
J. Inst. Math. Jussieu (2023), 22(6), 2717–2747

doi:10.1017/S1474748022000111 © The Author(s), 2022. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution
and reproduction, provided the original article is properly cited.

2717

CATEGORICAL AND K-THEORETIC HALL ALGEBRAS FOR
QUIVERS WITH POTENTIAL

TUDOR PĂDURARIU
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Abstract Given a quiver with potential (Q,W ), Kontsevich–Soibelman constructed a cohomological Hall
algebra (CoHA) on the critical cohomology of the stack of representations of (Q,W ). Special cases of
this construction are related to work of Nakajima, Varagnolo, Schiffmann–Vasserot, Maulik–Okounkov,
Yang–Zhao, etc. about geometric constructions of Yangians and their representations; indeed, given a

quiver Q, there exists an associated pair ( ˜Q,˜W ) whose CoHA is conjecturally the positive half of the
Maulik–Okounkov Yangian YMO(gQ).

For a quiver with potential (Q,W ), we follow a suggestion of Kontsevich–Soibelman and study a
categorification of the above algebra constructed using categories of singularities. Its Grothendieck group
is a K-theoretic Hall algebra (KHA) for quivers with potential. We construct representations using framed

quivers, and we prove a wall-crossing theorem for KHAs. We expect the KHA for ( ˜Q,˜W ) to recover the
positive part of quantum affine algebra Uq(ĝQ) defined by Okounkov–Smirnov.
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matrix factorizations
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1. Introduction

1.1. Quivers with potential

Let Y be a Calabi–Yau 3-fold, and let β ∈H4(Y ,Z)⊕H6(Y ,Z). The Donaldson–Thomas
(DT) invariants of Y are virtual counts of curves on Y of support β, and they are defined

using the geometry of the moduli stack Mβ of sheaves with compact support β. One can

define DT invariants for quivers with potential (Q,W ) using the vanishing cycle sheaf
ϕTr(W )Q of the regular function

Tr(W ) : X (d)→ A1
C

on the stack X (d) of representation of Q of a given dimension d.
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For any Calabi–Yau 3-fold Y , the stack Mβ is locally analytically described by
crit(Tr(W )) ⊂ X (d) for a quiver with potential (Q,W ) [14], [34], and the DT invariants

are defined using the sheaves ϕTr(W )Q. This description is global for Y = A3
C and

β = d∈N. Consider the quiver Q3 with one vertex and three loops x,y and z and potential
W3 = xyz−xzy. Then

Mβ
∼= crit(Tr(W3))⊂X (d).

It is thus worthwhile to study the DT theory of quivers with potential and try to generalize
the constructions and results to the general case of a Calabi–Yau 3-fold.

1.2. Cohomological Hall algebras.

Let I be the set of vertices of Q, let θ ∈ QI be a generic King stability condition, let

μ ∈Q a slope, let Λμ ⊂ NI be the subset of dimension vectors of slope μ and let d ∈ Λμ.

Denote by

X (d)ss ⊂X (d) :=R(d)/G(d)

the stack of θ-semistable representations of slope μ. The cohomological Hall algebra

(CoHA), constructed by Kontsevich–Soibelman [16], is an algebra with underlying Λμ-
graded vector space:

CoHA(Q,W )μ :=
⊕
d∈Λμ

H · (X (d)ss,ϕTrWQ),

where the multiplication m= p∗q∗ is defined using the maps

X (d)ss×X (e)ss q←−X (d,e)ss p−→X (d+ e)ss (1)

from the stack X (d,e) parametrizing pairs of representations A⊂B with A of dimension

d and B of dimension d+ e. Consider the regular function

Tr(W ) : X (d)→ A1
C.

Assume zero is its only critical value. The critical locus of Tr(W ) is X (Q,W,d), the moduli

of representations of dimension d of the Jacobi algebra

Jac(Q,W ) := CQ/

(
∂W

∂e
,e ∈ E

)
,

so the vector space H ·(X (d),ϕTrWQ) is the critical cohomology of the (usually singular)

space X (Q,W,d) with coefficients in (a shift of) a perverse sheaf. Using framed quivers,

Davison–Meinhardt [6] and Soibelman [32] constructed representations of these algebras.

For any quiver Q, there is a tripled quiver with potential (Q̃,W̃ ) whose CoHA recovers

the preprojective Hall algebra ofQ as defined by Schiffmann–Vasserot [31] and Yang–Zhao

[39]; see [28]. In [4], Davison conjectured that a C∗-equivariant version of CoHA(Q̃,W̃ ) is

the positive half of the Maulik–Okounkov Yangian YMO.
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1.3. Categorical and K-theoretic Hall algebras.

In [16, Section 8.1], Kontsevich–Soibelman propose the category of singularities

Dsg(X (d)0) :=DbCoh(X (d)0)/Perf(X (d)0)
as a categorification of the critical cohomology H ·(X (d),ϕTrWQ); see Efimov’s work

[7]. The category of singularities is equivalent to the category of matrix factorizations

MF(X (d),W ) for the regular function TrW .
Consider the torus (C∗)E whose factor corresponding to e ∈E acts on R(d) by scaling

the linear map corresponding to e. Let T ⊂ (C∗)E be a torus under which W is invariant.

We use the notations introduced in Subsection 1.2.

Theorem 1.1. Consider the Λμ-graded category

HAT (Q,W )μ :=
⊕
d∈Λμ

Dsg,T (X (d)ss0 ) .

Then HAT (Q,W )μ is monoidal with multiplication m := p∗q∗, where p and q are the maps

in (1). The underlying category is called the categorical Hall algebra (HA) of (Q,W ). The

Grothendieck group is called the K-theoretic Hall algebra (KHA) of (Q,W ).

In analogy to cohomology, we may call K0 (Dsg (X (d)0)) the critical K-theory of

X (Q,W,d) and may denote it by Kcrit (X (Q,W,d)). We denote the full Hall algebra (for
the zero stability condition) by HAT (Q,W ) and KHAT (Q,W ).

Assume that there is a C∗ ⊂ (C∗)E such that TrWd has weight 2 with respect to C∗ for

any d ∈NI . Then one can consider graded matrix factorization categories MFgr(X (d),W )
which are equivalent to categories of graded singularities Dgr

sg (X (d)ss0 ). One can define a

graded version of HA with underlying Λμ-graded category

HAgr
T (Q,W )μ :=

⊕
d∈Λμ

Dgr
sg,T (X (d)ss0 )

and multiplication m := p∗q∗. Its Grothendieck group is called KHAgr.

1.4. Preprojective Hall algebras

Let Q be a quiver, and consider the tripled quiver (Q̃,W̃ ). Consider the preprojective

Hall algebra defined by Varagnolo–Vasserot:

HAT (Q) :=
⊕
d∈NI

Db
T (P(d)),

where P(d) is the stack of representations of dimension d of the preprojective algebra

of Q. Using Isik’s equivalence [13], there is an equivalence of underlying categories

HAgr
T (Q̃,W̃ )∼=HAT (Q),

where HAgr is defined using a natural C∗ ⊂ (C∗) ˜E such that TrW̃d is homogeneous of

weight 2 for any d ∈ NI . The multiplications differ by conjugation by an equivariant

parameter; see [38] and Subsection 3.2.3. Using [36, Corollary 3.13], the categories
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MFT (X (d),W ) and MFgr
T (X (d),W ) have the same Grothendieck group, so there is an

isomorphism

KHAgr
T (Q̃,W̃ )∼=KHAT (Q̃,W̃ ). (2)

1.5. Representations of the KHA

There are representations of KHAT (Q,W )μ on critical K -theory spaces associated to

moduli of framed representations⊕
d∈Λμ

KT
0 (Dsg (X (f,d)ss0 )) .

There are analogous representations of KHAgr
T (Q,W )μ. These representations are analo-

gous to the ones constructed in [6], [32] in cohomology.

Further, for a quiver Q, there are representations of KHAgr
T (Q̃,W̃ )∼=KHAT (Q) on the

K -theory of Nakajima quiver varieties⊕
d∈NI

KT
0 (N(f,d)) .

Quantum affine algebras also naturally act on Nakajima quiver varieties [18]. Analogous
to Davison’s conjecture [4], we expect preprojective KHAs to be related to positive parts

of quantum affine algebras.

Conjecture 1.2. Consider the torus C∗ scaling the linear maps corresponding to edges

of the doubled quiver Qd with weight 1 and scaling the linear maps corresponding to edges

of the loops ωi with weight −2; see Subsection 2.4 for the definitions of the doubled quiver
Qd and of the tripled quiver Q̃. After possibly tensoring with C(q)∼= (FracK0(BC∗))⊗C,
there is an isomorphism

KHAC∗ (Q)∼= U>
q (ĝQ),

where the right-hand side is the positive part of Okounkov–Smirnov affine quantum algebra

[17], [22].

