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Abstract

For a given vector measure n, an important problem, but in practice a difficult one, is to give a
concrete description of the dual space of L!(n). In this note such a description is presented for an
important class of measures n, namely the spectral measures (in the sense of N. Dunford) and certain
other vector and operator-valued measures that they naturally induce. The basic idea is to represent
the L'-spaces of such measures as a more familiar space whose dual space is known.

1980 Mathematics subject classification (Amer. Math. Soc.): 28 B 05, 46 G 10; Secondary 46 E 30,
47 D 35.

Introduction and statement of results

Let X be a locally convex Hausdorff space, always assumed to be quasicomplete,
and let X’ denote its continuous dual space. An X-valued measure is a ¢-additive
map n: X — X whose domain is a o-algebra of subsets of a set . The locally
convex Hausdorff space of (equivalence classes of) n-integrable functions is
denoted by L}(n); see Section 1 for the definition.

An important problem, but in practice a difficult one, is to give a satisfactory
description of the dual space, L'(n)'. Various identifications of this space, such as
a subspace of the space of all finite, countably additive measures on =, for
example, are well known, However, such descriptions are often abstract and give
little insight into the nature of the individual elements of L'(n). It is therefore
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desirable to have available a more concrete description of the elements of L'(n),
whenever possible.

A first and perhaps obvious step in this direction is to note that there is a very
natural way to generate a class of continuous linear functionals on L'(n) which
have a particularly simple form. For, with each element x’ of X’ there is
associated the complex-measure

(n,x'y: E>{n(E),x"), EeZ,
which has the property that each function f € L'(n) is (n, x’)-integrable and the
linear functional ‘

(1) f- <j;2fdn,x'> = j;zfd<n,x’), fe LXn),

is continuous. Unfortunately, this somewhat appealing approach is too simple in
general. The space of functionals of the form (1), for each x’ € X’, may turn out
to be only a very small part of the dual space L'(n)". This happens already in the
simplest of cases when X is the space of complex numbers. For, if & = [0,1] and
n: £ - X is Lebesgue measure on the Borel o-algebra 2 of ©, then the space of
all functionals of the form (1), for each x” € X', can be identified with the
1-dimensional subspace of constant functions of the infinite dimensional dual
space Li(n) = L*(n).

Yet, as we shall see, for a very important class of measures, namely the spectral
measures (in the sense of N. Dunford, [4]) which play a fundamental role in the
spectral theory of linear operators, and certain other vector and operator-valued
measures that they naturally induce, this naive approach is entirely satisfactory
(cf. Theorems 1-4 below). For such measures the space of functionals of the form
(1) actually turns out to be all of L(n)’; and hence we are in the desirable
situation of having a concrete description of the space dual to L'(»). In fact, for
the operator-valued measures it turns out that it is not necessary to use all of the
space X’; a much smaller subser which generates it already suffices. Of course, it
is the multiplicativity of spectral measures which plays a crucial role and
distinguishes their situation from the case of arbitrary vector measures.

The purpose of this note, therefore, is to prove Theorems 1-4 below. A key
element in their proofs is a representation theorem, recently proved in [2], which
characterizes the L!-space of certain spectral measures as a suitable algebra of
operators (generated by the range of the given measure) whose dual space is well
known and has a particularly simple description (cf. Lemma 1.2). We remark that
this representation theorem is new even in the setting of Banach spaces. Before
the results can be properly formulated, we need some further notation and
definitions.

A vector measure n: = — X is said to be closed if the space L'(n) is complete.
This agrees with the original definition given in [7]; see [9, IV, Theorem 4.1] and
[11, Proposition 1].
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Let X be a locally convex Hausdorff space. Then L{X) denotes the space of
continuous linear operators on X equipped with the topology of pointwise
convergence in X. The space L( X) is always assumed to be sequentially complete.
The adjoint of an operator T € I(X) is denoted by 7’. The correspondence
r.x;® x; = ¢ € (L(X)), defined by

(2) & T Z(Tx,.,x,f), T € L(X),

is an (algebraic) isomorphism of the tensor product X ® X’ onto the dual of
L( X). Call an element of (L{ X))’ elementary if it is of the form

T - (Tx,x"), T € L(X),
for some x € X and x’ € X', in which case we will denote it by x ® x’. Then
(L( X)) is precisely the linear span of its elementary functionals.

