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Abstract. The projective Schur group of a commutative ring was introduced
by Lorenz and Opolka. It was revived by Nelis and Van Oystaeyen, and later by
Aljadeff and Sonn. In this paper we study the intriguing question that there seems to
be no adequate version of the crossed product theorem for the projective Schur
group. We present a radical group R(k) (k a field) situated between the Schur group
and the projective Schur group, and we prove the crossed product theorem for R(k).
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1. Introduction. Let R be a commutative ring. A central separable R-algebra is
called an Azumaya algebra and the set of similarity classes of Azumaya R-algebras
forms the Brauer group B(R) [2]. An Azumaya algebra which is a homomorphic
image of a group ring RG for some finite group G is called a Schur algebra, and the
set of similarity classes of Schur algebras is the Schur subgroup S(R) of B(R). An
Azumaya algebra is called a projective Schur algebra if it is a homomorphic image of
a twisted group ring R*G for some finite group G and for a 2-cocycle « contained in
the cohomology class @ € H*(G, u(R)), where u(R) is the set of units in R regarded as
a G-module with respect to the trivial G-action. The set of classes of projective Schur
algebras forms the projective Schur group PS(R) [7]. Clearly, PS(R) is a subgroup of
B(R) containing S(R).

It is well known that there are interconnections between Azumaya algebras,
crossed product algebras and second dimensional cohomology classes. The relation
permits the use of computation of cohomology groups. If k is a field, B(k) is identi-
fied with the inductive limit of the cohomology groups H*(L/k, L*), where L ranges
over all finite Galois extensions of k and L* is the multiplicative group in the field L
[10, p.28].

The purpose of the present article is to study relations between cohomology
classes and some Azumaya algebras such as Schur and projective Schur algebras,
and radical algebras. In Section 2 we study homomorphisms on projective Schur
groups and radical groups. Also in Section 3 we prove that if L = k() is a finite
Galois radical field extension over k, where Q < L*, then a cohomology class
a € H*>(L/k, L*) that is an image of some elements in H>(L/k, ) corresponds to a
radical k-algebra split by L; (see Theorem 4). We then extend the result to coho-
mology groups and radical groups in Theorem 7 as well as to Schur groups.

The notations are standard. We denote the similarity of two Azumaya algebras
A and A4, by A ~ A,. Let [4] € B(R) be the similarity classes of A. If L is a Galois
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extension field of k, we denote the Galois cohomology group by H*(L/k)
= H*(L/k, L*) = H*(Gal(L/k), L*) with respect to the natural Galois action.

2. Homomorphisms of Brauer subgroup. For a commutative ring homomorph-
ism f: R — T, there is an induced homomorphism B(f) : B(R) — B(T) defined by
[Al—[T ® A] for [A] € B(R) that is called the Brauer homomorphism. Similarly, by
replacing Brauer groups by Schur groups, we have a Schur homomorphism
S(f): S(R) — S(T).

Let k be a field of characteristic 0. For a finite Galois extension L of k with
Galois group G, let 4 =) __; Lu, denote an algebra having basis {u,|o € G} such
that u,x = o(x)u, and u,u, = a(o, t)us, for x € L, o, t € G, where each (o, 1) € L*.
Then o« € Z*(L/k). Also A is called a crossed product algebra and is denoted by
(L/k, a). We note that an Azumaya algebra over a field is a central simple algebra [4,
(5.1.2)] and (L/k, @) is a central simple k-algebra [8, (29.6)], thus its similarity class
[(L/k, @)] is contained in the Brauer group B(k).

The following theorem, known as the crossed product theorem, gives the rela-
tion between the Brauer group and the Galois cohomology group.

THEOREM 1. [8, (29.12)]. Let L be a finite Galois extension of a field k. Then
H*(L/k) is isomorphic to the kernel of the Brauer homomorphism B(k) — B(L) under
the relation a—[(L/k, @)].

