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Abstract
For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to
mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between
the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes
the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system.
We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted)
Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove
that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic
Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some
𝒟𝑋 -module applications: For example, we give a sharp restriction on the codimension one components of the
multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds
to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato
polynomial of a non-smooth, central, reduced arrangement live in (−2 + 1/𝑑, 0).
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2 D. Bath

1. Introduction

Throughout 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 = C[𝑥1, . . . , 𝑥𝑛] is a defining equation, factored into linears, of a
deg( 𝑓 ) = 𝑑 reduced hyperplane arrangement 𝒜 in 𝑋 = C𝑛 and with complement 𝑈 = 𝑋 \ 𝒜. By
default, we regard X as a Stein manifold with analytic structure sheaf 𝒪𝑋 . Along with the de Rham
complex (Ω•𝑋 , 𝑑), there is the meromorphic de Rham complex

(Ω•𝑋 (★𝒜), 𝑑) = 0→ Ω0
𝑋 (★𝒜)

𝑑
−→ · · ·

𝑑
−→ Ω𝑛

𝑋 (★𝒜) → 0,

where d is the exterior derivative and (★𝒜) means we allow poles of arbitrary order along 𝒜.
K. Saito [28] introduced the logarithmic de Rham complex (Ω•𝑋 (log𝒜), 𝑑) as the subcomplex of the
meromorphic de Rham complex characterized by

Ω 𝑗
𝑋 (log𝒜) = {𝜂 ∈ Ω 𝑗

𝑋 (𝒜) | 𝑑 (𝜂) ∈ Ω
𝑗+1
𝑋 (𝒜)}.

That is, both 𝜂 and 𝑑 (𝜂) have poles of order at most one along 𝒜. Note that these are complexes of
sheaves of 𝒪𝑋 -modules, neither of which depends on the choice of defining equation f of 𝒜. There are
algebraic analogues: the algebraic logarithmic de Rham complex Ω•𝑅 (log𝒜); the algebraic rational de
Rham complex Ω•𝑅 (★𝒜). These complexes of R-modules have similar definitions to the analytic ones.

Our original motivation was to answer a well-studied conjecture (Conjecture 3.1 of [33]) of Terao
from 1977:

Conjecture 1.1 (Terao’s LCT conjecture). The algebraic Logarithmic Comparison Theorem holds for
reduced hyperplane arrangements. That is, the natural inclusion of the algebraic logarithmic de Rham
complex into the algebraic rational de Rham complex is a quasi-isomorphism:

(Ω•𝑅 (log𝒜), 𝑑)
q.i.
↩−−→ (Ω•𝑅 (★𝒜), 𝑑) (� 𝐻•(𝑈,C𝑈 )).

Here, C𝑈 is the the rank one C-valued constant sheaf on U.
That 𝐻•(Ω•𝑅 (★𝒜), 𝑑) � 𝐻•(𝑈,C𝑈 ) is a consequence of Grothendieck’s Comparison Theorem [17].

So Conjecture 1.1 promises that logarithmic data of 𝒜 determine the cohomology of the complement
via the conjectured quasi-isomorphism.

We prove Conjecture 1.1 as a corollary to more general result: the Twisted Logarithmic Comparison
Theorem. This promises that twisting the differential of the logarithmic de Rham complex by a certain
logarithmic form computes the cohomology of the complement U in the corresponding rank one local
system.

To explain this, let 𝜆1, . . . , 𝜆𝑑 ∈ C be weights, one for each hyperplane V( 𝑓𝑘 ) of 𝒜, and let the
weights define a logarithmic one form

𝜔 =
∑
𝑘

𝜆𝑘
𝑑𝑓𝑘
𝑓𝑘

=
∑
𝑘

𝜆𝑘𝑑 log 𝑓𝑘 .

Using 𝜔, we twist the exterior derivative for both the logarithmic and meromorphic de Rham complex
(along with the algebraic analogues): We replace the differential 𝑑 (−) with the twisted differential
∇𝜔 (−) = 𝑑 (−) + 𝜔 ∧ (−).

On the local system side, it is well known that all rank one local systems on the complement𝑈 = 𝑋\𝒜
are parameterized by torus points 𝜷 ∈ (C★)𝑑 . Essentially, each 𝛽𝑘 encodes the monodromy around the
hyperplane V( 𝑓𝑘 ). Denote L𝜷 the local system corresponding to 𝜷. By Deligne and Grothendieck’s
algebraic de Rham theorems (see the summary of the arrangement case in [25]), the algebraic twisted
de Rham complex computes the cohomology on U with one of these local systems:

𝐻•(Ω•𝑅 (★𝒜),∇𝜔) � 𝐻•(𝑈,LExp(𝝀) ).
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LExp(𝝀) corresponds to the torus point obtained by replacing each component 𝜆𝑘 of the weights
𝝀 = (𝜆1, . . . , 𝜆𝑑) with 𝑒2𝜋𝑖𝜆𝑘 .

Our two main results are: the analytic Twisted Logarithmic Comparison Theorem; the algebraic
Twisted Logarithmic Comparison Theorem. In both cases, we have very mild combinatorial arithmetic
restrictions on the weights defining the twist. Recallℒ(𝐴) is the intersection lattice of𝒜; its constituents
are called edges. The majority of work is in proving our analytic Theorem 1.2:

Theorem 1.2 (Analytic Twisted Logarithmic Comparison Theorem). Let 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 cut out a
reduced hyperplane arrangement 𝒜. Suppose that 𝜆1, . . . , 𝜆𝑑 ∈ C are weights such that, for each edge
𝐸 ∈ ℒ(𝒜), ∑

{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }
𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } . (1.1)

Let 𝜔 =
∑

𝑘 𝜆𝑘
𝑑 𝑓𝑘
𝑓𝑘

be the logarithmic one form determined by the {𝜆𝑘 }. Then the analytic Twisted
Logarithmic Comparison Theorem with respect to {𝜆𝑘 } holds:

(Ω•𝑋 (log𝒜),∇𝜔)
q.i.
↩−−→ (Ω•𝑋 (★𝒜),∇𝜔) (= R 𝑗★ LExp(𝝀) ).

The statement ‘(= R 𝑗★ LExp(𝝀) )’ means there is equality in the derived category (of perverse sheaves),
where 𝑗 : 𝑈 ↩−→ 𝑋 is the inclusion.

From this, we deduce the algebraic Theorem 3.8, though here impose centrality:

Theorem 1.3 (Algebraic Twisted Logarithmic Comparison Theorem). Let 𝑓 = 𝑓1 · · · 𝑓𝑑 cut out a
central, reduced hyperplane arrangement 𝒜, and let 𝜆1, . . . , 𝜆𝑑 ∈ C be weights such that, for each
edge E, ∑

{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }
𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } .

Furthermore, let 𝜔 =
∑

𝑘 𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 . Then the algebraic Twisted Logarithmic Comparison Theorem
holds along with an additional quasi-isomorphism:

(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)
q.i.
↩−−→ (Ω•𝑅 (log𝒜),∇𝜔)

q.i.
↩−−→ (Ω•𝑅 (★𝒜),∇𝜔) (� 𝐻•(𝑈,LExp(𝝀) )).

Here, (� 𝐻•(𝑈,LExp(𝝀) )) means there are isomorphisms on the level of cohomology and
(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔) is the homogeneous subcomplex of degree −𝜄𝐸 (𝜔) = −(𝜆1 + · · · + 𝜆𝑑), which
is a complex of finite dimensional C-vector spaces.

The combinatorial arithmetic conditions (1.1) on the intersection lattice are relatively benign. (And
are closely related to data about Bernstein–Sato ideals, cf. Theorem 1.9, Section 4.) We justify this
assessment in Proposition 3.12:

Proposition 1.4. For an arbitrary rank one local system L𝜷 on U, there exists a 𝝀 ∈ Exp−1 (𝜷) such
that all the aforementioned Twisted Logarithmic Comparison Theorems hold with respect to the weights
𝝀 = (𝜆1, . . . , 𝜆𝑑).

These Twisted Logarithmic Comparison Theorems can be considered as an extension of the results
in [16]. Therein projective hyperplane arrangements are considered, but using a Leray spectral sequence
there is a precise cohomological relationship between local systems on the complement of a central
affine arrangement and the corresponding local system on the complement of the associated projective
arrangement, cf. Theorem 5.2 of [15]. In [16], the authors prove that the twisted Orlik–Solomon
algebra, that is, the twisted Brieskorn algebra, with differential wedging 𝜔 =

∑
𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 , computes

the cohomology of the associated rank one local system on the projective complement provided that:
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4 D. Bath

(1) the sum 𝜆1+· · ·+𝜆𝑘 = 0; (2) a similar condition to Equation (1.1) holds on the residues of 𝜔 at dense
edges. The first requirement means these twisted Orlik–Solomon algebra can only detect local systems
belong to nontorsion translated components of the characteristic variety, that is, resonance varieties,
cf. Example 4.1 of [31] or Section 3 of [11]. This is a feature of twisted Orlik–Solomon algebras: They
are blind to the local systems populating the torsion translated components by [12].

In contrast, any local system on the complement of an arrangement can be detected via these Twisted
Logarithmic Comparison Theorems, after an appropriate twist, essentially because there is no stricture
like 𝜆1 + · · · + 𝜆𝑑 = 0. So Theorem 1.2 and Theorem 1.3 extend the results of [16] to all rank one local
systems, at the cost of replacing the Orlik–Solomon algebra with the logarithmic de Rham complex.
To demonstrate this, in Example 3.14 we use our results to compute the Betti numbers of 𝐻•(𝑈,L𝜷) for
a special local system on the complement of the deleted 𝐵3 arrangement. This system L𝜷 is invisible to
Orlik–Solomon methods.

From Theorem 1.2 we quickly conclude the (untwisted) analytic Logarithmic Comparison Theorem
holds in Corollary 3.6:

Corollary 1.5 (Analytic Logarithmic Comparison Theorem). For a reduced hyperplane arrangement
𝒜, the analytic Logarithmic Comparison Theorem holds:

(Ω•𝑋 (log𝒜), 𝑑)
q.i.
↩−−→ (Ω•𝑋 (★𝒜), 𝑑) (= R 𝑗★C𝑈 ).

We also prove the algebraic (untwisted) Logarithmic Comparison Theorem in Corollary 3.10, pos-
itively resolving Terao’s Conjecture 1.1. Here, there is no centrality assumption and 𝐴•(𝒜) is the
Orlik–Solomon algebra.

Corollary 1.6 (Algebraic Logarithmic Comparison Theorem). Let 𝒜 be a reduced hyperplane
arrangement. Then the algebraic Logarithmic Comparison Theorem holds giving a sequence of
quasi-isomorphisms

𝐴•(𝒜)
q.i.
↩−−→ (Ω•𝑅 (log𝒜), 𝑑)

q.i.
↩−−→ (Ω•𝑅 (★𝒜), 𝑑) (� 𝐻•(𝑈,C𝑈 )).

Moreover, 𝐴 𝑗 (𝒜) = 𝐻 𝑗 (Ω•𝑅 (log𝒜), 𝑑).

Previously, Conjecture 1.1 has been confirmed in special cases of arrangements and other divisors:
necessary and sufficient conditions for quasi-homogeneous divisors with isolated singularities [19];
strongly quasi-homogeneous free divisors [9] (in this setting, see also [8] for a less explicit twisted
version than what we find and [23] for the current state of the art); tame arrangements and arrangements
of rank at most 4 [36]. Both free and tame impose homological restrictions on the logarithmic forms:
Free means Ω1

𝑅 (log𝒜) is a free R-module; tame means the projective dimension of Ω 𝑗
𝑅 (log𝒜) is at

most j.
Our approach to the analytic Twisted Logarithmic Comparison Theorem (Theorem 1.2) inhabits the

architecture of Castro Jiménez, Mond and Narváez Macarro’s inductive proof of the analytic (untwisted)
Logarithmic Comparison Theorem for strongly quasi-homogeneous free divisors [9], with the induction
happening on the rank of edges 𝐸 ∈ ℒ(𝒜) (or equivalently on the dimension of logarithmic strata as in
loc. cit. see [28]). Within this inductive scheme, the obstacle is understanding a spectral sequence with
first page

′′𝐸 𝑝,𝑞
1 = 𝐻𝑞 (𝑉 \ 0,Ω𝑝

𝑋 (log𝒜)), (1.2)

where 𝑉 � 0 is a small Stein open, 𝒜 is central, and this page’s vertical differential is induced by ∇𝜔 .
The goal is to show only certain entries survive on the second page. Homological restrictions on the
logarithmic j-forms limit the complexity of this first page: In [9], under freeness, only two columns may
not vanish; in [36], under tameness, the problematic entries are confined to two diagonal lines. With
these simplifications, both [9] and [36] can then use graded data to show the required entries on the
second page vanish (though [36] crucially invokes Brieskorn’s Theorem at this step).
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Without any homological assumptions the first page (1.2) is arbitrarily daedal. However, the first
page’s data are governed by the complexes of modules of analytic Čech cohomology

(𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)),∇𝜔) (1.3)

attached to the open cover {𝐷 (𝑥𝑖)} of 𝑋\0. In subsection 2.3, we show the cohomology of Equation (1.3)
is determined by a ‘homogeneous’ subcomplex in the sense of Laurent expansions. Thus, to show
the necessary entries of our spectral sequence’s second page vanish, it suffices to show that this
‘homogeneous’ subcomplex is the zero complex. Corollary 2.31 uses a GAGA argument to relate this
vanishing to the vanishing of certain graded components of the algebraic local cohomology: in notation,
to 𝐻𝑡

𝔪 (Ω
•
𝑅 (log𝒜))ℓ . We show the appropriate components are zero in Theorem 2.29, where we bound

the Castelnuovo–Mumford regularity of Ω 𝑗
𝑅 (log𝒜):

Theorem 1.7. For 𝒜 a central, essential, reduced hyperplane arrangement, the Castelnuovo–Mumford
regularity of Ω 𝑗

𝑅 (log𝒜) is bounded by

reg(Ω 𝑗
𝑅 (log𝒜)) ≤ 0 for 1 ≤ 𝑗 ≤ rank(𝒜) − 1.

When 𝑗 = 0 or 𝑗 = rank(𝒜), the module of logarithmic zero or rank(𝒜)-forms are free R-modules and
so only 𝐻rank𝒜

𝔪 (−) ≠ 0. In these cases, reg(Ω0
𝑅 (log𝒜)) = 0 and reg(Ωrank(𝒜)

𝑅 (log𝒜)) = rank(𝒜) −
deg(𝒜).

We obtain this using linear approximation methods due to Derksen and Sidman [14]. Therein
they bound the regularity of the logarithmic derivations of an arrangement (and M. Saito improved
this in [30]), but there is nontrivial difficulty in applying their techniques to the case of logarithmic
differential forms.

We conclude with some applications to classical questions for 𝒟𝑋 -modules. This helps demystify the
combinatorial arithmetic conditions (1.1). Here, 𝒟𝑋 is the sheaf of C-linear analytic differential oper-
ators. One expects the analytic Logarithmic Comparison Theorem to inform certain 𝒟𝑋 -constructions,
especially Bernstein–Sato polynomials. See the surveys [34], [22]. For some free divisors, there is an
intrinsic 𝒟𝑋 -theoretic formulation of the Logarithmic Comparison Theorem as developed in [8]; see
also [23] for current developments.

The existing literature primarily focuses on the untwisted, univariate case, and thus questions like:
Does the cyclic 𝒟𝑋 -module generated by 𝑓 −1 equal (as a submodule) the 𝒟𝑋 -module 𝒪𝑋 (★𝒜) (the
module with poles of arbitrary order along 𝒜)? This corresponds to −1 being the smallest Z-root of the
Bernstein–Sato polynomial of f, which was proved for arrangements by Leykin in [35].

We ask a more subtle question: For a fixed 𝝀 ∈ C𝑑 , does the cyclic 𝒟𝑋 -module generated by
𝑓 𝝀 = 𝑓 𝜆1

1 · · · 𝑓
𝜆𝑑

𝑑 equal (as a submodule) the 𝒟𝑋 -module 𝒪𝑋 (★𝑓 𝜆) = ∪p∈N𝑑𝒟𝑋 𝑓 𝝀−p? Using ideas of
Torelli [34], in Theorem 4.4 we give an answer, contingent on our familiar combinatorial arithmetic
properties on 𝝀:
Theorem 1.8. Let 𝑓 = 𝑓1 · · · 𝑓𝑑 cut out a central, reduced hyperplane arrangement and let
𝝀 = (𝜆1, . . . , 𝜆𝑑) ∈ C

𝑑 be weights such that for each edge E∑
{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }

𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } .

Then

𝒟𝑋 𝑓 −1+𝝀 = 𝒪𝑋 (★𝑓 𝝀).

As in the case of 𝑓 −1, one hopes there is an equivalent interpretation in terms of Bernstein–Sato
ideals. However, unlike the univariate case ( 𝑓 −1, Bernstein–Sato polynomials), the multivariate case
( 𝑓 𝝀 , Bernstein–Sato ideals) and the associated 𝒟𝑋 [𝑠1, . . . , 𝑠𝑑]-modules are more nuanced and the

https://doi.org/10.1017/fmp.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.17


6 D. Bath

precise connection remains unclear. These issues are central to the approach of [21] and [6], where
methods and theory were developed for the multivariate setting.

Using the generically Cohen–Macaulay strategy developed in [6] as well as other intricate techniques,
in Theorem 4.7 we are able to give a very good bound (i.e., sharp, see the formula for a generic
arrangement in Theorem 3.23 of [1]) for the codimension one components of the zero locus of the
Bernstein–Sato ideal. Here, we consider arbitrary factorizations 𝐹 = ( 𝑓1, . . . , 𝑓𝑟 ) of f.

Theorem 1.9. For 𝐹 = ( 𝑓1, . . . , 𝑓𝑟 ) an arbitrary factorization of a reduced, central arrangement f, the
codimension one components of the Bernstein–Sato ideal attached to F has the following restriction:

𝑍𝑟−1(𝐵𝐹,0) ⊆
⋃

𝐸 ∈ℒ (𝒜)
𝐸 dense

𝑄𝐸⋃
𝑣=0

⎧⎪⎪⎨⎪⎪⎩
∑

{1≤𝑘≤𝑟 |𝐸⊆V( 𝑓𝑘 ) }
𝑑𝐸,𝑘 𝑠𝑘 + rank(𝐸) + 𝑣 = 0

⎫⎪⎪⎬⎪⎪⎭
where 𝑑𝐸,𝑘 is as in Definition 4.6 and

𝑄𝐸 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑑𝐸 − rank(𝐸) −min{2, rank(𝐸)} for 𝐹 a factorization into linears;
2𝑑𝐸 − rank(𝐸) −min{2, rank(𝐸)} for 𝐹 any factorization & 𝐸 = {0};
2𝑑𝐸 − rank(𝐸) − 1 for 𝐹 not a factorization into linears & 𝐸 ≠ {0}.

In particular, when 𝐹 = ( 𝑓 ) is the trivial factorization and f is not smooth, the roots of the Bernstein–
Sato polynomial are contained in (−2 + 1/𝑑, 0).

To clarify notation: 𝑍𝑟−1(𝐵𝐹,0) denotes the codimension one components of the Bernstein–Sato
ideal attached to F at the origin, 𝑑𝐸 equals the number of hyperplanes containing the edge E, and 𝑑𝐸,𝑘

equals the number of hyperplanes containing the edge E that themselves are contained in V( 𝑓𝑘 ), cf.
Definition 4.6.

In the simpler case of Bernstein–Sato polynomials, Theorem 1.9 gives an entirely new proof of M.
Saito’s result [29] that the roots of the Bernstein–Sato polynomial of a non-smooth central arrangement
lie in (−2 + 1/𝑑, 0).

Here is the paper’s structure. Section 2 introduces paper-wide notation, develops tools for studying
complexes of algebraic local cohomology of logarithmic forms (subsection 2.2, subsection 2.5), study-
ing the analytic analogue of complexes of Čech cohomology of logarithmic forms (subsection 2.3),
converting algebraic results to analytic ones (subsection 2.6) and bounding the Castelnuovo–Mumford
regularity (subsection 2.4). Section 3 uses these results to prove our four (un)Twisted Logarithmic
Comparison Theorems (two analytic, two algebraic), prove that the theorems apply to all rank one lo-
cal systems (Proposition 3.12) and compute Example 3.14. Section 4 gives 𝒟𝑋 -module applications,
including a bound on the codimension one components of the Bernstein–Sato ideal of an arbitrary
factorization of our arrangement.

2. Logarithmic forms and local cohomology

In the first subsection, we set up necessary notation and background knowledge used throughout the
paper. The rest of the section is devoted to studying the local cohomology of logarithmic forms in the al-
gebraic setting as well as a sort of analytic analogue: the Čech cohomology of the logarithmic forms with
respect to the cover {𝐷 (𝑥𝑖)} of 𝑋 \0. While we require knowledge of both contexts, the analytic analogue
is vital. On the other hand, the techniques in the algebraic setting inspire those for the analytic one.

In subsection 2.2, we build up tools for studying complexes of such algebraic local cohomol-
ogy modules with twisted differentials, focusing on establishing useful contracting homotopies;
in subsection 2.3, we morally repeat the strategy in the analytic Čech case, again obtaining a useful
contracting homotopy; in subsection 2.4, we bound the Castelnuovo–Mumford regularity of logarithmic
forms in the algebraic case; in subsection 2.5, we use this bound to obtain an acyclicity criterion in the
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algebraic case; in subsection 2.6, we use a GAGA argument to get a similar acyclicity criterion in the
analytic setting. The last result powers our proof of the analytic (un)Twisted Logarithmic Comparison
Theorem.

2.1. Terminology and background

We will use 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 = C[𝑥1, . . . , 𝑥𝑛] to denote a defining equation of a reduced hyperplane
arrangement 𝒜 of degree d (i.e., deg( 𝑓 ) = 𝑑). We use X to denote C𝑛 and will, unless otherwise stated,
consider X as a Stein manifold with analytic structure sheaf 𝒪𝑋 . The complement 𝑈 = 𝑋 \𝒜 of our
arrangement includes into X via 𝑗 : 𝑈 ↩−→ 𝑋 . As is standard, we denote the constant C-valued rank one
system on U by C𝑈 .

Let ℒ(𝒜) be the intersection lattice of the hyperplane arrangement 𝒜; its members are called edges
(sometimes flats in the literature). We say the rank of 𝒜, denoted rank(𝒜), is the rank of the lattice
ℒ(𝒜); 𝒜 is reduced when f is reduced; 𝒜 is central when {0} ⊆ ∩𝐸 ∈ℒ (𝒜)𝐸 , that is, f is homogeneous;
𝒜 is essential when {0} = ∩𝐸 ∈ℒ (𝒜)𝐸 ; 𝒜 is decomposable when, after a possible coordinate change,
there are polynomials g and h in disjoint, nonempty variable sets such that 𝑓 = 𝑔ℎ; an edge 𝐸 ∈ ℒ(𝒜)
is dense when the subarrangement of all hyperplanes containing E is indecomposable; the rank of
𝐸 ∈ ℒ(𝒜) is the rank of the subarrangement of hyperplanes containing E. Alternatively, the rank of A
or E is the codimension of the corresponding subspace in X.

We recall the types of de Rham complexes appearing in the Introduction.
Definition 2.1. Let (Ω•𝑋 , 𝑑) be the canonical de Rham complex. The meromorphic de Rham complex is

(Ω•𝑋 (★𝒜), 𝑑) = 0→ Ω0
𝑋 (★𝒜)

𝑑
−→ · · ·

𝑑
−→ Ω𝑛

𝑋 (★𝒜) → 0,

where d is the exterior derivative and Ω 𝑗
𝑋 (★𝒜) is the localization of Ω 𝑗

𝑋 along f, that is, (★𝒜) means
we have poles of arbitrary order along 𝒜. The logarithmic de Rham complex (Ω•𝑋 (log𝒜), 𝑑) is the
subcomplex of the meromorphic de Rham complex characterized by

Ω 𝑗
𝑋 (log𝒜) = {𝜂 ∈ Ω 𝑗

𝑋 (𝒜) | 𝑑 (𝜂) ∈ Ω
𝑗+1
𝑋 (𝒜)}, (2.1)

that is, its the largest subcomplex where both 𝜂 and 𝑑 (𝜂) have poles of order at most one along 𝒜. Both
are complexes of 𝒪𝑋 -modules with C-linear differentials.

There are global algebraic analogues: the algebraic rational de Rham complex Ω•𝑅 (★𝒜); the al-
gebraic logarithmic de Rham complex Ω•𝑅 (log𝒜). These are complexes of R-modules with C-linear
differentials and have entirely similar definitions: Ω 𝑗

𝑅 (★𝒜) = Ω 𝑗
𝑅 [ 𝑓

−1]; Ω 𝑗
𝑅 (log𝒜) satisfies its version

of Equation (2.1).
There are natural inclusion of complexes:

(Ω•𝑋 (log𝒜), 𝑑) ↩−→ (Ω•𝑋 (★𝒜), 𝑑); (2.2)
(Ω•𝑅 (log𝒜), 𝑑) ↩−→ (Ω•𝑅 (★𝒜), 𝑑).

