
Mathematical Structures in Computer Science (2021), 31, pp. 1147–1184
doi:10.1017/S0960129521000311

PAPER

Cubical methods in homotopy type theory and univalent
foundations
Anders Mörtberg∗

Department of Mathematics, Stockholm University, Stockholm, Sweden
∗Corresponding author. Email: anders.mortberg@math.su.se

(Received 8 March 2020; revised 10 September 2021; accepted 14 September 2021; first published online 10 December 2021)

Abstract
Cubical methods have played an important role in the development of Homotopy Type Theory and
Univalent Foundations (HoTT/UF) in recent years. The original motivation behind these developments
was to give constructive meaning to Voevodsky’s univalence axiom, but they have since then led to a range
of new results. Among the achievements of these methods is the design of new type theories and proof
assistants with native support for notions from HoTT/UF, syntactic and semantic consistency results for
HoTT/UF, as well as a variety of independence results and establishing that the univalence axiom does not
increase the proof theoretic strength of type theory. This paper is based on lecture notes that were written
for the 2019 Homotopy Type Theory Summer School at Carnegie Mellon University. The goal of these lec-
tures was to give an introduction to cubical methods and provide sufficient background in order to make
the current research in this very active area of HoTT/UFmore accessible to newcomers. The focus of these
notes is hence on both the syntactic and semantic aspects of these methods, in particular on cubical type
theory and the various cubical set categories that give meaning to these theories.

Keywords: Homotopy type theory; univalent foundations; cubical type theory; cubical set models

1. Introduction
This paper is based on lecture notes for a course given at the 2019 Homotopy Type Theory
Summer School at Carnegie Mellon University in Pittsburgh.1 The course covered the basics of
cubical type theory with its semantics in cubical sets, and this paper closely follows the structure
of the course. This paper is hence not meant to be a regular research paper with new results, but
rather an exposition of cubical type theory and cubical setmodels. These new type theories provide
computational justifications to Homotopy Type Theory and Univalent Foundations (HoTT/UF),
in particular, the univalence axiom of Voevodsky (2014) is provable and has computational con-
tent. This can therefore be seen as a fully constructive foundation for HoTT/UF, well-suited for
computer implementation.

The univalence axiom of Voevodsky (2014) is at the center for HoTT/UF and provides a
type theoretic rendering of the idea that all constructions should be invariant up to some form
of equivalence. This is a very common informal practice in mathematics; for instance, a math-
ematician typically makes no distinction between the quotient ring R/(0) and R itself even
though they formally are different objects. It is also common in computer science to think of
two equivalent implementations of an abstract interface as the same. The univalence axiom
makes this practice formal by enabling the identification of these objects in type theory. This

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311
https://orcid.org/0000-0001-9558-6080
mailto:anders.mortberg@math.su.se
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0960129521000311

1148 A. Mörtberg

way the difference between informal mathematical practice and formalized mathematics can be
reduced.

Another interesting aspect of the univalence axiom is that it solves many problems related
to the lack of extensionality principles in intensional type theory. For instance, both function
extensionality (pointwise equal functions are equal) and propositional extensionality (logically
equivalent propositions2 are equal) are consequences of univalence. Furthermore, one can use
it to construct well-behaved quotient types (Univalent Foundations Program, 2013; Voevodsky,
2015). These notions have so far beenmissing frommost type theories, leading tomany difficulties
in formalizing modern mathematics.

However, while the univalence axiom makes type theory more appealing for formalizing
mathematics it also breaks some of the good properties of type theory. In particular, by adding
univalence axiomatically one loses canonicity. That is, one can easily construct terms of natural
number type in closed context that do not reduce to a numeral. As a consequence, this also breaks
existence properties: even if an existence statement is proved using a �-type, one cannot neces-
sarily extract a witness. This means that adding the univalence axiom, at least a priori, breaks the
constructive nature of type theory.

This led multiple researchers on a quest to find a constructive justification to the univalence
axiom in order to get the extensionality principles of univalence without loosing good type theo-
retic properties like canonicity. The consistency of the univalence axiom was originally proved by
Voevodsky’s Kan simplicial set model (Kapulkin and Lumsdaine, 2012). However, this model used
classical logic in crucial ways (Bezem et al., 2015) which led experts to look in different directions
for a constructive model. The first major breakthrough was when Bezem et al. (2014) formulated
the first cubical model of HoTT/UF which constituted the starting point of the use of cubical
methods in HoTT/UF.

This paper introduces cubical methods in HoTT/UF by focusing on the cubical type theory
developed by Cohen et al. (2018). This type theory builds on a cubical model of HoTT/UF that
has a lot more structure than the original one of Bezem et al. (2014). This additional structure
simplifies the model construction and made it possible to formulate a type theory inspired by it.
This paper also discusses another class of models and type theories based on cartesian cubical sets
(Angiuli et al., 2021a, 2018b; Awodey, 2018). For a more comprehensive historical account of the
various cubical set models and type theories, we refer the interested reader to Angiuli et al. (2021a,
Section 1).

Outline. The paper first introduces both the type theoretical and semantical setting in which the
rest of the paper is formulated (Section 2); it then continues with a general introduction to cubical
type theories and their models (Section 3), followed by a discussion of the cubical transport oper-
ation and why it is not sufficient to get a constructive model of HoTT/UF (Section 4), this then
naturally leads to the more general cubical Kan composition operations that lets us correct the
sides of transported elements (Section 5), and finally, in order to be able to prove the univalence
axiom and give it computational content Glue types are introduced (Section 6). The paper then
concludes with some suggestions for further reading about cubical methods in HoTT/UF (Section
7). Furthermore, most sections end with exercises that complement the material and which were
given to the students during the summer school. Suggested solutions to most exercises can be
found in Appendix A.

Assumed background knowledge. These lecture notes are aimed at students and researchers with
some familiarity with dependent type theory and category theory. There are not many textbooks
on type theory out there; however, a classic is the book by Nordström et al. (1990). Another good
introduction which goes into the categorical semantics of type theory is the notes by Hofmann
(1997). The situation for category theory is much better as it is an older field. These notes do not
require that much categorical background apart from familiarity with presheaves and the Yoneda
lemma. An excellent introduction to these concepts with lots of examples can be found in the book

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1149

by Riehl (2017, Chapter 1 and 2.1–2.2). In order to get a deeper understanding of lifting problems
and the content of Section 5.4, see Riehl (2014, Chapter 11), but beware that this requires much
more categorical background than the rest of the material and are not necessary unless one wants
to study the homotopy theoretical aspects of the field.

2. Background
Homotopy Type Theory and Univalent Foundations, as formulated by Voevodsky (2010, 2011,
2014, 2015) and in the HoTT book (Univalent Foundations Program, 2013), are axiomatic exten-
sions of type theory initially developed by the Swedish logician PerMartin-Löf. There are multiple
different type theories of this kind, see, for example, Martin-Löf (1975, 1982, 1984, 1998), and we
will here use the term “Martin-Löf type theory” (MLTT) for type theories specified in the MLTT
tradition, that is, type theories specified by the four hypothetical judgments:

� �A � �A= B � � a :A � � a= b :A
We write � � J for an arbitrary judgment, and in the rest of the paper, we assume that the type
theories we work with support �- and �-types. We follow the Agda convention (introduced by
Nuprl Constable et al. 1985) of writing dependent function types as (x :A)→ B and dependent
products as (x :A)× B. The non-dependent variants of these are written A→ B and A× B. We
write p.1 and p.2 for the first and second projections of a pair p : (x :A)× B. We also assume �-
and �-types satisfy judgmental η rules:

� � f : (x :A)→ B
� � f = λ(x :A).fx : (x :A)→ B

� � p : (x :A)× B
� � p= (p.1, p.2) : (x :A)× B

We say that an equality holds “judgmentally” if it is a judgmental equality specified by the type
theory, that is, if the judgment � � a= b :A is derivable in the theory. Note that many authors
refer to this as “definitional equality"; however, we prefer the term “judgmental equality” as it is
more specific to the MLTT formalism. We will refer to the semantic version of this judgment as a
“strict equality," that is, an equality that holds strictly in some model of the theory.

We also assume an infinite hierarchy of universes Un; however, we will leave the universe level
n implicit and not be specific about the exact rules that these universes satisfy in order to avoid
formal technicalities. Basic data types like empty, unit, Boolean, and natural number types are
also assumed and inhabit the lowest universe U0. We will write functions on these using pattern-
matching equations; however, all examples can easily be translated to recursors and eliminators.
One can also imagine extending with general inductive types or W-types, but we will not focus
on these here as the cubical machinery extends very straightforwardly from the basic induc-
tive types and it is more illustrative to look at concrete examples instead of the general case.
However, the situation for inductive families (a.k.a. indexed inductive types) is more subtle and
we refer the interested reader to Cavallo and Harper (2019) and Vezzosi et al. (2021, Section 4) for
details.

However, we do not include Martin-Löf (1975) identity types as in HoTT/UF. We will instead
consider path types that behave like identity types, but which are not inductively generated. This is
achieved by first adding an abstract interval type I and then defining paths in a type A as functions
I→A with fixed endpoints. In this sense, cubical type theory is even closer to the homotopical
intuition that motivates HoTT/UF – equalities are really defined to be paths. The main part of the
work will then be to extend the theory so that path types behave like identity types, in particular
making the path elimination principle J provable with computational content. The first attempt
to solve this is by introducing cubical transport operations; however, it turns out that these are
not sufficient as we cannot properly define them for path types themselves. This then leads to the
more general Kan composition operations that exist in some form in all cubical type theories and
cubical set models.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1150 A. Mörtberg

This, or some variation of it, is essentially the underlying type theoretic setup in the various
cubical systems that have been implemented in recent years. These include cubical (2013),
cubicaltt (2015), yacctt (2018), RedPRL (2016) (Angiuli et al., 2018a), redtt (2018),
cooltt (2020), mlang (2019), and Cubical Agda (Vezzosi et al., 2019). All of these systems build
on different cubical type theories and have different standard cubical models (Angiuli et al. 2021a,
2018b; Bezem et al. 2014, 2019; Cavallo and Harper 2019; Cohen et al. 2018; Coquand et al. 2018);
however, the ideas underlying them are very similar, and one of the goals of this paper is to give
sufficient background to understand and work with the various systems. This paper will mainly
present the theory underlying Cubical Agda, but many of the ideas and constructions translate
directly to the other systems.

The cubical type theories underlying these systems are typically justified using categorical
semantics in various cubical set categories. These are often formulated using one of the many
frameworks for semantics of MLTT, like the categories with families (CwF’s) of Dybjer (1996). We
will be informal in these notes and not commit to a specific framework. However, a crucial result
that we will rely on is the fact that any presheaf category forms a CwF (or some other equivalent
notion of model) with �-, �-types, and basic data types like natural numbers, together with uni-
verses closed under these type formers. These results can be found in the lecture notes of Hofmann
(1997) and the unpublished note about universes by Hofmann and Streicher (1997).

An elegant way of describing the semantics of cubical type theory and HoTT/UF is to use the
internal language of the presheaf topos of cubical sets, following Orton and Pitts (2018). This
approach builds on an idea of Coquand (2015), and another early use of the technique can be
found in the work of Birkedal et al. (2019). As these categories are locally cartesian closed, this
internal language is extensional type theory (Lambek and Scott, 1986), which means that the
semantics can be presented using type theoretic notations. In order to avoid confusion, we write
�(x :A).B and �(x :A).B for the semantic versions of dependent function and product types.
For the strict extensional equality in the internal language, we write x≡ y given x, y :A. This
lets us mimic many of the syntactic constructions from cubical type theory also in the seman-
tics, leading to very short and elegant constructions. However, it is sometimes illuminating or
even necessary to express things externally, that is, present the semantics using standard categor-
ical language. We will in the paper make it clear when the semantics is described internally or
externally.

The main aim of these notes is to present cubical type theories and their models up to the
computational realization of univalence. The cubical version of this principle informally states
that the type of equivalences of types A and B is equivalent to the type of paths between A and B.
This in particular means that we have a function

ua : (A B : U)→ EquivA B→ PathU A B
Combined with cubical transport, this gives a way to transport structures between equivalent
types. For example, if we have a monoid structure on unary numbers we can transport it to get a
monoid structure on binary numbers. The fact that univalence has computational meaningmeans
that this transport will actually compute as expected.