We denote the kernel of B(k) — B(L) by B(L/k). Then B(L/k) is a subgroup of
B(k) consisting of all similarity classes of Azumaya k-algebras split by L. If H?(x/k)
is the direct limit of H*(L/k), where the limit runs over all finite Galois extensions L,
then H?(x/k) is known as the Brauer group B(k). We denote by S(L/k) the kernel of
the Schur homomorphism S(k) — S(L).

THEOREM 2. Let f: R— T be a homomorphism of commutative rings with
f(lg) = 17. Then there is an induced group homomorphism PS(f): PS(R) — PS(T)
such that [Al—[T Qg A], for [4] € PS(R).

Proof. For [4A] € PS(R), let ¥ : R*G — A be the surjection with finite group G
and a € Z*(G, u(R)). Let {u,lg € G} be a basis of R*G with ugu, = a(g, X)ug, for
g.x € G. Clearly o = fa defined by fa(g, x) = fla(g, x)) is a 2-cocycle in Z*(G, u(T)).
Consider the twisted group ring 7%G with basis {v¢lg € G} such that
VeV = &'(g, X)vg,. Then it can be regarded as an R-module by defining an action

¥ de(; teVg = deGf(r)tgvg for re R t,eT.
We claim that 7® R*G = T* G as R-modules. Indeed, there is a map

0: TR RG— TG, t® ngug»—> th(rg)vg (teT,r, € R)
geCG geG

which is induced from the bilinear map T x R*G — TG defined by (¢, r,u,)
I— Y tf(rq)ve. On the other hand, we have a map

¢: TG —> TRRG, Y lyvg—> Y 1, ®@u (t,€T)
geG geG

https://doi.org/10.1017/50017089501010138 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501010138

THE CROSSED PRODUCT THEOREM 137

which is T-linearly extended from the map ¢(v,) =1Q®u,. Since t® rgity =
flrg) ®us € T® R*G, we have that ¢(ve)p(vy) = 1 ® ugu, = flo(g, X)) @ Uy
= /(g, X) @ Ugy = P(/'(g, X)ve) Which is equal to ¢(vevy). Also ¢0(t @ Y reuy) =
O tflrgvy) =D 1flrg) @ g =1® D rattg, and OP(D " t,vy) = 0Dty @ Ug) = D 14V,
which yields T® R*G = T*G.

This shows that there is a surjection 7%G — T ®x A and hence [T ® A] belongs
to PS(T). Moreover PS(f) is a homomorphism, since 7T Qg (4 ®rB)=
(T®r A) @7 (T ®g B) for [A4], [B] € PS(R). This completes the proof.

In particular if f: R — T'is an inclusion then & =« and T® R*G = T°G as T-
algebras. Thus if an Azumaya R-algebra A4 is a homomorphic image of R*G then
T ® A is an Azumaya T-algebra which is an image of 7%G hence [T ® 4] € PS(T). If
L is an extension of a field &, we denote by PS(L/k) the kernel of PS(k) — PS(L).

According to Theorem 1, the Brauer group B(L/k) is the cohomology group
H*(L/k). In order to find a cohomology group that corresponds to PS(L/k), we
study classes of field extensions L of k that split projective Schur k-algebras.

An extension L of k is called a radical extension if there is a multiplicative sub-
group 2 of L* such that L = k(2) and Qk*/k* is torsion. A crossed product algebra
A= (L/k,a) is an (abelian) radical k-algebra if for a multiplicative subgroup
Q < L*, L =k(2) is an (abelian) finite radical Gal(L/k)-Galois extension over k
(.., Q is Gal(L/k)-invariant) and & e H*(L/k) is the image of some
& € H*(L/k, ). A radical algebra is a projective Schur algebra, and conversely
every projective Schur division algebra is itself a radical abelian algebra [1, p.797,
Theorem 1]. The set of similarity classes of radical k-algebras forms a subgroup R(k)
called a radical group [3]. Clearly S(k) < R(k) < PS(k) < B(k).

