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Equivalence Relations and Reductions

1.1 Generalities on Equivalence Relations

Let 𝐸 be an equivalence relation on a set 𝑋 . If 𝐴 ⊆ 𝑋 , we let 𝐸 ↾ 𝐴 = 𝐸 ∩ 𝐴2

be its restriction to 𝐴. We also let [𝐴]𝐸 = {𝑥 ∈ 𝑋 : ∃𝑦 ∈ 𝐴(𝑥𝐸𝑦)} be its
𝑬-saturation. The set 𝐴 is 𝑬-invariant if 𝐴 = [𝐴]𝐸 . In particular, for each
𝑥 ∈ 𝑋 , [𝑥]𝐸 is the equivalence class, or 𝑬-class, of 𝑥. A function 𝑓 : 𝑋 → 𝑌

is 𝑬-invariant if 𝑥𝐸𝑦 =⇒ 𝑓 (𝑥) = 𝑓 (𝑦). Finally, 𝑋/𝐸 = {[𝑥]𝐸 : 𝑥 ∈ 𝑋} is
the quotient space of 𝑋 modulo 𝐸 .

Suppose that 𝐸, 𝐹 are equivalence relations on sets 𝑋,𝑌 , respectively, and
𝑓 : (𝑋/𝐸)𝑛 → 𝑌/𝐹, 𝑛 ≥ 1, is a function. A lifting of 𝑓 is a function 𝑓 : 𝑋𝑛 → 𝑌

such that 𝑓 (( [𝑥𝑖]𝐸)𝑖<𝑛) = [ 𝑓 ((𝑥𝑖)𝑖<𝑛)]𝐹 ,∀𝑥 ∈ 𝑋 . Similarly if 𝑅 ⊆ (𝑋/𝐸)𝑛,
its lifting is �̃� ⊆ 𝑋𝑛, where (𝑥𝑖)𝑖<𝑛 ∈ �̃� ⇐⇒ ([𝑥𝑖]𝐸)𝑖<𝑛 ∈ 𝑅.

If 𝐸𝑖 , 𝑖 ∈ 𝐼, is a family of equivalence relations, with 𝐸𝑖 living on 𝑋𝑖 ,
we define the direct sum

⊕
𝑖 𝐸𝑖 to be the equivalence relation on

⊕
𝑖 𝑋𝑖 =

{(𝑥, 𝑖) : 𝑥 ∈ 𝑋𝑖} defined by

(𝑥, 𝑗)
⊕
𝑖

𝐸𝑖 (𝑦, 𝑘) ⇐⇒ 𝑗 = 𝑘 & 𝑥𝐸 𝑗 𝑦.

In particular, we let for 𝑛 ≥ 1, 𝑛𝐸 =
⊕

𝑖<𝑛 𝐸 . Also let N𝐸 =
⊕

𝑖∈N 𝐸 .
We define the direct product

∏
𝑖 𝐸𝑖 to be the equivalence relation on the

space
∏
𝑖 𝑋𝑖 defined by

(𝑥 𝑗 )
∏
𝑖

𝐸𝑖 (𝑦 𝑗 ) ⇐⇒ ∀ 𝑗 (𝑥 𝑗𝐸 𝑗 𝑦 𝑗 ).

In particular, we let for 𝑛 ≥ 1, 𝐸𝑛 =
∏
𝑖<𝑛 𝐸 . Also let 𝐸N =

∏
𝑖∈N 𝐸 .

If 𝐸, 𝐹 are equivalence relations on 𝑋 , then 𝐸 ⊆ 𝐹 means that 𝐸 is a
subset of 𝐹, when these are viewed as subsets of 𝑋2, i.e., 𝐸 is finer than 𝐹 or
equivalently 𝐹 is coarser than 𝐸 . The index of 𝐹 over 𝐸 , in symbols [𝐹 : 𝐸],
is the supremum of the cardinalities of the sets of 𝐸-classes contained in an
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2 Equivalence Relations and Reductions

𝐹-class. Thus [𝐹 : 𝐸] ≤ ℵ0 means that every 𝐹-class contains only countably
many 𝐸-classes.