Since L X) is a locally convex Hausdorff space in its own right, we can speak
of L{ X)-valued measures. Such measures are call equicontinuous if their range is
an equicontinuous part of L{ X). A measure P: 2 — L( X)) is said to be a spectral
measure if it is multiplicative, and if P(2) = I, the identity operator on X. Of
course, the multiplicativity of P means that P(E N F)= P(E)P(F) for each
E€Xand Fe 3,

THEOREM 1. Let P: 2 — L{X) be a closed equicontinuous spectral measure.
Then a linear functional ¢ on LY(P) is continuous if, and only if, there is an
elementary functional x ® x’ in (L( X)) such that

(3) (f, &) = jﬂ fd(P,x ® x'y = fQ fd(Px,x’y,  feL{P).

If P: £ - L(X) is a spectral measure and f a P-integrable function, then the
indefinite integral of f with respect to P is the set function P, given by

P,:E—»fEfdP, Ecs.

It follows from the Orlicz-Pettis lemma that P, is a ¢-additive measure in L( X).
We remark that although P, is a closed measure whenever P is a closed measure
[9, IV, Theorem 7.2), it is not necessarily multiplicative (unless f is the character-
istic function, x g, of some set E € 2). Also, the equicontinuity of P may not
imply the equicontinuity of P, (unless f is P-essentially bounded or the underly-
ing space X satisfies additional properties, such as barrelledness, for example).

THEOREM 2. Let P: £ — L(X) be a closed equicontinuous spectral measure and

let f be a P-integrable function such that 1/f is also P-integrable (cf. §2). Then a
linear functional ¢ on L\( P;) is continuous if, and only if, there is an elementary
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functional x ® x' in (L{ X))’ such that

(4) (g, 6) =f9gd<P,,x® x') =fﬂgfd<1>x,x'>, ge L'(P).

There are results analogous to Theorem 1 and 2 for the case of certain
X-valued vector measures, namely those induced by an L{X)-valued spectral
measure or the indefinite integral of a spectral measure via evaluation at points of
the underlying space X. If P: £ — L(X) is a measure, then for each x € X, the
X-valued measure E —» P(E)x, E € X, is denoted by Px.

THEOREM 3. Let P: 3 — L(X) be an equicontinuous spectral measure and let x
be an element of X such that the X-valued measure Px is closed. Then a linear
functional ¢ on L Px) is continuous if, and only if, there is an element x' € X'
such that

(5) (f,&) = <fﬂfdPx,x'> =/Qfd(Px,x’>, fe LN Px).

It is worth noting that there are large classes of locally convex spaces X,
including all metrizable spaces and all Suslin spaces, for example, in which any
X-valued measure is necessarily closed (cf. [9, 12], for example). Also, if the
spectral measure P is itself closed, then necessarily Px is a closed measure for
every x € X, [2, Proposition 1.7(iii)).

THEOREM 4. Let P: 2 — L(X) be an equicontinuous spectral measure, let f be a
P-integrable function such that 1/f is also P-integrable (cf. Section 2), and let x be
an element of X such that Px is a closed measure in X. Then a linear functional £ on
Ll(Pfx) is continuous if, and only if, there exists an element x’ € X’ such that

(g.8) = </;ngP/x,X'> =/ngd<Px,x’>, ge L}(Px).

It is clear from the above results that it is valuable to have criteria available
which guarantee the closedness of a given spectral measure. Some criteria of this
type are given in §4.