3. Cubical Type Theories and Their Models
The crucial idea in order to make a type theory cubical is to add a primitive interval I and allow
the judgmental structure of the theory to also include contexts with interval variables. Intuitively,
one may think of I as a formal analogue of the real interval [0, 1]⊂R. A variable i : I should be
thought of as a point that is varying continuously between the two distinct endpoints 0 : I and
1 : I:

0 1•i

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1151

Table 1. Relationship between contexts with interval variables and cubes

� A : U • A

i : I� A : U A(0/i) A(1/i)A

i : I, j : I� A : U

A(0/i)(1/j) A(1/i)(1/j)

A(0/i)(0/j) A(1/i)(0/j)

A

A(1/j)

A(0/i) A(1/i)

A(0/j)

...
...

By extending the judgmental structure of MLTT with these variables, we get cubical judgments of
the form

i1 : I, ..., in : I� J

Given a judgment J depending on an interval variable i : I, we write J (r/i) for J with r
substituted for i. So A(0/i) is a type where 0 has been substituted for i, etc. These substitutions act
like regular substitutions, so in particular they behave in the standard way with respect to binders
and commute with all type and term formers of the theory. Types and terms in a context with n
dimension variables correspond to n-dimensional cubes as described in Table 1.

By the standard rules for substitutions, we have A(0/i)(0/j)=A(0/j)(0/i), etc. These equations
correspond to the lines in the square matching up, namely the source of the left-most line, A(0/i)
is the same as the source of the bottom one in the square, A(0/j), in the third row of the Table 1.

Remark 1. Note that any judgment in cubical type theory can be put in the above form. Indeed,
given a judgment � � J where � contains both interval variables i : I and regular variables x :A
in any order, we can always first reorganize it so that the interval variables occur first and the
regular variables occur last (weakening appropriately with respect to the interval variables). The
regular variables can then be λ-abstracted so that we only have interval variables left in the context.
Focusing on the cubical judgments of the above form is hence not a restriction, and as it simplifies
the explanations, we will focus on them in this section; however, in later sections � denotes an
arbitrary context with both interval and regular variables unless explicitly specified.

3.1 Cartesian cubical sets
Semantically, all cubical set models are based on presheaves on some cube category C , that is,
functor categories Ĉ := [C op, Set]. This means that a cubical set G : Ĉ is simply a functor C op →
Set and hence comes with both an action on the objects of C op (which are the same as those
of C) and the morphisms of C op (which are the same as those in C , but reversed). So given an
element of X : C we get a set G(X) and given a morphism f :HomC (X, Y), we get a function

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1152 A. Mörtberg

of sets G(f) :G(Y)→G(X). As G is a functor, it furthermore has to send the identity morphism
1X :HomC (X, X) to the identity function 1G(X) :G(X)→G(X) and composition of morphisms
g ◦ f to composition of functions G(f) ◦G(g).

One way to think about presheaves is as indexed sets with extra structure. Indeed, a special case
is when C is some small discrete category I, that is, a category where the collection of objects is a
set and the only morphisms are the identity morphisms. A presheaf G : Î is then nothing but an
indexed family of sets (indexed by the objects of I). Now, if C happens to not be discrete and have
more morphisms than the identity morphisms then we get induced maps between the indexed
sets. Presheaves are hence a compact way of describing a collection sets indexed by the objects of
a category, together with functions between them respecting composition. So in order to specify
a cubical set model, we first have to give a suitable cube category specifying what to index our
cubical sets by and which functions we should be able to manipulate these with.

A very important cube category is the cartesian one.

Definition 2. The cartesian cube category � has as objects finite sets, and as morphisms
Hom� (I, J) functions J → I + {0, 1} with identity and composition given by

1I(x)= inl(x)

(g ◦ f)(x)=
{
inr(ε) if f (x)= inr(ε) for ε ∈ {0, 1}
g(y) if f (x)= inl(y)

The reason I and J are flipped in the functions in the above definition is that we will take
the opposite of this category when defining cartesian cubical sets. In the rest of the notes, we
will omit the inl/inr maps for readability as they can easily be inferred. Furthermore, note that
the composition operation is the Kleisli composition for the monad + {0, 1} :�→�. We will
use the more compact description using the Kleisli category when introducing other cubical set
categories later in the paper, but this can always be unfolded into an explicit definition as in the
definition above.

We write I, J,K, ... for objects of � and say that a finite set {i1, . . . , in} is an n-cube of
dimensions i1, . . . , in. Notable morphisms in the category� include:

• Given ε ∈ {0, 1}, a dimension i and a finite set I there are face maps

diε ∈Hom� (I, I + {i})

diε(j)=
{

ε if i= j
j otherwise

• Given a dimension i and a finite set I, there are degeneracy maps

si ∈Hom� (I + {i}, I)
si(j)= j

• Given dimensions i, j, and a finite set I, there are symmetry maps

ti,j ∈Hom� (I + {i, j}, I + {i, j})

ti,j(k)=

⎧⎪⎨⎪⎩
j if k= i
i if k= j
k otherwise

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1153

Table 2. Faces, degeneracies, symmetries and diagonals

Faces
•

•

•

•

p

qr

s

	→ • •
p

• •
q

• •r • •s

Degeneracies a b
p 	→

a

a

b

b

p

p

Symmetries

•

•

•

•

p

qr

s

	→
•

•

•

•

r

sp

q

Diagonals

a

•

•

b
	→ a b

• Given dimensions i, j, and a finite set I, there are diagonal maps

ci,j ∈Hom� (I + {i}, I + {i, j})

ci,j(k)=
{
i if k= i or k= j
k otherwise

These morphisms satisfy various evident cubical identities, for example, degenerating and taking
a face does nothing. We illustrate the actions of these maps informally for concrete n-cubes in
Table 2.

A cartesian cubical set is a functor G : �̂. Geometrically, we may think of such a G as a space
and G({i1, . . . , in}) as the set of continuous functions [0, 1]n →G. With this in mind, we can
give some geometric meaning to the action of G on the morphisms of �. The face maps G(diε) :
G(I + {i})→G(I) restrict (n+ 1)-cubes to n-cubes by setting the i coordinate to ε. The degeneracy
maps G(si) :G(I)→G(I + {i}) lets us regard n-cubes as (n+ 1)-cubes. The symmetry maps rotate
cubes by permuting the axes. Finally, the diagonal maps extract the various diagonal n-cubes of
(n+ 1)-cubes.

Let :�→ �̂ be the Yoneda3 embedding defined at an object I ∈� as (I)=Hom� (, I). At
amorphism f :Hom� (I, J), it is defined as precomposition of f with g :Hom� (, I), so (f)(g)=
f ◦ g. The interval of cubical type theory is modeled by ({i}) where i is an arbitrary dimension.
We write I for this representable 1-cube (a representable cubical set is one which is in the image
of). An important property of cartesian cubical sets is that the product of representables is again
representable.4 Combined with the fact that preserves products, we get that the representable
n-cube is an n-fold product of I, that is, ({i1, . . . , in})∼= I

n. The category �̂ is in fact the universal
category with this property:

Remark 3. The category �̂ is equivalent to the free finite product category on an interval
object (Awodey, 2018; Parker, 2014).

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1154 A. Mörtberg

The Yoneda lemma is probably the most used result in category theory. In the case of a carte-
sian cubical set G, it states that we have a bijection G({i1, . . . , in})∼= I

n →G. In other words, the
n-cubes of G are in bijective correspondence with the set of natural transformations In →G. This
means that the structure of a cartesian cubical set is determined by maps out of products of I, jus-
tifying the geometric intuition from above where we thought of G as a space and G({i1, . . . , in})
as the set of continuous functions [0, 1]n →G. Furthermore, a type i1 : I, . . . , in : I�A : U cor-
responds to a morphism A : In → U , justifying the cubical judgments. This is one reason why
cartesian cubical sets are so well-suited as a basis for higher dimensional type theory.

3.2 Cubical set models
It is a well-known fact that any presheaf category forms a model of type theory (Hofmann, 1997,
Section 4). This hence directly applies to the cubical set category �̂ discussed above. In this model,
a context � is modeled by a cartesian cubical set G and a substitution σ : 	 → � is modeled
by a natural transformation of cubical sets s :D→G. A type in context � is also modeled by a
presheaf, but on the category of elements of G. The category of elements, written

∫
G, is a general

construction on a presheaf category which gives a new category where the objects are of the form
(I, ρ) with I :� and ρ :G(I). A type is hence modeled by a presheaf on

∫
G. With these definitions,

one can prove that �̂ can be organized into a CwF with structure corresponding to �-, �-types,
basic data types and universes closed under these operations. This means in particular that we
have a context extension operation which given presheaves G : �̂ and A : ∫̂ G gives us an extended
semantic context G.A : �̂ as well as a weakening map p :G.A→G. Terms of the type theory are
then modeled as sections of p.

Remark 4. An important, but subtle, fact is that by working with types represented as objects
of

∫̂
G, we avoid coherence problems related to equations between substitutions on types and

terms only holding up to isomorphism. A classical result in category theory is that
∫̂
G� �̂/G, so

presheaves on the category of elements of G is equivalent to the slice category over G. Types could
hence just as well be modeled by objects of �̂/G, but this has the drawback that substitution would
be defined as a pullback which is only unique up to isomorphism. This means that if we would
substitute with σ : 	 → � and then δ : � → 	 in A, we would not get strictly the same thing as
if we would substitute with δ ◦ σ : � → � directly. This is a well-known problem which arises in
models of type theory in locally cartesian closed categories (Seely, 1984) and various solutions
exist to solve it (Clairambault and Dybjer, 2011; Curien, 1993; Curien et al., 2014; Hofmann, 1994;
Lumsdaine and Warren, 2015; Voevodsky, 2009). However, in the case of presheaf categories like
�̂ this problem can completely be avoided by instead representing types as objects in

∫̂
G where

substitution can simply be defined as precomposition and hence satisfy the required equations
strictly by definition.

After this short introduction to presheaf models of type theory, we can now clarify the rela-
tionship between the proof theory of cubical type theory and its semantics. Given an n-cube
I = {i1, . . . , in} and context � = i1 : I, . . . , in : I, there is a close correspondence between the
structural rules of cubical type theory and the semantic maps of cubical sets as illustrated in
Table 3.

Recall that the action of on morphisms is precomposition, so the judgments on the left are
given by precomposing with the maps on the right. The table shows that there is a close cor-
respondence between the maps in the cartesian cubical set categories and the structure of the
cubical judgments in cubical type theory. This correspondence was analyzed by Buchholtz and
Morehouse (2017) to define and relate a great variety of cubical set categories.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1155

Table 3. Relationship between structural rules and semantic maps

Syntax/proof theory Semantics

�, i : I� J

� � J (ε/i)
face (I) (I+ {i})

(diε)

� � J

�, i : I� J
weakening (I+ {i}) (I)

(si)

�, i : I, j : I� J

�, j : I, i : I� J
exchange (I+ {j, i}) (I+ {i, j})(ti,j)

�, i : I, j : I� J

�, i : I� J (i/j)
contraction (I+ {i, j}) (I+ {i})(ci,j)

Remark 5. If we omit contraction/diagonals, we obtain the substructural cubical sets that underlie
the original cubical set model of Bezem et al. (2014). However, because of the substructural nature
of this cube category it is not as easy to develop a cubical type theory based on this model (even for
non-cubical type theories substructural dependent type theory is an active research area). It also
not clear how to interpret eliminators for HITs in this cubical set model. In the rest of the paper,
we hence focus on structural cubical sets with contraction/diagonals.

3.3 Path types
In order to be able to talk about paths between terms and between types in cubical type theory, we
need to extend the theory with path types. These types are a type theoretic rendering of the idea
that a path is just a function out of the interval in cubical type theory. The rules for these follow
below.

�, i : I�A � � a :A(0/i) � � b :A(1/i)
� � Pathi A a b

�, i : I�A �, i : I� a :A
� � λ(i : I). a : Pathi A a(0/i) a(1/i)

� � p : Pathi A a b � � r : I
� � p r :A(r/i)

�, i : I�A �, i : I� a :A � � r : I
� � (λ(i : I). a) r = a(r/i) :A(r/i) β

� � p : Pathi A a b
� � (λ(j : I). p j)= p : Pathi A a b

η
� � p : Pathi A a b
� � p 0= a :A(0/i)

� � p : Pathi A a b
� � p 1= b :A(1/i)

Note that these rules are very similar to those of �-types, except that special care has to be taken
when applying a path to one of the endpoints of the interval. So just like how�-types “internalize”
the usual variables of type theory, the path types let us internalize the interval variables of cubical
type theory.

If A doesn’t depend on i, we write simply Path A a b. These non-dependent path types
are supposed to correspond to the identity types of HoTT/UF while Pathi is a cubical version
of the “path-over” types of HoTT, that is, paths living over a line of types. These path-over
types are descendants of the work of McBride (2002) on heterogeneous equality in type theory
(i.e., equalities between terms of different types). Having built-in path-over types is very useful,

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1156 A. Mörtberg

especially when working with higher inductive types, as we can directly represent heterogeneous
equalities. Furthermore, representing equalities using path types allows direct definitions of many
standard operations on identity types that are usually proved by path induction.

