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Abstract
The tension distribution problem of cable-driven parallel robots is inevitable in real-time control. Currently, iterative
algorithms or geometric algorithms are commonly used to solve this problem. Iterative algorithms are difficult to
improve in real-time performance, and the tension obtained by geometric algorithms may not be continuous. In
this paper, a novel tension distribution method for four-cable, 3-DOF cable-driven parallel robots is proposed based
on the wave equation. The tension calculated by this method is continuous and differentiable, without the need for
iterative computation or geometric centroid calculations, thus exhibiting good real-time performance. Furthermore,
the feasibility and rationality of this algorithm are theoretically proven. Finally, the real-time performance and
continuity of cable tension are analyzed through a specific numerical example.

1. Introduction
Cable-driven parallel robots (referred to as CDPRs or CDPR hereafter) are special parallel robots that
use cables instead of rigid links to transmit motion and forces [1]. The flexible nature of cable-driven
robots provides advantages over traditional parallel robots, such as low moving inertia, large workspace,
high velocity, and low maintenance costs [2]. As a result, they have attracted considerable attention from
researchers and have been widely applied in astronaut training [3], rehabilitation robotics [4], giant radio
telescopes [5], and human-machine interaction devices [6].

The most basic model of CDPRs is the geometric model, which focuses on the robot’s geometric
layout and kinematics while simplifying the dynamics. This model traditionally assumes that the cables
are idealized as precise linear distances between two points in space, specifically between the proximal
anchor points on the fixed frame and the distal anchor points on the moving platform, with the distances
perfectly matched. A common extension to the standard model (integrating geometry, dynamics, and
control) is the inclusion of pulleys and friction [7–9]. For example, Mamidi et al. incorporated pul-
ley kinematics based on the recursive sub-system-level Lagrangian multiplier approach (RSSLM) [10].
Fabritius et al. proposed a framework aiming to unify various CDPR models found in the literature. It
consists of four nested CDPR model stages (point platform, geometric, elastic, and catenary) and two
optional model extensions (force offset and pulleys) [11]. Patel et al. described a CDPR end effector
considering pulleys by using closed-loop equations for cable lengths and cable length squares, as well
as an unconstrained parameterization of the pose [12].

Due to the non-negligible mass and elasticity of the cables, the cables deform when the end effector
moves [1, 13]. Therefore, in motion planning, it is more inclined to study the tension distribution of
cables rather than their lengths. Since cables can only exert tension, redundancy is required to fully
constrain the system [14, 15]. In other words, the number of cables m in CDPRs is greater than the
number of degrees of freedom n of the end effector. This configuration is referred to as overconstrained,
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and the redundancy is denoted as r = m − n. Typically, the redundancy is set to 1–3 [16]. However, for
overconstrained systems, since m is not equal to n, the number of equations for cable tensions is smaller
than the number of variables, resulting in infinitely many solutions for cable tensions [17]. At time t,
the set of all solutions forms an r-dimensional linear subspace. The problem of force distribution in
redundantly constrained CDPRs is inevitable and often time-consuming in control. Chawla et al. trained
a neural network for the inverse statics (IKS) problem of CDPRs, providing solutions for both inverse
statics and forward statics and significantly improving computational speed [18]. Martin-Parra et al.
proposed a new design scheme, established the kinematic and static models of a new robot, verified
the static model of the robot through an optimized interior point algorithm, and obtained cable force
distributions for different end effector trajectories [19].