1. Preliminaries

In this section we establish the notation to be used in the text and summarize
those aspects of the theory of integration with respect to vector measures (see [9]
for a more comprehensive treatment) and, in particular, spectral measures that
are needed in the sequel.
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Let n: 3 — X be a vector measure. For each x’ € X’, the total variation of
(n,x"y is denoted by |(n, x)|. If ¢ is a continuous seminorm on X, let U denote
the polar of the closed unit ball of g. Then the g-semivariation of n is the set
function g(n) defined by
(6) q(n)(E) = sup{[(n, x')|(E): x' € U}, EE€Z.

For each F € X, the inequalities
(7) sup{q(n(F)): FeZE,FC E}
< q(n)(E) < dsup{q(n(F)): FEX, FC E}
hold [9, 11, Lemma 1.2}.
A complex-valued, 2-measurable function f on { is said to be n-integrable if it

is integrable with respect to each measure {n,x’), x’ € X’, and if, for every
E & Z, there exists an element |, fdn of X such that

</Efdn,x'> =/Efd<n,x'>,

for each x” € X’. The vector measure n;: £ — X defined by

nf(E)=fEfdn, Ees,

is called the indefinite integral of f with respect to n. The element n,(Q) = [ fdn
is denoted simply by n(f).

The set of all n-integrable functions is denoted by L(n). Members of = are
freely identified with their characteristic function. An n-integrable function is
said to be n-null if its indefinite integral is the zero vector measure. Two
n-integable functions f and g are n-equivalent or equal n-almost everywhere
(n-a.e)if |f — glis n-null. Aset E € 2 is n-null if x = 0, n-a.c.

If f is an n-integrable function, then for each continuous seminorm g on X we
define the g-upper integral, q(n)(f), by q(n)(f) = q(n)(2). The function
(8) f-a(n)(f), feL(n),
is then a seminorm on L(n).

Denote by t(n) the topology on L(n) which is defined by the family of
seminorms (8), for each continuous seminorm ¢ on X. This resulting locally
convex space is not necessarily Hausdorff. The quotient space of L(n) with
respect to the subspace of all n-null functions is denoted by L!(n). The resulting
Hausdorff topology on L'(n) is again denoted by r(n). It is clear from (6) and (7)
that 7(n) is the topology of uniform convergence on X of indefinite integrals.

LEMMA 1.1. Let n: 3 — X be a vector measure and let f be an n-integrable
function. Then a Z-measurable function g is nintegrable if, and only if, fg is
n-integrable. In this case

(9) j;_gdnf=j;fgdn, EeX.
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ProOF. It follows from the identities
n,x’)(E)y=(n{E),x")= dn,x’\ = d(n,x’), EeX,
(np Y (E) = (g E) ) = [ s} = [ g, )
valid for each x’ € X', that

(10) Lsd(n,,x’) =fEfsd<n,x'>, Ees,

for each x’ € X’, whenever s is a X-simple function. Accordingly, if g is
n rintegrable, then approximating g pointwise by Z-simple functions, we have
from (10) and from the Dominated Convergence Theorem that gf is (n, x")-inte-
grable, and that

(11) /Eg/d<n,,x'>=ngd<nf,x'>, Ee3,

for each x” € X’ [10, Lemma 2.3]. From this it is clear that gf is n-integrable and
has indefinite integral given by (9).

Conversely, assume that fg is n-integrable. Again approximating g pointwise
by 2-simple functions, say {s,,}, we have from (10) and from the Dominated
Convergence Theorem (applied to { fs,, }, which converges pointwise to fg) that
(11) is valid for each x” € X". From this it is clear that g is (n,, x")-integrable for
each x’ € X’ [10, Lemma 2.3}, and hence that g is in fact n fintegrable with
indefinite integral given by (9).

For the remainder of the section we specialize our attention to spectral
measures.