We say 𝒜 satisfies the analytic Logarithmic Comparison Theorem when first inclusion (2.2) is a
quasi-isomorphism; it satisfies the algebraic Logarithmic Comparison Theorem when the second is a
quasi-isomorphism. We often abbreviate ‘Logarithmic Comparison Theorem’ to ‘LCT.’

A dual object to Ω1
𝑅 (log𝒜) are the logarithmic derivations

Der𝑅 (− log𝒜) = {𝛿 ∈ Der𝑅 | (𝛿 • 𝑓 ) ∈ 𝑅 · 𝑓 }.

These can be defined analytically as well. We sometimes replace ‘log𝒜’ with ‘log 𝑓 ’ when working
with a defining equation f of 𝒜. Note that none of these constructions depend on the choice of f (nor
coordinate systems).
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Remark 2.2. Suppose𝒜 is a product (i.e., decomposable):𝒜 = ℬ⊕𝒞. This means the defining equation
may be written as 𝑓 = 𝑔ℎ, where 𝑔 ∈ 𝐵 = C[𝑥1, . . . , 𝑥𝑖] cuts out ℬ and ℎ ∈ 𝐶 = C[𝑥𝑖+1, . . . , 𝑥𝑛] cuts
out 𝒞 (changing coordinates as necessary). Then the logarithmic differential forms satisfy a Kunneth
formula; see, for example, Lemma 3.10 of [10]:

Ω𝑘
𝑅 (log𝒜) �

⊕
𝑖+ 𝑗=𝑘

Ω𝑖
𝐵 (logℬ) ⊗C Ω 𝑗

𝐶 (log𝒞).

The same type of Kunneth formula holds on the sheaf level and for Der𝑅 (− log𝒜), cf. Lemma 1.2
of [30].

Recall that the Orlik–Solomon algebra 𝐴•(𝒜) can be identified by the C-algebra generated by the
differential forms {𝑑𝑓𝑘/ 𝑓𝑘 }, one for each hyperplane 𝑓𝑘 . Under this characterization, it is called the
Brieskorn algebra. Brieskorn’s Theorem [4] combined with Grothendieck’s Comparison Theorem [17]
gives a quasi-isomorphism

𝐴•(𝒜)
q.i.
↩−−→ (Ω•𝑅 (★𝒜), 𝑑) (� 𝐻•(𝑈,C𝑈 )),

where ‘(� 𝐻•(𝑈,C𝑈 ))’ means the cohomology objects are isomorphic, cf. Section 5.4 [26].
We turn to twisted de Rham complexes and nontrivial rank one local systems.

Definition 2.3. For 𝜆1, . . . , 𝜆𝑑 ∈ C, consider the logarithmic one form

𝜔 =
∑
𝑘

𝜆𝑘
𝑑𝑓𝑘
𝑓𝑘

=
∑
𝑘

𝜆𝑘𝑑 log 𝑓𝑘 .

This induces a twisted meromorphic de Rham complex

(Ω•𝑋 (★𝒜),∇𝜔) = 0→ Ω0
𝑋 (★𝒜)

∇𝜔
−−→ Ω1

𝑋 (★𝒜)
∇𝜔
−−→ · · ·

∇𝜔
−−→ Ω𝑛

𝑋 (★𝒜) → 0,

where, for a meromorphic j-form 𝜂,

∇𝜔 (𝜂) = 𝑑 (𝜂) + 𝜔𝜆 ∧ 𝜂.

Since the logarithmic de Rham complex is closed under exterior products, ∇𝜔 also induces the analytic
twisted logarithmic de Rham complex

(Ω•𝑋 (log𝒜),∇𝜔) = 0→ Ω0
𝑋 (log𝒜)

∇𝜔
−−→ Ω1

𝑋 (log𝒜)
∇𝜔
−−→ · · ·

∇𝜔
−−→ Ω𝑛

𝑋 (log𝒜) → 0.

Because 𝜔 ∈ Ω1
𝑅 (log𝒜), we have global algebraic analogues: the twisted rational de Rham complex

(Ω•𝑅 (★𝒜),∇𝜔); the algebraic twisted logarithmic de Rham complex (Ω•𝑅 (log𝒜),∇𝜔). We sometimes
drop ‘analytic’ or ‘algebraic’ when the context is clear.

Analogizing the untwisted case, we say 𝒜 satisfies the analytic Twisted Logarithmic Comparison
Theorem when the natural inclusion of complexes is a quasi-isomorphism, that is when:

(Ω•𝑋 (log𝒜),∇𝜔)
q.i.
↩−−→ (Ω•𝑋 (★𝒜),∇𝜔).

𝒜 satisfies the algebraic Twisted Logarithmic Comparison Theorem when the corresponding inclusion
of algebraic complexes is a quasi-isomorphism. We often abbreviate ‘Twisted Logarithmic Comparison
Theorem’ to ‘TLCT’.

As the meromorphic de Rham complex relates to cohomology with constant coefficients, the twisted
meromorphic de Rham complex relates to cohomology with a nontrivial rank one local system.
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Definition 2.4. Recall 𝑈 = 𝑋 \𝒜 and 𝑗 : 𝑈 ↩−→ 𝑋 is the inclusion. It is well known that the C-valued
rank one local systems on U are in one to one correspondence with the torus points

Hom(𝜋1 (𝑈,Z),C
★) = (C★)𝑑 .

For a point 𝜷 in the torus (C★)𝑟 , we define L𝜷 to be the corresponding rank one local system on U. We
recall

R 𝑗★ L𝜷

is an object in the derived category of bounded C𝑋 -complexes. In fact, it is a perverse sheaf.
Now, let Exp : C𝑑 → (C★)𝑑 be the exponential map:

𝝀 = (𝜆1, . . . , 𝜆𝑑) ↦→ Exp(𝝀) = (𝑒2𝜋𝑖𝜆1 , . . . , 𝑒2𝜋𝑖𝜆𝑑 ).

Then every point 𝝀 ∈ C𝑑 , along with its integer translates, corresponds to the rank one local system on
U we’ve called LExp(𝝀) .

Similar to the untwisted case, by a combination of Deligne’s and Grothendieck’s algebraic de Rham
theorems we have isomorphisms in cohomology:

𝐻•(Ω•𝑅 (★𝒜),∇𝜔) � 𝐻•(𝑈,LExp(𝝀) ).

See [25] for a discussion of this in the arrangement case. In the analytic setting, we have a well-known
identification in the derived category:

(Ω𝑋 (★𝑓 ),∇𝜔) = R 𝑗★ LExp(𝝀) .

We give details on this in Proposition 4.3. So the analytic twisted meromorphic de Rham complex has
all the data of the derived direct image of the local system in question. An analytic/algebraic Twisted
Logarithmic Comparison Theorem guarantees these data are determined by only logarithmic content.

Convention 2.5. Unless otherwise stated, 𝑅 = C[𝑥1, . . . , 𝑥𝑛] and is canonically graded with 𝑥𝑖 given
weight one. Denote the irrelevant ideal 𝑅 · (𝑥1, . . . , 𝑥𝑛) of R by 𝔪. In general, we allow R-modules to be
Z-graded. We grade Ω 𝑗

𝑅 by giving 𝑑𝑥𝑖 weight one, and we grade 𝑅[𝑥−1
𝐼 ] (the localization of R at each

𝑥𝑖 for 𝑖 ∈ 𝐼 ⊆ [𝑛]) by giving 𝑥−1
𝑖 weight one; for a graded R-module M, we grade 𝑀 [𝑥−1

𝐼 ] similarly.
We also grade Ω 𝑗

𝑅 (★𝒜) and Ω 𝑗
𝑅 (log𝒜) by giving 𝑑𝑥𝑖 weight one and 1

𝑓 weight − deg( 𝑓 ); we grade
Der𝑅 (− log 𝑓 ) by giving 𝜕𝑖 weight −1.

2.2. Complexes of local cohomology modules of logarithmic forms

In this section, we work algebraically, developing some technical tools for studying both twisted loga-
rithmic de Rham complexes and twisted complexes of local cohomology of logarithmic forms. By the
latter, we mean a complex of local cohomology modules induced by the twisted logarithmic de Rham
complex. Much of the time is spent showing this latter complex is well-defined and the correct notion of
a twisted Lie derivative obeys a nice formula. The primary objective is Proposition 2.15, which reduces
computing cohomology of these complexes to computing the cohomology of a particular subcomplex
of finite-dimensional C-vector spaces.

In subsection 2.3, we recycle these ideas in an analytic setting.

Convention 2.6. In this subsection, 𝒜 is always assumed to be central with a homogeneous defining
equation f.
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First, let us recall basic facts about local cohomology modules:

Definition 2.7. Let M be a finite R-module, 𝑄 ⊆ 𝑅 an ideal. Consider the functor

Γ0
𝑄 (𝑀) = {𝑚 ∈ 𝑀 | 𝑄

ℓ𝑚 = 0 for some ℓ ∈ N}.

Then 𝐻𝑡
𝑄 (𝑀), the 𝑡th local cohomology module of M with respect to Q, is the 𝑡th derived functor of

Γ𝑄 (𝑀).

Remark 2.8.

(a) We usually work with R canonically graded, M a Z or N-graded module, 𝔪 = 𝑅 · (𝑥1, . . . , 𝑥𝑛) and
the local cohomology modules 𝐻𝑡

𝔪 (𝑀). In this graded setting, there are well-known (non)vanishing
theorems:

(1) 𝐻𝑡
𝔪 (𝑀) = 0 for 𝑡 < depth(𝑀) or 𝑡 > dim 𝑀;

(2) If 𝑡 = depth(𝑀) or 𝑡 = dim 𝑀 , then 𝐻𝑡
𝔪 (𝑀) ≠ 0.

Consequently, 𝐻𝑡
𝔪 (𝑅) is nonzero only when 𝑡 = 𝑛.

(b) There is a practical way to compute local cohomology using the algebraic Čech complex. Let
𝑞1, . . . , 𝑞𝑝 generate the ideal 𝑄 ⊆ 𝑅. The algebraic Čech complex is

𝐶 (𝑞1, . . . , 𝑞𝑝; 𝑀) = 0→ 𝑀 → · · · →
⊕
𝐼 ⊆[𝑝]
|𝐼 |=𝑡

𝑀 [𝑞−1
𝐼 ] → · · · → 𝑀 [𝑞−1

[𝑝] ] → 0,

where the differential 𝜖 : ⊕𝐼 ⊆[𝑝]
|𝐼 |=𝑡

𝑀 [𝑞−1
𝐼 ] → ⊕ 𝐼 ⊆[𝑝]

|𝐼 |=𝑡+1
𝑀 [𝑞−1

𝐼 ] takes

𝑀 [𝑞−1
𝐼 ] � 𝑚𝐼 ↦→

∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ)𝑚𝐼∪{ℓ } ∈
∑
ℓ�𝑛𝐼

𝑀 [𝑞−1
𝐼∪{ℓ }] .

By 𝑚𝐼∪{ℓ }, we mean the image of 𝑚𝐼 in the localization 𝑀 [𝑞−1
𝐼 ] → 𝑀 [𝑞−1

𝐼∪{ℓ }
]; by 𝜎𝐼 (ℓ), we mean

the number of elements in I less than ℓ. There is natural identification

𝐻𝑡
𝑄 (𝑀) = 𝐻𝑡 (𝐶 (𝑞1, . . . , 𝑞𝑝; 𝑀)).

(c) If Q is homogeneous, M is Z-graded, and we grade 𝑀 [𝑥−1
𝐼 ] naturally by granting 𝑥−1

𝑖 weight one,
then 𝐻𝑡

𝑄 (𝑀) is naturally Z-graded by the above.

We want to construct a very large commutative diagram of horizontal and vertical complexes,
visualized in Z2, that we eventually name 𝑁•,•. This diagram will let us understand the interplay
between local cohomology modules of logarithmic differential forms and the twisted differential ∇𝜔 .

Picture (Ω•𝑅 (log𝒜),∇𝜔) as a column with differentials pointed upwards. In fact,
put (Ω•𝑅 (log𝒜),∇𝜔) on the y-axis. For each Ω 𝑗

𝑅 (log𝒜), consider the Čech complex
𝐶 (𝑥1, . . . , 𝑥𝑛;Ω 𝑗

𝑅 (log𝒜)) that computes the local cohomology modules 𝐻•𝔪 (Ω
𝑗
𝑅 (log𝒜)). Position

each 𝐶 (𝑥1, . . . , 𝑥𝑛;Ω 𝑗
𝑅 (log𝒜)) as a horizontal complex, with differentials oriented rightwards, located

on the line 𝑦 = 𝑗 . Shift the Čech complex so that its Ω 𝑗
𝑅 (log𝒜) term overlaps with the corresponding

object of (Ω•𝑅 (log𝒜),∇𝜔).
The map ∇𝜔 naturally lifts to a map between the objects of the Čech complex. We want to verify this

induces a chain map of Čech complexes, that is, we must confirm the squares
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⊕
|𝐼 |=𝑡

Ω 𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ]
⊕
|𝐼 ′ |=𝑡+1

Ω 𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ′ ]

⊕
|𝐼 |=𝑡

Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼 ]
⊕
|𝐼 ′ |=𝑡+1

Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼 ′ ]

𝜖

∇𝜔

𝜖

∇𝜔 (2.3)

commute. Here, for 𝜂𝐼 ∈ Ω 𝑗
𝑅 (log𝒜) and 𝑄𝐼 ∈ 𝑅[𝑥

−1
𝐼 ], the horiziontal map is defined by

𝜖 (𝑄𝐼 𝜂𝐼 ) =
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ)𝑄𝐼∪{ℓ }𝜂𝐼 ∈
⊕
ℓ∉𝐼

Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼∪{ℓ }], (2.4)

where 𝑄𝐼∪{ℓ }𝜂𝐼 denotes the image of 𝑄𝐼 𝜂𝐼 ∈ Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼 ] in the subsequent localization
Ω 𝑗

𝑅 (log𝒜) [𝑥−1
𝐼∪{ℓ }

] and𝜎𝐼 (ℓ) is the number of elements in I less than ℓ. To suppress potential confusion,
the vertical ∇𝜔 are defined by

∇𝜔 (𝑄𝐼 𝜂𝐼 ) = 𝑑 (𝑄𝐼 𝜂𝐼 ) + 𝜔𝜆 ∧𝑄𝐼 𝜂𝐼 = 𝑑 (𝑄𝐼 ) ∧ 𝜂𝐼 +𝑄𝐼 ∧ 𝑑 (𝜂𝐼 ) +𝑄𝐼𝜔𝜆 ∧ 𝜂𝐼 . (2.5)

Note that 𝑑 (𝑄𝐼 )∧𝜂𝐼 ∈ Ω
𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ] since 𝑑 (𝑄𝐼 ) ∈ Ω1
𝑅 [𝑥
−1
𝐼 ] andΩ1

𝑅∧Ω
𝑗
𝑅 (log𝒜) ⊆ Ω 𝑗+1

𝑅 (log𝒜),
which together entail that 𝑑 (𝑄𝐼 ) ∧ 𝜂𝐼 ∈ Ω1

𝑅 [𝑥
−1
𝐼 ] ∧Ω

𝑗
𝑅 (log𝒜) ⊆ Ω 𝑗+1

𝑅 (log𝒜) [𝑥−1
𝐼 ].

That Equation (2.3) commutes follows from the definitions:

∇𝜔 (𝜖 (𝑄𝐼 𝜂𝐼 ) = ∇𝜔 (
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ)𝑄𝐼∪{ℓ }𝜂𝐼 )

=
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ) ((𝑑 (𝑄𝐼∪{ℓ }) ∧ 𝜂𝐼 +𝑄𝐼∪{ℓ } ∧ 𝑑 (𝜂𝐼 ) +𝑄𝐼∪{ℓ }𝜔 ∧ 𝜂𝐼 );

𝜖 (∇𝜔 (𝑄𝐼 𝜂𝐼 ) = 𝜖 (𝑑 (𝑄𝐼 ) ∧ 𝜂𝐼 +𝑄𝐼 ∧ 𝑑 (𝜂𝐼 ) +𝑄𝐼𝜔 ∧ 𝜂𝐼 )

= 𝜖 (𝑑 (𝑄𝐼 ) ∧ 𝜂𝐼 ) +
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ) (𝑄𝐼∪{ℓ } ∧ 𝑑 (𝜂𝐼 ) +𝑄𝐼∪{ℓ }𝜔 ∧ 𝜂𝐼 ).

We are done once we confirm
∑

ℓ∉𝐼 (−1)𝜎𝐼 (ℓ)𝑑 (𝑄𝐼∪{ℓ }) ∧ 𝜂𝐼 = 𝜖 (𝑑 (𝑄𝐼 ) ∧ 𝜂𝐼 ). Let 𝑄𝐼 = 𝑎
𝑥
𝑝
𝐼

. Then

𝜖 (𝑑 (𝑄𝐼 ) ∧ 𝜂𝐼 ) = 𝜖 ((
∑

1≤𝑖≤𝑛

(𝜕𝑖 • 𝑎)𝑑𝑥𝑖

𝑥𝑝𝐼
−
(𝜕𝑖 • 𝑥

𝑝
𝐼 )𝑎𝑑𝑥𝑖

𝑥2𝑝
𝐼

) ∧ 𝜂𝐼 )

= 𝜖 (
∑

1≤𝑖≤𝑛
(
(𝜕𝑖 • 𝑎)

𝑥𝑝𝐼
−
(𝜕𝑖 • 𝑥

𝑝
𝐼 )𝑎

𝑥2𝑝
𝐼

)𝑑𝑥𝑖 ∧ 𝜂𝐼

=
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ)𝑑 (𝑄𝐼∪{ℓ }) ∧ 𝜂𝐼

since the image of 𝜕𝑖 •𝑄𝐼 in 𝑅[𝑥−1
𝐼∪{ℓ }

] agrees with 𝜕𝑖 applied to 𝑄𝐼∪{ℓ } ∈ 𝑅[𝑥
−1
𝐼∪{ℓ }

].
We summarize our construction of 𝑁•,•:

Proposition 2.9. There is a commutative diagram 𝑁•,•, positioned in Z2, where each row and column
is a chain complex, and each square looks like:

𝑁 𝑗+1,𝑡 ⊕
|𝐼 |=𝑡

Ω 𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ]
⊕
|𝐼 ′ |=𝑡+1

Ω 𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ′ ] 𝑁 𝑗+1,𝑡+1

𝑁 𝑗 ,𝑡
⊕
|𝐼 |=𝑡

Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼 ]
⊕
|𝐼 ′ |=𝑡+1

Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼 ′ ] 𝑁 𝑗 ,𝑡+1.

𝜖

∇𝜔

𝜖

∇𝜔 (2.6)
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The horizontal maps are the natural R-linear maps induced by the Čech complex 𝐶 (𝑥1, . . . , 𝑥𝑛;
Ω 𝑗

𝑅 (log𝒜)) (see Equation (2.4)), the vertical maps are the natural C-linear maps induced by (Ω•𝑅,∇𝜔)

(see Equation (2.5)), and each square commutes (see the computations following Equation (2.3)).
We now construct a well-behaved map 𝑁 𝑗+1,𝑡 → 𝑁 𝑗 ,𝑡 that is R-linear.

Definition 2.10. Let 𝐸 =
∑

𝑖 𝑥𝑖𝜕𝑖 ∈ Der𝑋 (− log𝒜) be the Euler operator and recall the classical
contraction 𝜄𝐸 : Ω 𝑗+1

𝑅 → Ω 𝑗
𝑅 along E. Since E is logarithmic, this induces a contraction on the

logarithmic differential forms (cf. 1.6 [28])

𝜄𝐸 : Ω 𝑗+1
𝑅 (log𝒜) → Ω 𝑗

𝑅 (log𝒜)

as well as a contraction on the meromorphic differential forms

𝜄𝐸 : Ω 𝑗+1
𝑅 (★𝒜) → Ω 𝑗

𝑅 (★𝒜).

It also induces a contraction map

𝜄𝐸 :
⊕
|𝐼 |=𝑡

Ω 𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ] →
⊕
|𝐼 |=𝑡

Ω 𝑗
𝑅 (log𝒜) [𝑥−1

𝐼 ],

given by, for 𝜂𝐼 ∈ Ω 𝑗+1
𝑅 (log𝒜),

𝜄𝐸 (𝑄𝐼 𝜂𝐼 ) = 𝑄𝐼 𝜄𝐸 (𝜂𝐼 ).

Proposition 2.11. Let E be the Euler operator, and let 𝑁•,• as in Proposition 2.9. Then the diagram

𝑁 𝑗+1,𝑡 𝑁 𝑗+1,𝑡+1

𝑁 𝑗 ,𝑡 𝑁 𝑗 ,𝑡+1

𝜖

𝜄𝐸 𝜄𝐸

𝜖

commutes.
Proof. Let 𝑄𝐼 ∈ 𝑅[𝑥

−1
𝐼 ] and 𝜂𝐼 ∈ Ω

𝑗+1
𝑅 (log𝒜) so that 𝑄𝐼 𝜂𝐼 ∈ Ω

𝑗+1
𝑅 (log𝒜) [𝑥−1

𝐼 ]. Then

𝜖 (𝜄𝐸 (𝑄𝐼 𝜂𝐼 )) = 𝜖 (𝑄𝐼 (𝜄𝐸 (𝜂𝐼 ))) =
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ)𝑄𝐼∪{ℓ } 𝜄𝐸 (𝜂𝐼 )

= 𝜄𝐸 (
∑
ℓ∉𝐼

(−1)𝜎𝐼 (ℓ)𝑄𝐼∪{ℓ }𝜂𝐼 ) = 𝜄𝐸 (𝜖 (𝑄𝐼 𝜂𝐼 )). �

We now begin to reap some fruits of our mostly formal labors. From our first set of commutative
diagrams, we have constructed a complex of C-modules; from our second set, a complex of R-modules:
Proposition 2.12. The complex

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜)),∇𝜔) = 0→ 𝐻𝑡

𝔪 (Ω
0
𝑅 (log𝒜))

∇𝜔
−−→ 𝐻𝑡

𝔪 (Ω
1
𝑅 (log𝒜))

∇𝜔
−−→ · · · (2.7)

∇𝜔
−−→ 𝐻𝑡

𝔪 (Ω
𝑛
𝑅 (log𝒜) → 0

with C-linear differential ∇𝜔 , as described in Equation (2.5), is well-defined. Additionally, for E the
Euler operator, the complex

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜)), 𝜄𝐸 ) = 0→ 𝐻𝑡

𝔪 (Ω
𝑛
𝑅 (log𝒜))

𝜄𝐸
−−→ 𝐻𝑡

𝔪 (Ω
𝑛−1
𝑅 (log𝒜))

𝜄𝐸
−−→ · · · (2.8)

𝜄𝐸
−−→ 𝐻𝑡

𝔪 (Ω
0
𝑅 (log𝒜) → 0

with R-linear differential induced by 𝜄𝐸 , as in Definition 2.10, is well-defined.
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Proof. That the squares (2.6) from Proposition 2.9 commute amounts to saying ∇𝜔 gives a chain map
from 𝑁 𝑗 ,• → 𝑁 𝑗+1,• for all j. So the induced maps on cohomology

𝐻𝑡
𝔪 (Ω

𝑗
𝑅 (log𝒜))

∇𝜔
−−→ 𝐻𝑡

𝔪 (Ω
𝑗+1
𝑅 (log𝒜))

are well-defined. Since ∇2
𝜔 = 0, certainly (𝐻𝑡

𝔪 (Ω
•
𝑅 (log𝒜)),∇𝜔) is a complex.

The case of (𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜)), 𝜄𝐸 ) is similar, now using Proposition 2.11. �

Thus, we can discuss the cohomology of the twisted differential ∇𝜔 on local cohomology modules
of logarithmic forms. Grade R and Ω•𝑅 (log𝒜) by the edict of the the Euler derivation

∑
𝑥𝑖𝜕𝑖; that

is, give x and 𝑑𝑥𝑖 weight one, 1
𝑓 weight − deg( 𝑓 ). Local cohomology 𝐻𝑡

𝔪 (Ω
𝑗
𝑅 (log𝒜)) inherits a

natural Z-grading by making 𝑥−1 have weight −1. Exterior differentiation preserves degree as does the
exterior product with 𝜔 (since 𝑑𝑓𝑘/ 𝑓𝑘 has weight zero). Therefore, our complexes decompose into their
homogeneous subcomplexes:

(Ω•𝑅 (log𝒜),∇𝜔) =
⊕
𝑞∈Z

(Ω•𝑅 (log𝒜)𝑞 ,∇𝜔)

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜)),∇𝜔) =

⊕
𝑞∈Z

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜))𝑞 ,∇𝜔).