The conjecture is true for finite and affine type quivers except A
(1)
1 ; see [38]. In these

cases, gQ is the Kac–Moody algebra of Q, but for general quivers Q, the Lie algebra gQ
is strictly larger than the Kac–Moody algebra of Q.

1.6. The Jordan quiver

For the Jordan quiver Q with one vertex and one loop, the tripled quiver Q̃ has one
vertex, three loops and potential W̃ = xyz−xzy. Let T ⊂ (C∗)3 be a torus which fixes W.

Consider the action of C∗ which scales the linear map corresponding to z with weight 2.

We consider graded matrix factorization with respect to C∗. By Isik’s theorem [13], there
is an equivalence

HAgr
T (Q̃,W̃ )∼=

⊕
d�0

Db
T (C(d)),
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where C(d) is the stack of commuting matrices of dimension d and the right-hand side has

an algebra structure defined by correspondences [38], [30]. The framed representations of

the KHAT (Q̃,W̃ ) from Subsection 1.5 for the vector f = 1 are

⊕
d�0

KT
crit

(
Hilb

(
A3

C,d
))

.

Further, one constructs representations of KHAT (Q̃,W̃ ) on the vector space

⊕
d�0

KT
0

(
Hilb

(
A2

C,d
))

. (3)

Schiffmann–Vasserot [30] and Feigin–Tsymbaliuk [8] construct representations of

Uq,t(
̂̂
gl1), the Drinfeld double of a subalgebra of KHAT (Q̃,W̃ ), on the vector space (3).

1.7. Wall-crossing

The CoHA satisfies a wall-crossing theorem by work of Davison–Meinhardt [6]. We prove

an analogous result for KHAs of quivers with potential which satisfy a Künneth-type
assumption (see Subsection 5.1.3):

KHA(Q,W )
∼−→

⊗
μ∈Q

KHA(Q,W )μ.

It is an advantage that we can formulate an analogous categorical statement because by
general principles it suffices to check the categorical statement for the zero potential. In

this case, the statement follows from work of Halpern–Leistner [11] and Ballard–Favero–

Katzarkov [2] on semiorthogonal decompositions in GIT.

1.8. Further properties of the KHA

There is a PBW theorem for CoHAs [6] for all symmetric quivers Q with potential. For

KHAs, we expect such a theorem for (Q̃,W̃ ) by Conjecture 1.2. In [23, Section 7], we
prove a PBW theorem for KHAs for all pairs (Q,W ) with Q symmetric.

In [24], inspired by explicit computations of KHAs due to Neguţ [19], [20], we construct

a Drinfeld double Hopf algebra of KHAs for a class of quivers with potential (Q,W )

satisfying a Künneth-type assumption. This class includes all tripled quivers (Q̃,W̃ ).

1.9. Outline of the paper

In Section 2, we review notions about quivers with potential, semiorthogonal decomposi-

tions, categories of singularities and matrix factorizations. In Section 3, we prove Theorem
1.1 and discuss some examples of KHAs. In Section 4, we construct the representations

of the KHA mentioned in Subsection 1.5. In Section 5, we prove wall-crossing theorems

for categorical and K -theoretic HAs.
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1.10. Notations and conventions

All the schemes and stacks considered are over C. Let X be a scheme or stack. We denote

by Db(X) the derived category of coherent sheaves, by Perf(X)⊂Db(X) its subcategory

of perfect complexes and by Dsg(X) the category of singularities. All functors considered,

such as pullback and pushforward, are derived. We denote by Ki(X) the K -theory of the
category Perf(X) and by Gi(X) the K -theory of the category Db(X). For a regular

immersion ι : X ↪→X ′, denote by Nι the normal bundle of X in X ′. For the purposes of

this paper, a smooth quotient stack will have the form

X ∼= [A/G], (4)

where A is a (quasi-)affine smooth variety and G is a reductive group.

The categories considered are dg, and we denote by ⊗ the product of dg categories [15,

Subsections 2.2 and 2.3].
We assume that the quivers with potential (Q,W ) considered are such that the

regular functions TrW : X (d)→ A1
C have zero as the only critical value. We denote by

MF(X (d),W ) the category of matrix factorizations for the regular function TrW . The
zero fiber X (d)0 of TrW is derived.

2. Background material

2.1. Quivers with potential

Let Q = (I,E,s,t) be a quiver with vertex set I, edge set E and source and target maps

s,t : E→ I. Let d =
(
di
)
i∈I
∈ NI be a dimension vector of Q. Consider vector spaces V i

of dimension di. Consider the reductive group G(d) and its representation R(d):

G(d) :=
∏
I∈I

GL
(
V i

)
,

R(d) :=
∏
e∈E

Hom(V s(e),V t(e)).

Define the quotient stack of representation of Q of dimension d :

X (d) :=R(d)/G(d).

A potential W is a linear combination of cycles in Q. A potential determines a regular
function:

Tr(W ) : X (d)→ A1
C.

We will assume throughout the paper that 0 is the only critical value. The critical locus of
this function is the moduli of representations of the Jacobi algebra Jac(Q,W ) := CQ/J ,
where CQ is the path algebra of Q and J is the two-sided ideal in CQ generated by the

derivatives ∂W
∂e of W along all edges e ∈ E.
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2.2. King stability conditions

Given a tuple θ = (θi)i∈I ∈ QI , we define the slope function on a dimension vector d ∈
NI \{0} by

τ(d) :=

∑
i∈I θ

idi∑
i∈I d

i
∈Q.

For a slope μ ∈ Q, let Λμ ⊂ NI be the monoid of dimension vectors d with τ(d) = μ

together with d = 0. Call a representation V of Q ( θ-)(semi)stable if, for every proper

subrepresentation W ⊂ V , we have that

τ(W )< (�)τ(V ).

The locus of stable representations R(d)s and semistable representations R(d)ss inside
R(d) are open. We consider the moduli stack

X (d)ss :=R(d)ss/G(d)

of semistable representations of dimension d.

2.3. Moduli of framed representations

Fix a framing vector f ∈ NI . We define a new quiver Qf = (If,Ef ) with If = I 	{∞},
and Ef contains E and f i edges from∞ to the vertex i ∈ I. The dimension vector d ∈NI

can be extended to a dimension vector for the new quiver

d̃ := (1,d) ∈ NIf

= N×NI .

Fix a slope μ ∈ Q. Define θ′ = μ+ ε for a small positive rational number ε > 0. The

stability condition θ is extended to a stability condition for the quiver Qf :

θf := (θ′,θ) ∈QIf

.

2.4. The tripled quiver

The following construction was introduced by Ginzburg [9], and it is used in conjunction

with dimensional reduction to obtain representations of a preprojective CoHA or KHA

on the cohomology or K -theory of Nakajima quiver varieties.
Let Q = (I,E) be a quiver. For an edge e, let e be the edge of opposite orientation.

Let E := {e|e ∈ E}. The double quiver Qd = (I,Ed) has edge set Ed := E∪E. For every

i ∈ I, denote by ωi a loop at i. The tripled quiver Q̃ = (I,Ẽ) has vertex set I and Ẽ =

Ed	{ωi| i ∈ I}. The potential W̃ is defined by

W̃ :=
∑
e∈E

ωs(e)[ē,e].

2.5. Nakajima quiver varieties

Let Q be a quiver, d ∈ NI a dimension vector, θ ∈ QI a stability condition, μ ∈ Q and

f ∈NI a framing vector. Extend θ to the stability condition θf for Qf as in Subsection 2.3.
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Associated to θ, there is a character

χθ :=
∏
i∈I

det(gi)mθi

:G(d)→ C∗

for m a positive integer such that mθi are all integers. The action of G(d) ∼= G(1,d)/C∗

on R(1,d) induces a moment map:

μ : T ∗R(1,d)→ g(d)∨ ∼= g(d).

Define the Nakajima quiver variety N(f,d) by the GIT quotient:

N(f,d) := μ−1(0)�χθ
G(d).

There is also a description of Nakajima quiver varieties using the framed quiver in
Subsection 2.3 given by Crawley–Boevey [3, Section 1].

2.6. Semiorthogonal decompositions.

Let A be a triangulated category, and let Ai ⊂ A be full triangulated subcategories for

1� i� n. We say that A has a semiorthogonal decomposition

A= 〈Am, · · · ,A1〉
if for every object Ai ∈ Ai and Aj ∈ Aj and i < j we have RHom(Ai,Aj) = 0, and the

smallest full triangulated subcategory of A containing Ai for 1� i�m is A.
Let B be a triangulated subcategory of A. There exists a semiorthogonal decomposition
A= 〈C,B〉 if and only if the inclusion B ↪→A has a right adjoint A→B. If this happens,
we say that B is right admissible in A.