For example, given A : U we define a proof of reflexivity as a constant path (i.e., a constant
function):

refl : (a :A)→ Path A a a
refl a= λ(i : I). a

We will in the rest of paper sometimes write just refl when the a can be easily inferred.

Remark 6. Note that, as opposed to identity types, the path types are not inductively generated.
This means that we have to be able to prove both refl and J (path induction).

Given A, B : U we can also prove that the images of two path-equal elements are path-equal

ap : (a b :A) (f :A→ B) (p : Path A a b)→ Path B (f a) (f b)
ap a b f p= λ(i : I). f (p i)

This operation satisfies some judgmental equalities that do not hold judgmentally when ap is
defined using identity elimination on p, for example (omitting the a and b arguments):

ap id p= p
ap (g ◦ f) p= ap f (ap g p)

The fact that we get these equations judgmentally is very useful when formalizing mathematics.
Note that the standard equation ap f (refl a)= refl (f a) also holds judgmentally as refl a is just a
constant function.

We can also define new operations that does not always hold for identity types, for instance,
function extensionality for path types can be proved as:

funExt : (f g :A→ B) (p : (x :A)→ Path B (f x) (g x))→ Path (A→ B) f g
funExt f g p= λ(i : I). λ(x :A). p x i

To see that this has the correct boundaries, we do the following computation:

(λ(i : I). λ(x :A). p x i) 0 = λ(x :A). p x 0 = λ(x :A). f x = f

Note that the last judgmental equality holds by the η rule for �-types. The case for the right
endpoint (i.e., when applying funExt to 1) holds by an analogous computation.

Even though we can define a funExt constant, it is often more convenient to inline it. In
HoTT/UF, propositions are defined as types satisfying a predicate that says that all elements are
path-equal:

isProp : U → U

isProp A= (x y :A)→ Path A x y

A basic result of HoTT/UF, which uses function extensionality, is that propositions are closed
under �-types.

isPropPi : (A : U) (B :A→ U) (h : (x :A)→ isProp (B x))→ isProp ((x :A)→ B)
isPropPi A B h= λ (f g : (x :A)→ B) (i : I) (x :A). h x (f x) (g x) i

Note that we have inlined the use of funExt here. In fact, we are implicitly using funExt for
dependent functions in order to prove this, but with path types there is no difference in the proofs
of the dependent and non-dependent version. For details see exercise (5).

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1157

Equality reasoning in �-types is notoriously complicated to work with in MLTT, but with
dependent path types things get moremanageable. GivenA : U and a family B :A→ U we define

�eq : (s t : (x :A)× B) (q : (p : Path A s.1 t.1)× (Pathi (B (p i)) s.2 t.2))→ Path ((x :A)× B) s t
�eq s t q= λ(i : I). (q.1 i, q.2 i)

Working with path-over types like this is very convenient as no transports are necessary, mak-
ing reasoning with equalities in �-types a lot easier than in traditional MLTT. In particular, the
inverse of �eq can be defined as

�−
eq : (s t : (x :A)× B) (q : Path ((x :A)× B) s t)→ (p : Path A s.1 t.1)× (Pathi (B (p i)) s.2 t.2)

�−
eq s t q= (λ(i : I). (q i).1, λ(i : I). (q i).2)
The fact that �eq and �−

eq are mutually inverse is proved by refl as we have judgmental β and
η rules for the involved types. Being able to pass seamlessly between paths in�-types and�-types
of paths is an easily overlooked benefit of having path types.

Semantically, we can justify path types using the internal language of �̂. Given a line of types
A : I→ U , we define:

Path(A)= �(i : I). A i

We then define the type of paths between a :A 0 and b :A 1 as

PathA(a, b)= �(p : Path(A)).(p 0≡ a∧ p 1≡ b)

It is easy to verify that this satisfies the rules of path types as they are constructed using
semantic �- and �-types. Furthermore, the exact same operations as above are easily definable
semantically.

3.4 Connections and reversals
It is often very useful to assume more structure on the underlying cube category, both when con-
structing models and for making proofs simpler in the cubical type theory based on the model.
This is done in both cubicaltt and Cubical Agda which are based on the cube category of
the CCHM cubical set model of Cohen et al. (2018). Before defining this category, we have to
introduce De Morgan algebras:

Definition 7. A bounded distributive lattice (A, 0, 1,∧,∨) is a De Morgan algebra if it has an
involution ¬ :A→A satisfying the De Morgan identities:

¬(r ∨ s)= ¬r ∧ ¬s ¬(r ∧ s)= ¬r ∨ ¬s

Wewrite DM for the monad on the category of sets associating to each setA the free DeMorgan
algebra on A.

Definition 8. The De Morgan cube category �DM has as objects finite sets, and as morphisms
Hom�DM (I, J) functions J → DM (I). Identity and composition are inherited from the Kleisli
category of DM. A CCHM cubical set is a functor G : �̂DM .

This category has all the morphisms of �, but there are very many more (see exercise (8)).
Notable new morphisms in this category are:

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1158 A. Mörtberg

Table 4. Connections and reversals

Connections a b
p 	→

a

a

a

b
∧ p

p

a

b

b

b
∨
p

p

Reversals a b 	→ b a

• Given a dimension i and a finite set I, there are connection maps

cki∧j ∈Hom�DM (I + {i, j}, I + {k}) cki∨j :Hom�DM (I + {i, j}, I + {k})

cki∧j(l)=
{
i∧ j if k= l
l otherwise

cki∨j(l)=
{
i∨ j if k= l
l otherwise

• Given a dimension i and a finite set I, there are reversalmaps:
ri ∈Hom�DM (I + {i}, I + {i})

ri(j)=
{

¬i if i= j
j otherwise

The connections can be thought of as new kinds of degeneracies while the reversals let us invert
lines as illustrated in Table 4.

The action of the reversal map is, as the name suggests, to reverse a path. The connections,
on the other hand, might look a bit funny at first. However, if one thinks of them as new types of
degeneracies they are less strange. As discussed above, the usual degeneracy map si can be thought
of as an operation which turns a path p from a to b into a square:

a

a

b

b

p

p

Reading this as a commutative diagram of paths, this represents a proof that refl · p= p · refl
(where · is composition in diagrammatic order). The connections analogously represent proofs
that refl · p= refl · p and p · refl= p · refl. This might not seem very useful, but note that we have
not yet defined general composition of paths. So by adding operations to the cube category, we get
the possibility of constructing fillers to certain squares representing compositions directly.We will
soon see that this lets us prove some results about path types which would normally require path
induction. Furthermore, combining connections with reversals allows us to fill many squares, for
example, the one corresponding to p · p−1 = refl · refl (see exercise (6)).

The interval in �̂DM is defined in the same way as the one in �̂ using the Yoneda embedding.
We may see the connection and reversal morphisms in �̂DM as operations in �̂DM of type ∧,∨ :
I→ I→ I and ¬ : I→ I satisfying the axioms of a De Morgan algebra. The topological intuition
behind these operations is that r ∧ s corresponds to min (r, s), r ∨ s to max (r, s) and ¬r to 1− r
for r, s ∈ [0, 1].

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1159

Remark 9. One might wonder why De Morgan algebras and not Boolean algebras? The reason
is that Boolean algebras do not describe the theory of the real interval. Indeed, the equations
r ∧ ¬r = 0 and r ∨ ¬r = 1 are not generally true for r ∈ [0, 1] with the above interpretation except
for at the endpoints. However, despite the interval in Boolean algebras not satisfying the same
axioms as the real interval there is no problem with constructing a model using it.

Type theoretically we may now substitute interval variables for formulas built using connec-
tions and reversals in order to construct more complex cubes out of simpler ones. For example,
given p : Path A a b and i, j : I, we can construct the connection squares p (i∧ j) and p (i∨ j) as

a b

a a

p (i∧ j)

p i

p 0 p j

p 0

b b

a b

p (i∨ j)

p 1

p j p 1

p i

j

i

where, for instance, the right-hand side of the left square is computed as

p (i∧ j)(1/i)= p (1∧ j)= p j

The ability to directly construct squares with boundaries given by the formulas that can be
formed in a De Morgan algebra is very convenient. An example of this is the proof that singletons
are contractible, that is: any element in (x :A)× (Path A a x) is path-equal to (a, refl).

contrSingl : (A : U) (a b :A) (p : Path A a b)→ Path ((x :A)× (Path A a x)) (a, refl) (b, p)
contrSingl A a b p= λ(i : I). (p i, λ(j : I). p (i∧ j))

Obviously, the first component is a path between a and b. The second component is a path
from λ(j : I). p 0 to λ(j : I). p j, that is, from refl to p by the computation and η rules for path types.

Given a, b :A, we may also define the symmetry of a path as follows:

sym : (A : U) (a b :A)→ Path A a b→ Path A b a
sym A a b p= λ(i : I). p (¬i)

This satisfies sym (sym p)= p judgmentally. This is another example of an equation that does
not hold judgmentally when sym is defined by induction on p and is useful when formalizing
mathematics; for example, we may directly define the opposite of a category so that C opop = C
judgmentally.

With this new additional structure, the path types almost behave like the identity types of
HoTT/UF; however, we need to add additional structure that lets us prove the path elimination
principle commonly referred to as J following Martin-Löf (1975).

Exercises
(1) Prove that {i} × {j} ∼= {i, j} in� (for distinct i and j). More generally, prove that� has finite

products.
(2) Given a, a′ :A and b, b′ : B, prove the binary version of ap:

ap2 : (f :A→ B→ C) (p : Path A a a′) (q : Path B b b′)→ Path C (f a b) (f a′ b′)
(3) Given f , g :A→ B→ C, prove the binary (non-dependent) version of funExt:

funExt2 : (p : (x :A) (y : B)→ Path C (f x y) (g x y))→ Path (A→ B→ C) f g

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1160 A. Mörtberg

(4) Define negation on Booleans not : bool→ bool and prove that

notK : Path (bool→ bool) (not ◦ not) id
(5) Given dependent functions f , g : (x :A)→ B, prove funExt for dependent functions:

funExtDep : (p : (x :A)→ Path B (f x) (g x))→ Path ((x :A)→ B) f g

Use this to give an alternative proof of isPropPi where funExtDep is used explicitly.
(6) Given p : Path A a b and i, j : I, draw the squares corresponding to

i. p (¬i∧ j)
ii. p (i∧ ¬j)
iii. p (¬i∧ ¬j)
iv. p (¬i∨ j)
v. p (i∨ ¬j)
vi. p (¬i∨ ¬j)

(7) Given p : Path A a b and i, j, k : I, draw the cubes corresponding to
i. p (i∧ j∧ k)
ii. p (i∧ ¬j∨ k)
iii. p (¬i∨ ¬j∨ ¬k)

(8) How many elements does the hom-set Hom� ({i1, . . . , in}, {i}) have? What about the
corresponding hom-set Hom�DM ({i1, . . . , in}, {i})?

(9) Given A : U , prove the following variation of contrSingl:

contrSingl′ : (a b :A) (p : Path A a b)→ Path ((x :A)× (Path A x b)) (b, refl) (a, p)

(10) The circle S1 has constructors base and loop : I→ S
1 such that loop 0= loop 1= base.

Why is this type non-trivial even though λ(i j : I). loop (i∧ j) constructs a square whose (i=
0) and (i= 1) sides are refl base and loop? (Hint: what are the other sides of the square?)

(11) As i∧ ¬i is not necessarily 0 in a De Morgan algebra, we can construct a path that goes
halfway around the circle and back by writing λ(i : I). loop (i∧ ¬i) (recall that i∧ ¬i cor-
responds to min (i, 1− i)). Construct a homotopy on the circle that shows that this path is
contractible:

hmtpy : Path (Path S1 base base) (refl base) (λ(i : I). loop (i∧ ¬i))

(12) Prove that it is inconsistent to assume decidable equality of I internally. (Hint: construct a
path from the unit type to the empty type using decidable equality on I)

4. Cubical Transport
In order to be able to prove the path induction principle J, we will introduce a new operation that
we call cubical transport. Type theoretically it can be described by the rule:

�, i : I�A : U � � a :A(0/i)
� � transporti A a :A(1/i)

One way to intuitively understand this operation is as an operation for transporting a point
from one endpoint to the other over a line of types:

a • • transporti A a

A(0/i) A(1/i)A

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1161

Note that transporti binds i in A. An alternative definition (taken by Cubical Agda for
instance) is to require that A is a path-abstraction. There is no deep reason for doing this either
way, except that when working informally on paper the author finds it easier to have transport act
as a binder (but other experts disagree with this). However, when implementing a proof assistant
based on this theory it is typically easier to have as few binders as possible.