In order to obtain stable and continuous tension solutions (cable tension exhibits smooth tempo-
ral variation without abrupt changes) to address the redundancy problem in CDPRs, many scholars
have constructed an objective function that treats the dynamics or statics equations of CDPRs as con-
straints, thereby transforming the problem of tension distribution of flexible cables into an optimization
problem. Oh et al. utilized the 1-norm of the tension set as the objective function and provided meth-
ods for solving linear programming and quadratic programming problems to obtain feasible solutions
within the operational space of the system [20]. Borgstrom proposed a new linear programming for-
mulation that generates the optimal and safe tension distribution in CDPRs by introducing relaxation
variables [21]. However, the solution obtained through 1-norm optimization is not continuous and may
cause high-frequency vibrations [22]. Taghirad et al. introduced the 2-norm of the tension set as the
objective function for solving the problem [23], while Gosselin et al. introduced the p-norm as the
optimization objective [24]. Geng proposed an optimization algorithm based on the minimum tension-
to-hyperstaticity ratio to address excessive stiffness [25]. However, most of these optimization algorithms
are iterative, resulting in tension sets that often approach the lower limit of cable tension and lack real-
time performance. Pott et al. proposed an iterative algorithm solely based on matrix operations [26,
27]. Fabritius et al. proposed a force correction method based on the null space to improve the dynamic
performance of CDPRs. This method modifies the cable forces within the null space of the robot’s struc-
tural matrix, keeping them within feasible limits and as close as possible to the desired level without
altering the platform’s posture [28]. Jin et al. introduced a modified index to evaluate the motion/force
transmission performance of CDPRs in order to address the tension constraint of flexible cables. By
calculating the power coefficients of positive and negative output motion directions, they ensured that
the driving forces in the opposite directions of the two motion screws are positive. Furthermore, through
optimization design based on the transmission index, CDPRs can reduce singularities in the workspace
[29]. Einar Ueland et al. applied the logarithmic barrier method to construct the objective function and
demonstrated its continuous differentiability with respect to the cable tensions at different time instances
when it obtains the optimal solution [30]. They also introduced relaxation variables to enable rapid con-
vergence of the proposed optimization problem, resulting in better real-time performance compared to
other objective functions.

Due to the iterative nature of tension distribution algorithms based on optimization problems, geo-
metric methods have attracted considerable attention from scholars. Marc Gouttefarde et al. introduced
an algorithm for the tension feasible region (TFR) of n-DOF (degrees of freedom) CDPRs specifically
designed for n + 2 cables driving n platforms. The algorithm determines the vertices of the 2-D convex
polygon in either clockwise or counterclockwise direction and involves corresponding improvements
to determine various cable tension distributions [31]. Cui et al. proposed a non-iterative optimization
method for cable tension using the Graham scan method incorporated into the geometric approach.
It was applied in a dual-thread PID force/position hybrid controller, providing a non-iterative method
for optimizing the cable tension of CDPRs with r = 2, simultaneously addressing computational effi-
ciency, minimizing cable tension, optimizing safety, and stiffness concerns [32]. Rodriguez-Barroso
et al. presented a centroid-based approach to compute the polyhedron of cable tension possibilities,
thereby calculating the maximum torque that can be exerted by a suspended cable-driven robot and
determining the optimal tension distribution required to achieve any desired maximum torque [33].
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Sun et al. developed a geometric tension feasible region algorithm by interpreting the TFR as the con-
vex intersection of multiple boundary-parallel spaces, computing the tension feasible region for CDPRs
with redundancy r = 2 and 3 [17]. Mohammad Reza Mousavi et al. proposed an algorithm applica-
ble to redundancy levels r = 1 − 3, aiming to keep the cables within their tensile limits, preventing
tearing during operations, defining limits on cable forces using a problem formulation, calculating
the optimal solution for cable tension, tracking paths, and ensuring the safety of all actuators [34].
Geometric methods have several advantages, such as short computation time, applicability within the
entire feasible workspace of force screws, and wide usage. They are the most widely used and popular
non-iterative methods. With a good initial value, the computational cost of geometric methods can be
significantly reduced. However, logical judgments are employed in each iteration step of geometric meth-
ods. Therefore, geometric methods cannot provide an explicit function for the optimal set of tensions
[25]. Meanwhile, Einar Ueland et al. mentioned that the geometric algorithm involves the calculation
of the 2-norm and pseudoinverse when calculating cable tension, which may result in discontinuous
tension values [30].

This paper proposes a new force distribution algorithm for a CDPR with four cables and 3-DOF.
Although many optimized iterative algorithms have been proposed to solve the redundancy constraint
force distribution problem for CDPRs, issues with poor real-time performance have not been fully
resolved, and there are certain requirements for hardware conditions. Additionally, geometric methods,
when the redundancy r is 1, only use the geometric boundary of line segments for tension distribution.
Due to insufficient research, effective tension analysis methods have not yet been provided for CDPRs
with a redundancy of r = 1. This study begins with the wave equation from elastic dynamics to derive the
coefficients that influence force distribution, enabling the distribution of cable forces without iterations
and without the need for a complete calculation of the Jacobian matrix. Moreover, this paper investi-
gates the impact of primary coefficients on cable tension, ensuring the continuity of tension. Lastly, a
specific numerical example is presented to simulate and analyze the algorithm’s real-time performance,
the continuity, and the accuracy of the cable tension.