2.7. Window categories.

2.7.1. Let X =X/G be a quotient stack whereG be a reductive group and X is a smooth

affine variety with a G action.
For pairs (λ,Z) with λ a cocharacter of G and Z a connected component of Xλ, consider

the diagram

Z := Z/L
q←−S := S/P

p−→X , (5)

where S ⊂X is the subset of points x such that limz→0λ(z)x ∈ Z, and L and P are the
Levi and parabolic groups corresponding to λ. The map q is an affine bundle map, and

the map p is proper. We say that (λ,Z) is a Kempf–Ness stratum if the map p is a closed

immersion. The map p is always a closed immersion if G is abelian.

2.7.2. Consider locally closed substacks Si⊂X indexed by i∈ I for I a partially ordered

set such that

Si ⊂X \
⋃
j<i

Sj

https://doi.org/10.1017/S1474748022000111 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000111


Hall Algebras for Quivers with Potential 2725

is a Kempf–Ness stratum. We denote by

U :=
⋃
i∈I

Si,

X ss := X \U .
It might happen that X ss is empty. An example of such a stratification is given by the
usual Kempf–Ness strata Si for i ∈ I and the semistable stack X ss ⊂X with respect to a

linearization L on X .
2.7.3. We continue with the notation from the previous subsection. Halpern–Leistner [11]

constructed categories Gw ⊂Db(X ) which are equivalent to Db (X ss) under the restriction

map j : X ss ↪→X , which we now explain.
Let i ∈ I. Assume that Si is an attracting locus for (λi,Zi). Consider the inclusion map

ji : Zi ↪→X. For w ∈ Z, let Db(Z)w be the subcategory of Db(Z) of complexes on which

λi acts with weight w. Define ni = 〈λ−1
i ,j∗i (detNpi

)〉, where Npi
is the normal bundle of

Si in X . Choose wi ∈ Z, and define

Gw := {F ∈Db(X ) such that wi � 〈λi,j
∗
i F 〉� wi+ni−1}.

In [11, Theorem 2.10, Amplification 2.11], Halpern–Leistner constructs a semiorthogonal

decomposition:

Db(X ) = 〈
pi∗q∗iD

b(Zi)vi
,Gw,pi∗q∗i D

b(Zi)ti
〉
, (6)

where the categories on the left-hand side of Gw are after all i ∈ I and all vi < wi,

and the categories on the right-hand side of Gw are after all i ∈ I and all ti � wi. The
functors q∗i and pi∗ are fully faithful on Db(Zi)vi

and q∗i D
b(Zi)vi

, respectively, for i ∈ I

and vi as above. The restriction functor j∗ :Db(X )→Db (X ss) induces an equivalence of

categories:

j∗ :Gw
∼−→Db (X ss) .

2.8. Categories of singularities and matrix factorizations.

A reference for this section is [35, Section 2.2]. Let Y be an affine scheme with an action of
a reductive group G. Consider the quotient stack Y = Y/G. The category of singularities

of Y is a triangulated category defined as the quotient of triangulated categories

Dsg(Y) :=Db(Y)/Perf(Y),
where Perf(Y)⊂Db(Y) is the full subcategory of perfect complexes. If Y is smooth, the

category of singularities is trivial. We have an exact sequence

K0(Y)→G0(Y)→K0 (Dsg(Y))→ 0.

Let X = X/G be a smooth quotient stack with X an affine scheme, and consider a

regular function

f : X → A1
C.
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Consider the category of matrix factorizations MF(X ,f). It has objects (Z/2Z)×G-

equivariant factorizations (P,dP ), where P is a G-equivariant coherent sheaf, 〈1〉 is the

twist corresponding to a nontrivial Z/2Z-character on X, and

dP : P → P 〈1〉
with dP ◦dP = f . Alternatively, the objects of MF(X ,f) are tuplets

(F,G,α : F →G,β :G→ F ),

where F and G are G-equivariant coherent sheaves, α and β are G-equivariant morphisms
with α ◦ β and β ◦α are multiplication by f. By a theorem of Orlov [22], there is an

equivalence

Dsg(X0)∼=MF(X ,f).
Recall that, for f = 0, the fiber X0 is derived. We will freely switch between Dsg and MF

throughout this paper.

For a triangulated subcategory A of Db(X ), define MF(A,f) as the full subcategory of
MF(X ,f) with objects pairs (P,dP ) with P in A. We explain next that semiorthogonal

decompositions for the ambient smooth stack induce semiorthogonal decompositions for

matrix factorizations; see also [12, Lemma 1.18].

Proposition 2.1. Let I be a totally ordered set, and consider a semiorthogonal decom-
position

Db(X ) = 〈Ai

〉
i∈I

.

There is a semiorthogonal decomposition

MF(X ,f) = 〈
MF(Ai,f)

〉
i∈I

.

Proof. Assume for simplicity that the semiorthogonal decomposition is

Db(X ) = 〈A1,A2

〉
.

Consider an object

E = (α : F �G : β)

in MF(X ,f), and consider Fi,Gi ∈ Ai such that

F2→ F → F1
[1]−→

G2→G→G1
[1]−→ .

The map α : F →G induces a map α : F2→G and thus a map

α2 : F2→G2

because RHom(F2,G1) = 0. Further, it induces a map α : F →G1 and thus a map

α1 : F1→G1
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because RHom(F2,G1) = 0. Similarly, there are induced maps βi : Gi → Fi for i = 1,2.

The tuplets

Ei := (αi : Fi �Gi : βi)

are in MF(Ai,f). There is a distinguished triangle

E1→ E→ E2
[1]−→ .

The orthogonality claim is immediate.

We say that f satisfies Assumption A if there is an extra action of C∗ on X which

commutes with the action of G such that f is C∗-equivariant of weight 2. Denote by (1)

the twist by the character

pr2 :G×C∗→ C∗.

Consider the category of graded matrix factorizations MFgr(X ,f). It has objects pairs
(P,dP ) with P an equivariant G×C∗-sheaf on X and dP : P → P (1) a G×C∗-equivariant
morphism. For f zero and the trivial C∗-action on X , we have that

MFgr(X ,0)∼=Db(X )
(see [35, Remark 2.3.7]). For a triangulated subcategory B of Db

C∗(X ), define MFgr(B,f)
as the full subcategory of MFgr(X ,f) with objects pairs (P,dP ) with P in B. The same
argument used in Proposition 2.1 shows that:

Proposition 2.2. Let I be a totally ordered set and consider a semiorthogonal decompo-

sition

Db
C∗(X ) = 〈Bi〉i∈I

.

There is a semiorthogonal decomposition

MFgr(X ,f) = 〈
MFgr(Bi,f)

〉
i∈I

.

2.9. Functoriality of categories of singularities.

References for this subsection are [26], [35]. Let X , X ′ be smooth quotient stacks (see

(4)) with a map α : X ′→X . Let
f : X → A1

C

be a regular function, and consider f ′ := fα :X ′→A1
C. Assume that 0 is the only critical

value for each of f and f ′. There is a functor

α∗ : MF(X ,f)→MF(X ′,f ′),

(P,dP ) �→ (α∗P,α∗dP ) .

If α is proper, there is a functor

α∗ : MF(X ′,f ′)→MF(X ,f),
(P ′,dP ′) �→ (α∗P ′,α∗dP ′) .
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Assume there are C∗-actions on X ′ and X such that α is C∗-equivariant and such that

X and X ′ satisfy Assumption A with respect to the C∗-action. There are pullback and

pushforward functors

α∗ : MFgr(X ,f)→MFgr (X ′,f ′),

α∗ : MFgr (X ′,f ′)→MFgr(X ,f).
There are also such functors for categories of singularities. These pullback and pushfor-

ward functors satisfy properties as those for derived categories, for example proper base

change for Cartesian diagrams.

2.10. Thom–Sebastiani theorem

Let X and Y be smooth quotient stacks with regular functions

f : X → A1
C,

g : Y → A1
C,

f +g : X ×Y → A1
C.

Consider the functors induced by exterior tensor product (see [1, Definition 3.22]):

TS : MFgr(X ,f)⊗MFgr(Y,g)→MFgr(X ×Y,f +g),

TS : MF(X ,f)⊗MF(Y,g)→MF(X ×Y,f +g).

To define the first functor above, we assume that X and Y satisfy Assumption A and
denote the corresponding tori by C∗

1 and C∗
2; the corresponding C∗ on X ×Y is the

diagonal C∗ ↪→ C∗
1×C∗

2.