We denote by Δ𝑋 = {(𝑥, 𝑦) : 𝑥 = 𝑦} the equality relation on a set 𝑋 , and we
also let 𝐼𝑋 = 𝑋2. Note that if 𝐸𝑦 = 𝐸, 𝑦 ∈ 𝑌 , where 𝐸 is an equivalence relation
on a set 𝑋 , then

⊕
𝑦 𝐸𝑦 = 𝐸 × Δ𝑌 .

If 𝐸𝑖 , 𝑖 ∈ 𝐼, are equivalence relations on 𝑋 , we denote by
∧
𝑖 𝐸𝑖 =

⋂
𝑖 𝐸𝑖 the

largest (under inclusion) equivalence relation contained in all 𝐸𝑖 and by
∨
𝑖 𝐸𝑖

the smallest (under inclusion) equivalence relation containing each 𝐸𝑖 . We call∧
𝑖 𝐸𝑖 the meet and

∨
𝑖 𝐸𝑖 the join of (𝐸𝑖).

If 𝐸 is an equivalence relation on 𝑋 , a set 𝑆 ⊆ 𝑋 is a complete section of 𝐸
if 𝑆 intersects every 𝐸-class. Moreover, if 𝑆 intersects every 𝐸-class in exactly
one point, then 𝑆 is a transversal of 𝐸 .

Consider now an action 𝑎 : 𝐺 × 𝑋 → 𝑋 of a group 𝐺 on a set 𝑋 . We often
write 𝑔 ·𝑥 = 𝑎(𝑔, 𝑥), if there is no danger of confusion. Let𝐺 ·𝑥 = {𝑔 ·𝑥 : 𝑔 ∈ 𝐺}
be the orbit of 𝑥 ∈ 𝑋 . The action 𝑎 induces an equivalence relation 𝐸𝑎 on 𝑋
whose classes are the orbits, i.e., 𝑥𝐸𝑎𝑦 ⇐⇒ ∃𝑔(𝑔 · 𝑥 = 𝑦). When 𝑎 is
understood, sometimes the equivalence relation 𝐸𝑎 is also denoted by 𝐸𝑋

𝐺
. The

action 𝑎 is free if 𝑔 · 𝑥 ≠ 𝑥 for every 𝑥 ∈ 𝑋, 𝑔 ∈ 𝐺, 𝑔 ≠ 1𝐺 .

1.2 Morphisms

Let 𝐸, 𝐹 be equivalence relations on spaces 𝑋,𝑌 , resp. A map 𝑓 : 𝑋 → 𝑌 is a
homomorphism from 𝐸 to 𝐹 if 𝑥𝐸𝑦 =⇒ 𝑓 (𝑥)𝐹 𝑓 (𝑦). In this case we write
𝑓 : (𝑋, 𝐸) → (𝑌, 𝐹) or just 𝑓 : 𝐸 → 𝐹, if there is no danger of confusion.
A homomorphism 𝑓 is a reduction if moreover 𝑥𝐸𝑦 ⇐⇒ 𝑓 (𝑥)𝐹 𝑓 (𝑦). We
denote this by 𝑓 : (𝑋, 𝐸) ≤ (𝑌, 𝐹) or just 𝑓 : 𝐸 ≤ 𝐹. Note that a homomor-
phism as above induces a map from 𝑋/𝐸 to 𝑌/𝐹, which is an injection if 𝑓
is a reduction. In other words, a homomorphism is a lifting of a map from
𝑋/𝐸 to 𝑌/𝐹, and a reduction is a lifting of an injection of 𝑋/𝐸 into 𝑌/𝐹. An
embedding is an injective reduction. This is denoted by 𝑓 : (𝑋, 𝐸) ⊑ (𝑌, 𝐹)
or just 𝑓 : 𝐸 ⊑ 𝐹. An invariant embedding is an injective reduction whose
range is an 𝐹-invariant subset of 𝑌 . This is denoted by 𝑓 : (𝑋, 𝐸) ⊑𝑖 (𝑌, 𝐹)
or just 𝑓 : 𝐸 ⊑𝑖 𝐹. Finally, an isomorphism is a surjective embedding. This is
denoted by 𝑓 : (𝑋, 𝐸) � (𝑌, 𝐹) or just 𝑓 : 𝐸 � 𝐹.