THEOREM 3. For a finite Galois extension L of k, there is a homomorphism
¥ R(k) = R(L) such that [Al—[L ® A], for any [A] € R(k).

Proof. For [4] € R(k), we write A = (E/k, o), where E = k(2) is a Galois radical
extension for some multiplicative subgroup  of E*, and @ € H*(E/k) is an image of
some & € H>(E/k, ) under the canonical homomorphism ¢: H>(E/k, Q) — H*(E/k).

Let F=LNE. By Galois theory, Gal(LE/L)= Gal(E/F) C Gal(E/k) and
a € H*(E/k, E¥) restricts to & € H*(LE/L, E*). Thus it follows from [8, (29.13)] that
L® (E/k,a) ~ (LE/L,a;). Clearly LE is a radical extension L(2) of L because
Q < (LE)" and QL*/L* is torsion.

Now for the & € H*(E/k, Q), let & € H*(LE/L, ) be an image of & under the
restriction res : H*(E/k, Q) — H*(LE/L, ). Consider the following commutative
diagram.

HAE/k, Q) = HXLE/L.Q)  &—d,
ey T Vo

HXE/K, E) S HXLE/L EY)  a—a

Then & is the image of & € H*(LE/L, ) under ¢, and thus [L ® A] = [(LE/L, a;)]
belongs to R(L). This proves the theorem.
We denote the kernel of R(k) — R(L) by R(L/k). Then R(L/k) < R(k) consists

of similarity classes of the radical k-algebra A split by L, and clearly S(L/k) <
R(L/k) < PS(L/k) < B(L/k).
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3. Cohomology groups of radical extension. If L is a finite Galois radical
extension with L = k($2), for some multiplicative subgroup Q < L*, then ¢ : Q< L*
induces a natural homomorphism H?*(L/k, Q) — H?(L/k). We shall use the same
notation ¢ for the induced homomorphism. In this section we find the relation
between radical algebras and certain cohomology classes, and then extend to the
radical group and the cohomology group.

THEOREM 4. Let L be a finite Galois radical extension of k. Then a radical k-
algebra split by L corresponds to a cohomology class in H*(L/k) that is an image of
some elements in H*(L/k, ), for some multiplicative subgroup, Q < L* such that
L = k(2) and Qk*/k* is torsion. The converse is also true.

Proof. Let A be a radical k-algebra split by L. Then 4 = (E/k, o) for some
Galois radical extension E of k with multiplicative group Qg < E*, Qgk*/k* torsion,
and @ € H*(E/k) is an image of some & € H*(E/k, Qg). Moreover 1 =[L ® 4] =
[(LE/L, 011)] S B(L) and 1 = ap = I'CSE/kﬁLE/LO_l in Hz(LE/L)

Since LE = L(Q2g) is radical over L, «; is an image of some element &) in
H*(LE/L, Qp), as shown in the proof of Theorem 3. Also by Galois theory, &; and
&, are considered as elements in H*(E/F) and H?*(E/F, Qg), respectively, where
F=LNE. Clearly Fis a Galois extension over k and resg/ . g/r & = o). We con-
sider the inflation-restriction sequences

. infr.x CSe/k—r/F
HA(FJk, QGEPy T gk ) S HA(EJF, Q)
N Ly
infr. ¢ T€Se/k—r/r
HA(F/K) LS SIS N 10200

Since H'(E/F) =1 (]9, (1.5.4)]), the lower sequence is exact [9, (3.4.3)]. Hence from
1 = &) = resa, we have @ € ker(res) = Im(inf g, g), and so

there is B € H*(F/k) such that infs ;8 = a. (D

Consider another inflation map infy; : HA(F/k) — H*(L/k) and let infp.; 8=
y € H*(L/k). Then for any x; € Gal(L/k) with x; = x;Gal(L/F) (i =1, 2), we have
from [8, (29.16)]

y(x1, x2) = inf o, B(x1, X2) = B(X1, X2). 2

Since @ is an image of & and since o/(g1, g2) € Qg for all g; € Gal(E/k), the order of
a(g1, g2) mod k* is finite. Due to (1) and (2), the values of both 8 mod k* and y mod
k* are all of finite order. Because L is radical over k, we may write L = k(2;) for
some multiplicative subgroup 2; of L* such that ©;k*/k* is torsion. Now we define
a set Q by