4.1 Recovering HoTT/UF transport and path induction
Readers familiar with HoTT/UF will probably be surprised by the type signature of cubical trans-
port. It is indeed different from what is called “transport” in HoTT/UF. The HoTT/UF transport
operation takes a type family P :A→ U , a path a= b in A, and gives a function P a→ P b.
The cubical transport operation on the other hand takes a line A : I→ U and gives a function
A(0/i)→A(1/i). This more primitive transport operation does however imply the HoTT/UF
transport operation, which we refer to as “subst” in order to avoid confusion:

subst : (A : U) (P :A→ U) (a b :A) (p : Path A a b) (e : P a)→ P b
subst A P a b p e= transporti (P (p i)) e

With this, we can now prove the path induction principle J. Indeed, it may in fact be
decomposed as contractibility of singletons (which we have proved in the previous section) and
subst:

J : (A : U) (a :A) (C : (x :A)→ Path A a x→ U) (d : C a refl) (x :A) (p : Path A a x)→ C x p
J A a C d x p=
subst ((x :A)× Path A a x) (λ (y : (x :A)× Path A a x). C y.1 y.2)

(a, refl) (x, p) (contrSingl A a x p) d

With this, we can now do similar reasoning as in HoTT/UF. For example, path composition
and its properties can be derived from J. Furthermore, we can represent structures on types using
�-types (or records if we would have them) and transport properties between structured types.

Example 4.1. We can define what it means for a type to be amonoid as a nested�-type as follows:

isMonoid : U → U

isMonoid A= (e :A)
× (op :A→A→A)
× (id : (a :A)→ Path A (op e a) a× Path A (op a e) a)
× (assoc : (a b c :A)→ Path A (op a (op b c)) (op (op a b) c))
× (isSet A)

The first four fields are the identity constant and binary operation of the monoid together with
their standard laws. The final field makes sure that the type is a set in the HoTT/UF sense, that is,
its path type is a proposition (see exercise (6) for the formal definition). Using subst, we can now
get a function for transporting monoid structure between path-equal types:

substU isMonoid : (A B : U)→ PathU A B→ isMonoid A→ isMonoid B

Concretely, A could be unary natural numbers N and B binary numbers B. This means that we
can transport the monoid structure on N to B given a path between these two types. We will see
that such a path can be constructed using univalence in Example 6.1. This hence means that we
will get an induced associative and unital binary operation on binary numbers from the one on
unary numbers.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1162 A. Mörtberg

With what we have seen so far we can hence formalize many results of HoTT/UF; however,
we still have not given these notions computational meaning. For example, how should the trans-
portedmonoid operation on binary numbers compute? It is easy to imagine how it could compute,
but as the underlying cubical transport operation has no judgmental computation rules yet this
function would be stuck when given concrete binary numbers. Furthermore, as P in subst can be
any predicate valued in U and not just isMonoid we need to give judgmental computation rules
to cubical transport which handle all of the type formers of the theory.

Another problem is that it is not yet possible to prove the standard computation rule for path
induction which says that we have a path:

Path (C a refl) (J A a C d a refl) d

Indeed, if we unfold the left-hand side we see that we have to construct a path:

Path (C a refl) (transporti (C a refl) d) d

However, there is currently no reason why this would be the same as d for all type families C.
One could try to add a computation rule which says that transporti A a is judgmentally a if i does
not occur A, but this does not help with making the monoid example above compute properly.
It is in fact currently an open problem whether the above path can be proved by refl d while also
having well-behaved computation rules for the rest of the theory. This is commonly referred to as
the “regularity problem” in cubical type theory and constructive cubical models. A solution to this
problem would be a major breakthrough, but there are some negative counterexamples by Swan
(2018) which suggest that it might in fact be impossible to achieve this.

All currently existing cubical type theories and constructive cubical models circumvent this
problem by not requiring the above path to be provable by refl d, but rather carefully setting things
up so that it can be proved by a slightly more involved path. Achieving this while still giving well-
behaved computation rules to the theory is really the main technical part of constructing a cubical
type theory and constructive cubical models. We will now look at how this can be achieved for
cubical transport for some basic type formers.

4.2 Judgmental computation rules for cubical transport
In order to give the cubical transport operation computational meaning, we have to add compu-
tation rules for it to the theory. This is done by adding judgmental equalities for the different type
formers. For instance, for non-dependent pairs A× B we define:

�, i : I�A× B : U � � p :A(0/i)× B(0/i)
� � transporti (A× B) p= (transporti A p.1, transporti B p.2) :A(1/i)× B(1/i)

It is easy to see that this is a well-defined judgmental equality by checking that the right-hand side
has the correct type.

For function types A→ B, we need to be able to transport backwards as well. That is, given
a :A(1/i) we want an element in transport¬i A a :A(0/i):

transport¬i A a • • a

A(0/i) A(1/i)A

Using a reversal we can define this as:

transport¬i A a := transporti A(¬i/i) a

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1163

We can now give the definition of cubical transport for A→ B. Given �, i : I�A→ B : U and
� � f :A(0/i)→ B(0/i) we are going to define

transporti (A→ B) f :A(1/i)→ B(1/i)

To do this, we first abstract over x :A(1/i) and transport it backwards to get an element
transport¬i A x of type A(0/i). We then apply f and obtain an element in B(0/i) which can be
transported forward in B to get the desired element of B(1/i).We can summarize this construction
in the computation rule:

�, i : I�A→ B : U � � f :A(0/i)→ B(0/i)
� � transporti (A→ B) f = λ(x :A(1/i)). transporti B (f (transport¬i A x)) :A(1/i)→ B(1/i)

For basic data types A without parameters, we can let transporti A be the identity function,
for example, for natural numbers we have transporti N n= n. This makes sense as N(r/i)=N

for any r : I. For parameterized data types (like A+ B or List A), we can define the cubical
transport operation for each constructor (see exercise (2)). This generalizes directly to W-
types and schemas for inductive types. However, as discussed in Section 2, the situation for
inductive families is more subtle and has recently been worked out for a type theory sim-
ilar to the one in these notes by Vezzosi et al. (2021, Section 4) by building on work by
Cavallo and Harper (2019).

Remark 10. Note that there is a choice in how cubical transport behaves for pair and function
types. We could instead have treated these transports as neutral values that do not reduce further
unless we either apply a projection or apply them to something. We call these the negative defini-
tions of transport as the computation rules are defined using eliminators, while the ones we gave
above are the positive definitions.

We now need to define cubical transport for Path types. Given �, i : I� Path A a b and p :
(PathA a b)(0/i) we are going to construct an element of (PathA a b)(1/i). Consider the following
naive definition (where j is a fresh dimension variable):

transporti (Path A a b) p= λ(j : I). transporti A (p j)

This might look like a plausible definition, but the resulting path does not have the right end-
points! Indeed, when j is 0 this is transporti A a and not a(1/i). We run into similar problems
when trying to naively define cubical transport for �- and �-types (see exercise (3)). The way we
solve this, following Cohen et al. (2018), is to generalize cubical transport and instead consider
more general composition operations.

Exercises
(1) Give the negative definition of cubical transport for A× B.
(2) Define cubical transport in sum types A+ B. (Hint: pattern-match on the constructors)
(3) Try to define cubical transport for �- and �-types and see what problems you run

into.

5. Kan Composition Operations
In order to solve the problem with cubical transport for path types, we introduce a generalized
cubical transport operation that also lets us fix the boundary of the transported element. Given

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1164 A. Mörtberg

p : (Path A a b)(0/i), we write this as:

λ(j : I). compi A [(j= 0) 	→ a, (j= 1) 	→ b] (p j)
This is a path in A(1/i) where the boundary has been fixed to be a and b. The syntax of the

comp operation is the same as the one for cubical transport, except that it also takes a list of faces
(written in general as [(j0 = ε0) 	→ a0, . . . , (jn = εn) 	→ an]) that has to match up with p j. In the
above example the list of faces is [(j= 0) 	→ a, (j= 1) 	→ b] and these match up with p j as p is a
path between a and b so that (p j)(0/j)= p 0= a and (p j)(1/j)= p 1= b.

We refer to this operation as Kan composition, and, as explained above, it is a form of cubi-
cal transport where we can fix the sides of the transported element. We can illustrate the above
example diagrammatically as follows:

a b

a b

a b

p j

i

j

The vertical sides in the drawing are going in direction iwhile the bottom (or “base”) is going in
direction j. Furthermore, for this operation to be well-formed the sides (or “tubes”) have to match
the base, up to judgmental equality, as in the picture.

Another important property of this operation is that when we perform a substitution that
makes one of the faces “valid” (i.e., turn the equation before “ 	→” into (0= 0) or (1= 1)) the oper-
ation reduces to the corresponding element at this face with 1 substituted for i. So if we substitute
0 for j in

compi A [(j= 0) 	→ a, (j= 1) 	→ b] (p j)
we will get

compi A [(0= 0) 	→ a, (0= 1) 	→ b] (p 0)
This a composition with a valid face which means that it will reduce to the element at this face

with 1 substituted for i. In this case, the element at the face is a and we get

compi A [(0= 0) 	→ a, (0= 1) 	→ b] (p 0)= a(1/i)= a
Furthermore, “absurd” faces with (0= 1) and (1= 0) before the “ 	→ " can be disregard-

ed/deleted. So if there would not have been a valid face in the above composition, we could have
just deleted the (0= 1) 	→ b face. Finally, note that this operations binds i in all of A, a and b, but
not in p j. This means that the reduction when a face is valid could trigger further computations
as we will reduce the element at the valid face with 1 for i.

5.1 Examples of compositions
Let us now look at some examples of compositions. Given a, b, c :A, we can define the concatena-
tion of two paths as:
compPath : (p : Path A a b) (q : Path A b c)→ Path A a c
compPath p q= λ(j : I). compi A [(j= 0) 	→ a, (j= 1) 	→ q i] (p j)

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1165

This can be illustrated as the dashed line in:

a c

a b

a q i

p j

i

j

Note that the right-hand side depends on i in this example, so if we apply compPath p q to 1
we will substitute 1 for j in the composition and get:

compi A [(1= 0) 	→ a, (1= 1) 	→ q i] (p 1)= (q i)(1/i)= q 1= c

By the same discussion as the example above, we get a when applying compPath p q to 0. This
hence means that compPath p q is indeed a path from a to c as specified in the type.

Let us now prove one of the groupoid laws: the concatenation of a path with its inverse is
path-equal to refl. Given a, b :A we give the following complicated definition:

compSym : (p : Path A a b)→ Path (Path A a a) (compPath p (sym p)) refl
compSym p= λ(k j : I). compi A [(j= 0) 	→ a, (j= 1) 	→ p (¬i∧ ¬k), (k= 1) 	→ a] (p (j∧ ¬k))

In order to see that this is a path between the two desired endpoints we first set k to 0 and then
to 1 and see what the term evaluates to. In the first case, we obtain λ(j : I). compi A[(j= 0) 	→
a, (j= 1) 	→ p (¬i)] (p j) after deleting absurd faces. Up to renaming of bound variables this is the
same as compPath p (sym p) as desired. In the second case, the third face becomes valid (i.e.,
when k is 1 it is (1= 1)) so the whole term reduces to λ(j : I). a which is the same as refl as desired.

Terms like this might look very daunting at first, but in order to construct them we draw pic-
tures. As we are constructing a path of paths, that is, a square, we will have to form a 3-dimensional
composition drawing, that is, a cube. We draw this as follows:

•

•

•

•

•

•

•

•

i j

k

The top face is the desired result, that is, a square in direction k with left-hand side being
compPath p (sym p) and all three other sides refl. This fixes the left (k= 0) side to:

a a

a b

a p (¬i)

p j

i

j

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1166 A. Mörtberg

For the front (j= 0) and right (k= 1) squares can take a degenerate a (so they are a everywhere).
We are then left to find suitable squares for the back (j= 1) and bottom (i= 0) sides. If we let the
bottom be

b a

a a

p (j∧ ¬k)p j a

a

p (¬k)

j

k

then we can take the following for the back:

a a

b a

p (¬i∧ ¬k)p (¬i) a

p (¬j)

a

j

i

This way we have constructed a cube with the top side missing where all faces match up and we
can implement the above composition term. Note that we do not have to specify the (k= 0) face
in the term, the reason is that when we substitute 0 for k we automatically get the term we want
(remember that compPath p (sym p) is itself defined using comp).