So, let P: £ — L(X) be a spectral measure. If X is a Banach space, then a
2-measurable function is P-integrable if, and only if, it is P-essentially bounded
[4, XVIII, Theorem 2.11 (c)}, and hence the product of two P-integrable functions
is again P-integrable. For non-normable locally convex spaces X it need not be
the case that P-integrable functions are P-essentially bounded. Nevertheless, it is
still true, but now not so obvious, that the product of two P-integrable functions,
f and g say, is again P-integrable [2, Lemma 1.3]. In fact, the indefinite integral
of fg with respect to P is given by

[ fsdP = P(E)P(f)P(g) = P(E)P(g)P(f), EE€Z.
If, in addition, P is closed and equicontinuous, then the integration map
(12) @i > P(f) = [ fap,  feLY(P),

is a linear and multiplicative isomorphism of the (complete) locally convex
algebra L'(P) onto the closed operator algebra (P) in L( X) generated by the
range P(2) = { P(E): E € 2} of P [2, Proposition 1.5]. Noting that the closure
in I(X) of the range of an equicontinuous I X)-valued spectral measure is an
equicontinuous (Bade) complete Boolean algebra [15, Proposition 3.17], we obtain
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the following result immediately from [1, Proposition 3.2]; see also [5] for the case
that the underlying space X is a Banach space.

LEMMA 1.2. Let P: 2 — 1(X) be an equicontinuous spectral measure. If v is
any element of (I{ X)), then there exists an elementary functional x ® x’ in
(L( X)) such that v and x ® x’ agree on <ﬁ>, that is,

(13) (T,v) =(Tx,x"y, T€&(P).

Let P: 2 — L(X) be a measure. For each x € X, the cyclic space (in X)
generated by x with respect to P is defined to be the closed subspace of X
generated by the set { P(E)x: E € 2}; itis denoted by P(Z)[x]. If P(2)[x] = X,
then x is said to be cyclic for P.

LEMMA 1.3. Let P: £ — L(X) be an equicontinuous spectral measure and let x
be an element of X such that Px is a closed measure. Then the integration map

@, f— f fdPx,  fe L\(Px),
Q
is an isomorphism of L*( Px) onto the cyclic space P(Z)[x].
This is essentially [2, Proposition 2.1]. There the spectral measure P itself is
assumed to be closed, but an examination of the proof shows that for a particular

element x € X, all that is needed is for the X-valued measure Px to be closed.
Finally, we will need the following result [1, Proposition 1.1].

LEMMA 1.4. Let P: 3 — LX) be an equicontinuous spectral measure and let f be
a P-integrable function. Let x € X. Then for each Px-integrable function g the
function fg is also Px-integrable and has indefinite integral given by

ffgdPx=P(f)f gdPx, EE€Z3.
E E

2. Proofs of Theorems 1 and 2

To prove Theorem 1, let x ® x’ be an elementary functional in (L(X)). If ¢
denotes the continuous seminorm on L{ X) given by ¢(T) = (T, x ® x")|, T €
L(X), in which case x ® x’ € U}, then

[ 5a¢Px.x)| < [111 (P )| = [ 1laicP.x @ )]
Q Q Q

< sup{j;])f|d|<P,V)|: vE qu} =q(P)(f)
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for each f € L'(P); see [9, II, Lemma 2.2] for the last identity. This shows that
each functional of the form (3) is 7(P)-continuous.

Conversely, let £ € L'(PY. Now every continuous linear functional on L( X) is
of the form (2). However, when restricted to { P), it can be specified more simply,
as described in Lemma 1.2. So, if @, is the linear isomorphism given by (12), then
the adjoint map ®;: (P) — L'(P) is certainly a vector space isomorphism, and
hence there exists » € (P)’ such that £ = ®,(»). If x ® x’ is an elementary
functional such that » is given by (13), then (3) follows from (13) and from the
identity (f,£) = (®,(f),»), for each f & L(P). This completes the proof of
Theorem 1.

The following result should be compared with Theorem 1.