Q = (L U {y(x1, x2)| x; € Gal(L/k)}). 3)
Then Q < L*, Qk*/k* is torsion and L = k(2;) < k(R2) < L implies L = k(£2). This

shows that y(xy, x2) € , for all x; € Gal(L/k), so that y € I_—IZ(L/k, Q).
Therefore we can assume 4 corresponds to y = inf ;8.
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Conversely, choose anyf_in H?(L/k) that is an image of some f/ e H*(L/k, Q)
for some multiplicative subgroup Q2 < L* with L = k(2) and Qk*/k* torsion, and
consider the crossed product algebra (L/k, f). Then it is a radical k-algebra split by
L, because L ® (L/k, f)~ (LL/L, f1) with fi =resp/xrr,1f ~ 1. Hence [(L/k, )] is
contained in R(L/k). Thus f corresponds to (L/k, f).

Using the correspondence between classes of radical algebras and cohomologies,
we show that a radical group is isomorphic to a cohomology group.

LeEmMA 5.9, (2.3.7)] Let G; be normal subgroups of G such that G, < Gy and M
be a G-module. Then the following inf-res-diagram commutes:

H2G/Gy, M%) L HXG, M)
J res J res
inf

H*(G/Gy, M%) —  H*(G, M)

LEMMA 6. Let L be a radical extension of k. If [A] € R(L/k) such that
A = (E/k, a) with some Galois radical extension E of k, then for any Galois radical
extension V of k containing E, [A] = [(V/k, inf g ya)] € R(L/k).

Proof. Due to [8, (29.16)], (E/k,a) ~ (V/k,infg_, pa). Hence it is enough to
show that resy k. yr/infeya =1 ¢ H>(VL/L). Consider the following diagram.

inf..,
—

() = P4 /% E) ()
TCSE_, EL réSy_,re
l’ KL ‘L k7L
20 E N~ pR(ELy o p2(VL J VL ey D E0n 20 VN~ I2(VL

Regarding Gal(V/k), Gal(V/VNL) and Gal(VL/EL)= Gal(V/VNEL) as
G, Gy, Gy in Lemma 5 respectively, the diagram is commutative. Thus we have
resyk— yryinf g ya = infgr, yrresgu— pr/rd = 1, as needed.

THEOREM 7. Let L be a finite Galois radical extension and let H3(L/k) be the
image of the homomorphism : H*(L/k, Q) — H*(L/k), for some multiplicative
subgroup Q of L* with L = k() and Qk*/k* torsion. Then the radical subgroup
R(L/k) of B(k) is isomorphic to the subgroup H3(L/k) of H*(L/k).

Proof. Keeping all the notations of Theorem 4, we let

¢ HY(L/k) — R(L/K), [—[(L/k,f)],
¥ 1 R(L/K) — HY(L/K), [(E/k, @)l—infpni— 1B,

where 8 € H*(EN L/k) such that infzn;_ g8 = &, due to (1). Moreover by (3), we
may take the multiplicative subgroup €2 containing all values of infgn; .1 8.