5.2 Cubical transport as special case of composition
A very important special case of the composition operation is the cubical transport operation from
Section 4. Given �, i : I�A and � � a :A(0/i), we define

transporti A a := compi A [] a

The intuition behind this definition is that cubical transport is just composition with no
faces fixed, and it is in this sense that the composition operation generalizes cubical transport.
Furthermore, by defining comp by cases on all type formers in the theory we obtain the cases
for cubical transport from above as special cases. This means that we have to add computation
rules for composition instead of cubical transport to the theory and this is exactly what is done in
Cohen et al. (2018, Section 4.5).

An important consequence of defining cubical transport using composition is that given type
A, B : U we can now construct a path between a :A and transporti (P i) a over P : PathU A B:

transFill : (P : Path U A B) (a :A)→ Pathi (P i) a (transporti (P i) a)
transFill P a= λ(j : I). compi (P (i∧ j)) [(j= 0) 	→ a] a

When j is 0, this computes to a and when j is 1 the face can be deleted, giving the above defi-
nition of cubical transport in terms of comp. With this we can now justify that the computation
rule for J on refl holds up to a path. Recall that J A a C d a refl reduces to transporti (C a refl) d,

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1167

so transFill does indeed give us the result we want (up to symmetry):

JPath : (A : U) (a :A) (C : (x :A)→ Path A a x→ U) (d : C a refl)→
Path (C a refl) (J A a C d a refl) d

JPath A a C d = sym (transFill (refl (C a refl)) d)

Using connections, we can also define a similar “filling” operation that lets us construct a path
between an element and a composition with that element as base. Geometrically, this corresponds
to an operation that lets us fill the interior of an open cube, for example, given an open square or
cube as above the filling operation computes a filled square or cube with the original open square
or cube as its boundary. This kind of operation is used to define the judgmental computation rules
for composition in �- and �-types; however, we will not go into the details of this here and refer
the interested reader to Cohen et al. (2018, Section 4.4 and 4.5).

5.3 Composition in general
In general, the composition operation looks as follows:

compi A [(j0 = ε0) 	→ a0, . . . , (jn = εn) 	→ an] b

Furthermore, in Cohen et al. (2018) these satisfy the following properties:

(1) All faces are distinct (so duplicated faces can be removed from the list).
(2) Absurd faces (i.e., (0= 1) and (1= 0)) can be removed from the list of faces.
(3) Permutations of faces in the list does not affect the resulting composition.
(4) If one of the faces is valid (i.e., (0= 0) or (1= 1)) then the whole composition reduces to

the element at this face with 1 substituted for i.
(5) The faces in the list must match up pairwise.
(6) The base bmust match up with each of the faces with 0 substituted for i.

These are a lot of properties to formulate and check. In order to make this more convenient,
Cohen et al. (2018) introduced context restrictions:

�, (i= ε)� J

This is to be understood as J (ε/i). In other words, context restrictions lets us consider judg-
ments on faces of cubes without having to apply substitutions. To check item (5) in the above list,
we check that

�, i : I, (jk = εk), (jl = εl)� ak = al :A
for all pairs of k and l. This judgment hence ensures that the sides of the cube match up.
Furthermore, to check that the sides match the base (property (6) above) we use the following
judgment:

�, (jk = εk)� ak(0/i)= b :A(0/i)
With the notations of Cohen et al. (2018), the above discussion is summarized by the following

concise typing rule:

� � ϕ : F �, i : I�A �, ϕ, i : I� u :A � � a0 :A(0/i)[ϕ 	→ u(0/i)]
� � compi A [ϕ 	→ u] a0 :A(1/i)[ϕ 	→ u(1/i)]

The notation� � a :A[ϕ 	→ b] is short for� � a :A and�, ϕ � a= b :A, so a has typeA and on
ϕ it is judgmentally equal to b. This hence lets us very concisely formulate properties (5) and (6) in
the typing rule. Formore details how this works formally, both type theoretically and semantically,

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1168 A. Mörtberg

see Cohen et al. (2018). Note that other combinations of constraints are possible; for instance, one
does not have to delete absurd faces or one can consider composition problems where permu-
tations matter. In fact, Angiuli et al. (2018b) consider a variation of composition where none
of properties (1)–(3) are satisfied which enables some optimizations in the way the composition
operations compute in cartesian cubical type theory.

5.4 Kan composition semantically
Semantically, these operations can be elegantly formulated using the internal language of the
presheaf topos of cubical sets. Following Orton and Pitts (2018), we can express this as addi-
tional structure on the types in the model. Proving that the type formers preserve this structure
is the main part of the model construction, and these proofs are very similar to the computation
rules that we have formulated type theoretically in this paper and which are presented in detail for
composition in Cohen et al. (2018).

We can also understand these operations using categorical and homotopical language through
lifting diagrams. In the categorical model, we can view a type in context � as an element over �

in the slice category �̂DM /� (or in some other cubical set category than �̂DM).5 The semantic
version of transFill A a corresponds to the diagonal in the diagram:

1 A

I �

δ0

The top map corresponds to the element a as it is a point in A. The bottom map is not visible in
the syntax, but it is implicit in the substitution principle for the judgment. The dashed diagonal
map then defines a path in A and the commutativity of the top triangle corresponds to the fact
that the starting point of this path is a. This is exactly what the transFill operation gives us. The
interested reader can consult (Angiuli et al., 2021a, Section 1.2) for a more detailed discussion of
this.

If we pretend that the above is instead in the category of topological spaces, then we would
say that the map on the right has the right lifting property with respect to the endpoint inclusion
δ0 : 1→ [0, 1], which in turn means that this map has the path lifting property. In other words, we
can think of transFill as an operation that gives us a choice of solutions to path lifting problems.

We can also express the Kan filling operation diagrammatically. It corresponds to choice of a
diagonal map as in the diagram below.

� A

� �

δ0∨ϕ

In general, the square and open square on the left can be n-dimensional, but in the diagram we
have just drawn the special case used for path concatenation. The map on the left is an endpoint
inclusion combined with a “formula” specifying the shape of the open box. This formula is essen-
tially a large disjunction of the faces in the syntax for the filling problem (in the case of path
concatenation it is (j= 0)∨ (j= 1)). The precise definition of how this map is then defined can be
elegantly expressed using pushout products as in Gambino and Sattler (2017, Section 2).

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1169

The composition operation can also be drawn using lifting diagrams. This is done by pulling
back the diagram for the filling operation as in the diagram below. The composition operation
then produces the longer dashed arrow from the “lid” of the square in:

. . � A

– � �

�

Readers familiar with Kan simplicial sets will see a close resemblance between the simplicial horn
filling diagrams and these cubical open box filling diagrams. In fact, this analogy can be made
precise by saying that a map is a fibration if it has the right lifting property with respect to maps
of the form δ0 ∨ ϕ as above (Gambino and Sattler, 2017, Section 2). Sattler (2017) has proved that
these, combined with a class of cofibrations, forms a Quillen model structure. That is, a category
suitable for developing homotopy theory in. Interestingly, this construction uses that the type
formers preserve the composition structure, in particular that the universe can be equipped with
a filling structure. This can be contrasted with the Kan simplicial set model where the existence
of the classical Quillen model structure using Kan fibrations is assumed prior to constructing the
model of the type theory. In the constructive cubical set models, the order is the opposite: first the
model of the type theory is constructed and using this Sattler (2017) constructs a model structure.

Another important difference between the cubical and simplicial models is that being “Kan” is a
structure instead of a property. For this to work constructively, additional “uniformity” conditions
on the choice of fillers are assumed. These are expressed using suitable naturality conditions and
essentially say that the chosen fillers commute with substitution. The fact that uniform fillers can
be used to obtain a constructive model of HoTT/UF was one of the main new ideas in the original
cubical set model of Bezem et al. (2014).

5.5 Variations on the Kan operations
In these notes, we have presented the composition operations of Cohen et al. (2018), but there are
many other possible variations. In order to be able to support higher inductive types, Coquand
et al. (2018) replaced the composition operations with a notion of homogeneous composition
where the type is constant. However, this is not enough and the cubical transport operations
also had to be generalized to get a theory where the operations are interderivable with the
heterogeneous composition operations of Cohen et al. (2018).

A crucial property in Cohen et al. (2018) is that Kan filling can be derived from composition
and connections; however, in the cartesian setting there are no connections and in order to over-
come this problem the composition operations need to be generalized as in Angiuli et al. (2021a,
2018b). There is also a decomposition of this generalized composition operation into generalized
homogeneous composition and another generalized form of cubical transport called “coercion”.
This makes it possible to also support higher inductive types in these models as proved by Cavallo
and Harper (2019).

There are hence a lot of parameters one can vary when constructing cubical models. This makes
the literature on these models quite difficult to get into as different papers use different variations
when talking about similar things. However, in a recent paper Cavallo et al. (2020) develop a
common generalization to all of the (structural) cubical models, making it clearer how they are all
related. By weakening the generalized composition operations of the cartesian model, the authors
construct a more general model that specializes to the specific models in presence of additional
structure.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1170 A. Mörtberg

Exercises
(1) Given p : Path A a b, prove the following groupoid laws using compositions (Hint: draw

suitable open cubes)
i. compRefl : Path (Path A a b) (compPath p refl) p
ii. reflComp : Path (Path A a b) (compPath refl p) p
iii. symComp : Path (Path A b b) (compPath (sym p) p) refl

(2) Prove associativity of compPath using only composition (harder).
(3) Using compositions we can construct various “constant” n-cubes.

i. Construct a square that has “constantly” p : Path A a a as its boundary:

a a

a a

p p

p

p

That is, construct a term of the following type given p : Path A a a:

constSquare : Pathi (Path A (p i) (p i)) p p
ii. Given p : Path A a b and q : Path A b c generalize the above square to a filler for

b c

a b

p q

p

q

iii. Given p, q : Path A a a, why is it impossible to find fillers for the following squares:

a a

a a

p q

q

p
a a

a a

q q

p

p

iv. Construct a cube that is constantly p : Path A a a on all of its edges. (hard)
(4) Given some type A, use a composition to prove:

isContrProp : isContr A→ isProp A
For the definition of isContr, see the beginning of Section 6.

(5) Use a composition to prove:
isPropIsContr : isProp (isContr A)

(6) We can define isSet : U → U that expresses that a type is an h-set as
isSet A= (x y :A)→ (p q : Path A x y)→ Path (Path A x y) p q
Use a composition to prove:
isPropIsSet : isProp A→ isSet A

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1171

(7) Given f :A→ B and g : B→A, prove the following using a composition

isPropRetract : (h : (x : A)→ Path A (g (f x)) x)→ isProp B→ isProp A

6. Glue Types and Univalence
We have now finally reached the main goal of this paper: the constructive proof of the univalence
axiom. When expressed in cubical type theory the axiom says:

univalence : (A B : U)→ Equiv (PathU A B) (EquivA B)

where the type of equivalences is defined as:

EquivA B= (e :A→ B)× IsEquiv e
IsEquiv e= (x : B)→ IsContr (Fiber e x)
IsContr C = (x : C)× ((y : C)→ Path C y x)
Fiber e x= (y :A)× Path B (e y) x

It can be proved that the above formulation of univalence is equivalent to the following two
terms:6

ua : (A B : U)→ EquivA B→ PathU A B
uaβ : (A B : U) (e : EquivA B) (a :A)→ Path B (transporti (ua A B e i) a) (e.1 a)

The naive way of trying to prove ua would be to just add it as a constant with a suitable
computation rule:

� �A : U � �A : U � � e : EquivA B
� � ua A B e : PathU A B

� �A : U � �A : U � � e : EquivA B � � a :A
� � transporti (ua A B e i) a= e.1 a : B

This would make uaβ trivially provable using refl, and we could prove univalence. But
this does not completely solve the problem of giving univalence computational meaning as
there is no rule for “transporti (ua A B e (∼ i)) b.” We could of course add another
computation rule having it compute to the inverse of e applied to b, but then what about
“transporti (compPath (ua A B e) (sym(ua A B e))) i) a”?

The above argument shows that it is not enough to just naively add some computation rules
to the type theory in order to give univalence computational meaning. It also shows that the
real difficulty with giving univalence computational meaning comes from explaining how cubical
transport, or more generally comp, should compute for paths built up using ua. Note that this
argument is not a proof that it is impossible to just add a ua constant with some computation
rules, but rather that it is not sufficient to just naively add some rules which suggests that a more
structured approach is necessary.