The organization of the paper is as follows: Section 2 introduces the wave equation. Section 3 starts
from the general solution of the wave equation and derives an integral equation about the tension distri-
bution coefficient of the cable, and proves the existence of a solution in the form of a cubic polynomial.
Section 4 gives a specific numerical example to verify the correctness of the proposed algorithm, demon-
strates its real-time performance, and compares it with existing methods. Section 5 summarizes the main
features of this algorithm.

2. Introduction to the wave equation
The wave equation is a hyperbolic partial differential equation that describes wave propagation in con-
tinuum mechanics and physics. For an n-dimensional continuous medium, under zero initial conditions,
the wave equation can be expressed as follows:

�2φ = −g(x)

φ(x, 0) = φ̇(x, 0) = 0 (1)
Wherein, x = [x1, x2, · · · , xn] represents the various axes/dimensions of the object of study. Its general
solution is given by:

φ(x, t) =
cd

2πρ

∫
C

g(x′, t′)[
c2

d(t − t′)2 − h2
] 1

2

dx′dt′ (2)

where �2 = ∇2 − 1
cd

∂2

∂t2
is the wave operator, ∇2 = � ∂2

∂x2
i

is the Laplacian operator, cd is the propagation
speed of the sound wave in the material of the end actuator, ρ is the density of the material of the end
actuator, and g(x) represents the external disturbance, which is the body force potential exerted on the
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Figure 1. Schematic diagram of the ith pulley-cable-end actuator structure.

end actuator at point x. φ represents the strain potential caused by the body force potential g, and the
form of this general solution depends on the form of the external disturbance g.

3. Determination of tension distribution coefficients in flexible cable
The algorithm presented in this paper targets 3-DOF CDPRs utilizing four cables, for which an elastic
dynamic mathematical model of the end effector is established below. For a planar three-degree-of-
freedom CDPR, it usually has the structure shown in Figure 1.

Assuming that one of the forces acting on the end actuator is F = f (t)δ(x − p)i1, where δ(x) is a
two-dimensional Dirac function. According to vector field decomposition, F can be decomposed as
follows:

g = ∇ · W , G = −∇ × W (3)
f = ∇g + ∇ × G = ∇2W (4)

where g represents the volumetric expansion part in the displacement potential and G represents the
rotational part in the displacement potential, which is not considered in this paper. Eq. (4) is the Poisson
equation. According to the theory of partial differential equations, its fundamental solution can be
expressed in the following form:

W(t) =
∫

Vx

�(x − x′) f dV (5)

where:

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

2π
ln |x| , n = 2

√
π n

α(n)�( n
2
+ 1)

1

|x| , n > 2
(6)

For n = 2, we have the following:

W(x, t) = − f (t)

2π
ln |x − p|i1 (7)

g(x, t) = ∇ · W = − f (t)

2π

1

r

∂r

∂x1

(8)

[g(x′, t)] = − f (t − ρ

cd
)

2πρc2
d

∂

∂x1

(ln R) (9)

where r =√
(x1 − p1)2 + (x2 − p2)2, R =√

(x′
1 − p1)2 + (x′

2 − p2)2, i1 represents the unit tensor or unit
vector of x1, [] represents the translation operator, and [g(x′, t)] denotes the translation of the function

https://doi.org/10.1017/S0263574724001590 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001590


Robotica 5

g(x′, t) along the direction of xi. Substituting Eq. (2) yields:

Φ(x, t; pi) = cd

2π

∫
Vd

[g]

[c2
d(t − t′)2 − ρ2]

1
2

dVx′

= 1

4π 2cdρ
·
∫ f (t − t′ − h

cd
)√

c2
d(t − t′)2 − R2

∂

∂x′
1

(ln R)dx′
1dx′

2dt′ (10)

On the circle determined by t′ and h,
f (t−t

′
)− h

cd√
c2

d (t−t
′
)2−R2

is a constant value. Therefore, Eq. (10) can be
rewritten as follows:

Φ(x, t; pi) = 1

4π 2cdρ

∫
f (t − t′)√

c2
d(t − t′)2 − h2

dh ·
∫

∂

∂x′
1

(ln R)dS (11)

That is, first integrate along the circle determined by h and t′, and then integrate over h and t′.
Here, h = cd(t − t′) is a variable dependent only on time, ∂

∂x′
1
(ln R) is an odd function with respect to

x′
1, and the integration domain S is a closed circular contour symmetric about x1. Therefore, when pi is

inside S, the second half of the integral is 0; otherwise, it is 2πR2. Since the upper limit of the integration
variable h can be replaced by r, and h = cd(t − t′), Eq. (11) can be transformed to the following form:

Φ(x, t;pi) = 1

2πcdρ

∂

∂x1

ln r
∫ f (t − t′ − h

cd
)√

c2
d(t − t′)2 − h2

dt′dh (12)

Now let’s define the influence factor ϕi:

ϕi(t) =
∫

S

Φdx1dx2 (13)

Here, S represents the equivalent two-dimensional shape of the end effector. This influence factor
represents the effect of applying force f at position pi on the end effector.

Let’s define the influence coefficient λi:

λi = ϕi

(∑
i

ϕi

)−1

(14)

Now, from the perspective of rigid body mechanics, let’s establish the dynamic equation of the end
effector: ∑

T i = m
∑

ẍi = mp̈d (15)

Here, Ti represents the tension of the ith cable.
For CDPRs, a commonly used approach to drive the end effector is by employing redundant cables,

which exceed the degrees of freedom of the end effector. However, according to the theory of analytical
mechanics, a planar rigid body can have at most three independent dynamic equations, while a planar
CDPR with three degrees of freedom requires a minimum of four cables. In other words, there is no one-
to-one mapping between pushing from left to right and pushing from right to left as shown in Eq. (15). To
address this issue, numerous scholars have proposed different solutions. These methods typically involve
iterative and computationally complex calculations. Moreover, when applied to practical control, they
are limited by hardware performance and struggle to meet real-time requirements. In this paper, an
attempt is made to define the influence of each force on the end effector from the perspective of elastic
dynamics in order to calculate all driving forces. Consequently, the following formulas are provided:∑

i

T i = m
∑

i

p̈i = mp̈d

pi = λipd (16)
Alternatively, it can be written as:

T i = λimpd (17)
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Since φ is calculated based on the components of externally applied forces, Eq. (17) needs to be
expressed in component form as follows:

Tij = λijmpdj (18)

Here, Tij represents the jth component of the ith force Ti (distinct from the tensor). Considering that
for CDPRs, the number of independent forces is equal to the number of independent cables, out of these
eight components of Tij, only four are independent. The relationship between these eight components
will be established below.

It is not difficult to find that by substituting Eqs. (13) and (14) into Eq. (18), we obtain an integral
equation about Tij. To reduce the length, let ξ =√

c2
d(t − t′)2 − h2 as follows:

Tij =
∫ (

∂

∂x1
ln r

∫ [Tij]

ξ
dt′dh

)
d�∑

i

∫ (
∂

∂x1
ln r

∫ [Tij]

ξ
dt′dh

)
d�

mp̈dj (19)

Since Eq. (19) is complex and difficult to solve, it is simplified as follows:

Ti1 = ϕi1mp̈d1 (20)

Making a variable substitution for ϕij: u = cd(t − t′), where u ∈ (cdt, 0), we obtain:

ϕij =
∫

∂

∂x1

ln ri

∫
[Tij]√
u2 − h2

dhdud� (21)

Continuing the variable substitution by letting h = u sin γ and dh = u cos γ dγ , where γ ∈ (− π

2
, π

2

)
, we

have:

ϕij =
∫

∂

∂x1

ln ri

∫
[Tij]dγ dud� (22)

At this point, [Tij] = Tij

(
u−u sin γ

cd

)
. It can be verified that

∫
[Tij]dγ du is a function only dependent on time

t, denoted as G(t). Therefore, we obtain:

ϕij = kG(t) (23)

Clearly, k = ∫
∂

∂x1
ln rid� is a physical parameter related to the shape of the end effector, which is constant

for a given end effector. Substituting Eq. (23) back into Eq. (22), we have:

kGij(t) = k
∫ 0

cdt

du
∫ π

2

− π
2

k[Gij]m[p̈dj]dγ (24)