PROPOSITION 2.1. Let P: 2 — L(X) be an equicontinuous spectral measure.
Suppose that x, is a cyclic vector for P and that Px, is a closed measure. Then a
linear functional & on L)(P) is continuous if, and only if, there is an element
x" € X' and a Px j-integrable function h such that

(14) (f. &) = fﬂ fd(Pxq,x"y,  fe L'(P).

PROOF. Let x’ € X" and let & be a Pxg-integrable function. Then x = f, hdPx,
belongs to X. If f € L'(P), then Lemma 1.4 implies that fh is Px,-integrable and
that [, fhdPx, = P(f)fqhdPxy = P(f)x, from which it follows that

fﬂfhd(Pxo,x’) = <fﬂfhdpx0,x'> =(P(f)x,x") =fﬂfd(Px,x').

Since the linear functional f — [ fd(Px,x’), f € L*(P), is 7(P)-continuous, it
follows that the right-hand side of (14) defines an element of L( P)'.

Conversely, if £ € L'(PY, then there exist elements x € X and x’ € X’ such
that § is given by (3). Since P(2)[x,] = X, Lemma 1.3 implies that there exists a
Px-integrable function h such that x = [, hdPx,. Using Lemma 1.4 again and
arguing as above, we see that £ is given by (14).

The main idea of the proof of Theorem 1 is a simple one: we exploit the fact
that L'(P) is isomorphic to some space whose dual space is known. This same
principle will eventually be used to prove Theorem 2 but, unlike the case of
spectral measures, the appropriate representation of Ll(Pf) that is needed is not
yet available. We now proceed to formulate it.

Let P: £ — L(X) be a spectral measure and let f be a Z-measurable function.
Let Z( f) denote the zero set {w: f(w) = 0} of f, and let f ! denote the function
on © defined to be 1 /f(w) if w & Z(f), and zero otherwise. We say that 1 /f is
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P-integrable whenever Z( f) is a P-null set and /! is a P-integrable function. In
this case ff ! = 1 P-a.e. In fact, /! is the unique P-integrable function with this
property in the sense that if & is another Z-measurable function such that fh = 1
P-ae., then h = f~! P-a.e. (and hence £ is also P-integrable).

LEMMA 2.2. Let P: £ — LX) be an equicontinuous spectral measure and let f be
a P-integrable function. The following statements are equivalent.
(1) The operator P(f) = [q fdP is invertible in the space L X).
(ii) 1/f is P-integrable.
(ii1) The set Z(f) is P-null and the spaces L(P) and L(P;) are equal as vector
spaces.

PrROOF. The equivalence of (i) and (ii) constitute Lemma 3 of [14].

(i) = (ii1). Let g be any P integrable function. Then gf is P-integrable (cf.
Lemma 1.1), and hence so is the product # = (gf)f .. Since h = g P-ae, it
follows that g is P-integrable. In fact, it is easily calculated that

ngdP=P(f)‘1(ngdP,), Ees.

So L(P;) € L(P). The reverse inclusion follows from Lemma 1.1 and from the
remarks made just prior to (12). Finally, the fact that Z( f) is P-null forms part of
the definition of 1 /f being P-integrable.

(iii) = (ii). Observe that the function f~! is =-measurable and satisfies ff ! =
Xa\z)- Since Z( f) is P-null by hypothesis, we have ff -1 =1, P-ae., and hence
ff~* is P-integrable. By Lemma 1.1 then, the function f~! is P-integrable, and
so also P-integrable (by the hypotheses of (iii)).

REMARKS. (1) The assumption in (iii) that Z( f) is P-null cannot be removed.
For, if @ = {v,w} is a two point set and Q is any self-adjoint projection (# 0 or
I) in a Hilbert space X, then the set function P: 2% — L(X) defined by
P(@)=0, P({v})=Q, P({w}))=1—- Q, and P() =1 is an equicontinuous
spectral measure, and f = x/,, is a P-integrable function for which the spaces of
P-integrable and P -integrable functions coincide (but Z( f) is not a P-null set). It
is clear in this example that Lemma 2.2(i) does not follow.