If 𝑎, 𝑏 are actions of a group 𝐺 on spaces 𝑋,𝑌 , resp., a homomorphism
from 𝑎 to 𝑏 is a map 𝑓 : 𝑋 → 𝑌 such that 𝑓 (𝑔 · 𝑥) = 𝑔 · 𝑓 (𝑥),∀𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋 .
If 𝑓 is injective, we call it an embedding of 𝑎 to 𝑏.
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1.3 The Borel Category 3

1.3 The Borel Category

We are interested here in studying (classes of) Borel equivalence relations on
standard Borel spaces (i.e., Polish spaces with the associated Borel structure).
If 𝑋 is a standard Borel space space and 𝐸 is an equivalence relation on 𝑋 , then
𝐸 is Borel if 𝐸 is a Borel subset of 𝑋2.

Given a class of functions Φ between standard Borel spaces, we can restrict
the above notions of morphism to functions in Φ, in which case we use the
subscript Φ in the above notation (e.g., 𝑓 : 𝐸 →Φ 𝐹, 𝑓 : 𝐸 ≤Φ 𝐹, etc.). In
particular if Φ is the class of Borel functions, we write 𝑓 : 𝐸 →𝐵 𝐹, 𝑓 : 𝐸 ≤𝐵
𝐹, 𝑓 : 𝐸 ⊑𝐵 𝐹, 𝑓 : 𝐸 ⊑𝑖

𝐵
𝐹, 𝑓 : 𝐸 �𝐵 𝐹 to denote that 𝑓 is a Borel morphism

of the appropriate type. Similarly when we consider the underlying topology,
we use the subscript 𝑐 in the case where Φ is the class of continuous functions
between Polish spaces and write 𝑓 : 𝐸 →𝑐 𝐹, 𝑓 : 𝐸 ≤𝑐 𝐹, 𝑓 : 𝐸 ⊑𝑐 𝐹, 𝑓 : 𝐸 ⊑𝑖𝑐
𝐹, 𝑓 : 𝐸 �𝑐 𝐹.

We say that 𝐸 is Borel reducible to 𝐹 if there is a Borel reduction from 𝐸

to 𝐹. In this case we write 𝐸 ≤𝐵 𝐹. If 𝐸 ≤𝐵 𝐹 and 𝐹 ≤𝐵 𝐸 , then 𝐸, 𝐹 are
Borel bireducible, in symbols 𝐸 ∼𝐵 𝐹. Finally we let 𝐸 <𝐵 𝐹 if 𝐸 ≤𝐵 𝐹

but 𝐹 ≰𝐵 𝐸 . Similarly we define the notions of 𝐸 being Borel embeddable
to 𝐹 and 𝐸 being Borel invariantly embeddable to 𝐹, for which we use the
notations 𝐸 ⊑𝐵 𝐹 and 𝐸 ⊑𝑖

𝐵
𝐹, respectively. Also we use 𝐸 ≃𝐵 𝐹, 𝐸 ≃𝑖

𝐵
𝐹 for

the corresponding notions of being Borel biembeddable and Borel invariantly
biembeddable and 𝐸 ⊏𝐵 𝐹 and 𝐸 ⊏𝑖

𝐵
𝐹 for the corresponding strict notions.

More generally, if Φ is as above, we analogously define 𝐸 ≤Φ 𝐹, 𝐸 ⊑Φ 𝐹, etc.
Finally 𝐸, 𝐹 are Borel isomorphic, in symbols 𝐸 �𝐵 𝐹, if there is a Borel

isomorphism from 𝐸 to 𝐹. Note that by the usual (Borel) Schröder–Bernstein
argument, 𝐸, 𝐹 are Borel isomorphic if and only if they are Borel invariantly
biembeddable, i.e., ≃𝑖

𝐵
=�𝐵.
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