It is easy to see that ¢ is a well-defined homomorphism. Now for , let [4], [42]
be any elements in R(L/k). For i = 1, 2 we write A; = (E;/k, «;), where E; = k($2;) is
a finite Galois radical extension of k, & € H*(E;/k) is an image of some
&, € H*(E:/k, Q;), and moreover

https://doi.org/10.1017/S0017089501010138 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089501010138

140 E. CHOI AND H. LEE
resg kg0 = 1 € HA(EL/L). )

In order to prove that i is well-defined, we first assume that [4,] = [4,]. By the
construction of i, we have that

WA =infgnro B with infrr pfi=a (i=1,2). 5

Let V' be a Galois radical extension of k containing both E; and E;. Then it
follows from Lemma 6 that 4; ~ (V/k, infg,_, ya;) in R(L/k). Since A, ~ A we have

infg, . pa =infg,_yay € HX(V/K). (6)

Now using the transitivity of inflation maps together with (5) and (6), we have

inf;yzinfg 2B = infgar— B = infg_yrinfpn— g B
=infg _pra) = infy_, prinfg _ pay
= infy_prinfg,_yar =infg, . yrar
= infg, . yrinfen— 5 P2 = inf, yrinf g1 Ba.

i f Vi .
Since 0 — H*(L/k) Mlepre H2(VL/k)IE>SH2(VL/L) is an exact sequence ([9,

(3.4.3)]), the inf; .y, is a monomorphism. Hence the relation above yields the
equality inf g~z 1 = infg,nr— B2, so that (5) yields

YlA1] = infp B = infrnr i = YA,

Now for [4,], [42] described in (4), we consider the composite fields £ = E| E;
and EL. Since E; (i = 1,2) and L are finite Galois radical extensions of k, so are £
and EL. By [8, (29.16)] again, we have (E;/k, ;) ~ (EL/k, infg_ pro;); hence it fol-
lows that

[A]][Az] = [(EL/k, infElﬁELalinfEZQELOlz)].
Moreover the commutativity of inf-res-diagram in Lemma 5 gives rise to
resgr k- gLy (nf g proginf g, pron)

= (resgr/k—r/oinf g gro ) (resgr i gryrinf g, pr i)

= (inf g, pLreSE, jk— £y /001 (A0 £y 1 ELT€SE, jks By 1/ 1.02),

which is equal to 1 in H*(EL/L) by (4). Thus [(EL/k,infg,_ projinfg, . pras)]
belongs to R(L/k).

Therefore we have ¥([4;][42]) = inf g ;B with B € HX(EL N L/k) such that
infELﬁL»EL,é = infEﬁELo_tlinszﬁEL&Z. Since EL N L = L it shows that

Y([A1][42]) = B with inf;_, g B = inf,_ graninf e, o (7
On the other hand from [4;]=[(Ei/k, ;)] =[(EL/k,infg g a;)], we have

Y[Ai1WA42] = infgrar Biinfgrar B, Where B € HH(ELN L/k), such that
infernr—prBi = infg_ pra; for i =1, 2. Again since EL N L = L, we have
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VA4l = BiBy with inf g f; = infp, g1 ®)
From (7) and (8) we have
inf, g B =inf g Biinf .z B =inf, .z 1.

Due to the fact that inf;_, g7 -resg; /i g1/ -sequence is exact, inf;_, g7 is injective so
that 8 = BB, and ¥ is a homomorphism.

In order to finish the proof we must show that ¥¢ =1 and ¢y =1. If
A= (L/k,a) (ie., if L =E), then infgn;— 18 = infrn;—xB = & hence Y([4]) = @.
This shows that Y¢(f) = Y[(L/k,f)] = f. for any f '€ H3(L/k).

Conversely for any [4] € R(L/k) with A = (E/k, o), we have

¥ ([A]) = ¢(infprr—1B) = [(L/k,infprr— 1 B)] for B e HXEN L/k).

This algebra is similar to (EN L/k, B) and to (E/k,infg~; . gf) = (E/k, ). Hence
¢W([A]) = [A]. This completes the proof.

We conclude this section with an application of Theorem 7 to the Schur group
S(k). We may assume char k = 0, because S(k) = 0 otherwise.

