are actions of a group G on spaces X, Y, resp., a homomorphism
fromatobisamap f: X — Y suchthat f(g-x) =g f(x),Yg € G,x € X.
If f is injective, we call it an embedding of a to b.
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1.3 The Borel Category 3
1.3 The Borel Category

We are interested here in studying (classes of) Borel equivalence relations on
standard Borel spaces (i.e., Polish spaces with the associated Borel structure).
If X is a standard Borel space space and E is an equivalence relation on X, then
E is Borel if E is a Borel subset of X?.

Given a class of functions @ between standard Borel spaces, we can restrict
the above notions of morphism to functions in @, in which case we use the
subscript @ in the above notation (e.g., f: E —o¢ F, f: E <¢ F, etc.). In
particular if @ is the class of Borel functions, we write f: E —p F, f: E <p
F,f:ECgF,f: ECy F,f: E =g F todenote that f is a Borel morphism
of the appropriate type. Similarly when we consider the underlying topology,
we use the subscript ¢ in the case where @ is the class of continuous functions
between Polish spacesand write f: E —. F,f: E<. F,f: EC. F, f: E C.
F,f:E=.F.

We say that E is Borel reducible to F if there is a Borel reduction from E
to F. In this case we write E <gp F.If E < F and F <p E, then E, F are
Borel bireducible, in symbols £ ~g F. Finally we let E < Fif E <p F
but F £p E. Similarly we define the notions of E being Borel embeddable
to F and E being Borel invariantly embeddable to F', for which we use the
notations E Cg F and E I;g F, respectively. Alsowe use E ~p F, E zg F for
the corresponding notions of being Borel biembeddable and Borel invariantly
biembeddable and £ Cp F and E Efg F for the corresponding strict notions.
More generally, if @ is as above, we analogously define £ <¢ F,E Cqo F, etc.

Finally E, F are Borel isomorphic, in symbols E =g F, if there is a Borel
isomorphism from E to F. Note that by the usual (Borel) Schroder—Bernstein
argument, E, F' are Borel isomorphic if and only if they are Borel invariantly
biembeddable, i.e., :2:2 .
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