The Thom–Sebastiani theorem says that the first functor is an equivalence [1, Section 3

and Section 5.1], [10, Section 2.5]:

MFgr(X ,f)⊗MFgr(Y,g)∼=MFgr(X ×Y,f +g). (7)

There is also a version when a version of the second one is an equivalence [27]. When

using categories of singularities, the Thom–Sebastiani functor is induced by pushforward

along i : X0×Y0 ↪→ (X ×Y)0 (see [27, Theorem 4.13]):

i∗ :Dsg(X0)⊗Dsg(Y0)→Dsg ((X ×Y)0) .
There are maps

TS :K0 (MFgr(X ,f))⊗K0 (MFgr(Y,g))→K0 (MFgr(X ×Y,f +g)),

TS :K0 (MF(X ,f))⊗K0 (MF(Y,g))→K0 (MF(X ×Y,f +g)) .

In general, these maps are not isomorphisms.

2.11. Dimensional reduction

Let X be a smooth affine scheme with an action of a reductive group G, let X =X/G and

let E be a G-equivariant vector bundle on X. Let C∗ act on the fibers of E with weight 2,
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and consider s ∈ Γ(X,E) a section of E of C∗-weight 2. It induces a map ∂ : E∨→OX .

Consider the Köszul stack

P := Spec(OX [E∨[1];∂])
/
G.

The section s also induces the regular function

w : E := TotX (E∨)/G→ A1
C (8)

defined by w(x,v) = 〈s(x),v〉 for x ∈X(C) and v ∈E∨|x. Consider the category of graded
matrix factorizations MFgr (E,w) with respect to the group C∗ mentioned above. There is

an equivalence of categories due to Isik [13], called dimensional reduction or the Köszul

equivalence:

MFgr (E,w)∼=Db(P). (9)

The analogous result in cohomology was proved by Davison [4].

2.12. Localization theorems for categories of singularities.

We discuss some properties of categories of singularities on stacks which are used for

computations in KHAs.

Proposition 2.3. Let X be an affine scheme with an action of a reductive group G, and
consider the stack X =X/G. Let B ⊂G be a Borel subgroup with maximal torus T, and

let Y :=X/B and Z =X/T . There are natural maps τ : Z →Y and π : Y →X . Then
π∗ :G0(X ) ↪→G0(Y),
π∗ :K0(X ) ↪→K0(Y),
τ∗ :G0(Y)∼=G0(Z),
τ∗ :K0(Y)∼=K0(Z).

Proof. The map τ is an affine bundle map, so τ∗ is an isomorphism in K and G-theory.
Next, we have that Y = (X×B G)/G. The map π∗ is fully faithful by the projection

formula and π∗OY =OX . It has a right adjoint π∗. Thus, the categories

π∗ :Db(X )→Db(Y)
π∗ : Perf(X )→ Perf(Y)

are admissible, and the conclusion follows.

Assume next that X =X/T for a vector space X with an action of a torus T. Consider

a regular function

f : X → A1
C

with 0 the only critical value. Let λ : C∗→ T be a cocharacter, and let w ∈ Z. Define

Db(BT )�w ⊂Db(BT )
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the subcategory of complexes on which λ acts with weights � w. It induces a filtration
K0(BT )�w ⊂ K0(BT ). We denote its associated graded pieces by grwK0(BT ). Let a :

Xλ/T ↪→X . It induces a functor a∗ :Dsg(X0)→Dsg

(
Xλ

0 /T
)
. Let

Dsg(X0)�w ⊂Dsg(X0)

be the subcategory of complexes F such that λ acts with weights �w on a∗(F ). It induces

a filtration

K0 (Dsg(X0))�w ⊂K0 (Dsg(X0)) .

We denote its associated graded pieces by grwK0 (Dsg(X0)).K0(BT ) acts onK0 (Dsg(X0))

via the tensor product and respects the above filtrations.

Next, assume that E is a vector bundle on X , and consider the zero section ι : X ↪→E .
Define the Euler class eu(E) := ι∗ι∗(1) ∈K0(BT )∼=K0(X ).
Proposition 2.4. We are continuing in the above framework. Assume that there exists
λ :C∗ ↪→ T such that Eλ =X . Then the class eu(E) is not a zero divisor in K0 (Dsg(X0)) .

Proof. Let S be the set of weights of the normal bundle Nι. We have that

eu(E) =
∏
β∈S

(1− qβ) ∈K0(BC∗).

The hypothesis implies that 〈λ,β〉 is not zero for β ∈ S. Let v be the smallest λ-weight

of a monomial in eu(E). Then
grv eu(E) =±qv ∈ grvK0(BT ).

Let w ∈ Z. Multiplication by eu(E) induces the multiplication by ±qv-map

grwK0 (Dsg(X0))
∼−→ grv+wK0 (Dsg(X0)),

so eu(E) is not a zero divisor.

For the next result, let T be a torus, let X be a representation of T, and let Y ↪→X

a T -equivariant affine subscheme. Denote by S the set of weights β of T in X/XT and

by I the set of functions 1− qβ with β ∈ S. Consider the stack X = X/T . For M a
K0(BT )-module, we denote by MI the localization of M at functions in I.
Theorem 2.5. Let f :X →A1

C be a regular function, and let λ :C∗→ T be a cocharacter.
Consider the attracting diagram for λ:

Z :=Xλ/T
q←−S :=Xλ�0/T

p−→X .
Let ι : Z ↪→X be the natural inclusion map. There are isomorphisms

p∗q∗ :K0 (Dsg(Z0))I
∼−→K0 (Dsg(X0))I ,

ι∗ :K0 (Dsg(Z0))I
∼−→K0 (Dsg(X0))I ,

ι∗ :K0 (Dsg(X0))I
∼−→K0 (Dsg(Z0))I .

We review Takeda’s localization theorem in K -theory [33].
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Proposition 2.6. In the above framework, we have that GT
i (Y \ Y T )I = 0 for any

i� 0.

Proof. This follows from Takeda’s original argument [33, page 79]. Let ι :XT ↪→X be
the natural inclusion. GT

i (Y \Y T ) is a KT
0 (Y \Y T )-module, so it suffices to show that

KT
0 (Y \Y T )I = 0. There is a restriction map of rings

KT
0

(
X \XT

)→KT
0

(
Y \Y T

)
.

It suffices to show that KT
0 (X \XT )I = 0 because then the unit of KT

0 (Y \ Y T )I is

annihilated, and so KT
0 (Y \Y T )I = 0. It thus suffices to show that

ι∗ :KT
0

(
XT

)
I

∼−→KT
0 (X)I .

This is true because ι∗ is multiplication by
∏

β∈S

(
1− qβ

)
.

Proof of Theorem 2.5. Let U := X \S ⊂ X . Consider the natural inclusion t : Z ↪→S.
Then ι = p ◦ t. By Proposition 2.1 and the semiorthogonal decomposition (6), there are

semiorthogonal decompositions:

Dsg(X0) =
〈
Dsg(Z0)<w,Dw,Dsg(Z0)�w

〉
,

Dsg(Z0) =
〈
Dsg(Z0)<w,Dsg(Z0)�w

〉
with Dw

∼=Dsg(U0) by (6). By passing to the Grothendieck group, there is a decomposition

K0 (Dsg(U0))⊕K0 (Dsg(Z0))∼=K0 (Dsg(X0)),

where the map K0 (Dsg(Z0))→K0 (Dsg(X0)) is p∗q∗. We show that

K0 (Dsg(U0))I = 0.

By the definition of the category of singularities, the map G0(U0) � K0 (Dsg(U0)) is

surjective. We have that

G0 (X0 \Z0)I �G0(U0)I,
so by Proposition 2.6 we have that G0(U0)I = 0. Thus,

p∗q∗ :K0 (Dsg(Z0))I
∼−→K0 (Dsg(X0))I . (10)

Let x ∈K0 (Dsg(Z0)). Let e be the Euler class of the vector bundle q : S → Z. Then e
divides e′ :=

∏
β∈S

(
1− qβ

)
. By the assumption f |S = q∗ (f |Z), we have that

t∗(x) = e · q∗(x).
The factors of e are in the set I, so (10) implies that

ι∗ := p∗t∗ :K0 (Dsg(Z0))I
∼−→K0 (Dsg(X0))I .

The last statement follows from ι∗ι∗ being multiplication by e′ and using that the factors

of e′ are in I.
Remark. Via the restriction maps, Proposition 2.4 and Theorem 2.5 also hold for open

substacks of X .
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3. The Hall algebra

3.1. Definition of the Hall algebra.

Let (Q,W ) be a quiver with potential. For d ∈ NI , consider the stack of representations

X (d) =R(d)/G(d),

with regular function Tr(W ) :X (d)→A1
C; see Subsection 2.1 for more details. For d,e∈NI

two dimension vectors, consider the stack

X (d,e) :=R(d,e)/G(d,e)

of pairs of representations A⊂ B, where A has dimension d and B has dimension d+ e.