Clearly, cohomology is well behaved with respect to this direct sum decomposition.
Following Lemma 2.1 of [9], we can extend a nice formula involving Lie derivative and homogeneous

elements to the twisted and local cohomological cases:

Lemma 2.13. Suppose that E is the Euler operator and that R, Ω 𝑗
𝑅 (log𝒜), and 𝐻𝑡

𝔪 (log𝒜) are graded
accordingly, that is, with 𝑥𝑖 and 𝑑𝑥𝑖 given weight one. The twisted Lie derivative with respect to E on
Ω•𝑅 (log𝒜)

𝐿𝜔 (𝜂) = ∇𝜔 (𝜄𝐸 (𝜂)) + 𝜄𝐸 ((∇𝜔) (𝜂)) (2.9)

satisfies, for 𝜂 a homogeneous logarithmic j-form,

𝐿𝜔 (𝜂) = (deg(𝜂) + 𝜄𝐸 (𝜔))𝜂 = (deg(𝜂) +
∑

𝜆𝑘 )𝜂, (2.10)

where 𝜔 =
∑
𝜆𝑘𝑑 log 𝑓𝑘 . The induced twisted Lie derivative on a homogeneous class [𝜁] ∈

𝐻𝑡
𝔪 (Ω

𝑗
𝑅 (log𝒜)) satisfies

𝐿𝜔 ([𝜁]) = (deg([𝜁]) + 𝜄𝐸 (𝜔)) [𝜁] = (deg([𝜁]) +
∑

𝜆𝑘 ) [𝜁] . (2.11)

Proof. We first do the case of logarithmic forms. The untwisted statement is due to Naruki according to
Lemma 2.1 of [9] and is a straightforward computation. Since contraction and exterior differentiation
are additive, we need only to confirm that

𝜔 ∧ 𝜄𝐸 (𝜂) + 𝜄𝐸 (𝜔 ∧ 𝜂) = 𝜔 ∧ 𝜄𝐸 (𝜂) + 𝜄𝐸 (𝜔) ∧ 𝜂 − 𝜔 ∧ 𝜄𝐸 (𝜂)

= 𝜄𝐸 (𝜔)𝜂 = (
∑

𝜆𝑘 𝜄𝐸 (𝑑 log 𝑓𝑘 ))𝜂 = (
∑

𝜆𝑘 )𝜂.

This gives Equation (2.10). As for Equation (2.11), first note that we have confirmed 𝜄𝐸 and ∇𝜔 are well-
defined maps on local cohomology and are defined by taking representatives. So the second formula
follows from the first because: Naruki’s computation for the untwisted case extends to Ω 𝑗

𝑅 (log𝒜) [𝑥−1
𝐼 ];

we can compute the twisted Lie derivative on a homogeneous representative of our homogeneous class
of 𝐻𝑡

𝔪 (Ω
𝑗
𝑅 (log𝒜)). �
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Convention 2.14. A quick computation verifies 𝜄𝐸 (𝜔) = 𝜆1 + · · · + 𝜆𝑑 . We use 𝜄𝐸 (𝜔) throughout the
paper instead of writing this sum.

Here is the workman’s result of this subsection: It reduces computing cohomology of these twisted
complexes to a finite-dimensional linear algebra problem. Indeed, only a particular homogeneous
subcomplex needs to be considered. Because R is N-graded, this homogeneous subcomplex is a finite-
dimensional C-module. Again, this lemma tracks with ideas from [9], but we have extended the result
to the both the twisted case and to the case of local cohomology.

Proposition 2.15. Suppose that E is the Euler operator and that R, Ω 𝑗
𝑅 (log𝒜), 𝐻𝑖

𝔪 (Ω
𝑗
𝑅 (log𝒜))

are graded accordingly, that is, with 𝑥𝑖 and 𝑑𝑥𝑖 given weight one. Then (Ω•𝑅 (log𝒜),∇𝜔) and
(𝐻𝑡

𝔪 (Ω
•
𝑅 (log𝒜)),∇𝜔) have homogeneous differentials and decompose as direct sum of their ho-

mogeneous subcomplexes. Moreover, the following homogeneous subcomplex inclusions are quasi-
isomorphisms:

(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)
q.i
↩−→ (Ω•𝑅 (log𝒜),∇𝜔);

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜))− 𝜄𝐸 (𝜔) ,∇𝜔)

q.i
↩−→ (𝐻𝑡

𝔪 (Ω
•
𝑅 (log𝒜)),∇𝜔).

(Here, (−)− 𝜄𝐸 (𝜔) denotes the −𝜄𝐸 (𝜔)-homogeneous subspace of (−).)

Proof. Clearly, d is degree preserving map. Since𝜔 =
∑
𝜆𝑘

𝑑 𝑓𝑘
𝑓𝑘

is homogeneous of grade zero,∇𝜔 is also
a degree-preserving map. That all these complexes decompose into direct sums of their homogeneous
parts follows.

As for the quasi-isomorphisms, we first do the case of the logarithmic de Rham complex. Thanks to
the direct sum decomposition (which certainly extends to cohomology), it is enough to prove that, for
𝑞 ≠ −𝜄𝐸 (𝜔), the degree q subcomplex (Ω•𝑅 (log𝒜)𝑞 ,∇𝜔) is acyclic. Thanks to Equation (2.10) from
Lemma 2.13, and the fact 𝜄𝐸 is itself degree preserving, 𝜄𝐸 defines a chain homotopy between

(Ω•𝑅 (log𝒜)𝑞 ,∇𝜔)
(𝑞+ 𝜄𝐸 (𝜔)) ·
−−−−−−−−−→ (Ω•𝑅 (log𝒜)𝑞 ,∇𝜔)

and the zero map

(Ω•𝑅 (log𝒜)𝑞 ,∇𝜔)
0·
−→ (Ω•𝑅 (log𝒜)𝑞 ,∇𝜔).

Since 𝑞 + 𝜄𝐸 (𝜔) ≠ 0, the first map is a quasi-isomorphism and so (Ω•𝑅 (log𝒜)𝑞 ,∇𝜔) is acyclic. The
result for the logarithmic de Rham complex follows.

As for the local cohomology complexes, the same argument works: 𝜄𝐸 defines a chain homotopy
between similar maps, now using Equation (2.11) from Lemma 2.13. �

2.3. Complexes of analytic Čech cohomology of logarithmic forms

The purpose of this subsection is to repeat the constructions of the previous subsection in the appropriate
analytic setting. Specifically, we want an analytic version of Proposition 2.15. This involves working
with the coherent sheaves Ω 𝑗

𝑋 (log𝒜) of 𝒪𝑋 -modules. Often, we will replace ‘ log𝒜′ with ‘ log 𝑓 ′. In
this subsection, we will always assume 𝒜 is central and so f is homogeneous.

Instead of working with the algebraic Čech complex attached to the maximal ideal 𝔪 (the irrelevant
ideal of R), we will work with the sheaf-theoretic analytic Čech complex attached to the open cover
{𝐷 (𝑥𝑖)} = {{𝑥𝑖 ≠ 0}}1≤𝑖≤𝑛 of 𝑋 \ 0. For an index set 𝐼 ⊆ [𝑛], let 𝑥𝐼 , denote

∏
𝑖∈𝐼 𝑥𝑖 and let

𝐷 (𝑥𝐼 ) = {𝑥𝐼 ≠ 0} the open set in 𝑋 = C𝑛. Since 𝐷 (𝑥𝐼 ) is a Rienhardt (i.e., multicircular) domain, every
analytic function on 𝐷 (𝑥𝐼 ) has a unique Laurent expansion at 0 that converges absolutely on 𝐷 (𝑥𝐼 )
and uniformly on compact sets. This Laurent expansion is a formal power series in C[[𝑥±1

1 , . . . , 𝑥±1
𝑛 ]],
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but using absolute convergence one can check that every monomial 𝑐𝜶𝑥𝜶 with some 𝛼𝑘 < 0 for 𝑘 ∉ 𝐼
has 𝑐𝜶 = 0. When considering an analytic function on 𝐷 (𝑥𝐼 ), we will identify it with this Laurent
expansion and so its associated element of the formal power series ring C[[𝑥1, . . . , 𝑥𝑛, 𝑥

−1
𝑖1
, . . . , 𝑥−1

𝑖𝑡
]],

where 𝐼 = {𝑖1, . . . , 𝑖𝑡 }.
In particular, an element 𝜂𝐼 ∈ Γ(𝐷 (𝑥𝐼 ),Ω 𝑗

𝑋 (log 𝑓 )) is of the form

𝜂𝐼 =
∑
𝐽 ⊆[𝑛]
|𝐽 |= 𝑗

𝑔𝐼 ,𝐽 𝑑𝑥𝐽
𝑓

, (2.12)

where 𝑔𝐼 ,𝐽 ∈ C[[𝑥1, . . . , 𝑥𝑛, 𝑥
−1
𝑖1
, . . . , 𝑥−1

𝑖𝑡
]] is the convergent Laurent expansion (at 0) on 𝐷 (𝑥𝐼 ) and

𝑑𝑥𝐽 =
∏

𝑗∈𝐽 𝑑𝑥 𝑗 . (We order the 𝑗 ∈ 𝐽 in increasing order as is the norm.) Since each 𝑔𝐼 ,𝐽 is canonically
identified with its Laurent expansion, and because this series converges absolutely, we may write

𝑔𝐼 ,𝐽 =
∑

p∈Z𝑛
𝑐p𝑥

𝑝1
1 · · · 𝑥

𝑝𝑛
𝑖 =

∑
𝑝∈Z𝑛

𝑔𝐼 , 𝑗 , 𝑝 ,

where

𝑔𝐼 ,𝐽 , 𝑝 =
∑

p∈Z𝑛
|p |=𝑝

𝑐p𝑥
p =

∑
p∈Z𝑛
|p |=𝑝

𝑐p𝑥
𝑝1
1 · · · 𝑥

𝑝𝑛
𝑛

and it is understood that p is restricted to integral vectors whose potential negative components
correspond to entries from I. This decomposition of 𝑔𝐼 ,𝐽 into the infinite sum

∑
𝑝∈Z 𝑔𝐼 ,𝐽 , 𝑝 is a de-

composition of an analytic function into homogeneous parts under the standard weighting giving 𝑥𝑖
weight 1 and 𝑥−1

𝑖 weight −1. We extend this weighting to Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log 𝑓 )) by, as before, weight-

ing deg(1/ 𝑓 ) = − deg( 𝑓 ) and deg(𝑑𝑥𝐽 ) = |𝐽 |. Then every element 𝜂𝐼 ∈ Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log 𝑓 )) has a

(infinite) decomposition into homogeneous parts

𝜂𝐼 =
∑
𝑝∈Z

𝜂𝐼 , 𝑝 where 𝜂𝐼 , 𝑝 =
∑
𝐽 ⊆[𝑛]
|𝐽 |= 𝑗

𝑔𝐼 ,𝐽 , 𝑝+deg( 𝑓 )−|𝐽 |𝑑𝑥𝐽

𝑓
(2.13)

is a homogeneous (infinite sum) of weight p.

Remark 2.16.

(a) If 𝑔𝐼 =
∑

𝑝∈Z 𝑔𝐼 , 𝑝 is the homogeneous decomposition of a Laurent expansion (at 0) of a holomorphic
function on 𝐷 (𝑥𝐼 ), then each 𝑔𝐼 , 𝑝 is also the Laurent expansion (at 0) of a holomorphic function on
𝐷 (𝑥𝐼 ). This follows from the fact 𝑔𝐼 is absolutely convergent and so not only can the series terms
be rearranged, but subseries 𝑔𝐼 , 𝑝 is also absolutely convergent on all of 𝐷 (𝑥𝐼 ). Also note that, by
comparing homogeneous terms, the (partial) derivatives of 𝑔𝐼 , 𝑝 are recovered from the (partial)
derivatives of 𝑔𝐼 .

(b) If 𝜂𝐼 =
∑

𝑝∈Z 𝜂𝐼 , 𝑝 is the homogeneous decomposition of a logarithmic j-form from
Γ(𝐷 (𝑥𝐼 ),Ω

𝑗
𝑋 (log𝒜)) then so is each 𝜂𝑝 . The previous item shows 𝜂𝑝 ∈ 1

𝑓 Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log𝒜)).

So we need only verify 𝑑 (𝜂𝑝) also has a pole of order at most one along f. We know 𝑑 (𝜂) has a
pole of order at most one along f, which equates to 𝑑 ( 𝑓 ) ∧

∑
𝑝∈Z

∑
𝐽 ⊆[𝑛]
|𝐽 |= 𝑗

𝑔𝐼 ,𝐽 , 𝑝+deg( 𝑓 )−|𝐽 |𝑑𝑥𝐽 be-

longing to 𝑓 · Γ(𝐷 (𝑥𝐼 ),Ω
𝑗+1
𝑋 ). Because 𝜂𝐼 is absolutely convergent, we may compute this wedge

product term-by-term; because 𝑑 ( 𝑓 ) is homogeneous of degree deg( 𝑓 ), wedging with 𝑑 ( 𝑓 ) sends
a homogeneous series of degree k to a homogeneous series of degree 𝑘 +deg( 𝑓 ). By comparing the
homogeneous decomposition of the result of wedging with 𝑑 ( 𝑓 ) (and using the fact the function 0
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has a unique Laurent expansion (at 0) on 𝐷 (𝑥𝐼 )), we conclude 𝑑 ( 𝑓 ) ∧
∑

𝐽 ⊆[𝑛]
|𝐽 |= 𝑗

𝑔𝐼 ,𝐽 , 𝑝+deg( 𝑓 )−|𝐽 |𝑑𝑥𝐽

also belongs to 𝑓 · Γ(𝐷 (𝑥𝐼 ),Ω
𝑗+1
𝑋 ).

We explicitly study the sheaf-theoretic Čech complex of Ω 𝑗
𝑋 (log𝒜) attached to the open cover

{𝐷 (𝑥𝑖)} of 𝑋 \ 0. We name this

(𝐶•({𝐷 (𝑥𝑖)},Ω
𝑗
𝑋 (log𝒜)), 𝜖),

where 𝜖 is the standard Čech differential (and defined similarly to the algebraic Čech differential). We
almost always omit the 𝜖 for aesthetic reasons. When working with a particular element from the Čech
complex, we use the notation

𝜂 =
⊕
𝐼 ⊆[𝑛]
|𝐼 |=𝑡

𝜂𝐼 =
⊕
𝐼 ⊆[𝑛]
|𝐼 |=𝑡

∑
𝑝∈Z

𝜂𝐼 , 𝑝 ∈
⊕
𝐼 ⊆[𝑛]
|𝐼 |=𝑡

Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log 𝑓 )),

where 𝜂𝐼 is as in Equation (2.12) and 𝜂𝐼 , 𝑝 is as in Equation (2.13).
Similar arguments as in the previous subsection show that the differentials ∇𝜔 and 𝜄𝐸 commute

with the Čech differentials, yielding commutative diagrams similar to those of Proposition 2.9 and
Proposition 2.11. Therefore, as in Proposition 2.12 these induce well-defined complexes on Čech
cohomology. We give notation for this:

Definition 2.17. For the open cover {𝐷 (𝑥𝑖)} of 𝑋 \ 0, denote the 𝑡th Čech cohomology of Ω 𝑗
𝑋 (log𝒜)

with respect to this cover by

𝐻𝑡
Čech(Ω

𝑗
𝑋 (log𝒜)) = 𝐻𝑡 (𝐶•({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 (log𝒜))).

The resultant complex on Čech cohomology induced by ∇𝜔 is named

(𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)),∇𝜔) = → 𝐻𝑡

Čech(Ω
𝑗
𝑋 (log𝒜))

∇𝜔
−−→ 𝐻𝑡

Čech(Ω
𝑗+1
𝑋 (log𝒜)) →

and the resultant complex on Čech cohomolgy induced by 𝜄𝐸 is named

(𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)), 𝜄𝐸 ) = → 𝐻𝑡

Čech(Ω
𝑗+1
𝑋 (log𝒜))

𝜄𝐸
−−→ 𝐻𝑡

Čech(Ω
𝑗
𝑋 (log𝒜)) → .

It is clear that the Čech differential sends homogeneous elements of weight k in
𝐶𝑡 ({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 (log𝒜) to homogeneous elements of weight k in 𝐶𝑡+1 ({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 (log𝒜). Here,

by homogeneous, we mean an element 𝜂 =
⊕

𝐼 𝜂𝐼 ∈
⊕

𝐼 Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log𝒜)) whose homogeneous

decomposition (cf. Equation (2.13)) satisfies
⊕

𝐼 𝜂𝐼 =
⊕

𝐼

∑
𝑝∈Z 𝜂𝐼 , 𝑝 =

⊕
𝐼 𝜂𝐼 ,𝑘 , that is, 𝜂 is homo-

geneous of weight k when, for each I, 𝜂𝐼 ,𝑚 = 0 for all 𝑚 ≠ 𝑘 . And since 𝜄𝐸 and ∇𝜔 also preserve the
weight of homogeneous elements, we are authorized to make the following definition:

Definition 2.18. We denote by

(𝐶•({𝐷 (𝑥𝑖)},Ω
𝑗
𝑋 (log𝒜))𝑚, 𝜖)

the subcomplex of the Čech complex (𝐶•({𝐷 (𝑥𝑖)},Ω 𝑗
𝑋 (log𝒜)), 𝜖) comprised solely of homogeneous

terms of weight m, where by homogeneous we mean in the Laurent series sense as described above. We
denote this subcomplex’s cohomology by

𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)𝑚) = 𝐻𝑡 ((𝐶•({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 (log𝒜))𝑚, 𝜖)).
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We also have a map of complexes

(𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)𝑚),∇𝜔) → (𝐻

𝑡
Čech(Ω

•
𝑋 (log𝒜)),∇𝜔) (2.14)

which is induced by including 𝐶•({𝐷 (𝑥𝑖)},Ω
𝑗
𝑋 (log𝒜)𝑚) into the whole Čech complex and is well-

defined because ∇𝜔 commutes with the Čech differential 𝜖 and both preserve weights.

With this setup, we can now state our intended generalization of Proposition 2.15: We intend to show
that with 𝑚 = −𝜄𝐸 (𝜔), the map (2.14) of complexes induces a surjection on the level of cohomology.
While we still use twisted Lie derivative formulas as in Lemma 2.13, unlike the algebraic case their
application is not immediate. We track a similar procedure as in [9], but whereas they work directly with
analytic logarithmic de Rham complexes, we work a level deeper with their Čech cohomology, making
our version more technically involved. The key tool is the following map:

Definition 2.19. Define a map

𝜙 :
⊕
𝐼 ⊆[𝑛]
|𝐼 |=𝑡

Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log 𝑓 )) →

⊕
𝐼 ⊆[𝑛]
|𝐼 |=𝑡

Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log 𝑓 ))

by sending each I-component 𝜂𝐼 of 𝜂 to

𝜙(𝜂𝐼 ) = 𝜙(
∑
𝑝

𝜂𝐼 , 𝑝) =
∑

𝑝≠− 𝜄𝐸 (𝑤)

𝜂𝐼 , 𝑝

𝑝 + 𝜄𝐸 (𝜔)
.

Proposition 2.20. The assignment 𝜙 : Γ(𝐷 (𝑥𝐼 ),Ω 𝑗
𝑋 (log 𝑓 )) → Γ(𝐷 (𝑥𝐼 ),Ω

𝑗
𝑋 (log 𝑓 )) is well-defined.

Proof. It is enough to verify the claim for 𝜙(𝜂𝐼 ). We first show that 𝜙(𝜂𝐼 ) ∈ 1
𝑓 Γ(𝐷 (𝑥𝐼 ),Ω

𝑗
𝑋 ), which is

essentially a statement about the appropriate Laurent series converging absolutely. By Remark 2.16 and
the absolute convergence of Laurent expansions, the −𝜄𝐸 (𝜔)-homogeneous piece 𝜂𝐼 ,− 𝜄𝐸 (𝜔) is itself in
1
𝑓 Γ(𝐷 (𝑥𝐼 ),Ω

𝑗
𝑋 ). And 𝜙(𝜂𝐼 ) = 𝜙(𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) ). To test absolute convergence, we apply the modulus

to an evaluation of the formal Laurent series 𝜙(𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) ) at some point. Under 𝜙, every (nonzero)
homogeneous 𝜂𝐼 , 𝑝 of 𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) gets sent to (1/𝑝 + 𝜄𝐸 (𝜔))𝜂𝐼 , 𝑝 . After applying the modulus, and
using the fact that |1/(𝑝 + 𝜄𝐸 (𝜔) | → 0 as |𝑝 | → ∞, we see that each | (1/𝑝 + 𝜄𝐸 (𝜔))𝜂𝐼 , 𝑝 | is smaller
than | 𝜂𝐼 , 𝑝 |, provided p is sufficiently far from 0. Since finite sums of convergent series converge, 𝜙(𝜂𝐼 )
does live in 1

𝑓 Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 ).

Now, we confirm that 𝜙(𝜂𝐼 ) ∈ Γ(𝐷 (𝑥𝐼 ),Ω 𝑗
𝑋 (log 𝑓 )) by showing 𝑑𝑓 / 𝑓 ∧𝜙(𝜂𝐼 ) ∈

1
𝑓 Γ(𝐷 (𝑥𝐼 ),Ω

𝑗+1
𝑋 ).

Using Remark 2.16 again, 𝜂𝐼 ,− 𝜄𝐸 (𝜔) is logarithmic, and so 𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) is also logarithmic. Conse-
quently, 𝑑𝑓 / 𝑓 ∧ (𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) ) ∈ 1

𝑓 Γ(𝐷 (𝑥𝐼 ,Ω
𝑗+1
𝑋 ). But because 𝑑𝑓 / 𝑓 is homogeneous of weight

zero, as formal Laurent series we have the equalities

𝑑𝑓 / 𝑓 ∧ 𝜙(𝜂𝐼 ) = 𝑑𝑓 / 𝑓 ∧ 𝜙(𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) ) = 𝜙(𝑑𝑓 / 𝑓 ∧ (𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) )).

And so the same argument about absolute convergence from the first paragraph, now applied to 𝜙(𝑑𝑓 / 𝑓 ∧
(𝜂𝐼 − 𝜂𝐼 ,− 𝜄𝐸 (𝜔) )), shows 𝑑𝑓 / 𝑓 ∧ 𝜙(𝜂𝐼 ) ∈ 1

𝑓 Γ(𝐷 (𝑥𝐼 ),Ω
𝑗+1
𝑋 ) as required. �

Proposition 2.21. The assignment 𝜙 preserves cycles and boundaries of the Čech complex
𝐶•({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 (log𝒜)).

Proof. Suppose 𝜂 =
⊕

𝐼 𝜂𝐼 ∈
⊕

𝐼 Γ(𝐷 (𝑥𝐼 ),Ω
𝑗
𝑋 (log 𝑓 )) is a t-cycle (so |𝐼 | = 𝑡). This means that for

each 𝑀 ⊆ [𝑛] of cardinality 𝑡 + 1 we have, in Γ(𝐷 (𝑥𝑀 ),Ω
𝑗
𝑋 (log 𝑓 )), the equalities
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𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)𝜂𝑀\{𝑚} =
∑
𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)
∑
𝑝

𝜂𝑀\{𝑚}, 𝑝

=
∑
𝑝

∑
𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)𝜂𝑀\{𝑚}, 𝑝

= 0.

(Here, 𝜂𝑀\{𝑚} is naturally regarded in Γ(𝐷 (𝑥𝑀 ),Ω
𝑗
𝑋 (log 𝑓 )) by restriction.) We see that, for each

individual p, ∑
𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)𝜂𝑀\{𝑚}, 𝑝 = 0. (2.15)

Moreover, the M-component of 𝜖 (𝜙(𝜂)) is∑
𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)𝜙(𝜂𝑀\{𝑚}) =
∑
𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)
∑

𝑝≠− 𝜄𝐸 (𝜔)

𝜂𝑀\{𝑚}

𝑝 + 𝜄𝐸 (𝜔)

=
∑

𝑝≠− 𝜄𝐸 (𝜔)

∑
𝑚∈𝑀

(−1)𝜎𝑀\{𝑚} (𝑚)
𝜂𝑀\{𝑚}, 𝑝

𝑝 + 𝜄𝐸 (𝜔)
.

By Equation (2.15), we conclude the above equation equals zero and 𝜖 (𝜙(𝜂)) = 0 as well.
The case of boundaries is similar. If 𝜂 is a t-boundary, that means there is a 𝜁 such that 𝜖 (𝜁) = 𝜂.

Arguing as above, the I-component of 𝜖 (𝜁) and 𝜂 agree at each homogeneous piece: 𝜖 (𝜁)𝐼 , 𝑝 = 𝜂𝐼 , 𝑝 for
all I of cardinality t and all 𝑝 ∈ Z. As 𝜙(𝜁) and 𝜙(𝜂) both scale each homogeneous term in a fixed way,
𝜖 (𝜙(𝜁)) = 𝜙(𝜂). �

Lemma 2.22. When 𝒜 is central, the map of complexes (2.14) with 𝑚 = −𝜄𝐸 (𝜔), that is,

(𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)− 𝜄𝐸 (𝜔) ),∇𝜔) → (𝐻

𝑡
Čech(Ω

•
𝑋 (log𝒜)),∇𝜔),

induces surjections on the level of cohomology for all 0 ≤ 𝑗 ≤ 𝑛:

𝐻 𝑗 (𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)− 𝜄𝐸 (𝜔) ),∇𝜔) � 𝐻 𝑗 (𝐻𝑡

Čech(Ω
•
𝑋 (log𝒜)),∇𝜔).