(2) If f is a P-integrable function for which any of the equivalent conditions of
Lemma 2.2 is satisfied, then the measures P and P, have the same null sets.

(3) If X is a Banach space, then it is well known that the conditions (i) and (ii)
of Lemma 2.2 are equivalent to 1/f being P-essentially bounded [4, XVII,
Corollary 2.11 (1)]. This may no longer be the case in non-normable spaces. For
example, let X = I} (R) and let P be the (closed) equicontinuous spectral
measure of pointwise multiplication by characteristic functions of Borel subsets of
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Q=R. If f(w)=exp(w), @ €R, then both f and 1/f are P-integrable, but
neither of them is P-essentially bounded.

We may now state the representation theorem for L‘(Pf) that is needed to
prove Theorem 2.

PROPOSITION 2.3. Let P: 2 — L(X) be an equicontinuous spectral measure and
let f be a S-measurable function such that both f and 1 /f are P-integrable. Then the
map ®: L'(P;) — L'(P) defined by

(15) : g fg, gelP),

is a linear isomorphism.

PrOOF. To show that ® is well-defined, let g and & be two P -integrable
functions such that g = 4 P,-a.e. By Lemma 1.1, both fg and fh are P-integra-
ble, and in the notation of (12) it follows that

p(fg = o) = [ f(g—h)dP = [ (s = h)dP;= 0

in L{ X). Since ®, is injective, we have fg = fh in the space L'(P). Hence ® is
well defined.

If g, he Ll(Pf) and ®(g) = ®(h), then fg = fh P-ae., and hence, for any
E € 3, Lemma 1.1. implies that

fE(g—h)dP,=fE(fg—fh)dP=0.

So the indefinite integral of (g — h) with respect to P, is the zero measure or,
equivalently, g = h P-a.e. This shows that @ is injective.

To verify that @ is onto, let h be any P-integrable function. Since f~! is
P-integrable, the function g = hf ! is also P-integrable and hence is P -integra-
ble (cf. Lemma 2.2(iii)). But then the identities ®(g) = fg = f(f th)and ff ! =1
P-a.e. imply that h = ®(g).

Let g be any continuous seminorm on L{ X). Then it follows from (7) and from
Lemma 1.1 that

A(P)(©(8)) = a(P)fe) < 4sun(q( [ fsap | B < 3

= 4sup{q(fE gde): Ee 2} < 4q(P)(2)

for each g = L'(P;). Accordingly, ® is continuous.
The inverse map ®~': L'(P) —» L'(P)is given by

@& h—>hf~l, helI(P).
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So, again by (7) and Lemma 1.1, it follows that if g is any continuous seminorm
on L(X), then

a(P)(®7(1) = a(B) () < 4sup{a| [ hrar,): £ < 3}

= 4sup{q(fE th): Ee E} < 4q(P)(h)‘

for each & € LY(P). This shows that @' is also continuous and so completes the
proof.

The proof of Theorem 2 is now an easy application of Proposition 2.3 and
Theorem 1.

REMARK. An examination of the previous proof shows that for any P-integrable
function f (even if 1/f is not P-integrable), the map defined by (15) is a
(continuous) linear injection of L'(P;) into L'(P). However, if 1/f is not
P-integrable, then the inclusion of Ll(Pf) in L'( P) may be strict. For example, let
X = L([0,1)) and let P be the spectral measure of pointwise multiplication by
characteristic functions of Borel subsets of £ = [0, 1]. Then the identity function
fon @ is P-integrable, and P, is the I X)-valued measure defined by

P: E— P(E)P(f)=P(f)P(E), Ee X,
where P(f) € L(X) is the operator in X of pointwise multiplication by f. Then

Z(f) is a P-null set, but 1/f is not P-integrable as f~! is not P-essentially
bounded. It can be shown that the function

g w— (1/‘/:“’_)X(0,1](‘*’)’ w € Q,
belongs to L'( P;) but not to L'( P).