Let θ ∈QI be a King stability condition. Define the slope function:

τ(d) :=

∑
i∈I θ

idi∑
i∈I d

i
.

For a fixed slope μ, let Λμ ⊂ NI be the monoid of dimension vectors with slope μ.

We denote by X (d)ss ⊂ X (d) the substack of θ-semistable representations. There is a
cocharacter λd,e whose diagram of fixed and attracting loci (1) is

X (d)ss×X (e)ss qd,e←−−X (d,e)ss pd,e−−→X (d+ e)ss. (11)

Fix such a cocharacter λd,e. The induced regular functions are compatible with respect

to these maps:

p∗d,eTr(Wd+e) = q∗d,e (Tr(Wd)+Tr(We)) .

We use p and q instead of pd,e and qd,e when there is no danger of confusion.

For every edge e ∈ E, let C∗ act on Hom(Cs(e),Ct(e)) by scalar multiplication. We

denote the product of these multiplicative groups by (C∗)E . The Hall algebras considered
in this paper are equivariant with respect to a torus T such that T ⊂ (C∗)E and W

is T -invariant. We say that (Q,W ) satisfies Assumption A if there exists an extra

C∗ ⊂ (C∗)E such that the regular functions Tr(Wd) are all homogeneous of weight 2.

We consider graded categories of matrix factorizations with respect to such a fixed C∗.
Different choices of such C∗ give different categories MFgr, but all these categories have

the same Grothendieck group [36, Corollary 3.13].

Consider the diagonal map δ :BT →BT ×BT. There are induced maps

δ : (X (d)ss×X (e)ss)/T → (X (d)ss/T )× (X (e)ss/T ) .

Definition 3.1. Consider the functor

md,e := p∗q∗TSδ∗ : MFT (X (d)ss,Wd) � MFT (X (e)ss,We)

→MFT (X (d+ e)ss,Wd+e),

https://doi.org/10.1017/S1474748022000111 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000111


Hall Algebras for Quivers with Potential 2733

where TS is the Thom–Sebastiani functor; see Subsection 2.10. Under Assumption A, we
consider the functor

md,e := p∗q∗TSδ∗ : MFgr
T (X (d)ss,Wd) � MFgr

T (X (e)ss,We)

→MFgr
T (X (d+ e)ss,Wd+e) .

Definition 3.2. Consider the Λμ-graded category

HAT (Q,W )μ :=
⊕
d∈Λμ

MFT (X (d)ss,Wd) .

Under Assumption A, we consider the Λμ-graded category

HAgr
T (Q,W )μ :=

⊕
d∈Λμ

MFgr
T (X (d)ss,Wd) .

We call these categories the categorical Hall algebras of (Q,W ). We call the Grothendieck
group of these categories the K-theoretic Hall algebras of (Q,W ).

In this section, we prove Theorem 1.1 and its version for graded matrix

factorizations:

Theorem 3.3. The categories HAT (Q,W )μ and HAgr
T (Q,W )μ are monoidal with respect

to the multiplication functors m.

Proof. We discuss the statement for MF, the one for MFgr follows in the same way. Let

d,e,f ∈ Λμ. Let X (d,e,f) be the stacks of triples of representations of Q

A⊂B ⊂ C

with A of dimension d, B/A of dimension e and C/B of dimension f. We use the shorthand

notations

CT (d) := MF(X (d)ss,Wd),

CT (d,e) := MF(X (d,e)ss,Wd+e),

CT (d,e,f) := MF(X (d,e,f)ss,Wd+e+f ) , etc.

We also use the shorthand notation XT (d) =X (d)/T . We need to show that the following

diagram commutes:

CT (d)�CT (e)�CT (f) CT (d)�CT (e,f) CT (d)�CT (e+f)

CT (d,e)�CT (f) CT (d,e,f) CT (d,e+f)

CT (d+ e)�CT (f) CT (d+ e,f) CT (d+ e+f),

q∗e,fδ
∗

q∗d,eδ
∗

q∗1δ
∗

pe,f∗

q∗d,e+fδ
∗

pd,e∗

q∗2δ
∗

p1∗

p2∗

pd,e+f∗

q∗d+e,fδ
∗

pd+e,f∗

(12)
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where we abused notation and dropped TS from the notation of the morphisms. The
Thom–Sebastiani functor commutes with the pullbacks and pushforwards above. For the

upper right corner, the maps are induced from the ones of the Cartesian diagram

XT (d,e,f) XT (d,e+f)

XT (d)×XT (e,f) XT (d)×XT (e+f),

p2

δq1 δqd,e+f

pe,f

and one can use proper base change to deduce that p2∗q∗1δ
∗ = q∗d,e+fδ

∗pe,f∗. A similar

argument shows that the lower left corner commutes. The lower right corner clearly
commutes. For the upper left corner of diagram (12), consider the diagram

XT (d,e,f) (X (d)×X (e,f))/T XT (d)×XT (e,f)

(X (d,e)×X (f))/T (X (d)×X (e)×X (f))/T XT (d)× (X (e)×X (f))/T

XT (d,e)×XT (f) (X (d)×X (e))/T ×XT (f) XT (d)×XT (e)×XT (f),

q2

q1

qe,f

δ

qe,f

δ

qd,e δ

δ id�δ

qd,e δ� id

(13)

where we have slightly abused notation involving the maps above. The upper left corner of

(13) clearly commutes. The upper right and lower left corners are base-change diagrams.
The lower right corner of (13) commutes because all maps are base change of the map

XT (d)×XT (e)×XT (f)→BT ×BT ×BT

along the maps in the Cartesian diagram

BT BT ×BT

BT ×BT BT ×BT ×BT.

δ

δ δ×1

1×δ

The diagram (13) commutes, and thus, diagram (12) commutes as well.

3.2. Comparison with the preprojective KHA

3.2.1. Consider a quiver Q̃= (I,Ẽ) and a decomposition of sets Ẽ =Ed	C. Let Qd =
(I,Ed) and Q′ = (I,C). The group C∗ acts on representations of Q̃ by scaling the linear

maps corresponding to edges in C with weight 2. Consider a potential W̃ of Q̃ on which

C∗ acts with weight 2. The set C is called a cut for (Q̃,W̃ ) in the literature. Denote

by X̃ (a) the moduli stack of representations of dimension a for the quiver Q̃ and by

X d(a) =Rd(a)/G(a) the analogous stack for the quiver Qd. We consider the category of

graded matrix factorizations MFgr(X̃ (a),W̃a) with respect to the action of the group C∗

mentioned above. Denote the representation space of Q′ by C(a). We abuse notation and
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denote by C(a) the natural vector bundle on X d(a). Write

W̃ =
∑
c∈C

cWc,

where Wc is a path of Qd. Define the algebra

P := C
[
Qd

]
/J ,

where J is the two-sided ideal generated by Wc for c ∈ C. The potential W̃ induces

a section s ∈ Γ
(X d(a),C(a)∨

)
, and thus a map ∂ : C(a)→ OXd(a). The corresponding

regular function constructed in (8) is

TrW̃ : X̃ (a)→ A1
C.

The moduli stack of representations of P of dimension a is the Köszul stack

P(a) := Spec
(ORd(a) [C(a)[1];∂]

)/
G(a). (14)

By the dimensional reduction equivalence (9) (see also [4, Appendix A.3] for the argument

in cohomology), we have an equivalence:

Φ :Db (P(a))∼=MFgr(X̃ (a),W̃ ). (15)

3.2.2. Let Q= (I,E) be a quiver, and consider the tripled quiver (Q̃,W̃ ) from Subsection

2.4. Qd is the doubled quiver of Q. Let C = {ωi| i ∈ I}. Then Qd is the doubled quiver of

Q. In this case, the ideal J is

J =

⎛
⎜⎜⎜⎝

∑
e∈E,

s(e)=i

[e,e],i ∈ I

⎞
⎟⎟⎟⎠,

so the algebra P is the preprojective algebra of Q, and thus, P(a) is the stack of

representation of P of dimension a. Consider the categorical preprojective Hall algebra

studied by Varagnolo–Vasserot [38]:

HAT (Q) :=
⊕
d∈NI

Db
T (P(d)) .

We obtain an equivalence of Hall algebra categories

HAT (Q)∼=HAT (Q̃,W̃ ).

3.2.3. Let a,b,d ∈NI with d= a+ b. We denote the multiplication maps for (a,b) for Q̃

by p̃, q̃ and for Qd by p, q. Let λ be a cocharacter λa,b as in (11). Define the line bundle

on X̃ (a)×X̃ (b):
ωa,b := det(C(d)λ�0

/
C(d)λ). (16)
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We twist the multiplication m̃ on HAT (Q̃,W̃ ) and define

m̃′ := p̃∗q̃∗ (−⊗ωa,b) TSδ
∗ : MFgr

T (X̃ (a),W̃a)⊗MFgr
T (X̃ (b),W̃b)

→MFgr
T (X̃ (d),W̃d).

