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Abstract

Let n,r,k € N. An r-colouring of the vertices of a regular n-gon is any mapping x : Z, — {1,2,...,r}.
Two colourings are equivalent if one of them can be obtained from another by a rotation of the polygon.
An r-ary necklace of length n is an equivalence class of r-colourings of Z,. We say that a colouring is k-
alternating if all k consecutive vertices have pairwise distinct colours. We compute the smallest number
for which there exists a k-alternating r-colouring of Z, and we count, for any r, 2-alternating r-colourings
of Z, and 2-alternating r-ary necklaces of length n.
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1. Introduction

Let n,r,k € N. An r-colouring of the vertices of a regular n-gon is any mapping
X :Zy—{1,2,...,r}. The group Z, naturally acts on its colourings by

x +a)(x) = x(x - a).

Colourings y and ¢ are equivalent if there is a € Z, such that y + a =y, that is, if one
of them can be obtained from another by a rotation of the polygon. An r-ary necklace
of length n is an equivalence class of r-colourings of Z,. It is well-known that there

are
1
- d n/d
p E e(d)r

din

r-ary necklaces of length n, where ¢ is the Euler totient function (see [2]).
In [5] and [4] symmetric colourings of Z, and symmetric necklaces were counted.
A colouring y of Z, is symmetric if there is a € Z, such that y(a — x) = y(x) for all
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X € Zy, that is, if it is invariant under some reflection of the polygon. There are

da []a-pyr n odd,

S (my= | W Pl
() =
Yoda [ a-pe*t+ry->d [ ] a-pra? neven,
di(n/2)  pl(n/2d) dim  pl(m/d)

symmetric r-colourings of Z, (m is the greatest odd divisor of n) and

_ 3G+ if nis even,
sH(n) = A1) if n is odd,

symmetric r-ary necklaces of length n.

In this paper we study alternating colourings of Z,. We say that a colouring y of
Z, 1s k-alternating if all k consecutive vertices have pairwise distinct colours, that is,
if for every x € Z,, the restriction of y to {x,x + 1,...,x + k — 1} is injective. Clearly,
a colouring equivalent to a k-alternating one is also k-alternating. We compute the
smallest number r for which there exists a k-alternating r-colouring of Z, and we
count, for any r, 2-alternating r-colourings of Z, and 2-alternating r-ary necklaces of
length n.

2. Computing the smallest number of colours

Given n, k € N with k < n, let p(k, n) denote the smallest number r for which there
exists a k-alternating r-colouring of the vertices of a regular n-gon. It is clear that
k < p(k,n) < n.

TuEOREM 2.1. Given n and k < n, write n = mk + [ and | = kom + mg, where 0 <1<k
and 0 < mg < m. Then

p(kn)z[ﬂ:ﬂ[q:{“ko if mo =0,

m k+ky+1 otherwise.

Proor. Let y : Z, = {1,2,...,r} be a k-alternating r-colouring. Then for each
i€{l,2,...,r},onehas|y~'(i)] < m. Indeed, otherwise there is an increasing sequence
(a; ’f:;l in{0,1,...,n—1}suchthata,,; —a; > kforeacht <mand a; +n—a,. >k,
which implies that (m + 1)k < n. It follows that r > [n/m].

Conversely, let r = k + [I/m]. Partition Z, into m consecutive blocks, the first mg
of which have (k + ky + 1) elements and the next m — mg have (k + ko) elements.
We can do this because mgy(k + kg + 1) + (m — mp)(k + ko) = m(k + ko) + mg = n.
Define y : Z, — {1,2,...,r}oneachblock {a+ 1,a+2,...,a+1i,...} by y(a+1i) =i
Figure 1 illustrates the colouring for n = 17 and k = 3. It is easy to see that the
colouring y so defined is k-alternating. O

https://doi.org/10.1017/5S0004972719000157 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719000157

[3] Alternating colourings of the vertices of a regular polygon 179

Ficure 1. Example of a colouring for Theorem 2.1.

COROLLARY 2.2.