3. Proofs of Theorems 3 and 4

The proof of Theorem 3 follows easily from Lemma 1.3. For, if £ € LY(Px)Y,
then in the notation of Lemma 1.3 there is an element y’ € P(Z)[x] such that
£ = ®p (y"). Let x" be any element of X’ which agrees with y’ on P(Z){x]. Then

(fr8) = (e (£), ') = (Bp(f), %" = /Q fd(Px, x")

for each f € LY(Px), and so ¢ is of the form (5). Conversely, if x’ € X’, then its
restriction to P(2)[x] is continuous, and hence the right-hand side of (5), being
equal to x’ o @, , defines an element of L'( Px)'.

In order to prove Theorem 4 we first need some preliminary results.
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LEMMA 3.1. Let P: £ — L(X) be an equicontinuous spectral measure, let f be a
P-integrable function such that 1/f is also P-integrable and let x be an element of X
such that Px is a closed measure in X. Then L(Px) and L(P;x) are equal as vector
spaces.

PrOOF. If g is a Px-integrable function, then fg is also Px-integrable (cf.
Lemma 1.4), and hence Lemma 1.1. implies that g is P x-integrable. Conversely,
if g is a P x-intregrable function, then fg is Px-integrable (cf. Lemma 1.1). Since
f! is a P-integrable function such that ff ! = 1 P-a.e,, it follows that

(16) g=(fNg=(f)r"

P-a.e. and hence also Px-a.e. As f~! is P-integrable and fg is Px-integrable, (16)
implies that g is Px-integrable (cf. Lemma 1.4).

PROPOSITION 3.2. Let P, f and x be as in the statement of Lemma 3.1. Then the
map ®: L'(P;x) — L'(Px) defined by

®: g fg, gELl(P/x),

is a linear isomorphism.

PrROOF. That @ is well-defined and injective can be verified as in the proof of
. Proposition 2.3 (where now @, is suitably replaced by ®, ; see Lemma 1.3 for
the notation). To verify that ® is onto, let 4 be any Px-integrable function. Since
f°! is P-integrable, the function g = hf ! is Px-integrable (cf. Lemma 1.4) and
hence is P x-integrable by Lemma 3.1. But then the identities ®(g) = fg = f(hf -h
and ff ! =1, which hold P-ae. (hence also Px-ae.), imply that h = ®(g).
Finally, the fact that ® and ®~! are both continuous can be shown by calcula-
tions identical to those in the proof of Proposition 2.3, the only difference being
that the L(X)-continuous seminorm g4 used there is now specified to be a
continuous seminorm on X, and the measures P and P, are replaced by Px and
P x, respectively.
The proof of Theorem 4 is now an easy application of Proposition 3.2 and
Theorem 3.

4. Criteria for closedness of spectral measures

It is clear from earlier sections that it is important to be able to determine the
closedness of spectral measures. For, as noted previously, the L!'-spaces of such
measures are complete and have an easily describable dual space. The simplest
known criterion states that in a separable Fréchet space every spectral measure is
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closed (cf. proof of Corollary 4.7 in [15], for example). Given a particular spectral
measure, an improvement of this result is the following.

THEOREM 5. Let P: Z — L{ X)) be an equicontinuous spectral measure.
(i) Let X be a Fréchet space. If there exists a sequence {x;} in X such that the
linear span of

(17) (P(E)x: E€Z,i=1,2,...)

is dense in X, then P is a closed measure.

(i) Let X be quasicomplete and separable. Suppose that for each x € X there is a
metrizable locally convex Hausdorff topology on the cyclic space P(Z)[x] which is
weaker than (or equal to) the relative X-topology. Then P is a closed measure.