Let m be the multiplication of the preprojective HAT (Q). By a T -equivariant version of
[25, Proposition 2.2], the following diagram commutes:

Db
T (P(a))⊗Db

T (P(b)) Db
T (P(d))

MFgr
T (X̃ (a),W̃a)⊗MFgr

T (X̃ (b),W̃b) MFgr
T (X̃ (d),W̃d).

Φ⊗Φ

m

Φ

˜m′

(17)

When passing to K0, the multiplication m̃′ is conjugation of m̃ by an explicit rational

function; see [38, Subsection 2.3.7].

3.3. Examples of KHA

3.3.1. The potential zero case. Let Q be an arbitrary quiver. Let i,i′ be vertices
of Q, and let {1, · · · ,ε(i,i′)} be the set of edges from i to i′. Consider the action of (C∗)ε(i,i

′)

on R(d) whose j th copy acts on R(d) with weight 1 on the factor Hom
(
Cds(j),Cdt(j)

)
corresponding to the edge j. Denote by qj the weight corresponding to the j th copy of

C∗. Define

ζii′(z) :=

(
1− q−1

1 z−1
) · · ·(1− q−1

ε(i,i′)z
−1

)
(1− z−1)

δii′
, (18)

where δii′ is 1 if i= i′ and 0 otherwise. Let T be a subtorus of (C∗)E which fixes W. We
also use the notation qj for the corresponding weight of T. For d ∈NI , let Sd :=×i∈I Sdi

be the Weyl group of G(d).

Proposition 3.4. The NI-graded vector space of KHAT (Q,0) has d graded space

KT
0 (X (d))∼=K0(BT )

[
z±1
i,j

]Sd
,

where i ∈ I and 1 � j � di. Let f ∈ KT
0 (X (a)), g ∈ KT

0 (X (b)) with a+ b = d. Then the

multiplication in KHAT (Q,0) is

f ·g =
∑

w∈Sd/Sa×Sb

w

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
fg

∏
i,i′∈I

j�ai

j′>ai′

ζii′

(
zij
zi′j′

)
⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Proof. Consider the maps

ιa,b :R(a,b)/G(a,b) ↪→R(d)/G(a,b)

πa,b :R(d)/G(a,b)→X (d).
The multiplication is defined by the composition

X (a)×X (b) q∗a,b−−→X (a,b) ιa,b∗−−−→R(d)/G(a,b)
πa,b∗−−−→X (d).

The pullback map is an isomorphism

q∗a,b :K
T
0 (X (a)×X (b))∼=KT

0 (X (a,b)). (19)

Let N be the normal bundle of the map ιa,b. The weights of N∨ are q−1
e z−1

ij zi′j′ , where

j � ai, j
′ > ai′ , and e ∈ {1, · · · ,ε(i,i′)} is an edge between i and i′. For h ∈KT

0 (X (a,b)),
we thus have that

ιa,b∗(h) = h
∏

i,i′∈I

j�ai

j′>ai′

(
1− q−1

1 z−1
ij zi′j′

) · · ·(1− q−1
ε(i,i′)z

−1
ij zi′j′). (20)

Further, for h ∈KT
0 (R(d)/G(a,b)), we have that

πa,b∗(h) =
∑

w∈Sd/Sa×Sb

w

⎛
⎜⎝ h∏

i∈I

j�ai<k

(
1− z−1

ij zik
)
⎞
⎟⎠ ; (21)

see, for example, [39, Proposition 1.2 or the proof of Proposition 2.3]. The formula for
the multiplication of the KHAT (Q,0) follows from (19), (20), and (21).

A shuffle formula for the product of CoHA appears in [16, Section 2.4] and for a general

oriented cohomological theory in [39].
Proposition 3.4 implies that:

Corollary 3.5. Let J be Jordan quiver. Consider the action of C∗ which scales

representations of J with weight 1. There is an isomorphism

KHAC∗(J,0)∼= U>
q (Lsl2).

Proof. The dimension d graded component of KHAC∗(J,0) is

KC∗
0 (X (d)) = Z

[
q±1

][
z±1
1 , · · · ,z±1

d

]Sd
.

In this case,

ζ(z) =
1− q−1z−1

1− z−1
.

https://doi.org/10.1017/S1474748022000111 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000111


2738 T. Pădurariu

Consider dimension vectors a,b,d ∈ N such that a+ b = d. The multiplication of f ∈
KC∗

0 (X (a)) and g ∈KC∗
0 (X (b)) is

(f ·g)(z1, · · · ,zd) =
∑

Sd/Sa×Sb

⎛
⎜⎜⎜⎝f (z1, · · · ,za)g (za+1, · · · ,zd)

∏
1�i�a,

a+1�j�d

ζ

(
zi
zj

)⎞⎟⎟⎟⎠ .

By [37, Theorem 3.5], the quantum group U>
q (Lsl2) has the same shuffle product

description.

3.3.2. Let (Q,W ) be an arbitrary quiver with potential, and let T be a torus preserving

the potential W.

Proposition 3.6. Assume that R(d)T (d)×T is in the zero locus of Tr(Wd). The inclusion
ιd : X (d)0→X (d) induces an algebra morphism

ιd∗ :KHAT (Q,W )→KHAT (Q,0).

Proof. First, the morphism ιd∗ :Db
T (X (d)0)→Db

T (X (d)) commutes with the maps used

in the definition of multiplication. The attracting maps for the category of singularities
are induced from

(X (a)×X (b))0 q←−X (a,b)0 p−→X (d)0.
Let a,b,d ∈ NI with d = a+ b. For this, we need to check that the following diagram is

commutative:

Db
T (X (a)0)�Db

T (X (b)0) Db
T (X (d)0)

Db
T (X (a))�Db

T (X (b)) Db
T (X (d)),

ιa∗�ιb∗

i∗p∗q∗

ιd∗

p∗q∗

(22)

where i : X (a)0×X (b)0 → X (d)0. Recall that i∗ is the Thom–Sebastiani functor. It is
enough to show that the following diagram commutes:

Db
T

(
(X (a)×X (b))0

)
Db

T (X (a,b)0) Db
T (X (d)0)

Db
T

(X (a)×X (b)) Db
T (X (a,b)) Db

T (X (d)).
ιd∗

q∗ p∗

ιd∗ ιd∗

q∗ p∗

The left corner commutes from proper base change. The right corner clearly commutes.
We next show that ιd∗KT

0 (X (d)0) = 0. By Propositions 2.3 and 2.5, the restriction map

is an isomorphism

KT
0 (X (d))I ∼−→K

T (d)×T
0 (R(d)T (d)×T )I,
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where I is the set in Proposition 2.5. The map KT
0 (X (d)) ↪→KT

0 (X (d))I is injective. By

the assumption on (Q,W ) and T, the map R(d)T×T (d)
/
T (d) ↪→X (d) factors through

R(d)T×T (d)
/
T (d) ↪→X (d)0 ↪→X (d).

The following map is thus injective:

ι∗d :K
T
0 (X (d)) ↪→KT

0 (X (d)0).
For any complex F in Perf(X (d)0), we have an exact triangle

F [1]→ ι∗dιd∗(F )→ F
[1]−→;

see [12, Remark 1.8], so ι∗dιd∗(F ) = 0 in KT
0 (X (d)0). Thus, the map

ιd∗ :GT
0 (X (d)0)→KT

0 (X (d))
factors through

KT
0 (Dsg(X (d)0))→KT

0 (X (d)).
The induced maps KT

0 (Dsg(X (d)0))→KT
0 (X (d)) respect multiplication by (22), so

ιd∗ : KHAT (Q,W )→KHAT (Q,0)

is an algebra morphism.

Remark. Let Q be a quiver. Consider the tripled quiver (Q̃,W̃ ). Using (2), (17) and

Proposition 3.6, we obtain an algebra morphism from the preprojective KHA of Q to a

shuffle algebra

KHAT (Q)∼=KHAgr
T (Q̃,W̃ )∼=KHAT (Q̃,W̃ )→KHAT (Q̃,0).

This allows for explicit computations in preprojective KHAs in conjunction with

generation results and allows for checking Conjecture 1.2 in particular cases. The most
general result in this direction is due to Varagnolo–Vasserot [38], who checked the

conjecture for finite and affine type quiver except A
(1)
1 .

4. Representations of KHA

4.1.