Proof. Consider

[
⊕
𝐼

𝜂𝐼 ] ∈ ker[𝐻𝑡 (𝐶 ({𝐷 (𝑥𝑖)},Ω
𝑗
𝑋 (log 𝑓 )))

∇𝜔
−−→ 𝐻𝑡 (𝐶 ({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 (log 𝑓 )))] .

We apply 𝐿𝜔 = ∇𝜔 (𝜄𝐸 ) + 𝜄𝐸 (∇𝜔), the twisted Lie derivative, to [
⊕

𝐼 𝜂𝐼 ] = [
⊕

𝐼

∑
𝑝 𝜂𝐼 , 𝑝]. Since this

is done by applying 𝐿𝜔 to a representative and since we may do so term-by-term thanks to absolute
convergence, we may use Lemma 2.13 to compute

[
⊕
𝐼

∑
𝑝∈Z

(𝑝 + 𝜄𝐸 (𝜔))𝜂𝐼 , 𝑝] = 𝐿𝜔 ([
⊕
𝐼

𝜂𝐼 ]) = ∇𝜔 (𝜄𝐸 ([
⊕
𝐼

𝜂𝐼 ])) = ∇𝜔 ([
⊕
𝐼

𝜄𝐸 (𝜂𝐼 )]).

That is,
⊕

𝐼

∑
𝑝∈Z(𝑝 + 𝜄𝐸 (𝜔))𝜂𝐼 , 𝑝 −∇𝜔 (

⊕
𝐼 𝜄𝐸 (𝜂𝐼 )) is a Čech t-boundary. By Proposition 2.21, if we

apply 𝜙 to this Čech t-boundary we get another Čech t-boundary. Since ∇𝜔 preserves weights, 𝜙 and
∇𝜔 commute. So applying 𝜙 to our Čech t-boundary gives the Čech t-boundary⊕

𝐼

∑
𝑝≠− 𝜄𝐸 (𝜔)

𝜂𝐼 , 𝑝 − ∇𝜔 (
⊕
𝐼

𝜙(𝜄𝐸 (𝜂𝐼 ))).
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With some mild rearranging, we have an equality of Čech cohomology classes

[
⊕
𝐼

∑
𝑝∈Z

𝜂𝐼 , 𝑝 −
⊕
𝐼

𝜂𝐼 ,− 𝜄𝐸 (𝜔) ] = [∇𝜔 (
⊕
𝐼

𝜙(𝜄𝐸 (𝜂𝐼 )))] .

(Here, we use the fact that
⊕

𝐼

∑
𝑝∈Z 𝜂𝐼 , 𝑝 was assumed to be a Čech t-cycle, and so, because the Čech

complex preserves weight, each of its homogeneous parts is also a Čech t-cycle.)
This means that we have the following equality of cohomology classes in 𝐻 𝑗 (𝐻𝑡

Čech
(Ω•𝑋 (log𝒜)),∇𝜔):

[[
⊕
𝐼

∑
𝑝∈Z

𝜂𝐼 , 𝑝]] = [[
⊕
𝐼

𝜂𝐼 ,− 𝜄𝐸 (𝜔) ]] . (2.16)

Since the map (2.14) explicitly obeys

𝐻𝑡
Čech(Ω

𝑗
𝑋 (log𝒜)− 𝜄𝐸 (𝜔) ) � [

⊕
𝐼

𝜂𝐼 ,− 𝜄𝐸 (𝜔) ] ↦→ [
⊕
𝐼

𝜂𝐼 ,− 𝜄𝐸 (𝜔) ] ∈ 𝐻
𝑡
Čech(Ω

𝑗
𝑋 (log𝒜)),

we have, thanks to Equation (2.16), the induced identification

𝐻 𝑗 (𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)− 𝜄𝐸 (𝜔) ),∇𝜔) � [[

⊕
𝐼

𝜂𝐼 ,− 𝜄𝐸 (𝜔) ]]

↦→ [[
⊕
𝐼

𝜂𝐼 ]] ∈ 𝐻
𝑗 (𝐻𝑡

Čech(Ω
•
𝑋 (log𝒜)),∇𝜔).

The proves the desired cohomological surjections. �

As a final comment, we note that a similar strategy applies to the cohomology analytic twisted
logarithmic de Rham complex directly. That is, the stalk at the origin of the twisted analytic logarithmic
(resp. analytic) de Rham complex is quasi-isomorphic to a particular homogeneous subcomplex. Again,
we mean homogeneous in the sense of the Laurent series expansion (at 0). As this does not involve Čech
complexes, this is essentially the same procedure as [9].

Lemma 2.23. When 𝒜 is central, the following inclusions are quasi-isomorphisms:

(Ω•𝑋,0 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)
q.i.
↩−−→ (Ω•𝑋,0 (log𝒜),∇𝜔);

(Ω•𝑋,0 (★𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)
q.i.
↩−−→ (Ω•𝑋,0 (★𝒜),∇𝜔).

Proof. We just do part involving the twisted logarithmic de Rham complexes, as the meromorphic
case is similar. Here, we consider 𝜙 as a map from Ω 𝑗

𝑋 ,0(log𝒜) −→ Ω 𝑗
𝑋 ,0(log𝒜) with an entirely

similar definition as before. Let 𝜂 be a logarithmic j-form that is a ∇𝜔-cycle. One one hand, 𝐿𝜔 (𝜂) =
∇𝜔 (

∑
𝑝 𝜂𝑝) =

∑
𝑝 (𝑝 + 𝜄𝐸 (𝜔))𝜂𝑝; on the other hand, 𝐿𝜔 (𝜂) = ∇𝜔 (𝜄𝐸 (𝜂)). Then ∇𝜔 (𝜙(𝜄𝐸 (𝜂))) =

𝜂 − 𝜂− 𝜄𝐸 (𝜔) . So the class [𝜂] equals the class [𝜂− 𝜄𝐸 (𝜔) ]. �

2.4. Castelnuovo–Mumford regularity of logarithmic forms

We return to the algebraic setting. In light of Proposition 2.15, it is useful to understand which graded
components of 𝐻𝑡

𝔪 (Ω
𝑗
𝑅 (log𝒜)) are zero and which are not. For, if particular graded components vanish,

Proposition 2.15 lets us conclude the twisted de Rham complex on local cohomology modules is acyclic.
Instead of trying to answer this question for each pair (𝑡, 𝑗) ∈ [𝑛]2, it is much easier to fix j and let t
vary. Even still, it is easier to package the data for {(0, 𝑗), (1, 𝑗), . . . , (𝑛, 𝑗)} together as in the following
classical definition:
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Definition 2.24. Let 𝑅 = C[𝑥1, . . . , 𝑥𝑛] be graded canonically (so deg(𝑥𝑖) = 1), 𝔪 the irrelevant ideal,
and M a graded module. We allow M to be Z-graded. The Castelnuovo–Mumford regularity reg(𝑀) is

reg(𝑀) = max
𝑡
{max deg(𝐻𝑡

𝔪 (𝑀)) + 𝑡},

where max deg 𝐻𝑡
𝔪 (𝑀) is the largest 𝑢 ∈ Z such that 𝐻𝑡

𝔪 (𝑀)𝑢 ≠ 0, is ∞ if no such maximum exists,
and is −∞ if 𝐻𝑡

𝔪 (𝑀) = 0. In particular, the Castelnuovo–Mumford regularity of the zero module is −∞.
The purpose of this subsection is to find a good upper bound on the Castelnuovo–Mumford regularity

of Ω 𝑗
𝑅 (log𝒜), with the eventual aim of showing (𝐻𝑡

𝔪 (Ω
•
𝑅 (log𝒜)),∇𝜔) (and later its analytic counter-

part (𝐻𝑡
Čech
(Ω•𝑋 (log𝒜)),∇𝜔)) is acyclic via Proposition 2.15 (subject to relatively benign conditions

on 𝜔).
Convention 2.25. We use the suffix −(𝑚), with 𝑚 ∈ Z, to denote a twist in the grading. Explicitly, the
u-homogeneous part of 𝑅(𝑚) is: 𝑅(𝑚)𝑢 = 𝑅𝑢+𝑚. If an isomorphism is written as 𝑀 � 𝑅(𝑚), then the
isomorphism honors the grading. Another convention: we use just reg(𝑀) without specifying the ring
in question, hoping context rectifies any confusion.
Remark 2.26.
(a) Since R is free, 𝐻𝑡

𝔪 (𝑅) = 0 for all 𝑡 ≠ 𝑛. Using the Čech complex to compute local cohomology,

𝐻𝑛
𝔪 (𝑅) �

𝑅[𝑥−1
1 , . . . , 𝑥−1

𝑛 ]∑
1≤𝑖≤𝑛 𝑅[𝑥

−1
1 , . . . , 𝑥−1

𝑖−1, 𝑥
−1
𝑖+1, . . . , 𝑥

−1
𝑛 ]

and so 𝐻𝑛
𝔪 (𝑅)−𝑛 = C · 𝑥−1

1 · · · 𝑥
−1
𝑛 and higher homogeneous subspaces vanish. So reg(𝑅) = 0.

(b) If M and N are graded R-modules such that 𝑀 (ℓ) = 𝑁 , then 𝐻𝑡
𝔪 (𝑀) (ℓ) = 𝐻𝑡

𝔪 (𝑁) and reg(𝑁) + ℓ =
reg(𝑀).

(c) Because the Čech complex definition of local cohomology implies direct sums commutes with local
cohomology, we have:

reg(𝑀 ⊕ 𝑁) = max
𝑡
{max{max deg(𝐻𝑡

𝔪 (𝑀))),max deg(𝐻𝑡
𝔪 (𝑁))} + 𝑡}

= max{reg(𝑀), reg(𝑁)}.

(d) Suppose A and B are polynomial k-algebras that are N-graded. Let N (resp. M) be a graded A
(resp. B) module. If 𝐴0 and 𝐵0 are finitely generated over k and the irrelevant ideal of A (resp. B) is
𝐴>0 (resp. 𝐵>0), one can define graded local cohomology and regularity similarly to Definition 2.24.
Then the Kunneth formula for local cohomology modules leads to a Kunneth formula for regularity:

reg(𝑁 ⊗𝑘 𝑀) = reg(𝑁) + reg(𝑀),

where reg(𝑁 ⊗𝑘 𝑀) considers 𝑁 ⊗𝑘 𝑀 as a 𝐴 ⊗𝑘 𝐵-module, reg(𝑁) considers N as a A-module and
reg(𝑀) considers M as a B-module. See Lemma 1.5(5) of [32] for details; Proposition 2.4 of [3]
for a different proof.

In [14], Derksen and Sidman gave a method to approximate Castelnuovo–Mumford regularity which
is particularly potent for objects attached to hyperplane arrangements thanks to their amenability to
addition/subtraction techniques. It is:
Corollary 2.27 (Corollary 3.7 of [14]). Let 𝐹 = ⊕𝑅(0) be a finite, free R-module generated in degree
zero. Suppose that 𝑀 ⊆ 𝐹 is a graded R-module and that we have modules 𝑀1, . . . , 𝑀ℓ ⊆ 𝐹 and ideals
𝐼1, . . . , 𝐼ℓ ⊆ 𝑅 such that

𝐼𝑖 · 𝑀𝑖 ⊆ 𝑀 ⊆ 𝑀𝑖 ∀𝑖.

If 𝐼1 + · · · + 𝐼ℓ = 𝔪 and reg(𝑀𝑖) ≤ 𝑟 − 1 for some 𝑟 ≥ 2 and all i, then reg(𝑀) ≤ 𝑟 .
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We have emphasized F is generated in degree zero to be in the situation of loc. cit.
Derksen and Sidman use this result to get an upper bound on the regularity of Der𝑅 (− log𝒜). In

Proposition 1.3 of [30], M. Saito showed their argument essentially proved (i.e., with only a minor
adjustment) a stronger bound: for a central, essential arrangement A,

reg(Der𝑅 (− log𝒜)) ≤ deg(𝒜) − rank(𝒜).

(We use the convention deg(𝜕𝑖) = −1.) Taking M. Saito’s improvement as a model, we estimate the
regularity of the logarithmic j-forms Ω 𝑗

𝑅 (log𝒜) along 𝒜. Our situation is more involved because: (1)
One cannot apply Corollary 3.7 of [14] to Ω 𝑗

𝑅 (log𝒜) itself; (2) the inductive scheme mandates relating
( 𝑗 − 1)-logarithmic forms to j-logarithmic forms; (3) the case of Ωrank(𝒜)−1

𝑅 (log𝒜) is bespoke.

Example 2.28. Consider 𝒜 cut out by 𝑓 = 𝑥1 · · · 𝑥𝑛 ∈ 𝑅, that is, a simple normal crossing divisor. It is
easy to check that Ω0

𝑅 (log𝒜) = 𝑅 and Ω1
𝑅 (log𝒜) = 𝑅 · 𝑑𝑥1

𝑥1
⊕ · · · ⊕ 𝑅 · 𝑑𝑥𝑛𝑥𝑛

� 𝑅 ⊕ · · · ⊕ 𝑅 (for example,
use K. Saito’s freeness criterion for logarithmic 1-forms), where the last isomorphism is graded. Since f
is free, Ω 𝑗

𝑅 (log𝒜) = ∧ 𝑗Ω1
𝑅 (log𝒜) � ⊕(

𝑛
𝑗)𝑅, with the last isomorphism graded. So for simple normal

crossing divisors in C[𝑥1, . . . , 𝑥𝑛],

reg(Ω 𝑗
𝑅 (log𝒜)) = 0 for all 0 ≤ 𝑗 ≤ 𝑛.

With this example in hand, here is our theorem bounding Castelnuovo–Mumford regularity of
logarithmic j-forms:

Theorem 2.29. For𝒜 a central, essential, reduced hyperplane arrangement, the Castelnuovo–Mumford
regularity of Ω 𝑗

𝑅 (log𝒜) is bounded by:

reg(Ω 𝑗
𝑅 (log𝒜)) ≤ 0 for 1 ≤ 𝑗 ≤ rank(𝒜) − 1.

When 𝑗 = 0 or 𝑗 = rank(𝒜), the module of logarithmic zero or rank(𝒜)-forms are free R-modules and
so only 𝐻rank𝒜

𝔪 (−) ≠ 0. In these cases, reg(Ω0
𝑅 (log𝒜)) = 0 and reg(Ωrank(𝒜)

𝑅 (log𝒜)) = rank(𝒜) −
deg(𝒜).

Proof. Throughout, let 𝑓 = 𝑓1 · · · 𝑓𝑑 be a defining equation for 𝒜 and, if not explicitly changed,
𝑛 = rank(𝒜), 𝑑 = deg(𝒜).

Step 0: We handle the straightforward cases 𝑗 = 0 or 𝑗 = rank(𝒜). All we must show is freeness
and then compute regularity. It is well known (and easy to verify using Equation (2.17) below) that
Ω0

𝑅 (log𝒜) = 𝑅. Consequently, reg(Ω0
𝑅 (log𝒜)) = 0. Now, consider 𝑗 = rank(𝒜). If 𝜂 ∈ 1

𝑓 Ω
rank(𝒜)
𝑅 ,

then 𝑑 (𝜂) = 0 ∈ 1
𝑓 Ω

rank(𝒜)+1
𝑅 = 0. So Ωrank(𝒜)

𝑅 (log𝒜) = 1
𝑓 Ω

rank(𝒜)
𝑅 = 𝑅(deg(𝒜) − rank(𝒜));

reg(Ωrank(𝒜)
𝑅 (log𝒜)) = rank(𝒜) − deg(𝒜).

Step 1: To deal with 1 ≤ 𝑗 ≤ rank(𝒜) − 1, we change our target in order to apply Corollary 3.7
of [14] (transcribed as Corollary 2.27). Observe: The logarithmic j-forms can be characterized by∑
|𝐼 |= 𝑗

𝑎𝐼
𝑓 𝑑𝑥𝐼 ∈ Ω

𝑗
𝑅 (log𝒜) if and only if 𝑑 (

∑
|𝐼 |= 𝑗

𝑎𝐼
𝑓 𝑑𝑥𝐼 ) ∈

1
𝑓 Ω

𝑗+1
𝑅 if and only if

∑
|𝐼 |= 𝑗

𝑎𝐼

𝑓 2 𝑑 ( 𝑓 )∧𝑑𝑥𝐼 ∈

1
𝑓 ·Ω

𝑗+1
𝑅 if and only if

∑
|𝐼 |= 𝑗

𝑎𝐼
𝑓 𝑑 ( 𝑓 ) ∧ 𝑑𝑥𝐼 ∈ Ω

𝑗+1
𝑅 if and only if

∑
|𝐼 |= 𝑗 𝑎𝐼 𝑑 ( 𝑓 ) ∧ 𝑑𝑥𝐼 ∈ 𝑓 ·Ω 𝑗+1

𝑅 . Since
R is a UFD and 𝑓 = 𝑓1 · · · 𝑓𝑑 is a factorization into irreducibles, we conclude:∑

|𝐼 |= 𝑗

𝑎𝐼
𝑓
𝑑𝑥𝐼 ∈ Ω

𝑗
𝑅 (log𝒜) ⇐⇒

∑
|𝐼 |= 𝑗

𝑎𝐼 𝑑 ( 𝑓𝑘 ) ∧ 𝑑𝑥𝐼 ∈ 𝑓𝑘 · Ω
𝑗+1
𝑅 for all 𝑓𝑘 . (2.17)

Define

𝐿 𝑗 (𝒜) = {𝜂 ∈ Ω 𝑗
𝑅 | 𝑑 ( 𝑓𝑘 ) ∧ 𝜂 ∈ 𝑓𝑘 · Ω

𝑗+1
𝑅 for all 𝑓𝑘 },
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and note that

𝐿 𝑗 (𝒜) =
⋂
𝑘

𝐿 𝑗 (V( 𝑓𝑘 )). (2.18)

The equivalence (2.17) tells us the map
∑
|𝐼 |= 𝑗

𝑎𝐼
𝑓 𝑑𝑥𝐼 ↦→

∑
|𝐼 |= 𝑗 𝑎𝐼 𝑑𝑥𝐼 gives an isomorphism

Ω 𝑗
𝑅 (log𝒜) �−→ 𝐿 𝑗 (𝒜) that sends homogeneous elements of degree u to homogeneous elements of

degree 𝑢 + deg(𝒜). Therefore,

Ω 𝑗
𝑅 (log𝒜) (− deg(𝒜)) � 𝐿 𝑗 (𝒜).

Consequently, 𝐻𝑡
𝔪 (Ω

𝑗
𝑅 (log𝒜)) (− deg(𝒜)) � 𝐻𝑡

𝔪 (𝐿
𝑗 (𝒜)) and

reg(Ω 𝑗
𝑅 (log𝒜)) = reg(𝐿 𝑗 (𝒜)) − 𝑑. (2.19)

Therefore, our theorem is equivalent to reg(𝐿 𝑗 (𝒜)) ≤ deg(𝒜), making the following our new objective:

The Claim : reg(𝐿 𝑗 (𝒜)) ≤ deg(𝒜) for 1 ≤ 𝑗 ≤ rank(𝒜) − 1.

Step 2: We first prove The Claim for 𝐿1 (𝒜) by induction on the rank and the degree of our
arrangement. If rank(𝒜) = 2 with 𝑑 = deg(𝒜), then the arrangement is automatically free and by
standard considerations, Ω1

𝑅 (log𝒜) � 𝑅𝛿1 ⊕ 𝑅𝛿2, where 𝛿1 has degree 2 − 𝑑 and 𝛿2 has degree 0.
(Note that the determinant of the Saito matrix corresponding to 𝛿1, 𝛿2 equals, up to unit, 1

𝑓 𝑑𝑥1𝑑𝑥2,
and one logarithmic form, 𝛿1, corresponds to the Euler operator, whereas the other, 𝛿2, corresponds to
(𝜕1 • 𝑓 )𝜕2 − (𝜕2 • 𝑓 )𝜕1.) So Ω1

𝑅 (log𝒜) � 𝑅(𝑑 − 2) ⊕ 𝑅 and reg(Ω1
𝑅 (log𝒜)) = max{2 − 𝑑, 0} = 0

since, by essentiality, 𝑑 ≥ 2. So reg(𝐿1 (𝒜)) = 𝑑.
Assume the rank of 𝒜 is at least 3, the degree of 𝒜 is 𝑑 + 1 and the claim holds for all essential,

central arrangements of smaller degree or rank. (The base case of a simple normal crossing divisor with
rank(𝒜) hyperplanes is handled in Example 2.28.) By essentiality, we may find n hyperplanes from 𝒜

cutting out the origin.
Case 2.1: There exists n hyperplanes 𝑓1, . . . , 𝑓𝑛 (relabelling as necessary) from 𝒜 such that: (1)

𝔪 = ( 𝑓1, . . . , 𝑓𝑛); (2) deleting any V( 𝑓𝑖) from𝒜 produces an essential arrangement. Let𝒜𝑖 = 𝒜\V( 𝑓𝑖)
be the result post deletion. By Equation (2.18), 𝐿1 (𝒜) ⊆ 𝐿1 (𝒜𝑖).And using Equations (2.17) and (2.18),
we confirm that 𝑓𝑖 · 𝐿1 (𝒜𝑖) ⊆ 𝐿1 (𝒜). So we use the inductive hypothesis to get reg(𝐿1 (𝒜𝑖)) ≤ 𝑑 and
reg(𝐿1 (𝒜𝑖) (1)) ≤ 𝑑 − 1. As 𝐿1 (𝒜) ⊆ 𝑅𝑑𝑥1 ⊕ · · · ⊕ 𝑅𝑑𝑥𝑛 = 𝑅(−1) ⊕ · · · ⊕ 𝑅(−1), if we shift degrees
and consider 𝐿1 (𝒜) (1), 𝐿1 (𝒜𝑖) (1) ⊆ 𝑅(0) ⊕ · · · ⊕ 𝑅(0) we may invoke Corollary 3.7 of [14] (see
Corollary 2.27) to get reg(𝐿1 (𝒜) (1)) ≤ 𝑑 or equivalently reg(𝐿1 (𝒜)) ≤ 𝑑 + 1, finishing the case.

Case 2.2: There exists a hyperplane 𝑓𝑖 such that the deleted arrangement 𝒜 \ V( 𝑓𝑖) is nonessential.
Then, after possibly changing coordinates, 𝒜 has a defining equation 𝑥𝑛𝑔, where V(𝑔) = 𝒜𝑖 , 𝑔 ∈ 𝑆 =
C[𝑥1, . . . , 𝑥𝑛−1] and 𝑥𝑛 corresponds to the deleted hyperplane 𝑓𝑖 . By the Kunneth formula for products,
see Remark 2.2,

Ω1
𝑅 (log𝒜) = (Ω1

𝑆 (log V(𝑔)) ⊗C C[𝑥𝑛]) ⊕ (𝑆 ⊗C Ω1
C[𝑥𝑛 ]

(log V(𝑥𝑛)))

and by the Kunneth formula for local cohomology and regularity; see Remark 2.26,

reg(Ω1
𝑅 (log𝒜)) = max{reg(Ω1

𝑆 (V(𝑔))) + reg(C[𝑥𝑛]), reg(𝑆) + reg(Ω1
C[𝑥𝑛 ]

(V(𝑥𝑛))}.

Because Ω1
C[𝑥𝑛 ]

(V(𝑥𝑛)) = C[𝑥𝑛]
𝑑𝑥𝑛
𝑥𝑛
� C[𝑥𝑛] (a graded isomorphism), the only regularity

term of the four summands that is potentially nonzero is reg(Ω1
𝑆 (V(𝑔))). So reg(Ω1

𝑅 (log𝒜)) ≤
max{reg(Ω1

𝑆 (V(𝑔))), 0}. Since 𝒜 is essential of rank at least three, V(𝑔) must be essential of rank
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at least two (and of one less degree), and so we can use the induction hypothesis: reg(𝐿1 (V(𝑔)) ≤ 𝑑
and, by Equation (2.19), reg(Ω1

𝑆 (V(𝑔))) ≤ 0. Thus, reg(Ω1
𝑅 (V( 𝑓 )) ≤ 0 and reg(𝐿1 (𝒜)) = 𝑑 + 1,

completing this case and terminating the inductive step.
Step 3: Now, we prove The Claim holds for 𝐿 𝑗 (𝒜), for any 1 ≤ 𝑗 ≤ rank(𝒜) − 1, by induction

on deg(𝒜) and rank(𝒜), utilizing Step 2. In particular, we may assume rank(𝒜) ≥ 3 and 𝑗 ≥ 2. The
minimal value deg𝒜 can obtain while remaining essential is rank(𝒜) in which case Example 2.28
applies. So assume that the claim holds for any central, essential ℬ whose degree is less than deg(𝒜) or
whose rank is smaller than rank(𝒜). Now, we do three cases, the first two similar to those from Step 2.