Taking the derivative of Eq. (24) with respect to t on both sides, we obtain:

Ġij(t) = −CP

∫ π
2

− π
2

[Gij][p̈dj]dγ (25)

In this case, CP = m k cd, and [Gij] = G(t(1 − sin γ )). Continuing with the variable substitution in Eq.
(25), let v = t(1 − sin γ ). Then γ = arcsin (1 − v

t
), and dγ = 1√

1−(1− v
t )

2 dv yields:

Ġij(t) = −CP

∫ 0

2t

Gij(v)p̈dj(v)√
1 − (

1 − v
t

)2
dv (26)

Eq. (26) is complex and difficult to solve. However, for engineering problems, it is often sufficient
to find a particular solution that satisfies the engineering conditions. Due to the appealing properties of
polynomials, this paper attempts to find a set of solutions that satisfy the aforementioned equation from
the polynomial space. This paper provides the following set of solutions: when Gij(t) can be decomposed
into the product of two rational polynomials, g1(t) and g2(t), where g2(t) is a quadratic polynomial, and
let p̈dj = g2(t)−1, then there must exist Gij(t) and pdj(t) that satisfy Eq. (26).
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Proof: By performing a variable substitution in Eq. (26), let sin w = 1 − v
t
, then dv = −t cos w dw,

and v = t (1 − sin w).

Ġij(t) = CP t
∫ π

2

− π
2

Gij(t − t sin w)p̈dj(t − sin w)dw

d

dt
(g1(t)g2(t)) = CP t

∫ π
2

− π
2

g1(t − t sin w)dw (27)

Here, g1(t − t sin w) is a polynomial in terms of t − t sin w, and assume the ith term of g1 is ai(t −
t sin w)i = aitiCm

i (− sin w)i−m. Therefore:

ait
i

∫ π
2

− π
2

Cm
i (− sin w)i−mdw =

{
0, when i and m have different parity
i−m−1

i−m
. . . 1

2
· π Cm

i aiti, otherwise
(28)

It can be seen that after integrating the right side of Eq. (27), it remains a polynomial in terms of t,
with a degree one higher than the original g1(t). Therefore, there should exist a polynomial Gij of degree
two higher than g1 that satisfies Eq. (27). In other words, let g2 be a quadratic polynomial in t, and
Eq. (27) can be satisfied. Since the proof for higher-degree polynomials is not the focus of this paper,
we only prove the existence of g1 in quadratic polynomial form.

Let g1 = b2t2 + b1t + b0 and g2 = (p̈d1(t))−1 = c1t2 + c2t + c3. Based on the equality of corresponding
coefficients, the following system of equations can be obtained:

A b = 0 (29)

where

A =

⎡
⎢⎢⎣

0 4c3 4c2 − CP

3c3 − Cp 3c2 3c1

c2 c1 c0

c1 c0 0

⎤
⎥⎥⎦

b = [
b0 b1 b2

]
(30)

It can be seen that in order for the above equations to have a solution, the rank of the matrix must
be less than 3. When the relationships between the elements of c = [

c0 c1 c2

]
satisfy the conditions in

the appendix, the rank of matrix A is 2. That is, when the values of b1, b2, b3, c1, c2, and c3 satisfy the
conditions in the appendix, the assumption holds and the proof is complete.

Through the above proof, it can be found that the Gij(t) determined by pd1 is not unique. This is
because the matrix A does not have full rank, and any linear combination of its null vectors satisfies
the equation set (29). From Eq. (27), it can be easily seen that any multiple β of the null vector can
be absorbed into CP. Therefore, the exact value of CP is not important in the derivation process of the
preceding formulas, as there always exists a suitable β to make CP take any value.

3.1. Approximate calculation method for cable tension direction
After determining the tension components in either the horizontal or vertical orientation of the cable, the
corresponding tension vector should be derived from the cable’s direction vector. An essential element
in this process is the Jacobian matrix. Owing to the complexity of its rigorous calculation, this paper
presents a simplified method for computing the Jacobian matrix.

As shown in Figure 2, under normal circumstances, the actual contact point slides within the dashed
region of the 1

4
arc. Calculating the Jacobian matrix directly using the real position of the contact point

pr can be cumbersome. However, if we allow for some error, we can simplify the calculation of the
cable tension direction and the subsequent Jacobian matrix by artificially fixing the contact point at
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Figure 2. Illustration of tangent point and approximation point.