(1) p(k,n) =k ifand only if k| n.
(2)  plk,n) =nif and only if 2k > n.
(3) If2k < n, then p(k,n) < [n/2].

Proor. (1) p(k,n) = k if and only if my = 0 and ky = 0, thatis, [ = 0.

(2) 2k > nif and only ift m = 1. If m = 1, then p(k,n) = [n/1] =n. If m > 2, then
plk,n) =[n/m] <[n/2]and [n/2] < n (since n > m > 2).

(3) If 2k < n, then m > 2 and so p(k, n) < [n/2]. O

COROLLARY 2.3. If n > k?, then

k ifk | n,
k+1 otherwise.

plk,n) = {

Proor. Since n > k2, one has m > k, so kg = 0 and mg = [. m]

Using Theorem 2.1, we can compute p(k, n) for small k and n < k%. Since p(2,2) = 2
and p(2, 3) = 3, we can extend Corollary 2.3 in the case k = 2.

CorOLLARY 2.4. We have

2 ifniseven,

p(2,n) = {

3 otherwise.

Notice that p(3,3) = 3, p(3,4) = 4, p(3, 5)=5, p(3,6)=3, p(3,7) = 4 and p(3, 8)=4.

3. Counting alternating colourings and necklaces

Given n, k,r € N, let A,(k, n) denote the number of k-alternating r-colourings of the
vertices of a regular n-gon and a,(k, n) the number of k-alternating r-ary necklaces of
length n, and let A,(n) = A,(2,n) and a,(n) = a,(2, n).
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THEOREM 3.1. We have
Ar(n)=(r= 1"+ (=1)"(r = 1).
Theorem 3.1 is a known fact. But we give its proof for the convenience of the
reader. Our proof is direct and differs a bit from that in [3].
Proor. There are r(r — 1)"~2 colourings y : {0, 1,...,n—2} — {1,...,r} such that y(i) #
x(i+ 1) for each i < n — 2, and the number of such colourings with y(0) = y(n — 2) is
A;(n —2). Consequently,
A =A== -1+ 0r-1D"2=Am-2)0r-2)
=@ =20 - 1" +A,(n-2).
Since
AQ=rr-1)=0"-20+r and A,Q3)=r(r—1)(r-2)="-2r0-1),
it follows that if n is even, then
Ay =@ =20 =12+ -1+ + D+r
r—=1"-1
= (- 2r)—§r_ 1;2 —
=(r—-1D)"-1+r
=@r-D"+(@r-1),
and if n is odd, then
A= =20 -2+ =1+ 4 (r = 1)

a2 =D

=" =2r(r l)—(r o1

=(r-D(r-1""-1)

=r-1"-(@-1. o

Now we turn to counting a,(k,n). For every m | n, let X, denote the set of all
k-alternating r-colourings of Z,,.

Lemma 3.2. For every g € Z,,
i € Xn 1 x + & =X}l = Ar(k, n/ K.
Prook. Let d = [(g)|. For every ¥ € X4, define W € X, by
Y + (n/d) ) = (i),
where i € {0,1...,n/d - 1}and j€{0,1,...,d — 1}. Then  + g = ¢ and the mapping
Xoja 2y =Y elyeXyix+g=x)
is a bijection.

To see that it is a surjection, let y € X, and y + g = x. Define y € X,,/4 to be the
restriction of y to {0, 1,...,n/d — 1}. Then ¢ = y. O
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THEOREM 3.3.

1
ark.m) = ~ > @A (k.n/d).

din

Proor. Applying Burnside’s lemma [1, I, Section 3] gives

1
akm) =~ > Iy € Xotx+g=xll
8€Zy

and by Lemma 3.2,
i € X x + & =X}l = Ar(k, n/ K.

For every d | n, there is exactly one subgroup of Z, of order d and the number of its
generators is ¢(d). Hence,

1
ark.m) =~ > @A (k.n/d). :
dln

From Theorems 3.3 and 3.1 we obtain the following corollary.

COROLLARY 3.4. We have

1
arm) = = " @lr = 1" + (1" (r = D).

dln
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