Case 3.1: There exist n hyperplanes 𝑓1, . . . , 𝑓𝑛 (relabelling as necessary) from 𝒜 such that: (1) these
n hyperplanes generate 𝔪; (2) the arrangement 𝒜𝑖 = 𝒜 \V( 𝑓𝑖) is essential. Since each 𝒜𝑖 is promised to
be essential, rank(𝒜𝑖) = rank(𝒜) and so the 𝒜𝑖 fall into our inductive scheme: deg(𝒜𝑖) = deg(𝒜) − 1
and 𝑗 ≤ rank(𝒜) − 1 = rank(𝒜𝑖) − 1. So we know that reg(𝐿 𝑗 (𝒜𝑖)) ≤ deg(𝒜𝑖) = deg(𝒜) − 1. Or, as
we will prefer, reg(𝐿 𝑗 (𝒜𝑖) ( 𝑗)) ≤ deg(𝒜) − 1 − 𝑗 . Using Equations (2.17) and (2.18), we again have

𝑓𝑖 · 𝐿
𝑗 (𝒜𝑖) ⊆ 𝐿 𝑗 (𝒜) ⊆ 𝐿 𝑗 (𝒜𝑖).

Now, 𝐿 𝑗 (𝒜) ⊆ ⊕|𝐼 |= 𝑗𝑅𝑑𝑥𝐼 = ⊕|𝐼 |= 𝑗𝑅(− 𝑗). Shift degrees as in Case 2.1 so that 𝐿 𝑗 (𝒜) ( 𝑗), 𝐿 𝑗 (𝒜𝑖) ( 𝑗) ⊆
⊕|𝐼 |= 𝑗𝑅. Now, we can appeal to Corollary 3.7 of [14] (see Corollary 2.27) to find that reg(𝐿 𝑗 (𝒜) ( 𝑗)) ≤
deg(𝒜) − 𝑗 , that is reg(𝐿 𝑗 (𝒜)) ≤ deg(𝒜), as required.

Case 3.2: Both: (1) there is a hyperplane 𝑓𝑖 , where rank(𝒜\V( 𝑓𝑖)) < rank(𝒜); (2) 𝑗 < rank(𝒜)−1 =
𝑛 − 1. Here, we may, changing coordinates as needed, assume 𝑓 = 𝑥𝑛𝑔 where 𝑔 ∈ 𝑆 = C[𝑥1, . . . , 𝑥𝑛−1].
Since 𝒜 is essential, V(𝑔) is itself an essential arrangement whose rank is rank(𝒜) − 1. And 2 ≤ 𝑗 ≤
rank(𝒜)−2 = rank(V(𝑔))−1. So V(𝑔) falls into the inductive setup and reg(𝐿𝑞 (V(𝑔))) ≤ deg(V(𝑔)) =
deg(𝒜) − 1 for all 1 ≤ 𝑞 ≤ 𝑗 . We may use the Kunneth formula for products (Remark 2.2) to find

Ω 𝑗
𝑅 (log𝒜) � Ω 𝑗

𝑆 (V(𝑔)) ⊗C C[𝑥𝑛] ⊕ Ω 𝑗−1
𝑆 (V(𝑔)) ⊗C Ω

1
C[𝑥𝑛 ]

(V(𝑥𝑛))

and, using the fact Ω1
C[𝑥𝑛 ]

(V(𝑥𝑛)) � C[𝑥𝑛] (graded), the induced Kunneth formula on regularity
(Remark 2.26) gives

reg(Ω 𝑗
𝑅 (log𝒜)) = max{reg(Ω 𝑗

𝑆 (V(𝑔))) + reg(C[𝑥𝑛]), reg(Ω 𝑗−1
𝑆 (V(𝑔))) + reg(C[𝑥𝑛])}.

By the inductive setup, reg(Ω 𝑗
𝑆 (V(𝑔))) ≤ 0 and reg(Ω 𝑗−1

𝑆 (V(𝑔))) ≤ 0. So reg(Ω 𝑗
𝑅 (log𝒜)) ≤ 0 and

reg(𝐿 𝑗 (𝒜)) ≤ deg(𝒜).
Case 3.3: j = rank(𝒜) −1 = 𝑛−1. Write 𝑑 = deg(𝒜). Here, with 𝑑𝑥𝑖 = 𝑑𝑥1∧· · ·∧𝑑𝑥𝑖−1∧𝑑𝑥𝑖+1∧𝑑𝑥𝑛

and 𝑑𝑥 = 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛, the equivalence (2.17) is enriched:∑
𝑖

𝑎𝑖
𝑓
𝑑𝑥𝑖 ∈ Ω

𝑛−1
𝑅 (log𝒜) ⇐⇒

∑
𝑖

𝑎𝑖𝑑 ( 𝑓 )𝑑𝑥𝑖 = (
∑
𝑖

(−1)𝑖−1𝑎𝑖𝜕𝑖 • 𝑓 ))𝑑𝑥 ∈ 𝑅 · 𝑓 𝑑𝑥

⇐⇒ (
∑
𝑖

(−1)𝑖−1𝑎𝑖𝜕𝑖) • 𝑓 ∈ 𝑅 · 𝑓

⇐⇒ (
∑
𝑖

(−1)𝑖−1𝑎𝑖𝜕𝑖) ∈ Der𝑅 (− log𝒜).

In other words, Ω𝑛−1
𝑅 (log𝒜) �

∑
𝑖 𝑎𝑖𝑑𝑥𝑖 ↦→ (

∑
𝑖 (−1)𝑖−1𝑎𝑖𝜕𝑖) ∈ Der𝑅 (− log𝒜) is an isomorphism

sending homogeneous elements of degree u to homogeneous elements of degree 𝑢 + 𝑑 − 𝑛. (We use the
convention that 𝜕𝑖 has degree −1 as in [30].) Therefore,

Ω𝑛−1
𝑅 (log𝒜) (𝑛 − 𝑑) � Der𝑅 (log𝒜)
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and reg(Ω𝑛−1
𝑅 (log𝒜)) = reg(Der𝑅 (log𝒜))+𝑛−𝑑. By Proposition 1.3 of [30], reg(Der𝑅 (log𝒜)) ≤ 𝑑−𝑛

and so reg(Ω𝑛−1
𝑅 (log𝒜)) ≤ 0. Therefore, reg(𝐿𝑛−1 (𝒜)) ≤ deg(𝒜) completing this case, the induction

and the proof. �

2.5. Acyclic complexes of local cohomology modules

We are now in position to utilize our work on Castelnuovo–Mumford regularity and prove that, when
𝜔 =

∑
𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 and {𝜆𝑘 } satisfy some combinatorial numerical restrictions, the complexes of local

cohomology modules of logarithmic de Rham modules, with differential induced by ∇𝜔 , is acyclic.

Corollary 2.30. Let 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 = C[𝑥1, . . . , 𝑥𝑛] be a central, essential and reduced hyperplane
arrangement, 𝜆1, . . . , 𝜆𝑑 ∈ C weights and 𝜔 =

∑
𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 =

∑
𝜆𝑘𝑑 log 𝑓𝑘 the associated logarithmic

one form. If ∑
𝜆𝑘 ∉ Z≥min{2,rank(𝒜) }, (2.20)

then for each 0 ≤ 𝑡 ≤ 𝑛 the following complex is acyclic:

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜)),∇𝜔).

Proof. Case 1: rank(𝒜) ≥ 2.
By Proposition 2.15, we know that the inclusion of −𝜄𝐸 (𝜔)-homogeneous subcomplex of

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜)),∇𝜔) is a quasi-isomorphism:

(𝐻𝑡
𝔪 (Ω

•
𝑅 (log𝒜))− 𝜄𝐸 (𝜔) ,∇𝜔)

q.i.
↩−−→ (𝐻𝑡

𝔪 (Ω
•
𝑅 (log𝒜)),∇𝜔). (2.21)

Since 𝜄𝐸 (𝜔) =
∑
𝜆𝑘 , it is enough to show that for each t and each j the subspace of 𝐻𝑡

𝔪 (Ω
𝑗
𝑅 (log𝒜))

degree −
∑
𝜆𝑘 elements is zero. For then the left-hand side of Equation (2.21) is a complex of zero

modules. In an equation, it suffices to show

𝐻𝑡
𝔪 (Ω

𝑗
𝑅 (log 𝑓 ))−

∑
𝜆𝑘 = 0. (2.22)

First of all, if
∑
𝜆𝑘 ∉ Z, the criterion (2.22) trivially holds. So we may assume

∑
𝜆𝑘 ∈ Z. And,

because the j-logarithmic forms are reflexive (cf. subsection 2.2 of [13]), they have depth at least two.
By standard facts about local cohomology, 𝐻0

𝔪 (Ω
𝑗
𝑅 (log𝒜)) and 𝐻1

𝔪 (Ω
𝑗
𝑅 (log𝒜)) then vanish. Certainly,

Equation (2.22) then holds for 𝑡 = 0, 1.
We must deal with 𝑡 ≥ 2, where we use the regularity estimate of Theorem 2.29: reg(Ω 𝑗

𝑅 (log𝒜)) ≤ 0.
Combining this with the definition of regularity in terms of local cohomology modules yields

max deg(𝐻𝑡
𝔪 (Ω

𝑗
𝑅 (log𝒜))) + 𝑡 ≤ 0.

Therefore, for all 𝑡 ≥ 2 and for all j,

𝐻𝑡
𝔪 (Ω

𝑗
𝑅 (log𝒜))ℓ = 0 whenever ℓ ∉ {−2,−3,−4, . . . }.

Then our hypothesis (2.20) ensures Equation (2.22) holds for 𝑡 ≥ 2, completing Case 1.
Case 2: rank(𝒜) = 1.
We argue in the same way, except noting that because Ω 𝑗

𝑅 (log𝒜) is automatically free and R has
depth one, that 𝐻0

𝔪 (Ω
𝑗
𝑅 (𝒜)) vanishes. Thus, we need to show that

𝐻1
𝔪 (Ω

𝑗
𝑅)ℓ = 0 whenever ℓ ∉ {−1,−2,−3, . . . }

for 𝑗 = 0 and 𝑗 = 1. Now, use Example 2.28. �
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2.6. Acyclic complexes of analytic Čech cohomology

Now, we can prove an analytic version of Corollary 2.30, using the setup and notation of subsection 2.3.
This will be the crucial result powering the proof of Theorem 3.4 (analytic Twisted Logarithmic
Comparison Theorem).

Instead of twisted complexes of local cohomology modules, we have twisted complexes of Čech
cohomology, cf. Definition 2.17, and the role of the homogeneous subcomplex in the proof of
Corollary 2.30 is played by the subcomplex of homogeneous forms in the Laurent series sense of
subsection 2.3, cf. Definition 2.18. The argument uses GAGA machinery to enrich the arguments of the
previous subsection; consequently, it still utilizes the bound on Castelnuovo–Mumford regularity pro-
vided in Theorem 2.29 to employ Lemma 2.22. Within the proof, we use (−)an (resp. (−)alg) to denote
the analytic (resp. algebraic) interpretation of (−).

Corollary 2.31. Let 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 = C[𝑥1, . . . , 𝑥𝑛] be a central, essential and reduced hyperplane
arrangement, 𝜆1, . . . , 𝜆𝑑 ∈ C weights and 𝜔 =

∑
𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 =

∑
𝜆𝑘𝑑 log 𝑓𝑘 the associated logarithmic

one form. If ∑
𝜆𝑘 ∉ Z≥min{2,rank(𝒜) } (2.23)

and if 𝑛 ≥ 2, then for each 1 ≤ 𝑡 ≤ 𝑛 the following complex is acyclic:

(𝐻𝑡
Čech(Ω

•
𝑋 (log𝒜)),∇𝜔).

Proof. By Lemma 2.22, it suffices to show that for 0 ≤ 𝑗 ≤ 𝑛, the Čech cohomology
𝐻𝑡

Čech
(Ω 𝑗

𝑋 an (log𝒜)− 𝜄𝐸 (𝜔) ) vanishes whenever 1 ≤ 𝑡 ≤ 𝑛. If −𝜄𝐸 (𝜔) ∉ Z, the claim is immediate:
There are no homogeneous (in the Laurent series sense) elements of nonintegral weight. So we may
assume −𝜄𝐸 (𝜔) ∈ Z and will proceed by a GAGA argument.

Consider the graded R-module Ω 𝑗
𝑅 (log𝒜) (−𝜄𝐸 (𝜔)). The sheafification �Ω 𝑗

𝑅 (log𝒜) (−𝜄𝐸 (𝜔)) of this
graded module gives a coherent algebraic sheaf of 𝒪P𝑛−1

alg
-modules on P𝑛−1

alg . It is well known that for all
𝑡 ≥ 1 we have the following identification of sheaf cohomology with local cohomology:

𝐻𝑡+1
𝔪 (Ω

𝑗
𝑅 (log𝒜))− 𝜄𝐸 (𝜔) = 𝐻𝑡 (

�Ω 𝑗
𝑅 (log𝒜) (−𝜄𝐸 (𝜔))). (2.24)

On one hand, the condition (2.23) on the residue of 𝜔 implies that the left-hand size of Equation (2.24)
vanishes. Indeed, this follows from Castelnuovo–Mumford regularity estimate of Theorem 2.29 as in
Corollary 2.30. On the other hand, let 𝐾 𝑗 ,an be the analytification of �Ω 𝑗

𝑅 (log𝒜) (−𝜄𝐸 (𝜔)). By GAGA,
𝐾 𝑗 ,an is a coherent analytic sheaf of𝒪P𝑛−1,an -modules on P𝑛−1,an. Again by GAGA, the sheaf cohomology
of 𝐾 𝑗 ,an equals the right-hand side of Equation (2.24). Altogether this gives 0 = 𝐻𝑡 (𝐾 𝑗 ,an) for all
𝑡 ≥ 1.

Now, consider the Čech complex 𝐶•({𝐷+(𝑥𝑖)}, 𝐾
𝑗 ,an) attached to the open cover {𝐷+(𝑥𝑖)}1≤𝑖≤𝑛 of

P𝑛−1,an. Since 𝐷+(𝑥𝑖) and any intersection of the {𝐷+(𝑥𝑖)} is Stein, and since higher sheaf cohomology
(of coherent sheaves) vanishes on Steins, this Čech complex computes the sheaf cohomology 𝐾 𝑗 ,an. So
for all 𝑡 ≥ 1 we have

0 = 𝐻𝑡 (𝐾 𝑗 ,an) = 𝐻𝑡 (𝐶•({𝐷+(𝑥𝑖)}, 𝐾
𝑗 ,an)). (2.25)

Recall 𝐾 𝑗 ,an is the analytification of �Ω 𝑗
𝑅 (log𝒜) (−𝜄𝐸 (𝜔)). Because membership in Ω 𝑗

𝑅 (log𝒜) [𝑥−1
𝐼 ]

is determined by the kernel of a map defined wholly in terms of 𝜕1 • 𝑓 , . . . , 𝜕𝑛 • 𝑓 , 𝑓 , all of which are
algebraic polynomials, and because analytification is exact, the analytification of Γ(𝐷 (𝑥𝐼 ),

�Ω 𝑗
𝑅 (log𝒜))
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is Γ(𝐷 (𝑥𝐼 ),Ω𝑋 an (log𝒜)). (This is an affine statement: 𝐷 (𝑥𝐼 ) ⊆ C𝑛.) Because Ω 𝑗
𝑅 (log𝒜) is generated

by homogeneous terms (as 𝒜 is central), we deduce

Γ(𝐷+(𝑥𝐼 ), 𝐾
𝑗 ,an) = Γ(𝐷 (𝑥𝐼 ),Ω

𝑗
𝑋 an (log𝒜))− 𝜄𝐸 (𝜔) ,

where by (−)− 𝜄𝐸 (𝜔) we mean the homogeneous elements in the sense of Laurent series. This means

𝐻𝑡 (𝐶•({𝐷+(𝑥𝑖)}, 𝐾
𝑗 ,an)) = 𝐻𝑡 (𝐶•({𝐷 (𝑥𝑖)},Ω

𝑗
𝑋 an (log𝒜))− 𝜄𝐸 (𝜔) )

= 𝐻𝑡
Čech(Ω

𝑗
𝑋 an (log𝒜))− 𝜄𝐸 (𝜔) .

By Equation (2.25), we conclude 0 = 𝐻𝑡
Čech
(Ω 𝑗

𝑋 an (log𝒜))− 𝜄𝐸 (𝜔) , as required. �

3. The (un)Twisted Logarithmic Comparison Theorem

This section is devoted to proving the Twisted Logarithmic Comparison Theorem for reduced hyperplane
arrangements, subject to a relatively mild restriction on the weights in both the analytic (Theorem 3.4) and
algebraic (Theorem 3.8) cases. The latter requires centrality, the former does not. Consequences are (all
not necessarily central): the global analytic Twisted Logarithmic Comparison Theorem (Corollary 3.7);
the analytic (untwisted) Logarithmic Comparison Theorem (Corollary 3.6); the algebraic (untwisted)
Logarithmic Comparison Theorem (Corollary 3.6). The last result positively answers Terao’s conjecture
(Conjecture 1.1). In sum, these result show that the cohomology of the complement in an arbitrary
rank one local system can be completely understood by an appropriately twisted logarithmic de Rham
complex.

The analytic Twisted Logarithmic Comparison Theorem is the main result insofar as the others
follow with significantly less difficulty. The argument synthesizes analytic and algebraic techniques. We
utilize the analytic paradigm of Theorem 1.1 of [9]: We repeat their inductive setup (either using the
rank of 𝒜 as we do here or using Saito-holonomic induction as in loc. cit.) and exploit the relationships
between the four consequent spectral sequences, some of which incorporate the inductive hypothesis.
The argument hinges on showing that on the second page of one of these spectral sequences all but one
column vanishes. In loc. cit. (or similarly in [36]) homological criterion on the logarithmic differential
forms greatly simplifies the first page. With no homological assumptions, we have no control over the
first page’s complexity. It is here that we utilize algebraic techniques and our bound on the Castelnuovo–
Mumford regularity of logarithmic forms: Using Corollary 2.31 and subsection 2.3, we can translate
these data into our analytic situation, furnishing adequate control over vanishing on the second page.

Before embarking, note that in Proposition 3.12, we show that all rank one local systems on𝑈 = 𝑋 \𝒜
can be computed via these Twisted Logarithmic Comparison Theorems. This is not the case for the
twisted Orlik–Solomon algebra, cf. [12], [31], [11]. When 𝒜 is central, Theorem 3.8 and Remark 3.11
imply these computations are explicit, finite-dimensional linear algebra. Example 3.14 exemplifies this:
We compute the Betti numbers of 𝐻•(𝑈,L𝜷) for a L𝜷 belonging to a translated component of the
characteristic variety – precisely the components undetectable by Orlik–Solomon methods.

3.1. The analytic case

Before we can prove Theorem 3.4, we require a significant amount of lemmas. First, the analytic twisted
logarithmic comparison can be checked stalkwise. Using this, the following lemma says it is enough to
check the analytic Twisted Logarithmic Comparison Theorem on sufficiently small Stein opens 𝑉 ⊆ 𝑋 .
The proof is exactly the same as in Lemma 2.5 of [9] and is tantamount to the following: Because higher
sheaf cohomology of coherent modules over Stein opens vanishes, taking hypercohomology amounts
to taking global sections.

Lemma 3.1 (Lemma 2.5 [9]). Let 𝑓 = 𝑓1 · · · 𝑓𝑑 cut out a hyperplane arrangement 𝒜, and consider the
weights 𝜆1, . . . , 𝜆𝑑 with their associated one-form𝜔 =

∑
𝑘 𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 . Then the following are equivalent:
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(a) (Ω•𝑋 (log𝒜),∇𝜔)
q.i.
↩−−→ (Ω•𝑋 (★𝒜),∇𝜔);

(b) For each (sufficiently small) Stein open 𝑉 ⊆ 𝑋 and each 𝑝 ≥ 0, the map induced by inclusion

𝐻 𝑝 (Γ(𝑉,Ω•𝑋 (log𝒜)),∇𝜔) −→ 𝐻 𝑝 (Γ(𝑉 \𝒜,Ω•𝑋 (★𝒜)),∇𝜔)

is an isomorphism.

Proof. Exactly as in Lemma 2.5 of [9]. �

The majority of preliminary work is to recreate the inductive setup from [9] in the twisted case. This
will let information about smaller rank arrangements percolate to edges of a larger rank arrangement.
Since we have 𝜔 ≠ 0, unlike loc. cit., there are several technical details that must be checked.

First, we want to be able to study the twisted logarithmic comparison at a point 𝔵 that only lies in a
subset of the hyperplanes of 𝒜. The next lemma says that such a point, we can throw out the summands
𝜆𝑘𝑑 log 𝑓𝑘 of 𝜔 corresponding to hyperplanes V( 𝑓𝑘 ) that do not pass through 𝔵. The argument uses an
idea from Lemma 2.1 of [20].

Lemma 3.2. Suppose that 𝑓 = 𝑓1 · · · 𝑓𝑑 cuts out a reduced hyperplane arrangement 𝒜. For weights
𝜆1, . . . , 𝜆𝑟 ∈ C, we have the associated one form

𝜔 =
∑
𝑘

𝜆𝑘
𝑑𝑓𝑘
𝑓𝑘

.

For 𝔵 ∈ 𝑋 , let 𝑓 ′ =
∏
{1≤𝑘≤𝑑 |𝔵∈V( 𝑓𝑘 ) } 𝑓𝑘 and let

𝜔′ =
∑

{1≤𝑘≤𝑑 |𝔵∈V( 𝑓𝑘 ) }
𝜆𝑘

𝑑𝑓𝑘
𝑓𝑘

.

Then for small enough Stein opens 𝑉 � 𝔵, we have isomorphisms

(a) (Ω•𝑉 (log 𝑓 ),∇𝜔)
�
−→ (Ω•𝑉 (log 𝑓 ′),∇𝜔′ );

(b) (Ω•𝑉 (★𝑓 ),∇𝜔)
�
−→ (Ω•𝑉 (★𝑓 ′),∇𝜔′ ).

These isomorphisms are compatible with (Ω•𝑉 (log 𝑓 ),∇𝜔) ↩−→ (Ω•𝑉 (★𝑓 ),∇𝜔).

Proof. It is enough to prove the assertion for V the complement of all the hyperplanes V( 𝑓 𝑗 ) that do
not contain the point 𝔵. Observe:

𝜔′ = 𝜔 −
∑

{1≤𝑘≤𝑑 |𝔵∉V( 𝑓𝑘 ) }
𝜆 𝑗

𝑑𝑓𝑘
𝑓𝑘

= 𝜔 −
∑

{1≤𝑘≤𝑑 |𝔵∉V( 𝑓𝑘 ) }
𝜆𝑘 (𝑑 log 𝑓𝑘 ).

Rename every such 𝑓 𝑗 not vanishing at 𝔵 as 𝑢 𝑗 . We construct isomorphisms

(Ω•𝑉 (log 𝑓 ),∇𝜔)
�
−→ (Ω•𝑉 (log 𝑓 ),∇𝜔−𝜆1 (𝑑 log𝑢1) )

�
−→ · · ·

�
−→ (Ω•𝑉 (log 𝑓 ),∇𝜔′ ). (3.1)

We construct the first map of Equation (3.1). We may assume 𝜆1 ≠ 0. Consider the diagram

Ω𝑖
𝑉 (log 𝑓 ) Ω𝑖

𝑉 (log 𝑓 )

Ω𝑖+1
𝑉 (log 𝑓 ) Ω𝑖+1

𝑉 (log 𝑓 ).

𝑢
−𝜆1
1 ·

∇𝜔−𝜆1 (𝑑 log𝑢1 ) ∇𝜔

𝑢
−𝜆1
1 ·
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Since 𝑢1 is a unit, 𝑢−𝜆1
1 is a unit as well, making the horizontal maps isomorphisms. A quick computation

verifies the diagram commutes. Therefore, multiplication by 𝑢−𝜆1
1 is an invertible chain map, and we

have constructed the first isomorphism of Equation (3.1). Iterating the procedure demonstrates (a).
The same construction works for the twisted meromorphic de Rham complex, giving (b). And

multiplication by 𝑢𝜆1 is compatible with including the twisted logarithmic de Rham complex into the
meromorphic one. �

Second, when working at a point 𝔵 whose corresponding edge and subarrangement is of nonmaximal
rank, we want to be able to reduce the ambient dimension. This corresponds to, and is proved similarly
to, Lemma 2.2 of [9].

Lemma 3.3. Suppose 𝑓 = 𝑓1 · · · 𝑓𝑑 cuts out a hyperplane arrangement 𝒜. For weights 𝜆1, . . . , 𝜆𝑑 ∈ C,
we have the associated one form

𝜔 =
∑
𝑘

𝜆𝑘
𝑑𝑓𝑘
𝑓𝑘

.

Assume that on some Stein manifold 𝑉 ⊆ 𝑋 , the divisor Div( 𝑓 ) is locally a product (𝑉,Div( 𝑓 )) =
(C × 𝑉 ′,C × Div( 𝑓 ′)) for 𝑉 ′ a Stein manifold of smaller dimension. Let 𝜋 : 𝑉 → 𝑉 ′ be the projection,
let 𝑓 ′ and 𝑓 ′𝑘 ∈ 𝒪𝑉 ′ satisfy Div( 𝑓 ) = C × Div( 𝑓 ′) and C × Div( 𝑓 ′𝑘 ) = Div( 𝑓𝑘 )) and let

𝜔′ =
∑
𝑘

𝜆𝑘
𝑑𝑓 ′𝑘
𝑓 ′𝑘

.