Let (Q′,W ′) be a quiver with potential, let T be a torus as in Section 3.1 and let θ′ ∈QI′

be a stability condition for Q′. Denote by τ the slope function. Let Q⊂Q′ be a subquiver

with I ′ \ I = {∞}, and denote by

W :=W ′|Q,
θ := θ′|Q.
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Fix μ a slope for (Q,θ). Let d ∈ Λμ be a dimension vector of Q. For any dimension vector

d ∈ NI , consider the dimension vectors

d̃ := (1,d),

do := (0,d)

of Q′, where we identify N×NI ∼= NI′
. We denote by X the moduli stacks for Q′. Then

X (do) is the moduli stack of representations of Q. We say that (Q′,Q,θ′,μ) satisfies

Assumption B if

θ′(∞) = μ+ ε

for 0< ε� 1. Then, for any d ∈ Λμ, we have that

μ= τ (do)< τ(d̃) = μ+ ε′

for 0 < ε′� 1. Let d,e ∈ Λμ. Denote by X (do,ẽ)
ss

the stack of pairs A ⊂ B such that A

is θ-semistable of dimension do and B is θ′-semistable of dimension d̃+ e. Then B/A is

θ′-semistable of dimension ẽ, and A is θ′-semistable. There are maps

td,e : X (do,ẽ)
ss→X (do)

ss×X (ẽ)ss,
sd,e : X (do,ẽ)

ss→X (d̃+ e)ss.

The map td,e is an affine bundle map, and the map sd,e is proper; see also the discussion
in [32, Subsection 4.1]. Denote by

RT (Q′,W ′)μ :=
⊕
d∈Λμ

MFgr
T (X (d̃),W ).

We denote its Grothendieck group by KRT (Q′,W ′)μ.

Proposition 4.1. In the above framework and under Assumption B, KHAT (Q,W )μ
naturally acts on KRT (Q′,W ′)μ via the functors

pd,e∗q∗d,eTSδ :MFT (X (do)
ss
,W )⊗MFT (X (ẽ)ss,W )

→MFT (X (d̃+ e)ss,W ) (23)

for d,e ∈ Λμ. If Assumption A is satisfied, we can consider graded categories MFgr, and

the analogous statement holds in that case as well.

Proof. Same proof as in Theorem 3.3 works here.

4.2.

Let Q3 be the quiver with one vertex 0 and three loops x,y,z, consider the potential
W3 = xyz−xzy and consider the zero stability condition. Let Qf

3 =
(
If,Ef

)
be the quiver

with If = {0,∞} and Ef = {x,y,z,t}. Consider the stability condition θ of Qf from

Subsection 2.3. For d ∈ N, denote by d̃= (1,d) a dimension vector of Qf . Assumption B
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is satisfied in this case by the construction of θ. Let T ⊂ (C∗)3 be a torus which fixes W.

Consider the regular function

Tr(W3, ˜d) : X (d̃)ss→ A1
C.

Its critical locus is Hilb
(
C3,d

)
. Use the notation

Kcrit,T (Hilb(A3
C,d)) :=K0(MFT (X (d̃)ss,W3, ˜d)).

Proposition 4.1 constructs an action of KHAT (Q3,W3) on⊕
d�0

Kcrit,T (Hilb(A3
C,d)).

4.3.

We explain how Proposition 4.1 can be used to construct representations on K -theory of

Nakajima quiver varieties following the analogous construction in cohomology [5, Section

6.3.]. Given a quiver Q= (I,E) and f ∈NI , denote by Qf the framed quiver with vertices
I ∪{∞} and fi new edges from ∞ to i ∈ I. Recall from Subsection 2.4 the construction

of the double quiver Q and tripled quiver with potential (Q̃,W̃ ). Let θ = 0 be the zero
stability condition for Q. Consider the stability condition θf defined in Subsection 2.3 for

the quiver Qf .

Define the torus T ′ ∼= (C∗)E , where for e ∈ E the corresponding C∗ acts with weight 1
on the linear map corresponding to e, with weight −1 on the linear map corresponding

to e and with weight 0 on ωi for any i ∈ I. We consider a torus T ⊂ T ′.
For d ∈ NI , denote by d̃ = (1,d) ∈ N×NI . Consider the map that forgets the action

of ωi:

π : X (Q̃f,d̃)→X (Qf,d̃).

Observe that the doubled and tripled quivers considered above are for Qf . Ben Davison

showed in [5, Lemma 6.5.] that the inclusion

π−1(X (Qf,d̃)ss) ↪→X (Q̃f,d̃)ss

induces an equality

π−1(X (Qf,d̃)ss)∩ crit(TrW̃ f ) = X (Q̃f,d̃)ss∩ crit(TrW̃ f ). (24)

We consider the extra C∗-action induced by acting with weight 2 on the linear maps

corresponding to ωi for i ∈ I and with weight 0 on the other linear maps. We consider
MFgr with respect to this C∗-action. The equality (24) implies that

MFgr(X (Q̃f,d̃)ss,W )∼=MFgr(π−1(X (Qf,d̃)ss),W ).

Consider the stack Y := X (Qf,d̃)ss, the g(d̃)-vector bundle π−1 (Y) and the regular

function TrW
˜d. We also denote the vector bundle by g(d̃). The potential is constructed
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as in Subsection 2.11 via the section s ∈ Γ(Y,g(d)) corresponding to the natural moment

map

s : T ∗R(d̃)∼=R(d̃)→ g(d̃).

It induces a map ∂ : g(d̃)→O
R(˜d )

. The diagonal C∗ ↪→G(d̃) acts trivially on R(d̃) and

G(d̃)
/
C∗ ∼=G(d). Define

P(d̃) := Spec(O
R(˜d )

[g(d)∨[1];∂])/G(d) .

Using dimensional reduction (see Subsections 2.11 and 3.2.1), we have that

MFgr
T

(
π−1 (Y),W )∼=Db

T (P(d̃)ss).

The moment map equations for i ∈ I are the relations for the Nakajima quiver varieties
N(f,d), and the moment map equation for∞ is superfluous [5, page 33]. This means that

P(d̃)ss ∼=N(f,d).

Assumption B is satisfied for (Q̃f,Q̃,θf,0). By Proposition 4.1 and by the discussion in

Subsection 3.2, the algebra KHAT (Q)∼=KHAgr
T (Q̃,W̃ ) acts on⊕

d∈NI

KT
0 (N(f,d)) .

4.4.

Let J be the Jordan quiver. Its tripled quiver is (Q3,W3). Consider T ⊂ (C∗)3 which fixes

W3. We obtain an action of KHAT (J)∼=KHAgr
T (Q3,W3) on⊕

d�0

KT
0

(
Hilb

(
A2

C,d
))

. (25)

The algebra KHAT (J) has a subalgebra isomorphic to U>
q,t(

̂̂
gl1) [30], [19]. In [8], [30],

the authors construct a representation of the full quantum group Uq,t(
̂̂
gl1) on the vector

space (25).

5. The wall-crossing theorem

5.1.

Let θ ∈QI be a stability condition for Q, and define the slope

τ(d) =

∑
i∈I θ

idi∑
i∈I d

i
.

For any partition d= (d1, · · · ,dk) of d with di ∈ NI , consider the maps

×k
i=1X (di)

qd←−X (d1, · · · ,dk) pd−→X (d).
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The stack X (d) has a Harder–Narasimhan stratification with strata

pd(q
−1
d (×k

i=1X (di)ss)) =: X ′(d)

corresponding to partitions d = (d1, · · · ,dk) with k � 2, di nonzero for 1 � i � k, and

μ1 > · · ·> μk where μi := τ(di).
Let I be the set of such partitions. Consider two partitions d = (d1, · · · ,dk) and e =

(e1, · · · ,es) in I. We say that d < e if k > s. Then X ′(d) with d ∈ I are a stratification as

in Subsection 2.7.2.

5.1.1. For w ∈Z, let Db(X (d))w be the subcategory of Db(X (d)) of complexes on which
the diagonal cocharacter λ := z · Id of G(d) acts with weight w. The category Db(X (d))
has an orthogonal decomposition in categories Db(X (d))w for w ∈ Z.
More generally, if X is a stack and T is a torus acting trivially on X , there is an

orthogonal decomposition of Db
T (X ) in categories Db

T (X )χ, where χ is a weight of T and

Db
T (X )χ is the subcategory of sheaves on Db

T (X ) on which T acts with weight χ.

5.1.2. As a corollary of [11, Theorem 2.10, Amplification 2.11]—see the semiorthogonal

decomposition (6)—we have that:

Proposition 5.1. The category Db(X (d)) has a semiorthogonal decomposition with

summands

pd∗q∗d(D
b(×k

i=1X (di)ss)χ)∼=Db(×k
i=1X (di)ss)χ,

where d ∈ I and χ= (w1, · · · ,wk) is a weight of (C∗)k. The analogous decomposition holds

for Db
C∗(X (d)) where C∗ is a subgroup of (C∗)E.

