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Abstract

Let n, r, k ∈ N. An r-colouring of the vertices of a regular n-gon is any mapping χ : Zn → {1, 2, . . . , r}.
Two colourings are equivalent if one of them can be obtained from another by a rotation of the polygon.
An r-ary necklace of length n is an equivalence class of r-colourings of Zn. We say that a colouring is k-
alternating if all k consecutive vertices have pairwise distinct colours. We compute the smallest number r
for which there exists a k-alternating r-colouring of Zn and we count, for any r, 2-alternating r-colourings
of Zn and 2-alternating r-ary necklaces of length n.
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1. Introduction

Let n, r, k ∈ N. An r-colouring of the vertices of a regular n-gon is any mapping
χ : Zn → {1, 2, . . . , r}. The group Zn naturally acts on its colourings by

(χ + a)(x) = χ(x − a).

Colourings χ and ψ are equivalent if there is a ∈ Zn such that χ + a = ψ, that is, if one
of them can be obtained from another by a rotation of the polygon. An r-ary necklace
of length n is an equivalence class of r-colourings of Zn. It is well-known that there
are

1
n

∑
d|n

ϕ(d)rn/d

r-ary necklaces of length n, where ϕ is the Euler totient function (see [2]).
In [5] and [4] symmetric colourings of Zn and symmetric necklaces were counted.

A colouring χ of Zn is symmetric if there is a ∈ Zn such that χ(a − x) = χ(x) for all
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x ∈ Zn, that is, if it is invariant under some reflection of the polygon. There are

S r(n) =


∑
d|n

d
∏

p|(n/d)

(1 − p)r(d+1)/2 n odd,∑
d|(n/2)

d
∏

p|(n/2d)

(1 − p)(rd+1 + rd) −
∑
d|m

d
∏

p|(m/d)

(1 − p)r(d+1)/2 n even,

symmetric r-colourings of Zn (m is the greatest odd divisor of n) and

sr(n) =

 1
2 (r + 1)rn/2 if n is even,
r(n+1)/2 if n is odd,

symmetric r-ary necklaces of length n.
In this paper we study alternating colourings of Zn. We say that a colouring χ of

Zn is k-alternating if all k consecutive vertices have pairwise distinct colours, that is,
if for every x ∈ Zn, the restriction of χ to {x, x + 1, . . . , x + k − 1} is injective. Clearly,
a colouring equivalent to a k-alternating one is also k-alternating. We compute the
smallest number r for which there exists a k-alternating r-colouring of Zn and we
count, for any r, 2-alternating r-colourings of Zn and 2-alternating r-ary necklaces of
length n.

2. Computing the smallest number of colours

Given n, k ∈ N with k ≤ n, let ρ(k, n) denote the smallest number r for which there
exists a k-alternating r-colouring of the vertices of a regular n-gon. It is clear that
k ≤ ρ(k, n) ≤ n.

Theorem 2.1. Given n and k ≤ n, write n = mk + l and l = k0m + m0, where 0 ≤ l < k
and 0 ≤ m0 < m. Then

ρ(k, n) =

⌈ n
m

⌉
= k +

⌈ l
m

⌉
=

k + k0 if m0 = 0,
k + k0 + 1 otherwise.

Proof. Let χ : Zn → {1, 2, . . . , r} be a k-alternating r-colouring. Then for each
i ∈ {1, 2, . . . , r}, one has |χ−1(i)| ≤ m. Indeed, otherwise there is an increasing sequence
(at)m+1

t=1 in {0, 1, . . . , n − 1} such that at+1 − at ≥ k for each t ≤ m and a1 + n − am+1 ≥ k,
which implies that (m + 1)k ≤ n. It follows that r ≥ dn/me.

Conversely, let r = k + dl/me. Partition Zn into m consecutive blocks, the first m0

of which have (k + k0 + 1) elements and the next m − m0 have (k + k0) elements.
We can do this because m0(k + k0 + 1) + (m − m0)(k + k0) = m(k + k0) + m0 = n.
Define χ : Zn → {1, 2, . . . , r} on each block {a + 1, a + 2, . . . , a + i, . . .} by χ(a + i) = i.
Figure 1 illustrates the colouring for n = 17 and k = 3. It is easy to see that the
colouring χ so defined is k-alternating. �
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Figure 1. Example of a colouring for Theorem 2.1.

Corollary 2.2.

(1) ρ(k, n) = k if and only if k | n.
(2) ρ(k, n) = n if and only if 2k > n.
(3) If 2k ≤ n, then ρ(k, n) ≤ dn/2e.