Then

(a) 𝜋−1(Ω•𝑉 ′ (log 𝑓 ′),∇𝜔′ ) → (Ω•𝑉 (log 𝑓 ),∇𝜔) is a quasi-isomorphism;
(b) 𝜋−1(Ω•𝑉 ′ (★𝑓 ′),∇𝜔′ ) → (Ω•𝑉 (★𝑓 ),∇𝜔) is a quasi-isomorphism.

Proof. Pick local coordinates (𝑡, 𝑥 ′) for 𝑉 = C × 𝑉 ′. And note that 𝑓𝑘 = 𝑢𝑘 𝑓
′
𝑘 , where 𝑢𝑘 is a unit.

Arguing as in Lemma 3.2, (Ω•𝑉 (log 𝑓 ′),∇𝜔′ )
�
−→ (Ω•𝑉 (log 𝑓 ),∇𝜔), where here 𝑓 ′ and 𝜔′ are viewed as

functions and forms over V. (Note that we are removing the summands 𝜆𝑘𝑑 log 𝑢𝑘 from 𝜔). Now, weight
the local coordinates (𝑡, 𝑥 ′) by giving t weight one, each 𝑥 ′𝑖 weight zero, 𝑑𝑥 ′𝑖 weight zero and 𝑑𝑡 weight
one. Let 𝜒 = 𝑡𝜕𝑡 be a logarithmic derivation on 𝑓 ′. Then we can argue as in Lemma 2.23: The twisted Lie
derivative∇𝜔′ (𝜄𝜒)+ 𝜄𝜒 (∇𝜔′ ) induces a quasi-isomorphism (Ω•𝑉 (log 𝑓 ′)0,∇𝜔′ )

q.i.
↩−−→ (Ω•𝑉 (log 𝑓 ′),∇𝜔′ ),

where the weight zero subcomplex is defined by the aforementioned weighting. (Note that 𝜄𝜒 (𝜔) = 0 and
the previous claim can be checked stalkwise.) This weight zero subcomplex is 𝜋−1 (Ω•𝑉 ′ (log 𝑓 ′),∇𝜔′ ),
giving (a). The proof of (b) is similar. �

With the preparations complete, we can prove the main theorem. The infrastructure is that of
Theorem 1.1 of [9], but we have to be careful manipulating the form 𝜔; the Čech cohomology/local
cohomology argument (Step 3) is much more subtle. To sketch the recipe for the latter, we use subsec-
tion 2.3 to reduce to a ‘homogeneous’ subcomplex of a twisted complex of analytic Čech cohomology
modules; use the GAGA considerations of Corollary 2.31 to show the vanishing of this subcomplex on
the nose is dictated by algebraic Castelnuovo–Mumford regularity bounds; use Theorem 2.29 to bound
the regularity.

Theorem 3.4 (Analytic Twisted Logarithmic Comparison Theorem). Let 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 cut out a
reduced hyperplane arrangement 𝒜. Suppose that 𝜆1, . . . , 𝜆𝑑 ∈ C are weights such that, for each edge
𝐸 ∈ ℒ(𝒜), ∑

{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }
𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } . (3.2)
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Let 𝜔 =
∑

𝑘 𝜆𝑘
𝑑 𝑓𝑘
𝑓𝑘

be the logarithmic one form determined by the {𝜆𝑘 }. Then the analytic Twisted
Logarithmic Comparison Theorem with respect to {𝜆𝑘 } holds:

(Ω•𝑋 (log𝒜),∇𝜔)
q.i.
↩−−→ (Ω•𝑋 (★𝒜),∇𝜔) (= R 𝑗★ LExp(𝝀) ). (3.3)

Proof. While the result is well known, we defer giving details on the derived category identification
‘(= R 𝑗★ LExp(𝝀) )’ until Proposition 4.3.

Step 0: Reductions and the inductive scheme.
We proceed stalkwise and induce on dim 𝑋 . When dim 𝑋 = 1 the result is well known and easy to

check. So assume dim 𝑋 = 𝑛 and the claim holds for all reduced arrangements in C𝑝 for 𝑝 < 𝑛. Let
𝔵 ∈ 𝑋 and E the smallest edge containing 𝔵. If the subarrangement 𝑓 ′ consisting of all hyperplanes
containing 𝔵 is of rank less than dim 𝑋 , then the induction hypothesis applies. For if V is a small Stein
containing 𝔵 and

𝜔′ =
∑

{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }
𝜆𝑘

𝑑𝑓𝑘
𝑓𝑘

,

then Lemma 3.2 says Equation (3.3) holds at 𝔵 is if and only if (Ω•𝑉 (log 𝑓 ′),∇𝜔′ )
q.i.
↩−−→ (Ω•𝑉 (★𝑓 ′),∇𝜔′ )

holds at 𝔵. Since 𝑓 ′ is of rank less than dim 𝑋 at 𝔵 it is a product, and we use Lemma 3.3 to invoke the
inductive hypothesis. Note that 𝜔′ satisfies its version of Equation (3.2) since 𝜔 satisfies Equation (3.2)
itself.

If the subarrangement 𝑓 ′ at 𝔵 has rank n, we may change coordinates and assume that 𝔵 = 0 and 𝑓 ′

is central and essential. By Lemma 3.2, the quasi-isomorphism (3.3) holds at 𝔵 exactly when the corre-
sponding Twisted Logarithmic Comparison Theorem holds for 𝑓 ′ and𝜔′ at 0 (in these new coordinates).

Therefore, it suffices to prove the following: If 𝒜 is a central, essential, reduced hyperplane arrange-
ment such that the Equation (3.3) holds at all points outside of 0, then Equation (3.3) holds at 0. By
Lemma 3.1, we may verify this (equivalently) by checking Equation (3.3) holds at a small open Stein
𝑉 � 0.

Step 1: Setting up the spectral sequences.
For the rest of the proof, we inhabit the spectral sequence infrastructure from the proof of Theorem

1.1 of [9] but refine it using the results of our previous sections. Let V be small Stein open about 0.
Define the Stein opens 𝑉𝑖 = 𝑉 \ {𝑥𝑖 = 0} and 𝑉 ′𝑖 = 𝑉𝑖 \ (𝑉 ∩𝒜). We have Stein open covers {𝑉𝑖} and
{𝑉 ′𝑖 } of 𝑉 \ 0 and 𝑉 \ (𝑉 ∩𝒜) respectively. Consider the following two double complexes with objects:

𝐾 𝑝,𝑞 =
⊕

1≤𝑖1≤···≤𝑖𝑞≤𝑛
Γ(

𝑞⋂
𝑖=0

𝑉𝑖 𝑗 ,Ω
𝑝
𝑋 (log𝒜));

𝐾 𝑝,𝑞 =
⊕

1≤𝑖1≤···≤𝑖𝑞≤𝑛
Γ(

𝑞⋂
𝑖=0

𝑉 ′𝑖 𝑗 ,Ω
𝑝
𝑋 (★𝒜)).

Each complex is positioned in the lattice Z2 so that, for example, 𝐾 𝑝,𝑞 , occurs in row p and column
q. 𝐾•,• has horizontal differential the Čech differential and vertical differential ∇𝜔; 𝐾•,• has the same.
And restriction commutes with the differentials, giving a map 𝜌•,•0 : 𝐾•,• → 𝐾•,•.

We will consider the resulting four spectral sequences arising from these double complexes using
similar notation as in [9]. As shorthand, ′(−) denotes the spectral sequence first taking cohomology
vertically and ′′(−) first taking cohomology horizontally. To be precise:

′𝐸 𝑝,𝑞
1 =

⊕
1≤𝑖0≤···≤𝑖𝑞≤𝑛

𝐻 𝑝 (Γ(
𝑞⋂
𝑗=0

𝑉𝑖 𝑗 , (Ω
•
𝑋 (log𝒜),∇𝜔)));

′′𝐸 𝑝,𝑞
1 = 𝐻𝑞 (𝑉 \ 0,Ω𝑝

𝑋 (log𝒜));
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′𝐸 𝑝,𝑞
1 =

⊕
1≤𝑖0≤···≤𝑖𝑞≤𝑛

𝐻 𝑝 (Γ(
𝑞⋂
𝑗=0

𝑉 ′𝑖 𝑗 , (Ω
•
𝑋 (★𝒜),∇𝜔)));

′′𝐸 𝑝,𝑞
1 = 𝐻𝑞 (𝑉 \ (𝑉 ∩𝒜),Ω𝑝

𝑋 (★𝒜)).

Step 2: The ′(−) spectral sequences.
By the inductive setup, Equation (3.3) holds at all points outside the origin. This means that the

aformentioned natural map

𝜌•,•1 : ′𝐸•,•1 −→ ′𝐸•,•1

is an isomorphism. As 𝜌•,•0 commutes with the differentials, this isomorphism continues on further
pages. Since the spectral sequences converge, we have

𝜌•,•∞ : ′𝐸•,•∞
�
−→ ′𝐸•,•∞ . (3.4)

Step 3: The ′′(−) spectral sequences.
We first consider ′′𝐸•,•. Because 𝑉 \ (𝑉 ∩𝒜) is Stein and Ω𝑝

𝑋 (★𝑓 ) |𝑈 is coherent, the higher sheaf
cohomology ′′𝐸 𝑝,𝑞

1 vanishes for 𝑞 > 0. So this page’s nonzero terms lie on the y-axis, the spectral
sequence converges on the second page where the nonzero terms still lie on the y-axis, and

′′𝐸 𝑝,0
2 = 𝐻 𝑝 (Γ(𝑉 \ (𝑉 ∩𝒜), (Ω•𝑋 (★𝒜),∇𝜔))). (3.5)

We claim ′′𝐸•,• has the same vanishing behavior. Combine the long exact sequence of cohomology
supported on {0}

→ 𝐻𝑞
0 (𝑉,Ω

𝑝
𝑋 (log𝒜)) → 𝐻𝑞 (𝑉,Ω𝑝

𝑋 (log𝒜)) → 𝐻𝑞 (𝑉 \ 0,Ω𝑝
𝑋 (log𝒜)) →

with the higher cohomological vanishing of 𝐻𝑞 (𝑉,Ω𝑝
𝑋 (log𝒜)) for 𝑞 ≥ 1, to get a natural isomorphism

′′𝐸 𝑝,𝑞
1 � 𝐻𝑞+1

0 (𝑉,Ω𝑝
𝑋 (log𝒜))

for all 𝑞 ≥ 1. By excision,

𝐻𝑞+1
0 (𝑉,Ω𝑝

𝑋 (log𝒜)) � 𝐻𝑞+1
0 (𝑋,Ω𝑝

𝑋 (log𝒜)).

Again, use the long exact sequence of cohomology supported on {0} to get

𝐻𝑞 (𝑋 \ 0,Ω𝑝
𝑋 (log𝒜)) � 𝐻𝑞+1

0 (𝑋,Ω𝑝
𝑋 (log𝒜))

for all 𝑞 ≥ 1. Since {𝐷 (𝑥𝑖)}1≤𝑖≤𝑛 is an open cover of 𝑋 \ 0 and since every 𝐷 (𝑥𝑖) along with every
intersection of elements of the {𝐷 (𝑥𝑖)} is a Stein manifold, the Čech complex𝐶•({𝐷 (𝑥𝑖)},Ω𝑝

𝑋 (log𝒜))
computes the sheaf cohomology 𝐻•(𝑋 \ 0,Ω𝑝

𝑋 (log𝒜)).
Combining these equivalences and using the notation of subsection 2.3 yields

′′𝐸 𝑝,𝑞
1 � 𝐻𝑞 (𝑋 \ 0,Ω𝑝

𝑋 (log𝒜)) � 𝐻𝑞

Čech
(Ω𝑝

𝑋 (log𝒜))

for all 𝑞 ≥ 1. The second page ′′𝐸•,•2 arises from the first by taking cohomology vertically with respect
to the differential ∇𝜔 . So

′′𝐸 𝑝,𝑞
2 � 𝐻 𝑝 (𝐻𝑞

Čech
(Ω•𝑋 (log𝒜)),∇𝜔) (3.6)

for all 𝑞 ≥ 1. Now, our condition on the weights (3.2) considered at the origin become∑
𝜆𝑘 ∉ Z≥min{2,rank(𝒜) }. So we may apply Corollary 2.31 to Equation (3.6), deducing ′′𝐸 𝑝,𝑞

2
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vanishes for 𝑞 ≥ 1. Therefore, the nonzero terms of the second page ′′𝐸•,•2 all lie on the y-axis, the
spectral sequence converges on this second page, and

′′𝐸 𝑝,0
2 = 𝐻 𝑝 (Γ(𝑉 \ 0, (Ω•𝑋 (log𝒜),∇𝜔))).

Since 𝑋 = C𝑛 with 𝑛 ≥ 2 by assumption, the reflexivity of Ω 𝑗
𝑋 (log𝒜) (see, for example, Proposition

1.5 [19]) implies that the global sections of 𝑉 \ 0 are the global sections of V, meaning the only nonzero
terms of the second page ′′𝐸•,•2 are

′′𝐸 𝑝,0
2 = 𝐻 𝑝 (Γ(𝑉, (Ω•𝑋 (log𝒜),∇𝜔))). (3.7)

Step 4: The end.
Because ′′𝐸•,•2 consists of only one column on the y-axis, convergence to 𝐻•Tot(𝐾•,•) happens on

the second page. And because there is only one column, the induced filtration on 𝐻•Tot(𝐾•,•) is trivial.
Using Equation (3.7), we have

𝐻 𝑝 (Γ(𝑉, (Ω•𝑋 (log𝒜),∇𝜔))) =
′′𝐸 𝑝,0

2 = 𝐻 𝑝Tot(𝐾•,•).

Similarly, ′′𝐸•,•2 has only one column on the y-axis, so convergence to 𝐻•Tot(𝐾•,•) happens on the
second page and the isomorphism has no graded data. Using Equation (3.5), we have

𝐻 𝑝 (Γ(𝑉 \ (𝑉 ∩𝒜), (Ω•𝑋 (★𝒜),∇𝜔))) =
′′𝐸 𝑝,0

2 = 𝐻 𝑝Tot(𝐾•,•).

On the other hand, the isomorphism ′𝐸•,•∞
�
−→ ′𝐸•,•∞ from Equation (3.4) gives (ignoring the extra

graded data) the natural isomorphism

𝐻 𝑝Tot(𝐾•,•) � 𝐻 𝑝Tot(𝐾•,•).

Putting the three displayed equations of this step together produces

𝐻 𝑝 (Γ(𝑉, (Ω•𝑋 (log𝒜),∇𝜔))) � 𝐻 𝑝 (Γ(𝑉 \ (𝑉 ∩𝒜), (Ω•𝑋 (★𝒜),∇𝜔))),

which is what we required. �

Remark 3.5. The base case of the induction, 𝒜 = V(𝑥), requires Z≥1 in Equation (3.2); the base case
fails if Z≥2 is used in Equation (3.2) instead.

Let us record two immediate corollaries. As it is of independent interest, we state the untwisted
version:

Corollary 3.6 (Analytic Logarithmic Comparison Theorem). For a reduced hyperplane arrangement
𝒜, the analytic Logarithmic Comparison Theorem holds:

(Ω•𝑋 (log𝒜), 𝑑)
q.i.
↩−−→ (Ω•𝑋 (★𝒜), 𝑑) (= R 𝑗★C𝑈 ).

Proof. Use Theorem 3.4, and set all the weights {𝜆𝑘 } to zero. �

We also obtain a global version as in Corollary 1.4 of [9]. We continue to not require centrality.

Corollary 3.7. Let 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 be a reduced hyperplane arrangement 𝒜 equipped with a
factorization into linear forms. Suppose that 𝜆1, . . . , 𝜆𝑑 ∈ C are weights such that, for each edge
𝐸 ∈ ℒ(𝒜), ∑

{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }
𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } .
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Let 𝜔 =
∑

𝑘 𝜆𝑘
𝑑 𝑓𝑘
𝑓𝑘

be the logarithmic one form determined by the {𝜆𝑘 }. Then the global analytic Twisted
Logarithmic Comparison Theorem holds:

(Γ(𝑋,Ω•𝑋 (log𝒜)),∇𝜔)
q.i.
↩−−→ (Γ(𝑋,Ω•𝑋 (★𝒜)),∇𝜔) (� 𝐻•(𝑈,LExp(𝝀) ),

where ‘(� 𝐻•(𝑈,Lexp(𝝀) ))’ means there are cohomological isomorphisms.

Proof. The quasi-isomorphism induced by inclusion in Theorem 3.4 gives isomorphisms in hyperco-
homology:

H𝑡 (Ω•𝑋 (log𝒜),∇𝜔)
�
−→ H𝑡 (Ω•𝑋 (★𝒜),∇𝜔). (3.8)

Since X and 𝑈 = 𝑋 \ 𝒜 are Stein and Ω 𝑗
𝑋 (log𝒜) and Ω 𝑗

𝑈 are coherent, their higher sheaf co-
homology vanishes. So the hypercohomology in Equation (3.8) amounts to taking global sections
and then taking cohomology. This gives the promised quasi-isomorphism. As for the claim involving
‘(� 𝐻•(𝑈,Lexp(𝝀) ))’, it is well known that H𝑡 (R 𝑗★ LExp(𝝀) ) = 𝐻𝑡 (𝑈,LExp(𝝀) ). �

3.2. The algebraic case

Now, we turn to the problem of the algebraic Twisted Logarithmic Comparison Theorem. We cannot
always repeat the proof of Theorem 3.4 because of Lemma 3.2: This construction requires multiplying
by 𝑓 𝜆𝑘

𝑘 at places where 𝑓𝑘 is a unit. Because 𝜆𝑘 may not be integral, in the algebraic category this may
be nonsensical.

Nevertheless, when 𝒜 is central we can deduce the algebraic Twisted Logarithmic Comparison
Theorem from the analytic one. We highlight that the cohomology of the complement U in the attached
local system is computed by a particular homogeneous subcomplex of the twisted logarithmic de Rham
complex. So computing the complement’s cohomology is a finite-dimensional linear algebra problem.

Theorem 3.8 (Algebraic Twisted Logarithmic Comparison Theorem). Let 𝑓 = 𝑓1 · · · 𝑓𝑑 cut out a central,
reduced hyperplane arrangement 𝒜 and let 𝜆1, . . . , 𝜆𝑑 ∈ C be weights such that, for each edge E,∑

{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }
𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } .

Furthermore, let 𝜔 =
∑

𝑘 𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 . Then the algebraic Twisted Logarithmic Comparison Theorem
holds along with an additional quasi-isomorphism:

(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)
q.i.
↩−−→ (Ω•𝑅 (log𝒜),∇𝜔)

q.i.
↩−−→ (Ω•𝑅 (★𝒜),∇𝜔) (� 𝐻•(𝑈,LExp(𝝀) )).

Here, (� 𝐻•(𝑈,LExp(𝝀) )) means there are isomorphisms on the level of cohomology and
(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔) is the homogeneous subcomplex of degree −𝜄𝐸 (𝜔) = −(𝜆1 + · · · + 𝜆𝑑), which
is a complex of finite-dimensional C-vector spaces.

Proof. The claim involving (� 𝐻•(𝑈,Lexp(𝝀) )) follows from the algebraic de Rham theorems of
Deligne and Grothendieck, cf. [25]. That, when 𝒜 is central, the map (Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔) ↩−→
(Ω•𝑅 (log𝒜),∇𝜔) is a quasi-isomorphism is the first part of Proposition 2.15. As for the finite-
dimensional claim: Since R and Ω 𝑗

𝑅 (log𝒜) do not have elements of arbitrary large negative degree, the
−𝜄𝐸 (𝜔)-homogeneous subspace Ω 𝑗

𝑅 (log𝒜)− 𝜄𝐸 (𝜔) is finite dimensional.
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It remains to validate the purported quasi-isomorphism (Ω•𝑅 (log𝒜),∇𝜔)
q.i.
↩−−→ (Ω•𝑅 (★𝒜),∇𝜔).

Consider the following commutative diagram:

(Ω 𝑗
𝑋 ,0 (log𝒜),∇𝜔) (Ω 𝑗

𝑋 ,0(★𝒜),∇𝜔)

(Ω 𝑗
𝑋 ,0 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔) (Ω 𝑗

𝑋 ,0(★𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)

(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔) (Ω•𝑅 (★𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)

(Ω•𝑅 (log𝒜),∇𝜔) (Ω•𝑅 (★𝒜),∇𝜔).

q.i. q.i.

q.i. q.i.

(3.9)

The displayed quasi-isomorphisms are justified by Lemma 2.23 and Proposition 2.15. As for displayed
equalities, let 𝜂 =

∑
𝑝 𝜂𝑝 ∈ Ω

𝑗
𝑋 ,0 (log𝒜) be the homogeneous decomposition of 𝜂 as in subsection 2.3,

though here this arises from, up to a pole along f, convergent formal power series in C[[𝑥1, . . . , 𝑥𝑛]]
as opposed to a Laurent series. If 𝜂 is homogeneous of weight −𝜄𝐸 (𝜔), then 𝜂 = 𝜂− 𝜄𝐸 (𝜔) , the latter
of which is, up to its pole along 𝒜, an algebraic j-form. So 𝜂− 𝜄𝐸 (𝜔) ∈ Ω 𝑗

𝑅 (log𝒜)− 𝜄𝐸 (𝜔) . The same
story applies for the nonlogarithmic displayed equality. This diagram concludes the proof: Theorem 3.4
implies the topmost horizontal map is a quasi-isomorphism, whence the bottom-most horizontal map
is a quasi-isomorphism. �

Remark 3.9. The proof of the Theorem 3.8 nontrivially exploits the centrality assumption. With-
out centrality Ω 𝑗

𝑅 (log𝒜) may not have a decomposition into a direct sum of homogeneous com-
ponents, as the homogeneous terms of a logarithmic j-form may not be logarithmic. Consequently,
(Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔) may be relatively vacuous, preventing any form of Equation (3.9) holding
and in turn obstructing our method of deducing Theorem 3.8 from Theorem 3.4. For similar rea-
sons, one should not expect the quasi-isomorphism (Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)

q.i.
↩−−→ (Ω•𝑅 (log𝒜),∇𝜔) of

Theorem 3.8 to hold (or be sensible) without a centrality assumption. On the other hand, the quasi-
isomorphism (Ω•𝑅 (log𝒜),∇𝜔)

q.i.
↩−−→ (Ω•𝑅 (★𝒜),∇𝜔) of Theorem 3.8 may hold without centrality. One

could try to check this at each maximal ideal, where 𝒜 can be assumed to be central, but outside the
analytic category technical issues related to ∇𝜔 appear (see the proof of Lemma 3.2).

This paper’s original objective was to solve Terao’s Conjecture 1.1, that is, to prove the algebraic
(untwisted) Logarithmic Comparison Theorem. (This evolved out of Conjecture 3.1 of [33].) We can
now do this quite easily, and, for aesthetic reasons, we include Brieskorn’s Theorem in its statement.
Note that we do not require centrality, which forces us to do more work.

Corollary 3.10 (Algebraic Logarithmic Comparison Theorem). Let 𝒜 be a reduced hyperplane ar-
rangement. Then the algebraic Logarithmic Comparison Theorem holds giving a sequence of quasi-
isomorphisms

𝐴•(𝒜)
q.i.
↩−−→ (Ω•𝑅 (log𝒜), 𝑑)

q.i.
↩−−→ (Ω•𝑅 (★𝒜), 𝑑) (� 𝐻•(𝑈,C𝑈 )). (3.10)

Moreover, 𝐴 𝑗 (𝒜) = 𝐻 𝑗 (Ω•𝑅 (log𝒜), 𝑑).

Proof. Brieskorn’s Theorem says the composition of maps in Equation (3.10) is a quasi-isomorphism,
so if we show the algebraic Logarithmic Comparison Theorem is true we can conclude the first map in
Equation (3.10) is a quasi-isomorphism. From this, the claim 𝐴 𝑗 (𝒜) = 𝐻 𝑗 (Ω•𝑅 (log𝒜), 𝑑) is easy: The
implicit differential of exterior differentiation on 𝐴•(𝒜) is trivial.
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It remains to prove the algebraic Logarithmic Comparison Theorem. When 𝒜 is central this follows
from Theorem 3.8 by setting the weights to zero.

For noncentral 𝒜, first note that we can define a sheaf-theoretic version of the algebraic twisted
logarithmic and rational de Rham complexes: (Ω•𝑋alg

(log𝒜),∇𝜔) and (Ω•𝑋alg
(★𝒜),∇𝜔), respectively.