6.1 Glue types
A more structured approach was introduced by Cohen et al. (2018) who invented a new type
theoretic construct called “Glue types.” These resemble the compositions from above, but instead
of replacing faces with n-dimensional cubes the Glue types allows faces of a type to be replaced by
equivalent types. Just as we used composition to change the sides of a line, we can use Glue types
to replace the sides of a line between types with equivalent types. Given i : I�A and two types B0

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1172 A. Mörtberg

and B1 with equivalences e0 : Equiv B0 A(0/i) and e1 : Equiv B1 A(1/i) not relying on i : I, we can
illustrate the type (in context i : I)

Glue [(i= 0) 	→ (B0, e0), (i= 1) 	→ (B1, e1)]A

using the diagram:

A(0/i) A(1/i)

B0 B1

A

Glue [(i= 0) 	→ (B0, e0), (i= 1) 	→ (B1, e1)]A

e0 e1

This explains why these types are called Glue types: they let us glue together the endpoints of the
line A with B0 and B1 along equivalences e0 and e1.7 Note that this diagram is fundamentally dif-
ferent from the diagrams we drew for compositions – the sides are not lines, they are equivalences.
This is illustrated by the sides being squiggly arrows without any specified direction.

It is straightforward to prove that the identity function is an equivalence (see exercise (1) for a
direct cubical proof of this), and we write idA : EquivAA for this equivalence. Given types A and
B in U with e : EquivA B we can construct the ua term as follows:

ua : (A B : U)→ EquivA B→ PathU A B
ua A B e= λ(i : I). Glue [(i= 0) 	→ (A, e), (i= 1) 	→ (B, idB)] B

We can illustrate this diagrammatically as follows:

B B

A B

B

ua A B e

e idB

We now have a definition of ua and the only missing part is to prove uaβ . For this, we have
to define cubical transport, and more generally composition, for Glue types. Doing this is very
complicated, and the interested reader can look at Cohen et al. (2018, Section 6.2) for a complete
definition. If one unfolds this definition in the special case of uaβ one almost gets e.1 a, except
for some trivial transports in constant types. This is hence exactly like what happened when we
proved the computation rule for J at refl, and we can again use transFill to prove uaβ .

With ua and uaβ , we can now prove the standard formulation of univalence from above.
To do this note that uaβ states that EquivA B is a retract of Path U A B. It is easy to
see that this implies that (X : U)× EquivAX is a retract of (X : U)× Path U A X. But
(X : U)× PathU A X is contractible by contrSingl and any retract of a contractible type is itself
contractible, so (X : U)× EquivAX is in fact contractible. This is another way to state the uni-
valence axiom and by Univalent Foundations Program (2013, Theorem 5.8.4) we get the desired
proof of univalence. A formalization of these results in Cubical Agda can be found at https://
github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundati
ons/Univalence.agda.

As the above proof of univalence is a concrete definition in terms of the primitives of cubi-
cal type theory, which all have computational content, it as well has computational content.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Univalence.agda
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Univalence.agda
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Univalence.agda
https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1173

Furthermore, Huber (2019) has proved that this formulation of cubical type theory satisfies
canonicity which means that any closed term of type N evaluates to a numeral. This hence
provides constructive meaning to the univalence axiom. Furthermore, it is also possible to
introduce identity types in cubical type theory and prove the univalence axiom expressed
using them instead of paths (for a formal proof see https://github.com/agda/cubical/blob/
ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Id.agda). This means that
any term in HoTT/UF can be translated to cubical type theory and hence be given computational
meaning.

With all of this, we can now finally transport arbitrary properties and structures between
equivalent types. Let us spell this out for monoids.

Example 6.1. Combining ua and subst, we get a convenient function for transporting results
between equivalent types:

substEquiv : (P : U → U) (A B : U) (e : EquivA B) → P A→ P B
substEquiv P A B e x= substU P A B (ua e) x

In the case when P is isMonoid, this gives us a way of transporting monoid structures between
related types as discussed in Example 4.1. A classic result in HoTT/UF is that isomorphic types
are equivalent (see exercise (2)). Unary and binary numbers are clearly isomorphic, and we can
hence use substEquiv to transport the additive monoid structure from unary to binary numbers.
This means that we will get an addition operation on binary numbers induced by the one on
unary numbers. As we have given computational meaning to cubical transport at all type formers
involved, we can see that this operation will add two binary numbers by translating them to unary,
adding them using unary addition, and then translating back to binary. This back and forth actu-
ally follows from the way cubical transport is defined for function types (remember that we had
to transport “backwards” in the definition).

Such an addition operation on binary numbers might seem quite naive, but it turns out that
we can actually do much more using univalence. The key realization is that univalence extends to
a general principle called the structure identity principle (SIP) (Univalent Foundations Program,
2013, Section 9.8) which says that any property can be transported between equivalent structured
types. We can define the type of monoids as

Monoid= (A : U)× isMonoid A
The SIP then lets us lift a structured equivalence on the underlying types of M,N :Monoid to

a path betweenM and N. Combining this with subst we can now transport any property proved
for M to N. We can hence prove that binary numbers with efficient binary addition is a monoid
and relate this to the additive monoid on unary numbers. This way we achieve a clear separation
of concerns (Dijkstra, 1974) where proofs can be done using unary numbers and then transported
over to binary numbers which are better suited for doing computations than proving proper-
ties. A cubical version of the SIP and many of its consequences for formalizing mathematics and
computer science can be found in the paper of Angiuli et al. (2021b).

6.2 Glue types semantically
Glue types can also be presented internally in the presheaf topos of cubical sets we’ve seen in these
notes. This, together with a proof of a formulation of univalence without universes, was worked
out by Orton and Pitts (2018) and later extended to also incorporate universes by Licata et al.
(2018). The typing rule for Glue types can be expressed as:

� �A �, ϕ � B �, ϕ � e : EquivA B
� � Glue [ϕ 	→ (B, e)]A

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Id.agda
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Id.agda
https://doi.org/10.1017/S0960129521000311

1174 A. Mörtberg

This can be expressed diagrammatically as follows:

�, ϕ �

B

A

∼
e

A

Glue [ϕ 	→ (B, e)]A

The diagram states the same thing as the typing rule for Glue types: given a type A defined on
all of � and a type B which is equivalent to the restriction of A on �, ϕ the Glue type gives us
a total type defined on all of �. Interestingly, there is a very similar construction in the proof of
univalence in the Kan simplicial set model (Kapulkin and Lumsdaine, 2012, Theorem 3.4.1) where
a more or less identical diagram occurs. For a discussion of the relationship between these, see
Cohen et al. (2018, Section 6.1). The general form of this was coined as the Equivalence Extension
Property by Awodey and plays an important role in the work of Sattler (2017) for constructing a
Quillen model structure from a cubical model of HoTT/UF.

6.3 Variations
Just as there are differences in how the composition operations are formulated in different models,
there are also variations in how the Glue types are formulated. It might seem strange to introduce
the very general Glue types when we only want to be able to prove ua. There is indeed a simpler
formulation in cartesian cubical sets which is tailored for proving ua and which Angiuli et al.
(2018b) call “V-types.” These lets us omit the idB side in the definition of ua using Glue types and
directly get the dashed line in:

B B

A

B

V A B ee

However, this variation is weaker than Glue types in that they don’t let us directly equip the uni-
verse with a composition structure. To remedy this, Angiuli et al. (2018b) introduce another quite
complicated type of compositions in the universe which essentially correspond to a special case of
Glue types.

Another, even simpler variation called G-types, can be found in Bezem et al. (2019). However,
this variation does not work in structural cubical models and type theories as explained by Angiuli
(2019, p. 65).

Exercises
(1) Prove idA : EquivAA using a connection.
(2) Given f :A→ B and g : B→A prove the following using only compositions (hard):

isoToEquiv : ((y : B)→ Path B (f (g y)) y)→ ((x :A)→ Path A (g (f x)) x)→ EquivA B
This lemma is very useful for constructing equivalences.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1175

(3) Prove that not : bool→ bool from exercise (4) in Section 3 is an equivalence (Hint: use
isoToEquiv). Combine this with ua to get a non-trivial path from bool to bool. What
happens if we transport true along it?

(4) Use a 2-dimensional Glue type to prove

uaIdEquiv : Path (PathU A A) (ua idA) refl

7. Conclusions and Further Reading
We end these lecture notes with some pointers to further reading about cubical methods in
HoTT/UF that has not already been discussed in the paper. These pointers are in no way meant to
be an exhaustive list of the interesting literature on cubical methods in HoTT/UF, but rather just
some pointers to papers that an interested reader can look into next.

For the reader who wants more hands-on experience with the ideas presented in these notes
we recommend trying out Cubical Agda (Vezzosi et al., 2019, 2021). A tutorial to Cubical Agda
with many exercises can be found at https://github.com/HoTT/EPIT-2020/tree/main/
04-cubical-type-theory. There are also quite a few papers reporting on formalization projects
using Cubical Agda, including a cubical version of the SIP (Angiuli et al., 2021b), synthetic
homotopy theory (Mörtberg and Pujet, 2020), proof theory and ordinal notations (Forsberg et al.,
2020), and a formalization of π-calculus (Veltri and Vezzosi, 2020).

There are also some interesting papers describing various independence results that have been
proved using cubical methods. For instance, Uemura (2019) used a cubical variation of assem-
blies to construct an impredicative universe that does not satisfy a form of propositional resizing,
Coquand et al. (2017) showed that countable choice cannot be proved in univalent type the-
ory with propositional truncation, and the independence of Church’s thesis in univalent type
theory was shown by Swan and Uemura (2019). Another interesting recent development is a
normalization result for cubical type theory proved by Sterling and Angiuli (2021).

As explained in these notes, cubical type theory is constructive and hence satisfies the existence
property. This means that we can write down existence statements using �-types and extract
witnesses automatically. A famous example of this is the so-called “Brunerie number”: a concrete
synthetic definition of n ∈Z such that π4(S3)=Z/nZ (Brunerie, 2016). This construction has
been formalized Cubical Agda,8 but it has so far not been possible to compute this numeral due
to the computational complexity of the involved constructions. This is hence a very important
open problem, and solving it would lead to the possibility of constructively computingmany other
topological invariants using cubical type theory.

Finally, an important problem with cubical type theory is the question whether we can inter-
pret all of the results that we prove in topological spaces or even any (Grothendieck) ∞-topos
(Shulman, 2019). Currently, these questions have not been fully resolved for the various cubical
type theories and models that we have discussed in this paper. However, there has been some
recent progress on an “equivariant” cubical set model that is equivalent to spaces (Riehl, 2019).
We are hence very optimistic that these issues will be resolved in the near future, leading to even
more exciting developments in HoTT/UF using cubical methods.

Acknowledgements. The author is very grateful to Carlo Angiuli, Elisabeth Bonnevier and Evan Cavallo for commenting
on earlier versions of these notes. Multiple explanations and diagrams are borrowed from the Ph.D. thesis of Angiuli (2019).
The author would also like to thank the organizers of the 2019 Homotopy Type Theory Summer School for inviting him to
lecture and the students that attended the school for their many good questions. The insightful comments and suggestions
by the reviewers and editor also helped substantially improving these notes. The material in this paper is based upon research
supported by the Swedish Research Council (SRC, Vetenskapsrådet) under Grant No. 2019-04545.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/HoTT/EPIT-2020/tree/main/04-cubical-type-theory
https://github.com/HoTT/EPIT-2020/tree/main/04-cubical-type-theory
https://doi.org/10.1017/S0960129521000311

1176 A. Mörtberg

Notes
1 This course was in turn based on a series of lectures given at Inria Sophia Antipolis in May 2017. Those lectures covered
the basics of cubical type theory through the cubicaltt system and the lecture notes can be found at: https://github.com/
mortberg/cubicaltt/tree/master/lectures.
2 By “proposition” we mean the “homotopy propositions” or “−1-types” of HoTT/UF. That is, types where all elements are
equal.
3 The symbol “ ” is hiragana for “yo”.
4 This is not true for simplicial sets where the product of representables has to be subdivided in order to form a simplicial set
again. The problem boils down to simplices not being closed under products, for example, I× I is a square which has to be
subdivided into two triangles glued together along the diagonal in order to be realized as simplices.
5 Note that we now also use the letter � for the cubical set in �̂DM corresponding to the semantic context.
6 See https://groups.google.com/forum/#!msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ for the original dis-
cussion of this.
7 There are a many different of notions of “gluing” in the literature, for instance the gluing axiom for sheaves or Artin gluing
in topos theory. The notion of gluing considered here in the form of Glue types has no relationship with these other notions
apart from the name.
8 See https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Experiments/Brunerie.
agda.

References
Angiuli, C. (2019). Computational Semantics of Cartesian Cubical Type Theory. Phd thesis, Carnegie Mellon University.
Angiuli, C., Brunerie, G., Coquand, T., Hou (Favonia), K.-B., Harper, R. and Licata, D. R. (2021a). Syntax and Models of

Cartesian Cubical Type Theory. Preprint.
Angiuli, C., Cavallo, E., Hou (Favonia), K.-B., Harper, R. and Sterling, J. (2018a). The RedPRL proof assistant (invited paper).