Proof. (1) ρ(k, n) = k if and only if m0 = 0 and k0 = 0, that is, l = 0.
(2) 2k > n if and only if m = 1. If m = 1, then ρ(k, n) = dn/1e = n. If m ≥ 2, then

ρ(k, n) = dn/me ≤ dn/2e and dn/2e < n (since n ≥ m ≥ 2).
(3) If 2k ≤ n, then m ≥ 2 and so ρ(k, n) ≤ dn/2e. �

Corollary 2.3. If n ≥ k2, then

ρ(k, n) =

k if k | n,
k + 1 otherwise.

Proof. Since n ≥ k2, one has m ≥ k, so k0 = 0 and m0 = l. �

Using Theorem 2.1, we can compute ρ(k,n) for small k and n < k2. Since ρ(2,2) = 2
and ρ(2, 3) = 3, we can extend Corollary 2.3 in the case k = 2.

Corollary 2.4. We have

ρ(2, n) =

2 if n is even,
3 otherwise.

Notice that ρ(3, 3) = 3, ρ(3, 4) = 4, ρ(3, 5)=5, ρ(3, 6)=3, ρ(3, 7) = 4 and ρ(3, 8)=4.

3. Counting alternating colourings and necklaces

Given n, k, r ∈ N, let Ar(k, n) denote the number of k-alternating r-colourings of the
vertices of a regular n-gon and ar(k, n) the number of k-alternating r-ary necklaces of
length n, and let Ar(n) = Ar(2, n) and ar(n) = ar(2, n).
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Theorem 3.1. We have

Ar(n) = (r − 1)n + (−1)n(r − 1).

Theorem 3.1 is a known fact. But we give its proof for the convenience of the
reader. Our proof is direct and differs a bit from that in [3].

Proof. There are r(r − 1)n−2 colourings χ : {0,1, . . . ,n − 2} → {1, . . . , r} such that χ(i) ,
χ(i + 1) for each i < n − 2, and the number of such colourings with χ(0) = χ(n − 2) is
Ar(n − 2). Consequently,

Ar(n) = Ar(n − 2)(r − 1) + (r(r − 1)n−2 − Ar(n − 2))(r − 2)
= (r2 − 2r)(r − 1)n−2 + Ar(n − 2).

Since

Ar(2) = r(r − 1) = (r2 − 2r) + r and Ar(3) = r(r − 1)(r − 2) = (r2 − 2r)(r − 1),

it follows that if n is even, then

Ar(n) = (r2 − 2r)((r − 1)n−2 + (r − 1)n−4 + · · · + 1) + r

= (r2 − 2r)
(r − 1)n − 1
(r − 1)2 − 1

+ r

= (r − 1)n − 1 + r
= (r − 1)n + (r − 1),

and if n is odd, then

Ar(n) = (r2 − 2r)((r − 1)n−2 + (r − 1)n−4 + · · · + (r − 1))

= (r2 − 2r)(r − 1)
(r − 1)n−1 − 1
(r − 1)2 − 1

= (r − 1)((r − 1)n−1 − 1)
= (r − 1)n − (r − 1). �

Now we turn to counting ar(k, n). For every m | n, let Xm denote the set of all
k-alternating r-colourings of Zm.

Lemma 3.2. For every g ∈ Zn,

|{χ ∈ Xn : χ + g = χ}| = Ar(k, n/|〈g〉|).

Proof. Let d = |〈g〉|. For every ψ ∈ Xn/d, define ψ ∈ Xn by

ψ(i + (n/d) j) = ψ(i),

where i ∈ {0, 1 . . . , n/d − 1} and j ∈ {0, 1, . . . , d − 1}. Then ψ + g = ψ and the mapping

Xn/d 3 ψ 7→ ψ ∈ {χ ∈ Xn : χ + g = χ}

is a bijection.
To see that it is a surjection, let χ ∈ Xn and χ + g = χ. Define ψ ∈ Xn/d to be the

restriction of χ to {0, 1, . . . , n/d − 1}. Then ψ = χ. �
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Theorem 3.3.
ar(k, n) =

1
n

∑
d|n

ϕ(d)Ar(k, n/d).

Proof. Applying Burnside’s lemma [1, I, Section 3] gives

ar(k, n) =
1
n

∑
g∈Zn

|{χ ∈ Xn : χ + g = χ}|,

and by Lemma 3.2,
|{χ ∈ Xn : χ + g = χ}| = Ar(k, n/|〈g〉|).

For every d | n, there is exactly one subgroup of Zn of order d and the number of its
generators is ϕ(d). Hence,

ar(k, n) =
1
n

∑
d|n

ϕ(d)Ar(k, n/d). �

From Theorems 3.3 and 3.1 we obtain the following corollary.

Corollary 3.4. We have

ar(n) =
1
n

∑
d|n

ϕ(d)[(r − 1)n/d + (−1)n/d(r − 1)].
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