These are complexes of 𝒪𝑋alg -modules. If we prove

(Ω•𝑋alg
(log𝒜),∇𝜔)

q.i.
↩−−→ (Ω•𝑋alg

(★𝒜),∇𝜔), (3.11)

then we can deduce that taking global sections preserves the quasi-isomorphism by arguing as in
Corollary 3.7. The proof of Theorem 3.4 gives a proof of Equation (3.11) once you replace every
occurrence of ‘Stein’ with ‘affine’. Indeed, note that: Lemma 3.1 holds after replacing ‘Stein’ with
‘affine’; Lemma 3.2 is never invoked since 𝜔 = 0 in our case; we may still use Lemma 3.3 since the
change of coordinates is linear, and hence algebraic; in Step 3 of the proof, 𝐸 𝑝,𝑞

1 � 𝐻𝑞+1
0 (𝑉,Ω𝑝

𝑋 (log𝒜))
which is isomorphic to 𝐻𝑞+1

𝔪 (Ω𝑝
𝑅 (log𝒜)) by Exercise III.2.3, III.3.3 [18], and so Corollary 2.30 can be

applied to 𝐸 𝑝,𝑞
2 directly (i.e., without subsection 2.3 and subsection 2.6). �

Remark 3.11. If 𝒜 is central and the combinatorial conditions are satisfied, Equation (3.9) also shows
that

𝐻•((Ω•𝑅 (log𝒜)− 𝜄𝐸 (𝜔) ,∇𝜔)) � 𝐻•(Ω𝑋,0(★𝒜),∇𝜔) � 𝐻•((R 𝑗★ LExp(𝝀) )0).

3.3. Feasibility

In this minisicule section, we ask which rank one local systems can be studied by our assorted (un)Twisted
Logarithmic Comparison Theorems. Recall that when𝒜 is central, this means computing (R 𝑗★ LExp(𝜷) )0
or 𝐻•(𝑈,L𝜷) is a finite-dimensional linear algebra problem (Theorem 3.8; Remark 3.11). The answer
is: All such local systems are computable this way.

Proposition 3.12. For an arbitrary rank one local system L𝜷 on U, there exists a 𝝀 ∈ Exp−1(𝜷) such
that all the aforementioned Twisted Logarithmic Comparison Theorems hold with respect to the weights
𝝀 = (𝜆1, . . . , 𝜆𝑑).

Proof. We must produce 𝝀 ∈ Exp−1(𝜷) such that the combinatorial arithmetical restrictions∑
{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }

𝜆𝑘 ∉ Z≥min{2,rank(𝐸) }

are satisfied at each edge E of the intersection lattice. To do this, pick an arbitrary 𝝀 ∈ Exp−1 (𝜷) and
replace 𝝀 with 𝝀 − z, where z = (𝑧, . . . , 𝑧) ∈ Z𝑑 and 𝑧 � 0. �

Remark 3.13.

(a) If we require 𝒜 to be central and let 𝑃(𝒜) be the associated projective arrangement, then the
Leray spectral sequence of the fibration C★→ C𝑛 \𝒜 → P𝑛−1 \ 𝑃(𝒜) gives a dictionary between
cohomology of the affine complement with a rank one local system and the cohomology of the
projective complement with the corresponding local system, cf. Theorem 5.2 [15]. In the projective
case, if we require the weights {𝜆𝑘 } to satisfy 𝜆1 + · · · + 𝜆𝑑 = 0, then it is proved in [16] that there
are similar combinatorial arithmetic conditions on the dense edges of the intersection lattice of 𝒜
that, when satisfied, ensure

𝐻•((𝐴•(𝒜),∇𝜔)) � 𝐻•(𝑈,LExp(𝝀) ).
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Here, (𝐴•(𝒜),∇𝜔) is the Orlik–Solomon algebra equipped with the differential 𝜔∧, a twisted
Orlik–Solomon algebra. Alternatively, 𝐴•(𝒜) is canonically identified with the Brieskorn algebra:
the algebra generated by wedge products of the one-forms {𝑑𝑓𝑘/ 𝑓𝑘 }.

(b) It is well known that not all rank one local systems can be computed by the machinery of the previous
item since, in particular, 𝜆1 + · · · + 𝜆𝑑 = 0 may not be satisfied, cf. Example 3.14. The undetectable
systems correspond to torsion translated subtori of the characteristic variety, cf. [12]. This is not a
defect of [16]: The invisibility of the torsion translated subtori is intrinsic to Orlik–Solomon methods.

(c) In [29] (subsection 2.2), M. Saito removes the requirement 𝜆1 + · · · + 𝜆𝑑 = 0 at the cost of taking
a resolution of singularities (𝑋,𝒜) → (𝑋,𝒜) and doing the computations upstairs in 𝑋 . This is
difficult to use since, even for arrangements, resolutions of singularities are unwieldy.

Example 3.14 (Deleted 𝐵3 arrangement). Let 𝑓 = 𝑦𝑧(𝑥 + 𝑦) (𝑥 − 𝑦) (𝑥 + 𝑧) (𝑥 − 𝑧) (𝑦 + 𝑧) (𝑦 − 𝑧), let
𝝀 = (1/2, 1/2,−1/2,−1/2, 1/4, 1/4, 1/4, 1/4) be a collection of weights, ordered by the factors listed
and let 𝜔 be the associated one-form. This is a free arrangement with exponents {1, 3, 4}. The local
system LExp(𝝀) on𝑈 = C3 \V( 𝑓 ) belongs to a translated component of the rank one local systems on U,
cf. Example 4.1 of [31] or Section 3 of [11]. So it is undetectable by any twisted Orlik–Solomon algebra:
𝐻𝑘 (𝐴•(𝒜),∇𝜔) = 0 for 0 ≤ 𝑘 ≤ 3. In loc. cit. Suciu computes dimC(𝐻1 (𝑈,LExp(𝝀) )) = 1. The weights
𝝀 satisfy the conditions of our Twisted Logarithmic Comparison Theorems. Macaulay2 claims:

dimC(im[Ω1
𝑅 (log𝒜)−1

∇𝜔
−−→ Ω2

𝑅 (log𝒜)−1]) = 8;

dimC(im[Ω2
𝑅 (log𝒜)−1

∇𝜔
−−→ Ω3

𝑅 (log𝒜)−1]) = 8.

Using Theorem 3.8, we compute the dimensions of the nonzero 𝐻𝑘 (𝑈,LExp(𝝀) ):

dimC(𝐻1 (𝑈,LExp(𝝀) )) = dimC(𝐻1 (Ω•𝑅 (log 𝑓 )−1,∇𝜔)) = 1;
dimC(𝐻2 (𝑈,LExp(𝝀) )) = dimC(𝐻2 (Ω•𝑅 (log 𝑓 )−1,∇𝜔)) = 8;
dimC(𝐻3 (𝑈,LExp(𝝀) )) = dimC(𝐻3 (Ω•𝑅 (log 𝑓 )−1,∇𝜔)) = 7.

4. Applications to 𝓓𝑿 -modules and Bernstein–Sato ideals

Hereafter, we will require𝒜 to be central. Let𝒟𝑋 be the analytic sheaf ofC-linear differential operators.
We will mostly focus on the analytic setting but will track statements that also work for the algebraic one.

Because the Logarithmic Comparison Theorem (twisted or otherwise) offers a quasi-isomorphism
between the logarithmic de Rham complex and the meromorphic de Rham complex and because the
meromorphic de Rham complex is obtained by applying the de Rham functor to a certain 𝒟𝑋 -module,
it is natural to hope for a intrinsic complex of 𝒟𝑋 -modules whose image under the de Rham functor is
the logarithmic de Rham complex. There is a good candidate for free divisors and the result is known
for certain such free divisors; see [8] as well as the survey [22]. Consequently, there is a package of 𝒟𝑋 -
theoretic results divisors satisfying Logarithmic Comparison Theorems ‘ought’ to possess. For certain
free divisors, the most thorough treatment is [23], especially Theorem 4.7 and Corollary 4.2/4.3 from
which most of the ‘expected’ properties discussed in [34] can be deduced in this case; see also loc.
cit. and [22] for more discussion. Despite having (un)Twisted Logarithmic Comparison Theorems for
reduced hyperplane arrangements we do not have a good candidate for the ‘pre’-de Rham complex of
𝒟𝑋 -modules corresponding to the logarithmic de Rham complex.

Nevertheless, we are able to obtain many of the desired 𝒟𝑋 -related results for reduced hyperplane
arrangements f. In the first subsection, we study 𝒪𝑋 (★𝑓 𝝀) for a set of weights 𝝀 ∈ C𝑑 , showing that
(Theorem 4.4) under familiar hypotheses on the weights, 𝑓 −1+𝝀 generates this 𝒟𝑋 -module. This should
be thought of as a multivariate generalization of fact 𝑓 −1 generates 𝒪𝑋 (★𝑓 ); the theorem recovers this
univariate statement. We also justify our previous claim (Ω•𝑋 (★𝒜),∇𝜔) = R 𝑗★ LExp(𝝀) in the derived
category (Proposition 4.3). In the second subsection, we give a sharp bound on the candidates of the
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codimension one components of the zero locus of the Bernstein–Sato ideal of f (for any factorization).
This is Theorem 4.7 and should be thought of as a sort of generalization of M. Saito’s result [29] that the
roots of the Bernstein–Sato polynomial of f live in (−2 + 1/deg( 𝑓 ), 0) – in fact, the univariate version
of Theorem 4.7 gives a new proof of this fact.

4.1. Generators of twisted meromorphic powers

First, recall that 𝒪𝑋 (★𝒜) is naturally a 𝒟𝑋 -module: The action of a derivation on 𝑓 −𝑝 , for 𝑝 ∈ N
and with f defining 𝒜, is given by the chain rule. Nothing depends on the choice of defining equation
for 𝒜 and we note that the cyclic 𝒟𝑋 -module generated by 𝑓 −𝑝 sits inside 𝒪𝑋 (★𝒜). In particular, as
𝒟𝑋 -modules, ⋃

𝑝∈N

𝒟𝑋 𝑓 −𝑝 = 𝒪𝑋 (★𝒜) = 𝒪𝑋 (★𝑓 ).

Now, let 𝑓 = 𝑓1 · · · 𝑓𝑑 be a factorization into irreducibles and take p ∈ Z𝑑 . Denote 𝑓 𝑝1
1 · · · 𝑓

𝑝𝑑
𝑑 by 𝑓 p.

Then, as 𝒟𝑋 -modules, ⋃
p∈N𝑑

𝒟𝑋 𝑓 −p = 𝒪𝑋 (★𝒜) = 𝒪𝑋 (★𝑓 ).

We can tell the same story for nonstandard powers of the 𝑓𝑘 . To this end, let 𝝀 = (𝜆1, . . . , 𝜆𝑑) ∈ C
𝑑 be

weights as before, define the 𝒟𝑋 -action on 𝑓 𝝀 via the chain and product rule and make the 𝒟𝑋 -module
identification/definition ⋃

𝑝∈N𝑑

𝒟𝑋 𝑓 𝝀−p = 𝒪𝑋 (★𝑓 𝝀).

Repeating the construction algebraically produces a 𝐷𝑋alg -module 𝒪𝑋alg (★𝑓 𝝀).
For technical reasons, we will work with the following equivalent object:

Proposition 4.1. Consider 𝒪𝑋 (★𝑓 ) as an 𝒟𝑋 -module. Let p ∈ N𝑑 . We let 𝛿 ∈ Der𝑋 act on 𝑔 𝑓 −p by

𝛿(𝑔 𝑓 −p) = 𝛿(𝑔) 𝑓 −p +
∑

1≤𝑘≤𝑑
𝑔(−𝑝𝑘 + 𝜆𝑘 )𝛿( 𝑓𝑘 ) 𝑓

−1
𝑘 𝑓 −p.

This defines a connection ∇𝝀 on 𝒪𝑋 (★𝑓 ) satisfying the commutative diagram of 𝒟𝑋 -maps

𝒟𝑋 𝑓 −p+𝝀 𝒪𝑋 (★𝑓 𝝀)

(𝒟𝑋 𝑓 −p,∇𝝀) (𝒪𝑋 (★𝑓 ),∇𝝀),

� �

where (𝒟𝑋 𝑓 −p,∇𝝀) denotes the module generated by 𝑓 −p under this new connection ∇𝝀 and the vertical
isomorphisms are determined by 𝑔 𝑓 −p ↦→ 𝑔 𝑓 −p+𝝀 .
Proof. The vertical maps in the diagram are certainly 𝒪𝑋 -isomorphisms, and it is easy to check that
action of a derivation 𝛿 commutes with the vertical maps: 𝜓(∇𝝀𝛿 (−)) = 𝛿(𝜓(−)). This fact simplifies the
straightforward calculations mandatory in checking ∇𝝀 is a well-defined connection (and then certifies
the vertical maps are 𝒟𝑋 -isomorphisms). �

Remark 4.2.
(a) Note that ∇𝝀𝛿 (1) = ∇

𝝀
𝛿 ( 𝑓

0) =
∑

𝑘 𝛿( 𝑓𝑘 ) 𝑓
−𝒆𝒌 , where 𝒆𝒌 are the standard unit vectors.

(b) Proposition 4.1 also holds in the algebraic setting.
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Before proceeding, let us complete our proofs of the analytic (un)Twisted Logarithmic Comparison
Theorems by justifying the relationship between the analytic twisted meromorphic de Rham complex
and the derived direct image of a rank one local system on the the complement 𝑈 = 𝑋 \ 𝒜. This is
known to experts and follows from the explicit Riemann–Hilbert correspondence.
Proposition 4.3. Let 𝑓 = 𝑓1 · · · 𝑓𝑑 ∈ 𝑅 be a reduced hyperplane arrangement 𝒜 equipped with a
factorization into linear forms. Suppose that 𝝀 = (𝜆1, . . . , 𝜆𝑑) ∈ C

𝑑 , and let 𝜔 =
∑

𝑘 𝜆𝑘𝑑𝑓𝑘/ 𝑓𝑘 the one-
form determined by 𝝀. And let LExp(𝜆 be the rank one local system on 𝑋 \𝒜 corresponding to the torus
point Exp(𝝀); let 𝑗 : 𝑋 \𝒜 ↩−→ 𝑋 be the inclusion. Then we have the following equality in the category
of perverse sheaves:

(Ω•𝑋 (★𝒜),∇𝜔) = R 𝑗★ LExp(𝝀) .

Proof. We justify the following:

DR((Ω•𝑋 (★𝒜),∇𝜔))
(1)
= DR((𝒪𝑋 (★𝑓 ),∇𝝀))

(2)
= DR(𝒪𝑋 (★𝑓 𝜆))

(3)
= R 𝑗★ LExp(𝝀) .

Note that the equalities occur in the derived category. Indeed, (1)= is nothing more than a straightforward
computation; since 𝒪𝑋 (★𝑓 𝝀) is regular holonomic (cf. Theorem 5.2 [5]) and since DR(−) gives an
equivalence of categories between regular holonomic 𝒟𝑋 -modules and perverse sheaves, by Proposi-
tion 4.1 we have (2)= in the category of perverse sheaves; the explicit Riemann–Hilbert correspondence
gives (3)= (cf. Theorem 5.2 [5]). �

Using the identification within Proposition 4.1, we can use the Twisted Logarithmic Comparison
Theorem to locate choices of 𝝀 such that𝒟𝑋 𝑓 −1+𝝀 = 𝒪𝑋 (★𝑓 𝝀). The following is based off an observation
of Torelli in the univariate, untwisted case (cf. Proposition 3.1 [34]).
Theorem 4.4. Let 𝑓 = 𝑓1 · · · 𝑓𝑑 cut out a central, reduced hyperplane arrangement, and let
𝝀 = (𝜆1, . . . , 𝜆𝑑) ∈ C

𝑑 be weights such that for each edge E∑
{1≤𝑘≤𝑑 |𝐸⊆V( 𝑓𝑘 ) }

𝜆𝑘 ∉ Z≥min{2,rank(𝐸) } .

Then

𝒟𝑋 𝑓 −1+𝝀 = 𝒪𝑋 (★𝑓 𝝀).

Proof. Doing this stalk-by-stalk, with the standard reduction to a smaller rank arrangement at points
not the origin, and using the Proposition 4.1, it suffices to prove that the inclusion (𝒟𝑋,0 𝑓

−1,∇𝝀) ⊆
(𝒪𝑋,0 (★𝑓 ),∇𝝀) is an equality.

Define the 𝒟𝑋,0-module Q to be the cokernel of this inclusion:

0→ (𝒟𝑋,0 𝑓
−1,∇𝝀) → (𝒪𝑋,0 (★𝑓 ),∇𝝀) → 𝑄 → 0. (4.1)

Apply the de Rham functor DR(−) to this short exact sequence. By the inductive hypothesis, Q is
supported at the origin; by Kashiwara’s equivalence, it is isomorphic to a direct sum of copies of
𝒟𝑋,0/𝒟𝑋,0 · 𝔪0 � C[𝜕1, . . . , 𝜕𝑛]. The de Rham complex attached to this 𝒟𝑋,0-module is essentially
the Koszul complex of the regular sequence 𝜕1, . . . , 𝜕𝑛 on C[𝜕1, . . . , 𝜕𝑛]. Thus, 𝐻 𝑗 (DR(𝑄)) = 0 for all
𝑗 ≠ 𝑛. This means the long exact sequence arising from applying the de Rham functor to Equation (4.1)
is a collection of isomorphisms and one short exact sequence:

0→ 𝐻𝑛 (DR((𝒟𝑋,0 𝑓
−1,∇𝝀)) → 𝐻𝑛 (DR((𝒪𝑋,0 (★𝑓 ),∇𝝀))) → 𝐻𝑛 (DR(𝑄)) → 0. (4.2)

Note that the first nontrivial map is induced by DR(−) applied to a submodule inclusion.
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On the other hand, by the definition of the de Rham functor one can easily check that we have an
inclusion of complexes

(Ω•𝑋,0 (log 𝑓 ),∇𝜔) ↩−→ DR((𝒟𝑋,0 𝑓
−1,∇𝝀)) ↩−→ DR((𝒪𝑋,0 (★𝑓 ),∇𝝀)), (4.3)

where the last complex equals (Ω•𝑋,0 (★𝑓 ),∇𝜔). By Theorem 3.4, the composition of maps in
Equation (4.3) is a quasi-isomorphism. So the second map in Equation (4.3) is a surjection on the
level of cohomology. Specifically, for 𝐻𝑛 (−), this surjection is the same map as the first nontrivial map
in Equation (4.2) since both are induced by submodule inclusion. We deduce 𝐻𝑛 (DR(𝑄)) = 0 and
DR(𝑄) is acyclic.

Since (𝒪𝑋,0 (★𝑓 ),∇𝝀) � 𝒪𝑋,0(★𝑓 𝝀) is regular holonomic (Theorem 5.2 [5]) and these properties are
preserved under subquotients, Q is regular holonomic. By the Riemann–Hilbert correspondence, there
is an equivalence of categories between regular holonomic 𝒟𝑋,0-modules and perverse sheaves. As
have shown DR(𝑄) corresponds to the zero perverse sheaf, we deduce 𝑄 = 0, completing the proof. �

4.2. Codimension one components of Bernstein–Sato ideals

We conclude with a sharp estimate of the codimension one components of the Bernstein–Sato ideal
attached to an arbitrary factorization of a central, reduced hyperplane arrangement. We first give a quick
tour of some of the necessary concepts, with some other tools deferred to the proof.

Let f cut out a central, reduced hyperplane arrangement, and let 𝑓 = 𝑓1 · · · 𝑓𝑟 be an arbitrary
factorization of f, not necessarily into linear forms. We encode this factorization by 𝐹 = ( 𝑓1, . . . , 𝑓𝑟 ).
Formally invert f, add r dummy variables 𝑠1, . . . , 𝑠𝑟 and consider the𝒪𝑋,0 [

1
𝑓 , 𝑆] = 𝒪𝑋,0 [

1
𝑓 , 𝑠1, . . . , 𝑠𝑟 ]-

module generated by 𝑓 𝑠1
1 · · · 𝑓

𝑠𝑟
𝑟 ; call this𝒪𝑋,0 [

1
𝑓 , 𝑆]𝐹

𝑆 . This is a 𝒟𝑋,0 [𝑆] = 𝒟𝑋,0 [𝑠1, . . . , 𝑠𝑟 ]-module
where the action of derivation on 𝐹𝑆 = 𝑓 𝑠𝑟1 · · · 𝑓

𝑠𝑟
𝑟 is given by formally applying the chain and product

rule. The cyclic 𝒟𝑋,0 [𝑆]-submodule generated by 𝐹𝑆 (resp. 𝐹𝑆+1 = 𝑓 𝑠1+1
1 · · · 𝑓 𝑠𝑟+1𝑟 ) is denoted by

𝒟𝑋,0 [𝑆]𝐹
𝑆 (resp. 𝒟𝑋,0 [𝑆]𝐹

𝑆+1).

Definition 4.5. Consider the 𝒟𝑋 [𝑆]-module

𝑀 =
𝒟𝑋,0 [𝑆]𝐹

𝑆

𝒟𝑋,0 [𝑆]𝐹𝑆+1 .

TheC[𝑆] = C[𝑠1, . . . , 𝑠𝑟 ]-module annihilator of this module is the Bernstein–Sato ideal. It is denoted by

𝐵𝐹,0 = annC[𝑆 ] 𝑀.

We call the zero locus of the Bernstein–Sato ideal 𝑍 (𝐵𝐹,0) ⊆ C
𝑟 , and we single out its codimension

one components with

𝑍𝑟−1(𝐵𝐹,0) = codimension one components of 𝑍 (𝐵𝐹,0).

When working with a factorization 𝐹 = ( 𝑓1, . . . , 𝑓𝑟 ) into more than one term (i.e., 𝑟 ≥ 2) we call
this the multivariate situation; when the factorization 𝐹 = ( 𝑓 ) is trivial (i.e., 𝑟 = 1), we call this the
univariate situation. In the univariate situation, the Bernstein–Sato polynomial is the monic generator
of the (necessarily principal) Bernstein–Sato ideal.

It is well known that the Bernstein–Sato ideal (both the univariate and multivariate versions) is
nonzero. We recommend the modern treatments [21, 6, 7] which focus on the multivariate situation,
especially since we utilize many of the ideas therein. In [21], Maisonobe realized studying the Ext-
modules

Ext•𝒟𝑋,0 [𝑆 ]
(𝑀,𝒟𝑋,0 [𝑆]) (4.4)

https://doi.org/10.1017/fmp.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.17


Forum of Mathematics, Pi 39

is crucial to understanding Bernstein–Sato ideals. In particular, he proved the first nonvanishing
Ext-module sits in slot 𝑛+1 (recall 𝑛 = dim 𝑋). In [6], the authors: (1) developed the theory of localized
𝒟𝑋,0 [𝑆]-modules, for example, replacing the 𝒟𝑋,0 [𝑆]-module M with the 𝒟𝑋,0 ⊗C 𝑇

−1C[𝑆]-module
𝑀 ⊗C𝑇

−1C[𝑆] for a multiplicatively closed subset𝑇 ⊆ C[𝑆]; (2) showed that when M is (𝑛+1)-Cohen–
Macaulay, that is, when amongst all the Ext-modules of Equation (4.4) only the Ext-module sitting in
slot 𝑛 + 1 is nonzero, M has very nice properties.

We will make use of the approach of [6] where they show M is generically (𝑛 + 1)-Cohen–Macaulay
(generic with respect to points ofC𝑟 ). We will also make use of the result of the previous subsection. For
a = (𝑎1, . . . , 𝑎𝑟 ) ∈ C

𝑟 , let Ca be the associated residue field. There is a natural surjective specialization
map of 𝒟𝑋,0-modules

𝒟𝑋,0 [𝑆]𝐹
𝑆 ⊗C[𝑆 ] Ca � 𝒟𝑋,0 𝑓

a = 𝒟𝑋,0 𝑓
𝑎1

1 · · · 𝑓
𝑎𝑟
𝑟

obtained by replacing all 𝑠𝑘 with 𝑎𝑘 . (See [24] and Section 5 of [5] for details.) Theorem 4.4 will, with
suitable caution, let us use some of the results from [24] regarding this specialization.

Because we care about arbitrary factorizations F of f, we require some technical notation exclusive
to hyperplane arrangements.

Definition 4.6. Let 𝑓 = ℓ1 · · · ℓ𝑑 be a factorization of a central, reduced arrangement f into linear
terms. For an edge E in the intersection lattice ℒ(𝒜), let 𝐽 (𝐸) = { 𝑗 ∈ [𝑑] | 𝐸 ⊆ V(ℓ 𝑗 )} so that
𝑓𝐸 =

∏
𝑗∈𝐽 (𝑋 ) ℓ 𝑗 is the arrangement consisting of all hyperplanes containing E. The factorization

𝐹 = ( 𝑓1, · · · , 𝑓𝑟 ) amounts to a disjoint partition of [𝑑] into r subsets; let 𝑆𝑘 = { 𝑗 ∈ [𝑑] | V(ℓ 𝑗 ) ⊆
V( 𝑓𝑘 )}. Thus 𝑓𝑘 =

∏
𝑗∈𝑆𝑘

ℓ 𝑗 . The factorization F of f induces a factorization 𝑓𝐸 = 𝑓𝐸,1 · · · 𝑓𝐸,𝑟 , where

𝑓𝐸,𝑘 =
∏

𝑗∈𝑆𝑘∩𝐽 (𝐸)

ℓ 𝑗 .

Finally, let 𝑑 = deg( 𝑓 ), 𝑑𝐸 = deg( 𝑓𝐸 ) =| 𝐽 (𝐸) | and 𝑑𝐸,𝑘 = deg( 𝑓𝐸,𝑘 ) =| 𝐽 (𝐸) ∩ 𝑆𝑘 | . Note that
deg( 𝑓𝐸,𝑘 ) can equal zero.