In: Blanqui, F. and Reis, G. (eds.), 13th International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP 2018), Electronic Proceedings in Theoretical Computer Science, vol. 274.

Angiuli, C., Cavallo, E., Mörtberg, A. and Zeuner, M. (2021b). Internalizing representation independence with univalence.
Proceedings of the ACM on Programming Languages 5 (POPL). 1–30. https://dl.acm.org/doi/10.1145/3434293

Angiuli, C., (Favonia), K.-B. H. and Harper, R. (2018b). Cartesian cubical computational type theory: Constructive reasoning
with paths and equalities. In: 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018,
Birmingham, UK, 6:1–6:17.

Awodey, S. (2018). A cubical model of homotopy type theory. Annals of Pure and Applied Logic 169 (12) 1270–1294. Logic
Colloquium 2015.

Bezem, M., Coquand, T. and Huber, S. (2014). A model of type theory in cubical sets. In: 19th International Conference on
Types for Proofs and Programs (TYPES 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 26, 107–128.

Bezem, M., Coquand, T. and Huber, S. (2019). The univalence axiom in cubical sets. Journal of Automated Reasoning 63
159–171. https://link.springer.com/article/10.1007/s10817-018-9472-6

Bezem, M., Coquand, T. and Parmann, E. (2015). Non-constructivity in Kan simplicial sets. In: Altenkirch, T. (ed.) 13th
International Conference on Typed Lambda Calculi and Applications (TLCA 2015), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 38, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 92–106.

Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H. B., Spitters, B. and Vezzosi, A. (2019). Guarded cubical type theory.
Journal of Automated Reasoning 63 211–253. https://link.springer.com/article/10.1007/s10817-018-9471-7

Brunerie, G. (2016). On the Homotopy Groups of Spheres in Homotopy Type Theory. Phd thesis, Université de Nice.
Buchholtz, U. and Morehouse, E. (2017). Varieties of cubical sets. In: Höfner, P., Pous, D. and Struth, G. (eds.) Relational and

Algebraic Methods in Computer Science, Springer International Publishing, 77–92.
Cavallo, E. and Harper, R. (2019). Higher inductive types in cubical computational type theory. Proceedings of the ACM on

Programming Languages 3 (POPL) 1:1–1:27.
Cavallo, E., Mörtberg, A. and Swan, A. W. (2020). Unifying cubical models of univalent type theory. In: Fernández, M.

and Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic (CSL 2020), Leibniz International
Proceedings in Informatics (LIPIcs), vol. 152, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
14:1–14:17.

Clairambault, P. and Dybjer, P. (2011). The biequivalence of locally cartesian closed categories and martin-löf type theories.
In: Ong, L. (ed.) Typed Lambda Calculi and Applications, Berlin, Heidelberg, Springer, 91–106.

Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2018). Cubical type theory: A constructive interpretation of the
univalence axiom. In: Types for Proofs and Programs (TYPES 2015), LIPIcs, vol. 69, 5:1–5:34.

Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper, R. W., Howe, D. J., Knoblock, T. B.,
Mendler, N. P., Panangaden, P., Sasaki, J. T. and Smith, S. F. (1985). Implementing Mathematics with the Nuprl Proof
Development Environment, Prentice-Hall.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/mortberg/cubicaltt/tree/master/lectures
https://github.com/mortberg/cubicaltt/tree/master/lectures
https://groups.google.com/forum/#!msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Experiments/Brunerie.agda
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Experiments/Brunerie.agda
https://dl.acm.org/doi/10.1145/3434293
https://link.springer.com/article/10.1007/s10817-018-9472-6
https://link.springer.com/article/10.1007/s10817-018-9471-7
https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1177

Coquand, T. (2015). A cubical type theory. Slides of a talk in Nijmegen, Netherlands.
Coquand, T., Huber, S. and Mörtberg, A. (2018). On higher inductive types in cubical type theory. In: Proceedings of the 33rd

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’18, ACM, 255–264.
Coquand, T., Mannaa, B. and Ruch, F. (2017). Stack semantics of type theory. In: 2017 32nd Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS), 1–11.
Curien, P.-L. (1993). Substitution up to isomorphism. Fundamenta Informaticae 19 (1–2) 51–85.
Curien, P.-L., Garner, R. and Hofmann, M. (2014). Revisiting the categorical interpretation of dependent type theory.

Theoretical Computer Science 546 99–119.
Dijkstra, E. W. (1974). On the role of scientific thought. http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF.
Dybjer, P. (1996). Internal type theory. In: Lecture Notes in Computer Science, Berlin, Heidelberg, New York, Springer Verlag,

120–134.
Forsberg, F. N., Xu, C. and Ghani, N. (2020). Three equivalent ordinal notation systems in cubical agda. In: Proceedings

of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New York, NY, USA,
Association for Computing Machinery, 172–185.

Gambino, N. and Sattler, C. (2017). The Frobenius condition, right properness, and uniform fibrations. Journal of Pure and
Applied Algebra 221 (12) 3027–3068.

Hofmann, M. (1994). On the interpretation of type theory in locally cartesian closed categories. In: Proceedings of Computer
Science Logic, Lecture Notes in Computer Science, Springer, 427–441.

Hofmann, M. (1997). Syntax and Semantics of Dependent Types. In: A. Pitts & P. Dybjer (Eds.), “Semantics and Logics
of Computation” (Publications of the Newton Institute). Cambridge: Cambridge University Press, 79–130. https://www.
cambridge.org/core/books/abs/semantics-and-logics-of-computation/syntax-and-semantics-of-dependent-types/119C80
85C6A1A0CD7F24928EF866748F

Hofmann, M. and Streicher, T. (1997). Lifting Grothendieck universes. Unpublished Note. Available at https://www2.mathe
matik.tu-darmstadt.de/ streicher/NOTES/lift.pdf.

Huber, S. (2019). Canonicity for cubical type theory. Journal of Automated Reasoning 63 (2) 173–210.
Kapulkin, C. and Lumsdaine, P. L. (2012). The simplicial model of univalent foundations (after Voevodsky). Preprint

arXiv:1211.2851v4 [math.LO].
Lambek, J. and Scott, P. J. (1986). Introduction to Higher Order Categorical Logic, Cambridge University Press, USA.
Licata, D. R., Orton, I., Pitts, A. M. and Spitters, B. (2018). Internal universes in models of homotopy type theory. In: FSCD,

LIPIcs, vol. 108. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 22:1–22:17.
Lumsdaine, P. L. andWarren, M. A. (2015). The local universes model: An overlooked coherence construction for dependent

type theories. ACM Transactions on Computational Logic 16 (3) 1–31.
Martin-Löf, P. (1975). An intiutionistic theory of types: Predicative part. In: Rose, H. E. and Shepherdson, J. (eds.) Logic

Colloquium’73, Amsterdam, North–Holland, 73–118.
Martin-Löf, P. (1982). Constructive mathematics and computer programming. In: Logic, Methodology and Philosophy of

Science, VI, 153–175.
Martin-Löf, P. (1984). Intuitionistic Type Theory, Bibliopolis.
Martin-Löf, P. (1998). An intuitionistic theory of types. In: Twenty-Five Years of Constructive Type Theory (Venice, 1995),

Oxford Logic Guides, vol. 36, New York, Oxford University Press, 127–172.
McBride, C. (2002). Elimination with a motive. In: Types for Proofs and Programs, Berlin, Heidelberg, Springer, 197–216.
Mörtberg, A. and Pujet, L. (2020). Cubical synthetic homotopy theory. In: Proceedings of the 9th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2020, New York, NY, USA, Association for Computing Machinery,
158–171.

Nordström, B., Petersson, K. and Smith, J. M. (1990). Programming in Martin-Löf ’s Type Theory: An Introduction, USA,
Clarendon Press.

Orton, I. and Pitts, A. M. (2018). Axioms for modelling cubical type theory in a topos. Logical Methods in Computer Science
14 (4) 1–33.

Parker, J. (2014). Duality between Cubes and Bipointed Sets. Master’s thesis, Carnegie Mellon University.
Riehl, E. (2014). Categorical Homotopy Theory, Cambridge University Press.
Riehl, E. (2017). Category Theory in Context, Dover Publications.
Riehl, E. (2019). The equivariant uniform kan fibration model of cubical homotopy type theory. Talk given at The

International Conference on Homotopy Type Theory (HoTT 2019) at Carnegie Mellon University.
Sattler, C. (2017). The Equivalence Extension Property and Model Structures. Preprint arXiv:1704.06911v1 [math.CT].
Seely, R. A. G. (1984). Locally cartesian closed categories and type theory. Mathematical Proceedings of the Cambridge

Philosophical Society 95 (1) 33–48.
Shulman, M. (2019). All (∞, 1)-Toposes have Strict Univalent Universes. Preprint arXiv:1904.07004 [math.AT].
Sterling, J. and Angiuli, C. (2021). Normalization for Cubical Type Theory. Preprint arXiv:2101.11479 [cs.LO].
Swan, A. (2018). Separating Path and Identity Types in PresheafModels of Univalent Type Theory. Preprint arXiv:1808.00920

[math.LO].

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
https://www.cambridge.org/core/books/abs/semantics-and-logics-of-computation/syntax-and-semantics-of-dependent-types/119C8085C6A1A0CD7F24928EF866748F
https://www.cambridge.org/core/books/abs/semantics-and-logics-of-computation/syntax-and-semantics-of-dependent-types/119C8085C6A1A0CD7F24928EF866748F
https://www.cambridge.org/core/books/abs/semantics-and-logics-of-computation/syntax-and-semantics-of-dependent-types/119C8085C6A1A0CD7F24928EF866748F
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://doi.org/10.1017/S0960129521000311

1178 A. Mörtberg

Swan, A. and Uemura, T. (2019). On church’s thesis in cubical assemblies.
The cubical Development Team (2013). cubical. Available at https://github.com/simhu/cubical/.
The cubicaltt Development Team (2015). cubicaltt. Available at https://github.com/simhu/cubical/.
The mlang Development Team (2019). mlang. Available at https://github.com/molikto/mlang/.
The RedPRL Development Team (2016). RedPRL. Available at http://www.redprl.org/.
The RedPRL Development Team (2018). redtt. Available at https://github.com/RedPRL/redtt.
The RedPRL Development Team (2020). cooltt. Available at https://github.com/RedPRL/cooltt.
The yacctt Development Team (2018). yacctt. Available at https://github.com/mortberg/yacctt/.
Uemura, T. (2019). Cubical assemblies, a univalent and impredicative universe and a failure of propositional resizing.

In: Dybjer, P., Santo, J. E. and Pinto, L. (eds.) 24th International Conference on Types for Proofs and Programs (TYPES
2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 130, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 7:1–7:20.

Univalent Foundations Program, T. (2013). Homotopy Type Theory: Univalent Foundations of Mathematics. http://
homotopytypetheory.org/book, Institute for Advanced Study.

Veltri, N. and Vezzosi, A. (2020). Formalizing Pi-calculus in guarded cubical agda. In: Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New York, NY, USA, Association for Computing
Machinery, 270–283.

Vezzosi, A., Mörtberg, A. and Abel, A. (2019). Cubical agda: A dependently typed programming language with univalence
and higher inductive types. Proceedings of the ACM on Programming Languages 3 (ICFP) 87:1–87:29.

Vezzosi, A., Mörtberg, A. and Abel, A. (2021). Cubical agda: A dependently typed programming language with univalence
and higher inductive types. Journal of Functional Programming 31 e8:1–29.

Voevodsky, V. (2009). Notes on type systems. Unpublished note available at https://www.math.ias.edu/vladimir/sites/
math.ias.edu.vladimir/files/expressions_current.pdf (retrieved May, 2021).

Voevodsky, V. (2010). Univalent foundations project. A modified version of an NSF grant application.
Voevodsky, V. (2011). Univalent foundations. Plenary lecture at WoLLIC, May 18.
Voevodsky, V. (2014). The equivalence axiom and univalent models of type theory. (Talk at CMU on February 4, 2010).

Preprint arXiv:1402.5556 [math.LO].
Voevodsky, V. (2015). An experimental library of formalized mathematics based on the univalent foundations. Mathematical

Structures in Computer Science 25 1278–1294.

Appendix A. Solutions to Exercises
We have collected solutions to the exercises in the notes here. Some results have been formal-
ized in cubicaltt and Cubical Agda in which case we refer to the formalized solutions as
well.