Using Propositions 2.1 and 2.2, we obtain the following corollary:

Corollary 5.2.
(a) The category MF(X (d),W ) has a semiorthogonal decomposition with summands

pd∗q∗d(MF(×k
i=1X ss(di),W )χ)∼=MF(×k

i=1X ss(di),W )χ,

where d ∈ I and χ= (w1, · · · ,wk) is a weight of (C∗)k.
(b) Assume that (Q,W ) satisfies Assumption A, and consider the corresponding MFgr.

Then the category MFgr (X (d),W ) has a semiorthogonal decomposition with summands

pd∗q∗d(MFgr(×k
i=1X (di)ss,W )χ)∼=MFgr(×k

i=1X (di)ss,W )χ,

where d ∈ I and χ= (w1, · · · ,wk) is a weight of (C∗)k.

Proof. Let d ∈ I, and let χ be a weight as above. Let C be a subcategory of

Db
(×k

i=1X (di)
)
χ
on which pd∗q∗d is fully faithful. Then

MF(pd∗q∗dC,Wd)∼= pd∗MF(q∗dC,p∗dWd)∼= pd∗q∗dMF(C,⊕k
i=1Wdi

).

The statement in part (a) follows from Proposition 2.1. The statement for MFgr follows

similarly using Proposition 2.2.
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5.1.3. We say that (Q,W ) satisfies Assumption C if. for all d,e ∈NI and all stability

conditions θ, the Thom–Sebastiani maps are isomorphisms:

TS :K0

(
MF(X (d)ss,Wd)

)⊗K0

(
MF(X (e)ss,We)

) ∼−→
K0

(
MF(X (d)ss×X (e)ss,Wd⊕We)

)
.

Under Assumption A, we can formulate the analogous assumption for MFgr, which by

[36, Corollary 3.13] is the same as the Assumption C above. Any pair (Q,0) satisfies

Assumption C. In [24], we check that any tripled quiver (Q̃,W̃ ) satisfies Assumption C.

Theorem 5.3.

(a) Assume that (Q,W ) satisfies Assumption C. Let θ be a stability condition. There is

an isomorphism of vector spaces

KHA(Q,W )
∼−→

⊗
μ∈Q

KHA(Q,W )μ.

(b) Assume that (Q,W ) satisfies Assumptions A and C, and consider the corresponding

KHAgr. Let θ be a stability condition. There is an isomorphism of vector spaces

KHAgr(Q,W )
∼−→

⊗
μ∈Q

KHAgr(Q,W )μ.

The product on the right hand side on Theorem 5.3 is an ordered product taken after

descending slopes; see also its analogue in cohomology [6, Theorem B].

Proof. Let d ∈NI . We discuss the proof for part (a); part (b) follows from part (a). The

statement follows from the isomorphism of vector spaces

K0 (MF(X (d),W ))∼=
⊕ k⊗

i=1

K0 (MF(X (di)ss,W )), (26)

where the sum is after all partitions d = (d1, · · · ,dk) in I. For any d ∈ NI , there are

decompositions

K0 (MF(X (d)ss,W ))∼=
⊕
w∈Z

K0 (MF(X (d)ss,W )w) .

The decomposition (26) now follows from Corollary 5.2 and the isomorphism from

Assumption C.

5.2. Example

Let Q be a type A quiver with vertices labelled 1 to n and edges from i to i+1 for

1� i� n−1.

5.2.1. Consider first the stability condition

θ : θ1 < · · ·< θn.
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Denote by εi the dimension vector with 1 in vertex i and zero everywhere else. The θ-
semistable representations are at dimension vectors nεi for n a nonnegative integer. For

1� i� n a vertex, let ri be the unique representation of dimension εi. Then

X (nεi)ss =
(
r⊕n
i

)
/GL(n),

so we have that

Si :=
⊕
n�0

K0 (X (nεi)ss)∼=
⊕
n�0

K0(BGL(n)).

As a corollary of Theorem 5.3, we obtain that:

Corollary 5.4. KHA(Q,0) is generated by the εi-graded pieces with 1� i�n dimensional

pieces under the multiplication map:

KHA(Q,0)∼=
n⊗

i=1

Si.

5.2.2. Choose next the stability condition

θ′ : θ1 > · · ·> θn.

The semistable representations are at the multiples of the roots r1, · · · ,rN of the Lie

algebra associated to Q. Consider an algebra Si
∼=⊕

n�0K0(BGL(n)) for any 1� i�N .

An analysis as above and Theorem 5.3 imply that:

Corollary 5.5. The KHA(Q,0) is generated by the ri-graded pieces with 1� i�N under

the multiplication map:

KHA(Q,0)∼=
N⊗
i=1

Si.

The analogues of Corollaries 5.4 and 5.5 for CoHA were proved by Rimanyi [29]. The
case of A2 in cohomology has been treated by Kontsevich–Soibelman [16, Section 2.8].
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[16] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge
structures and motivic Donaldson–Thomas invariants, Comm. Num. Th. and Phys. 5(2)
2011, 231–252.

[17] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, Astérisque
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Math., 324 (Birkhäuser/Springer, Cham, 2017).

[29] R. Rimanyi, On the cohomological Hall algebra of Dynkin quivers, Preprint, 2013.
http://arxiv.org/abs/1303.3399.

[30] O. Schiffmann and E. Vasserot, The elliptic Hall algebra and the K-theory of the
Hilbert scheme of A2, Duke Math. J. 162(2) (2013), 279–366.

[31] O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: generators,
J. Reine Angew. Math. 760 (2020), 2018.

[32] Y. Soibelman, Remarks on cohomological Hall algebras and their representations,
Preprint, 2014. http://arxiv.org/abs/1404.1606.

[33] Y. Takeda, Localization theorem in equivariant algebraic K-theory, Journal of Pure and
Applied Algebra 96(1) (1994), 73–80.

[34] Y. Toda, Moduli stacks of semistable sheaves and representations of Ext-quivers, Geom.
Topol. 22(5) (2018), 3083–3144.

[35] Y. Toda, Categorical Donaldson–Thomas theory for local surfaces, Preprint, 2019.
https://arxiv.org/pdf/1907.09076.pdf.

[36] Y. Toda, Categorical Donaldson–Thomas theory for local surfaces: Z/2-periodic version,
Preprint, 2021. https://arxiv.org/pdf/2106.05493.pdf.

[37] O. Tsymbaliuk, PBW bases and shuffle algebra realizations for Uv (Lsln), Uv1,v2 (Lsln),
Uv (Lsl(m|n))and their integral forms, Selecta Math. (N.S.) 27(3) (2021), 48 pp.

[38] M. Varagnolo and E. Vasserot, K-theoretic Hall algebras, quantum groups and super
quantum groups, Selecta Math. (N.S.) 28(1) (2022), 56 pp.

[39] Y. Yang and G. Zhao, The cohomological Hall algebra of a preprojective algebra, Proc.
Lond. Math. Soc. (3) 116(5) (2018), 1029–1074.

https://doi.org/10.1017/S1474748022000111 Published online by Cambridge University Press

https://arxiv.org/pdf/1101.5834.pdf
http://arxiv.org/abs/1303.3399
http://arxiv.org/abs/1404.1606
https://arxiv.org/pdf/1907.09076.pdf
https://arxiv.org/pdf/2106.05493.pdf
https://doi.org/10.1017/S1474748022000111

	1 Introduction
	1.1 Quivers with potential
	1.2 Cohomological Hall algebras.
	1.3 Categorical and K-theoretic Hall algebras.
	1.4 Preprojective Hall algebras
	1.5 Representations of the KHA
	1.6 The Jordan quiver
	1.7 Wall-crossing
	1.8 Further properties of the KHA
	1.9 Outline of the paper
	1.10 Notations and conventions

	2 Background material
	2.1 Quivers with potential
	2.2 King stability conditions
	2.3 Moduli of framed representations
	2.4 The tripled quiver
	2.5 Nakajima quiver varieties
	2.6 Semiorthogonal decompositions.
	2.7 Window categories.
	2.7.1  
	2.7.2  
	2.7.3   

	2.8 Categories of singularities and matrix factorizations.
	2.9 Functoriality of categories of singularities.
	2.10 Thom–Sebastiani theorem
	2.11 Dimensional reduction
	2.12 Localization theorems for categories of singularities.

	3 The Hall algebra
	3.1 Definition of the Hall algebra.
	3.2 Comparison with the preprojective KHA
	3.2.1  
	3.2.2  
	3.2.3  

	3.3 Examples of KHA
	3.3.1 The potential zero case. 
	3.3.2  


	4 Representations of KHA
	4.1 
	4.2 
	4.3 
	4.4 

	5 The wall-crossing theorem
	5.1 
	5.1.1  
	5.1.2  
	5.1.3  

	5.2 Example
	5.2.1  
	5.2.2  