Let L = k(e;,) (&,: a primitive m-th root of unity, m > 0) be a cyclotomic
extension field in the algebraic closure of k and let w(L) be the group of roots of
unity in L. Then p(L) is a (multiplicative) Gal(L/k)-submodule of L*. The crossed
product algebra (L/k, ), where values of a € Z*(L/k) are in (L), is called a cyclo-
tomic k-algebra. If we denote the set of all Azumaya algebra classes of B(k) that are
represented by a cyclotomic k-algebra by C(k), then C(k), is a subgroup of B(k), and
indeed C(k) = S(k), due to the Brauer-Witt theorem [10].

Let H3(L/k) be the image of the homomorphism ¢ : H>(L/k, w(L)) — H*(L/k)
induced by w(L)—L*. Then ¢ is injective, since u(L) is a subgroup of the
torsion group of L* [6, p.91], and thus we may identify H>(L/k, u(L)) = H3(L/k) <
HA(L/K).

COROLLARY 8. For L = k(g;,) (m > 0), S(L/k) is isomorphic to Hﬁ(L/k).

Proof. If A is a Schur k-algebra split by L, then A is a cyclotomic algebra
(E/k,a) for some E = k(g;) (¢t >0) and the values of o are in u(E). Moreover
resg/k—re/.@ = 1. Thus the proof follows immediately from Theorem 7.

If k € Q(g)) (Q: rational number field), Janusz proved the next lemma.

Lemma 9. [5], [10, (7.12)] Let I,m > 0 be either odd or divisible by 4 and
k C O(e)). Let L =k(s,,) and K = k(e,y), where m' = 4p; - - - ps with distinct prime
divisors p; of m and § =1 if 4 fl, 4m and § = 0 otherwise. Then the inflation map
infx_r yields an isomorphism H%(K/k) =} H%(L/k).

This result enables us to reduce the cyclotomic algebra (k(e;,;)/k, o) to a smaller
algebra (k(e,r)/k, o) (10, (7.9)]). Together with Lemma 9 and Corollary 8, we have

the next theorem.

THEOREM 10. Let k C Q(g)). If k(ey,) and k(g,y) are the same fields in Lemma 9,
then we have the following commutative diagram:
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fie, )—kem)

H(%(k(sm’)/k) m_) H(z)(k(sm)/k)
1l L
S(k(en)/k) - S(k(em)/k)

where ¢; (i = 1, 2) are the isomorphisms defined in Corollary 8.

Proof. Let x = infy(, ) k(,) be the isomorphism in Lemma 9. Now ¢; maps &
to [(k(ew)/k, o], for & € H%(k(em/)/k), and ¢, is defined similarly.

If [B] € S(k(en)/k), then B = (k(e,)/k, B) with B € H*(k(g,)/k) having values in
u(k(e,)) (t> Q) Also resk(s/)/kﬁ)k(gm/Ya,)/k(sm,)ﬂ = 1. Then we have ¢22(¢)1_1_[B] =

¢ x(inf ke, /), for F = k(e,) Nk(e,y), where /€ H*(F/k) and infr .,/ = B, due
to Theorem 7. Thus we have

b2xb7 ' [B] = $2(inf ke, ) k(e inf ke, f) = 2(0f rsi(e,)f)
and it follows that we may define & : S(k(e,y)/k) — S(k(e,)/k) by

§[B] = E[(k(e1)/k, )] = [(k(em)/ K, inf s ke, ) )]

Moreover for any « € H%(k(sm/)/k), we have ¢yx(a) = ¢a(infie,,)— k(e @)
= [(k(em)/k, infie, ) ke,p)] = [(k(em)/k, Inf s pe,y)] = E[(k(en)/k, )] =1 (a)
since F = k(g,,) N k(g,r). This completes the proof.

The diagram in Theorem 10 yields stronger relations between Schur and coho-
mology groups than that of Brauer and cohomology groups [8, p.252]: for a Galois
extension E/k containing L/k, the diagram is commutative.

H*(L/k) £f> H*(E/k)
! !
B(L/k) —> B(E/k)

In the diagram, vertical arrows are isomorphisms from Theorem 1, while
H*(L/k) — H*(E/k) and B(L/k) — B(E/k) are homomorphisms.
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