Section 3: Cubical type theories and their models
(1) To prove that {i} × {j} ∼= {i, j} in�, we have to analyze what products in� look like. By the

definition of products {i} × {j} is an object with morphisms π1 :Hom� ({i} × {j}, {i}) and
π2 :Hom� ({i} × {j}, {j}) satisfying the usual universal property. By the definition of hom-
sets in � we see that π1 is a function {i} → ({i} × {j})+ 2 (recall that the functions go in
the opposite direction) and similarly for π2. Furthermore, as the functions go the opposite
direction the universal property has to correspond to the universal property of coproducts.
Therefore, {i} × {j} = {i} � {j} ∼= {i, j}.

(2) Given a, a′ :A and b, b′ : B, the binary version of ap can be proved as:

ap2 : (f :A→ B→ C) (p : Path A a a′) (q : Path B b b′)→ Path C (f a b) (f a′ b′)
ap2 f p q= λ(i : I). f (p i) (q i)

(3) Given f , g :A→ B→ C, the binary (non-dependent) version of funExt can be proved as:

funExt2 : (p : (x :A) (y : B)→ Path C (f x y) (g x y))→ Path (A→ B→ C) f g
funExt2 f g p= λ(i : I) (x :A) (y : B). p x y i

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/simhu/cubical/
https://github.com/mortberg/cubicaltt/
https://github.com/molikto/mlang/
http://www.redprl.org/
https://github.com/RedPRL/redtt
https://github.com/RedPRL/cooltt
https://github.com/mortberg/yacctt/
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/expressions_current.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/expressions_current.pdf
https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1179

(4) Negation on Booleans not : bool→ bool can be defined as:

not : bool→ bool
not true= false
not false= true

We can then prove notK with a helper lemma:

notK′ : (b : bool)→ Path bool (not (not b)) b
notK′ true= refl
notK′ false= refl

notK : Path (bool→ bool) (not ◦ not) id
notK= funExt not not notK′

(5) Given dependent functions f , g : (x :A)→ B, funExt for dependent functions can be defined
as:

funExtDep : (p : (x :A)→ Path B (f x) (g x))→ Path ((x :A)→ B) f g
funExtDep f g p= λ(i : I) (x :A). p x i
Note that the proof is identical to the one of non-dependent funExt. With this, we can give
an alternative proof of isPropPi:

isPropPi : (A : U) (B :A→ U) (h : (x :A)→ isProp (B x))→ isProp ((x :A)→ B)
isPropPi A B h= λ (f g : (x :A)→ B). funExtDep (λ(x :A). h x (f x) (g x))

(6) Given p : Path A a b and i, j : I, we can draw the squares corresponding to the various
connections as:
i.

b a

a a

p (¬i∧ j)

p (¬i)

p j p 0

p 0

j

i

ii.

a a

a b

p (i∧ ¬j)

p 0

p 0 p (¬j)

p i

j

i

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

1180 A. Mörtberg

iii.

a a

b a

p (¬i∧ ¬j)

p 0

p (¬j) p 0

p (¬i)

j

i

iv.

b b

b a

p (¬i∨ j)

p 1

p 1 p j

p (¬i)

j

i

v.

a b

b b

p (i∨ ¬j)

p i

p (¬j) p 1

p 1

j

i

vi.

b a

b b

p (¬i∨ ¬j)

p (¬i)

p 1 p (¬j)

p 1

j

i

(7) The solution to this problem is analogous to the one above, but with cubes instead of
squares.

(8) The hom-set Hom� ({i1, . . . , in}, {i}) correspond to the set of functions {i} → {i1, . . . , in} +
{0, 1}, so it has n+ 2 elements. The hom-set Hom�DM ({i1, . . . , in}, {i}) on the other hand
is the set of functions {i} → DM ({i1, . . . , in}). This is the number of elements of the free
distributive lattice on 2n generators as negations can be pushed down to the names (so the

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1181

generators are {i1, . . . , in,¬i1, . . . ,¬in}). These numbers are called the “Dedekind num-
bers” and grow incredibly fast (the 10:th Dedekind number is in fact not even known). See
https://en.wikipedia.org/wiki/Dedekind_number and https://oeis.org/A000372 for details.

(9) Given A : U , the alternative version of contrSingl can be proved as:

contrSingl′ : (a b :A) (p : Path A a b)→ Path ((x :A)× (Path A x b)) (b, refl) (a, p)
contrSingl′ a b p= λ(i : I). (p (¬i), λ(j : I). p (¬i∨ j))

(10) The full square looks like this:

base base

base base

loop (i∧ j)

loop i

refl base loop j

refl base

j

i

So loop (i∧ j) is an identification of refl base and loop over an identification of refl base
and loop. This square does hence not prove that loop is trivial; for this to be the case, all but
one side would have had to been refl base.

(11) The homotopy can be constructed as:

hmtpy : Path (Path S1 base base) (refl base) (λ(i : I). loop (i∧ ¬i))
hmtpy= λ(j i : I). loop (j∧ (i∧ ¬i))

(12) Assuming decidable equality on I internally means that we have a function:

dec : �(i j : I). bool
that returns true if i≡ j and false otherwise. With this we can define

oops : PathU (Unit, Empty)
oops= λ(i : I). if dec i 0 then Unit else Empty

Section 4: Cubical transport
(1) In order to give the negative definition of cubical transport for A× B, we first have to con-

sider transporti (A× B) p to be a neutral value and give the reduction rules when applying
the eliminators to this. This is easily done by adding the equations:

(transporti (A× B) p).1= transporti A p.1
(transporti (A× B) p).2= transporti B p.2

(2) To define cubical transport in sum types A+ B, we assume that we are given x :A(0/i) and
y : B(0/i), and write:

transporti (A+ B) (inl x)= inl (transporti A x)
transporti (A+ B) (inr y)= inr (transporti B y)

(3) When defining cubical transport for �- and �-types, one runs into the problem that one
needs a path connecting an element with its transport (just like was needed to prove the
computation rule for J). Indeed, consider the case of cubical transport in �-types. For this,

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://en.wikipedia.org/wiki/Dedekind_number
https://oeis.org/A000372
https://doi.org/10.1017/S0960129521000311

1182 A. Mörtberg

we need to fill the ? in:
�, i : I� (x :A)× B : U � � p : (x :A(0/i))× B(0/i)

� � transporti ((x :A)× B) p=?

To this end we can write down the following:

(transporti A p.1, transporti (B ?) p.2)

There is however no way to fill this ? at this point as we would need a path from
p.1 to transporti A p.1. Indeed, p.2 is in B(0/i) p.1, but the result should be in
B (1/i) (transporti A p.1) as we have picked transporti A p.1 as the first component of
the result pair. Note that there is not really anything else we could have picked for the first
component as we need something in A(1/i) and the only way to get something of this type
with what we’re given is by transporting p.1 in A.

The problem when defining cubical transport for �-types is similar, but there one needs
to also handle the reversal coming from transporting backwards.

Section 5: Kan composition operations
(1) i.

compRefl : (p : Path A a b)→ Path (Path A a a) (compPath p refl) p
compRefl p= λ(k j : I). compi A [(j= 0) 	→ a, (j= 1) 	→ b, (k= 1) 	→ p j] (p j)

ii.

reflComp : (p : Path A a b)→ Path (Path A a a) (compPath refl p) p
reflComp p= λ(k j : I). compi A [(j= 0) 	→ a, (j= 1) 	→ p i, (k= 1) 	→ p (i∧ j)] a

iii.

symComp : (p : Path A a b)→ Path (Path A b b) (compPath (sym p) p) refl
symComp p=

λ(k j : I). compi A [(j= 0) 	→ b, (j= 1) 	→ p (i∨ k), (k= 1) 	→ b] (p (¬j∨ k))

(2) This is quite a bit more difficult and the interested reader can consult:
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cub
ical/Foundations/GroupoidLaws.agda#L84.

(3) i. For a proof in cubicaltt see:
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea11
4ea/examples/prelude.ctt#L165 For a proof in Cubical Agda of a special case which
appears in the Hopf fibration see:
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/
Cubical/HITs/S1/Base.agda#L392

ii. This is a direct adaptation of the above cubicaltt proof.
iii. These squares would prove that p · p= q · q and q · p= p · q. This is not always true in

the presence of univalence. For example if p identifies Z with itself by adding 1 and q
just flips the sign. Then transporting along p · p will add 2, but transporting along q · q
will just flip the sign twice. Also, transporting along q · p will flip the sign and add 1, so
−3 will be mapped to 4. But transporting along p · q will add 1 and then flip the sign, so
−3 will be mapped to 2. These paths hence cannot be equal in general in the presence
of univalence.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/GroupoidLaws.agda#L84
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/GroupoidLaws.agda#L84
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/examples/prelude.ctt#L165
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/examples/prelude.ctt#L165
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/HITs/S1/Base.agda#L392
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/HITs/S1/Base.agda#L392
https://doi.org/10.1017/S0960129521000311

Mathematical Structures in Computer Science 1183

iv. This is substantially harder and various solution can be found in:
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea11
4ea/examples/constcubes.ctt.

(4)

isContrProp : isContr A→ isProp A
isContrProp h x y= λ(i : I). compj A [(i= 0) 	→ h.2 x (¬j), (i= 1) 	→ h.2 y (¬j)] h.1

(5) For a Cubical Agda proof see:
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cub
ical/Foundations/Prelude.agda#L406 (note that hcomp is just compi where the type line
doesn’t depend on i).

(6) For a Cubical Agda proof see:
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cub
ical/Foundations/Prelude.agda#L418.

(7)

isPropRetract : (h : (x : A)→ Path A (g (f x)) x)→ isProp B→ isProp A
isPropRetract h p x y=

λ(i : I). compj A [(i= 0) 	→ h x j, (i= 1) 	→ h y j] (g (p (f x) (f y) i))

Section 6: Glue types and univalence
(1) We can prove that the identity function is an equivalence using a connection as

idfunA :A→A
idfunA x= x

idA : EquivAA
idA = (idfunA, λ(y :A). ((y, refl), λ(z : Fiber idfunA y) (i : I). (z.2 (¬i), λ(j : I). z.2 (¬i∨ j)))

(2) Proving isoToEquiv is quite involved and a proof in cubicaltt can be found at:
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/
examples/equiv.ctt#L221
A proof in Cubical Agda can be found at:
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cub
ical/Foundations/Isomorphism.agda#L104.

(3) Using the solution of exercise (4) in Section 3, it is easy to prove that not is an equivalence:

notEquiv : Equiv bool bool
notEquiv= isoToEquiv not not notK′ notK′

Using ua we can turn this into a path:

notPath : PathU bool bool
notPath= ua notEquiv

By uaβ , we know that transporting true along this path will apply the function underlying
the equivalence, so the result will be false. Note that this will compute judgmentally despite
uaβ only holding up to a path. The reason being that transporti bool b is just b as bool has
no parameters.

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/examples/constcubes.ctt
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/examples/constcubes.ctt
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Prelude.agda#L406
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Prelude.agda#L406
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Prelude.agda#L418
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Prelude.agda#L418
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/examples/equiv.ctt#L221
https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/examples/equiv.ctt#L221
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Isomorphism.agda#L104
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Isomorphism.agda#L104
https://doi.org/10.1017/S0960129521000311

1184 A. Mörtberg

(4)
uaIdEquiv : Path (PathU A A) (ua idA) refl
uaIdEquiv i j= Glue [(i= 1)∨ (j= 0)∨ (j= 1) 	→ (A, idA)]A
A formalized proof of this can be found at: https://github.com/agda/cubical/blob/ef62b8439
7396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Univalence.agda#L40

Cite this article: Mörtberg A (2021). Cubical methods in homotopy type theory and univalent foundations. Mathematical
Structures in Computer Science 31, 1147–1184. https://doi.org/10.1017/S0960129521000311

https://doi.org/10.1017/S0960129521000311 Published online by Cambridge University Press

https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Univalence.agda#L40
https://github.com/agda/cubical/blob/ef62b84397396d48135d73ba7400b71c721ddc94/Cubical/Foundations/Univalence.agda#L40
https://doi.org/10.1017/S0960129521000311
https://doi.org/10.1017/S0960129521000311

	Cubical methods in homotopy type theory and univalent foundations
	Introduction
	Background
	Cubical Type Theories and Their Models
	Cartesian cubical sets
	Cubical set models
	Path types
	Connections and reversals

	Cubical Transport
	Recovering HoTT/UF transport and path induction
	Judgmental computation rules for cubical transport

	Kan Composition Operations
	Examples of compositions
	Cubical transport as special case of composition
	Composition in general
	Kan composition semantically
	Variations on the Kan operations

	Glue Types and Univalence
	Glue types
	Glue types semantically
	Variations

	Conclusions and Further Reading
	Solutions to Exercises