(i) Suppose that x € X is a cyclic vector for P. If Px is a closed measure in X,
then P is also a closed measure.

PrOOF. (i) It will be established that every set of disjoint projections in P(Z) is
at most countable. It will then follow from [3, IV, Lemma 11.5] that every set in
P(Z) has a least upper bound which is also the least upper bound of a countable
subset. Thus the Bade completeness of P(Z), which is equivalent to P being a
closed measure [2], will follow from its Bade o-completeness [15, Proposition 1.3].

So, let { P(E,): a €/} be a disjoint family in P(Z). Then E, N E; is a
P-null set whenever a # . Let ¢, ¢,, ... be a sequence of continuous seminorms
which determines the topology of X. For each natural number i, let m; denote the
X-valued measure Px;.

Fix a natural number i. If k is a positive integer, then there exists a finite
positive measure X, on = such that

(18) N(E) < g(m)(E), E€Z,

and such that N, (E) = 0 implies that g,(m,} E) = 0; see II, Corollary 1.2, and
II, Theorem 1.1, of [9]. Since E, N Ez is P-null for a # B, it follows that
E, N Eg is also mnull [2, Proposition 1.7(iii)], that is, m,(E) = 0 whenever
E € Xand E C E, N E, or, equivalently, g,(m, X E, N Eg) = 0 for each k =1,
2,...; see (7). It follows from (18) that for each a, 8 € & with a # 8 we have
N.(E,N Eg)=0, for each k =1,2,.... Choose positive constants &, k =
1,2,..., such that A, =X?_,e,N, is a finite positive measure on =. Then
m,(E) =0 whenever E € 2 and A,(E)=0. Since A,(E, N Eg) = 0 whenever
a # B, it follows that A, (E,) = O for all but countably many a € .27, and hence
that m,(E,) = 0 for all but countably many a € .«7. Accordingly, there is a
countable subset Z of &/ such that P(E, )x; = Oforeacha & #andi=1,2,....
The density of the linear span of (18) then implies that P(E,) = 0 whenever
a & A, as required.
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(i) If x € X, then Px can be interpreted as having values in the cyclic space
P(Z)[x] equipped with the relative X-topology, and hence there is a finite
positive measure A, on X such that Px is absolutely continuous with respect to
A . [6, Proposition 4]. The conclusion then follows from an argument as in the
proof of [13, Theorem 1].

(iii) It follows from [8, Corollary 13] that there is a localizable measure A on 2
such that the vector measure Px is absolutely continuous with respect to A. If
y € X is any element of the form X!_,a,P(E;)x, where the a; are complex
numbers, and where E; € 2, 1 < i < n, then it is clear that P(E)y = 0 whenever
E € Z is A-null. Since any element of X can be approximated by such vectors y,
it follows that P(E) = 0 whenever E € X and A(E) = 0. Then [9, Theorem 7.3,
IV] implies that P is a closed measure.

REMARKS. (1) Part (i) of Theorem 5 is well known in the Banach space setting
[4, XVII, Lemma 3.21]. It was noted earlier that any vector measure with values in
a Fréchet space is necessarily a closed measure. Hence, for the case of metrizable
spaces, (iii) is a special case of (i).

(2) The hypothesis of part (ii) is satisfied if, for each x € X, there exists a
countable subset of P(Z)[x] which separates points in P(2)[x].

(3) The separability of X in (i1) cannot be replaced by the separability of each
cyclic space P(2)[x], x € X, even if the space X itself is metrizable. For
example, let X denote the Hilbert space /2([0,1]) and let P denote the L{ X)-val-
ued spectral measure of multiplication by characteristic functions of Borel subsets
of [0,1]. Then it is easily verified that each cyclic space P(Z)[x], x € X, is
separable (since the support of x is a countable subset of [0, 1]). However, since
the range of P is clearly not a closed subset of L(X), it follows that P is not a
closed measure [11, Proposition 3].
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