Now, we can state and prove the subsection’s main result. What is new below is the upper bound
𝑄𝐸 on the size of v; that all the codimension one components of 𝑍 (𝐵𝐹,0) are of this form (without any
restriction other than the nonnegativity of v) was proved in Theorem 4.18 of [2]. We highlight that, in
the univariate case, this independently recovers (by a very different argument) M. Saito’s result [29] that
the roots of the Bernstein–Sato polynomial of a smooth, central, reduced arrangement lie in (−2+ 1

𝑑 , 0).

Theorem 4.7. For 𝐹 = ( 𝑓1, . . . , 𝑓𝑟 ) an arbitrary factorization of a reduced, central arrangement f, the
codimension one components of the Bernstein–Sato ideal attached to F has the following restriction:

𝑍𝑟−1(𝐵𝐹,0) ⊆
⋃

𝐸 ∈ℒ (𝒜)
𝐸 dense

𝑄𝐸⋃
𝑣=0

⎧⎪⎪⎨⎪⎪⎩
∑

{1≤𝑘≤𝑟 |𝐸⊆V( 𝑓𝑘 ) }
𝑑𝐸,𝑘 𝑠𝑘 + rank(𝐸) + 𝑣 = 0

⎫⎪⎪⎬⎪⎪⎭ ,
where 𝑑𝐸,𝑘 is as in Definition 4.6 and

𝑄𝐸 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑑𝐸 − rank(𝐸) −min{2, rank(𝐸)} for 𝐹 a factorization into linears;
2𝑑𝐸 − rank(𝐸) −min{2, rank(𝐸)} for𝐹 any factorization & 𝐸 = {0};
2𝑑𝐸 − rank(𝐸) − 1 for 𝐹 not a factorization into linears & 𝐸 ≠ {0}.

In particular, when 𝐹 = ( 𝑓 ) is the trivial factorization and f is not smooth, the roots of the Bernstein–
Sato polynomial are contained in (−2 + 1/𝑑, 0).

Proof. Case 1: We first assume 𝑟 = 𝑑 (i.e., F is a factorization into linear terms) and establish notation
and a plan that will be used by the other cases.
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General notation: Fix an arbitrary dense edge E, and then fix an integer ℓ ∈ [0, 𝑑𝐸 ). Choose the
integer 𝑚 ∈ Z by the mandate

𝑚 = min{𝑝 ∈ {rank(𝐸) + ℓ + 𝑧 · 𝑑𝐸 | 𝑧 ∈ Z} | −𝑝 ∉ Z≥min{2,rank(𝐸) }} (4.5)
∈ [−min{2, rank(𝐸)} + 1,−min{2, rank(𝐸)} + 𝑑𝐸 ],

and consider the prime ideal in C[𝑆] = C[𝑠1, . . . , 𝑠𝑟 ]

𝔮 = C[𝑆] ·
∑

{1≤𝑘≤𝑟 |𝐸⊆V( 𝑓𝑘 ) }
𝑑𝐸,𝑘 𝑠𝑘 + 𝑚. (4.6)

Furthermore, let 𝜏 : C[𝑆] → C[𝑆] be the ring isomorphism defined by 𝑠𝑘 ↦→ 𝑠𝑘 + 1 for all k. This
induces a map 𝜏♯ : SpecC[𝑆] ← � SpecC[𝑆] sending (𝑎1, . . . , 𝑎𝑟 ) ← � (𝑎1−1, . . . , 𝑎𝑟 −1). In particular,
(𝜏♯) 𝑗 : V(𝜏 𝑗 (𝔮)) → V(𝔮) is a homeomorphism in the Zariski topology. To make this plain, if 𝑗 ∈ Z,
then

(𝜏♯)− 𝑗 (a) = (𝑎1 − 𝑗 , . . . , 𝑎𝑟 − 𝑗).

General Plan: We know from Theorem 4.18 of [2] that every codimension one component of 𝑍 (𝐵𝐹,0)
is of the form V(

∑
{1≤𝑘≤𝑟 |𝐸⊆V( 𝑓𝑘 ) } 𝑑𝐸,𝑘 𝑠𝑘 + rank(𝐸) + 𝑢) for some dense edge 𝐸 ∈ ℒ(𝒜) and some

nonnegative integer u. Therefore, showing the following claim proves the theorem:

The Claim : V(𝜏 𝑗 (𝔮)) � 𝑍𝑟−1(𝐵𝐹,0) for each 𝑗 ∈ {2, 3, 4, . . . }. (4.7)

Indeed, in Equation (4.5) we selected −min{2, rank(𝐸)} + 1 ≤ 𝑚 ≤ −min{2, rank(𝐸)} + 𝑑𝐸 . So if
we prove The Claim (4.7) we have proved every codimension one component of 𝑍 (𝐵𝐹,0) associated
to the dense edge E is of of the form V(

∑
{1≤𝑘≤𝑟 |𝐸⊆V( 𝑓𝑘 ) } 𝑑𝑘 𝑠𝑘 + 𝑣) where −min{2, rank(𝐸)} + 1 ≤

𝑣 ≤ −min{2, rank(𝐸)} + 2𝑑𝐸 . Combining this with the first sentence of the General Plan means the
codimension one components of 𝑍 (𝐵𝐹,0) associated to the dense edge E are of the form

V(
∑

{1≤𝑘≤𝑟 |𝐸⊆V( 𝑓𝑘 ) }
𝑑𝐸,𝑘 𝑠𝑘 + rank(𝐸) + 𝑤),

where

0 ≤ 𝑤 ≤ 2𝑑𝐸 − rank(𝐸) −min{2, rank(𝐸)}.

To prove The Claim, we find a nonempty dense set Γ ⊆ V(𝔮) such that for all 𝑗 ∈ {2, 3, . . . , } the
translate (𝜏♯)− 𝑗 (Γ) and the zero locus 𝑍 (𝐵𝐹,0) are disjoint. Since (𝜏♯)− 𝑗 (Γ) ⊆ (𝜏♯)− 𝑗 (𝔮) = V(𝜏 𝑗 (𝔮),
this shows V(𝜏 𝑗 (𝔮) is not a codimension one component of 𝑍 (𝐵𝐹,0) certifying The Claim. The set Γ
is constructed by intersecting the elements of two countable collections of Zariski open sets: In Step 1,
we identify a countable collection of Zariski opens so that for points in their intersection M satisfies the
(𝑛 + 1)-Cohen–Macaulay property a la the approach of [6]; in Step 2, we identify a different countable
collection of opens so that points in all these opens satisfy the setup of Theorem 4.4. In Step 3, we
intersect all these opens, call it Γ, and use the generic properties of Step 1 and Step 2 to study points in
(𝜏♯)− 𝑗 (Γ) ∩ 𝑍 (𝐵𝐹,0); in Step 4, we show Γ is nonempty and dense using the Baire Category Theorem.

Step 1: generic Cohen–Macaulay translates.
We begin by utilizing the main technique of [6] (see Lemma 3.5.2). For j some integer, consider

the localization of M at the multiplicatively closed set 𝑇𝑗 = C[𝑆] \ ∪𝔪∈V(𝜏 𝑗 (𝔮))𝔪. Then 𝑀 ⊗C[𝑆 ]
𝑇−1
𝑗 C[𝑆] is relative holonomic (Definition 3.2.3 of [6]) and has a Bernstein–Sato ideal (since M satisfies

both before localization); moreover, the zero locus of this Bernstein–Sato ideal sits inside V(𝜏 𝑗 (𝔮)).
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Following Lemma 3.5.2 of [6] (or just using the result), we can consider the zero locus 𝑍𝑝, 𝑗 ⊆ V(𝜏 𝑗 (𝔮))
of the Bernstein–Sato ideal of

Ext𝑝
𝒟𝑋,0 [𝑆 ] ⊗C[𝑆 ]𝑇

−1
𝑗 C[𝑆 ]

(𝑀 ⊗C[𝑆 ] 𝑇
−1
𝑗 C[𝑆],𝒟𝑋,0 [𝑆] ⊗C[𝑆 ] 𝑇

−1
𝑗 C[𝑆]).

Provided 𝑝 ≥ 𝑛 + 2, each 𝑍𝑝, 𝑗 ⊆ V(𝜏 𝑗 (𝔮)) is Zariski closed and of codimension (with respect to this
containment) of at least one. Consider the nonempty Zariski open set

𝐶 𝑗 = V(𝜏 𝑗 (𝔮)) \
���
𝑝=𝑛+𝑟⋃
𝑝=𝑛+2

𝑍𝑝, 𝑗
��� ⊆ V(𝜏 𝑗 (𝔮)),

and let 𝐷 𝑗 ⊆ 𝑇−1
𝑗 C[𝑆] the corresponding multiplicatively closed set. Then 𝑀 ⊗C[𝑆 ] 𝑇

−1
𝑗 C[𝑆] ⊗C[𝑆 ]

𝐷−1
𝑗 C[𝑆] is (𝑛 + 1)-Cohen–Macaulay (over points in 𝐶 𝑗 ). (See Lemma 3.5.2 of [6] for more details.)
Let Ca be the residue field corresponding to the point a ∈ C𝑟 . Suppose that a ∈ 𝐶 𝑗 . Since Bernstein–

Sato ideals of relative holonomic modules localize (Lemma 3.4.1 and Remark 3.2.1 of [6]), our point a
is in the zero locus of the Bernstein–Sato ideal of M if and only if a is in the zero locus of the Bernstein–
Sato ideal of 𝑀 ⊗C[𝑆 ] 𝑇

−1
𝑗 C[𝑆] ⊗C[𝑆 ] 𝐷

−1
𝑗 C[𝑆], the latter of which is (𝑛 + 1)-Cohen–Macaulay by

construction. By Proposition 3.4.3 of of [6] and the Cohen–Macaulay-ness, a ∈ 𝑍 (𝐵𝐹,0) if and only if
𝑀 ⊗C[𝑆 ] Ca ≠ 0.

Recall that (𝜏♯) 𝑗 : V(𝜏 𝑗 (𝔮)) → V(𝔮) is a homeomorphism. Consider the collection of nonempty
Zariski opens

𝒞 = {𝐶0, (𝜏
♯)1(𝐶1), (𝜏

♯)2(𝐶2), . . . }, (4.8)

and note that all elements of 𝒞 not only lie in V(𝔮) but are dense therein. Moreover, if a ∈
⋂

𝑈 ∈𝒞𝑈,
then for all 𝑗 ∈ Z≥0 we have that a ∈ (𝜏♯) 𝑗 (𝐶 𝑗 ). Alternatively, (𝜏♯)− 𝑗 (a) ∈ 𝐶 𝑗 . This puts (𝜏♯)− 𝑗 (a)
within the (𝑛 + 1)-Cohen–Macaulay locus of V(𝜏 𝑗 (𝔮)) and hence (𝜏♯)− 𝑗 (a) ∈ 𝑍 (𝐵𝐹,0) if and only if
𝑀 ⊗C[𝑆 ] C(𝜏♯)− 𝑗 (a) ≠ 0. This gives us a criterion for verifying that none of the translates {(𝜏♯)− 𝑗 (a)} of
a ∈

⋂
𝑈 ∈𝒞𝑈 lie in the zero locus of the Bernstein–Sato ideal of M: No translate lies in this zero locus

provided 𝑀 ⊗C[𝑆 ] C(𝜏♯)− 𝑗 (a) = 0 for all 𝑗 ∈ Z≥0.
Step 2: generically generating 𝒪𝑋 (★𝑓 𝜆).
For each edge 𝐸 ′ ∈ ℒ(𝒜) and each 𝑝 ∈ Z≥min{2,rank(𝐸) }, consider the nonempty distinguished

Zariski open set

𝐺𝐸′, 𝑝 = {𝝀 ∈ C𝑑 |
∑

{1≤ 𝑗≤𝑑 |𝐸′ ⊆V( 𝑓𝑗 ) }
𝜆 𝑗 ≠ 𝑝)} ⊆ C𝑑 .

Consider the countable collection of these opens, parameterized both by p and by 𝐸 ′:

{𝐺𝐸′, 𝑝 | 𝐸
′ ∈ ℒ(𝒜) and 𝑝 ∈ Z≥min{2,rank(𝐸′) }}.

By Theorem 4.4, if 𝝀 lies in the intersection of all these 𝐺𝐸′, 𝑝 , then

𝒟𝑋 𝑓 -1+𝝀 = 𝒪𝑋 (★𝑓 𝝀).

Let 𝛾 be the ring map of localization at 𝑇𝑗 = C[𝑆] \ ∪𝔪∈V(𝜏 𝑗 (𝔮))𝔪:

𝛾 = C[𝑠1, . . . , 𝑠𝑑] −→ 𝑇−1
𝑗 C[𝑆] .

And let 𝛾♯ : V(𝔮) → SpecC[𝑠1, . . . , 𝑠𝑑] be the induced map on spectra. By definition a ∈ V(𝔮)
equates to
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{1≤ 𝑗≤𝑑 |𝐸⊆V(ℓ 𝑗 ) }

(𝛾♯ (a)) 𝑗 = −𝑚 ≤ −(−min{2, rank(𝐸)} + 1), (4.9)

where E and m are as determined in the General Plan (see Equation (4.5)). Therefore, (𝛾♯)−1(𝐺𝐸,𝑝) is
nonempty for all 𝑝 ∈ Z≥min{2,rank(𝐸) }.

Additionally, for edges 𝐸 ′ ≠ 𝐸 and for all 𝑝 ∈ Z≥min{2,rank(𝐸) } we claim our Zariski open
(𝛾♯)−1(𝐺𝐸′, 𝑝) is nonempty. If there exists a k such that V( 𝑓𝑘 ) ⊆ 𝐸 and V( 𝑓𝑘 ) � 𝐸 ′, then for a point
𝜷 ∈ 𝐺𝐸′, 𝑝 there is no restriction on the entry (𝜷)𝑘 . So changing this value moves 𝜷 within 𝐺𝐸′, 𝑝 , and
thus, we can change this value such that Equation (4.9) is satisfied. Conversely, if there exists a k such
that V( 𝑓𝑘 ) ⊆ 𝐸 ′ but V( 𝑓𝑘 ) � 𝐸 , then we can take a point a ∈ V(𝔮), and change the entry (𝜸♯ (a))𝑘 so
that the point moves into 𝐺𝐸′, 𝑝 , but Equation (4.9) is not affected.

Therefore,

𝒢 = {(𝛾♯)−1(𝐺𝐸′, 𝑝) | 𝐸
′ ∈ ℒ(𝒜) and 𝑝 ∈ Z≥min{2,rank(𝐸′) }} (4.10)

is a countable collection of nonempty sets lying in V(𝔮), all of which are Zariski open in V(𝔮). And if
a ∈

⋂
𝑈 ∈𝒢𝑈, we have that

𝒟𝑋 𝑓 -1+𝛾♯ (a) = 𝒪𝑋 (★𝑓 𝛾
♯ (a) ). (4.11)

Step 3: combining generic properties.
Define Γ ⊆ V(𝔮) by

Γ = (
⋂
𝐶∈𝒞

𝐶) ∩ (
⋂
𝐺∈𝒢

𝐺), (4.12)

and let a ∈ Γ. We will show that if 𝑗 ∈ {2, 3, . . . , } then (𝜏♯)− 𝑗 (Γ) is disjoint from the 𝑍 (𝐵𝐹,0), zero
locus of the Bernstein–Sato ideal of M. This verifies The Claim.

By [27] (see also Proposition 3.2 of [24]), only finitely many of {(𝜏♯)− 𝑗 ) (a) | 𝑗 ∈ {2, 3, . . . }} intersect
𝑍 (𝐵𝐹,0). Assume, towards contradiction, that the intersection is nonempty, and fix 𝑗 ∈ {2, 3, . . . } to be
the largest choice such that (𝜏♯)− 𝑗 (a) ∈ 𝑍 (𝐵𝐹,0). For notational ease, let j = ( 𝑗 , . . . , 𝑗) ∈ C𝑑 and recall
that 𝛾♯ ((𝜏♯)− 𝑗 (a)) = −j + 𝛾♯ (a). Now, consider the following commutative diagram of 𝒟𝑋,0-maps:

𝒟𝑋,0 [𝑆]𝐹
𝑆 ⊗C[𝑆 ] C(𝜏♯)− 𝑗+1 (a) 𝒟𝑋,0 𝑓

−j+1+𝛾♯ (a)

𝒟𝑋,0 [𝑆]𝐹
𝑆 ⊗C[𝑆 ] C(𝜏♯)− 𝑗 (a) 𝒟𝑋,0 𝑓

−j+𝛾♯ (a) .

∇
(𝜏♯ )− 𝑗+1 (a)

=

�

(4.13)

(Recall that C𝜷 is the residue field of the point 𝜷 ∈ SpecC[𝑆].) Here, the horizontal specialization maps
are always surjections, the rightmost vertical map is submodule inclusion, and the leftmost vertical map
∇(𝜏♯)− 𝑗+1 (a) is induced by sending 𝑠𝑘 ↦→ 𝑠𝑘 + 1 for all k, cf. Definition 3.7 of [1] and/or the commutative
square of subsection 5.10 of [5], where ∇(𝜏♯)− 𝑗+1 (a) goes by 𝜌 (𝜏♯)− 𝑗+1 (a) . Because j is the largest possible
value such that (𝜏♯)− 𝑗 (a) ∈ 𝑍 (𝐵𝐹,0), Proposition 3.6 of [24] says the bottom horizontal map is an
isomorphism. And because − 𝑗 + 1 ≤ −1 and a ∈ Γ, the rightmost vertical map is actually an equality
(see Equations (4.10), (4.11)).

Therefore, ∇(𝜏♯)− 𝑗+1 (a) is surjective. This means its cokernel vanishes:

𝑀 ⊗C[𝑆 ] C(𝜏♯)− 𝑗 (a) = 0.

Since a ∈ Γ, the definition (4.8) of 𝒞 and the subsequent remarks imply that the vanishing of this
cokernel equates to

(𝜏♯)− 𝑗 (a) ∉ 𝑍 (𝐵𝐹,0).
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But this contradicts our choice that 𝑗 ∈ {2, 3, . . . , } was the largest possible value such that (𝜏♯)− 𝑗 (a) ∈
𝑍 (𝐵𝐹,0). We conclude that

(𝜏♯)− 𝑗 (Γ) ∩ 𝑍 (𝐵𝐹,0) = ∅ for all 𝑗 ∈ {2, 3, . . . , }. (4.14)

Step 4: Baire Category Theorem.
The points Γ ⊆ V(𝔮) from Step 3 are obtained by taking a countable intersection of nonempty

Zariski open sets. By the Baire Category Theorem Γ is nonempty and dense in V(𝔮). Moreover,
(𝜏♯)− 𝑗 (Γ) ⊆ (𝜏♯)− 𝑗 (V(𝔮)) = V(𝜏 𝑗 (𝔮)) is also dense in V(𝜏 𝑗 (𝔮)) since 𝜏♯ is a homeomorphism. By Step
3 and Equation (4.14), for all 𝑗 ∈ {2, 3, . . . , }, the codimension one component V(𝜏 𝑗 (𝔮)) � 𝑍 (𝐵𝐹,0)
lest ∅ ≠ (𝜏♯)− 𝑗 (Γ) ⊆ 𝑍 (𝐵𝐹,0). This proves The Claim and by the discussion in the General Plan
completes the proof for Case 1.

Case 2: We assume 𝑑 > 𝑟 > 1, that is, F is neither the trivial factorization 𝐹 = ( 𝑓 ) nor a factorization
into linear forms.

The strategy is entirely similar to Case 1 but with some mild alterations involving Step 2. First, if
𝐸 ≠ {0} change Equation (4.5) and the consequent definition of 𝔮 ∈ SpecC[𝑆] so that

𝑚 = min{𝑝 ∈ {rank(𝐸) + ℓ + 𝑧 · 𝑑𝐸 | 𝑧 ∈ Z} | −𝑝 ∉ Z≥min{2,rank(𝐸) }} (4.15)
∈ [0, 𝑑𝐸 − 1] .

If 𝐸 = {0}, make no such changes.
The construction of 𝒞 (see Equation (4.8)) from Step 1 does not change. As for the construction

of 𝒢 from Step 2, let 𝛽 : C[𝑠1, . . . , 𝑠𝑑] → C[𝑠1, . . . , 𝑠𝑟 ] be the ring homomorphism induced by the
factorization F of f (see Definition 4.6):

𝛽 : C[𝑠1, . . . , 𝑠𝑑] →
C[𝑠1, . . . , 𝑠𝑑]

({𝑠𝑡 − 𝑠 𝑗 | 𝑡, 𝑗 ∈ 𝑆𝑘 , 1 ≤ 𝑘 ≤ 𝑟})
= C[𝑠1, . . . , 𝑠𝑟 ] .

And change 𝛾 from Step 2 so that 𝛾 is the composition of 𝛽 with the localization at 𝑇𝑗 = C[𝑆] \
∪𝔪∈V(𝜏 𝑗 (𝔮))𝔪:

𝛾 = C[𝑠1, . . . , 𝑠𝑑]
𝛽
−→ C[𝑆] −→ 𝑇−1

𝑗 C[𝑆] .

And 𝛾♯ : V(𝔮) → SpecC[𝑠1, . . . , 𝑠𝑑] is the induced map on spectra. As before, define

𝒢 = {(𝛾♯)−1(𝐺𝐸′, 𝑝) | 𝐸
′ ∈ ℒ(𝒜) and 𝑝 ∈ Z≥min{2,rank(𝐸′) }}

and, as before, we must show each element of 𝒢 is nonempty.
Under these modifications, a ∈ V(𝔮) equates to∑

{1≤ 𝑗≤𝑑 |𝐸⊆V(ℓ 𝑗 ) }
(𝛾♯ (a)) 𝑗 = −𝑚 ≤

{
0 if 𝐸 ≠ {0};
−1 if 𝐸 = {0}.

There are two cases. If −𝑚 ≤ 0, then Q𝑟
≤0 intersects V(𝔮) nontrivially. Certainly, Q𝑑

≤0 ⊆ 𝐺𝐸′, 𝑝 for
arbitrary 𝐸 ′ ∈ ℒ(𝒜) and 𝑝 ∈ Z≥min{2,rank(𝐸′) } . So for all such 𝐸 ′ and p, we know ∅ ≠ 𝛾♯ (Q𝑟

≤0∩V(𝔮)) ⊆
Q𝑑
≤0 ⊆ 𝐺𝐸′, 𝑝 for arbitrary 𝐸 ′ ∈ ℒ(𝒜) and 𝑝 ∈ Z≥min{2,rank(𝐸′) } . Thus, when −𝑚 ≤ 0 every member

of 𝒢 is nonempty and Zariski open in V(𝔮). If −𝑚 > 0, then by Equations (4.5) and (4.15) we conclude
−𝑚 = 1 and 𝐸 = {0}. Let 1/d = (1/𝑑, . . . , 1/𝑑) ∈ C𝑑 , and note that 1/d ∈ 𝐺𝐸′, 𝑝 for all 𝐸 ′ ≠ {0} and
𝑝 ∈ Z≥min{2,rank(𝐸′) } (this amounts to 𝑑𝐸′ < 𝑑). Certainly, (𝛽♯)−1(1/d) ∈ V(𝔮), so in this case each
relevant (𝛽♯)−1(𝐺𝐸′, 𝑝) ≠ ∅.
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With these alterations and arguments, the construction of 𝒢 from Step 2 has the same properties as
before. So the argument in Case 1 applies to Case 2. Note that the change in 𝑄𝐸 for edges not {0}
matches the change in the lower bound for m.

Case 3: We assume 𝑟 = 1, that is, F is the trivial factorization 𝐹 = ( 𝑓 ).
We argue similarly to Case 2. First, note that the changes to 𝒢 therein apply here as well which,

because SpecC[𝑆] = C, means 𝒢 consists of copies of V(𝔮). And because 𝑟 = 1, it is easy to check
M is automatically (𝑛 + 1)-Cohen–Macaulay (e.g., Lemma 3.3.3 of [6]). So 𝒞 from Step 1 is simply
copies of V(𝔮). This means Γ = V(𝔮) and the rest of the argument (i.e., Step 3) holds. (There is no
need to appeal to the Baire Category Theorem nor dense subset arguments since Step 3 applies to all of
Γ = V(𝔮).) Finally, the containment of the roots of the Bernstein–Sato polynomial in (−2 + 1/𝑑, 0) is
immediate from the bound of codimension one components (i.e., roots) provided. �

Remark 4.8.
(a) The bound in Theorem 4.7 is sharp: The formula Theorem 3.23 of [1] for the Bernstein–Sato ideal

of a generic arrangement exhibits this.
(b) Theorem 4.7 is a significant improvement to the bound of Corollary 3.21 of [1] as there tameness

was required in order to lift M. Saito’s univariate’s bound (cf. [29]) to the multivariate setting.
(c) Because the proof of Theorem 4.7 depends on generic properties it yields no concrete evidence

that V(𝜏 𝑗 (𝔮)) is disjoint from 𝑍 (𝐵𝐹,0) for 𝑗 ∈ {2, 3, . . . }: All we show is that the complement of
their intersection is dense. In the tame case, the intersection is disjoint because 𝑍 (𝐵𝐹,0) is purely
codimension one; see Corollary 3.5 [1].
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