Figure 3. Variation of θ+
e with R/‖pe,2‖.

position p45 on the arc, which forms a 45◦ angle with the x-axis. Since the cable direction vectors in
the Jacobian matrix are normalized, this paper evaluates the algorithm’s error using angles. Let pr be
the actual contact point position, p45 be the artificially defined contact point position, and pe be the end
effector position. Based on geometric relationships, the maximum error in θ occurs at the position shown
in the right figure of Figure 2. Assuming counterclockwise deviation is positive and clockwise deviation
is negative, it can be inferred that the deviation lies within the range shown in Eq. (31).

θ−
e = 0

θ+
e = arcsin

⎛
⎝R

(
1 − √

2
2

)
‖pe,2 − p45‖

⎞
⎠ (31)

According to Eq. (31), the maximum deviation value is independent of the pulley’s position. If we
place the pulley at (−R, −R), then p45 will be at the origin. In this case, θ+

e = R(1 − √
2

2
)/|pe2|, resulting in

Figure 3. When the ratio is 10.2, the error is 1.6 degrees, and when the ratio is 15, the error is 1.1 degrees.
Let ui = uij (i = x, y; j = 1, 2) be the direction vectors of the cable tension. We have:

ui = pe − p45

‖pe − p45‖
(32)
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Figure 4. Flowchart of the tension distribution algorithm.

Therefore, the relationship between the magnitude and direction of the cable tension can be written
as follows:

Tij = ‖T‖iuij (i = x, y; j = 1, 2) (33)

3.2. The algorithm process
The specific process of the cable tension distribution algorithm introduced in this paper is depicted in
Figure 4. It necessitates an understanding of the global desired trajectory and its second derivative to
compute the coefficients for the time-varying tension distribution of the cables. This calculation can be
considered pre-processing of the input signal, not part of the control strategy loop.

Unlike the cable tension distribution algorithms referenced in the introduction, which fully calculate
the Jacobian matrix within the control strategy loop, this algorithm’s optimization branch employs an
iterative solution based on optimization theory, while the convex geometry branch uses the geometric
attributes of shapes such as vertices, edges, and centroids for its calculations. These processes occur
within the control strategy loop, endowing the proposed algorithm with a natural real-time performance
advantage.
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Table I. Values of the main parameters

Variable Value Variable Value
CP 4 b0 −0.64
c0 4.74 b1 0.66
c1 4.88 b2 −0.41
c2 2 β1 −1.3
c3 0.27 β2 0.53

Figure 5. Influence of CP on the trajectory.

4. Numerical Example
In this section, the aforementioned formulas are used to calculate a practical problem, and the influ-
ence of β on cable tension is discussed. The values of the main parameters in this paper are shown in
Table I.

4.1. Influence of c2 and CP on end trajectory
By setting the rank of matrix A to 2, it can be determined that the parameters of c can be expressed as
functions of c2 and CP. Therefore, their values directly affect the value of the end trajectory. Finally, it
is determined that c2 = 2 and CP = 4.

4.2. Influence of β values on cable tension
Based on the values of the coefficients mentioned above, the specific values of each quantity can be
calculated as follows (Figs. 5 and 6):

A =

⎡
⎢⎢⎢⎣

0.000 0.533 12.858

−1.600 12.000 −82.654

4.000 −27.551 265.670

−27.551 265.670 0

⎤
⎥⎥⎥⎦ (34)

b = null(A) = [
0.995 0.103 −0.004

]
(35)

So that:
g12(t) = g22(t)

= p̈−1
d1 = 0.27 t3 + 2.00 t2 + 4.88 t + 4.74 (36)
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Figure 6. Influence of c2 on the trajectory.

Figure 7. Influence of β on λ11.

g11(t) = β1(−0.004 t2 + 0.103 t + 0.995)

g22(t) = β2(−0.004 t2 − 0.103 t + 0.995) (37)

Therefore, by substituting Eqs. (36), (37) into (20), (23), and (27), we can obtain the equation
λi1 = λi1(β1, β2, t). This is a surface plot in four-dimensional space, making it difficult to obtain intuitive
information. Hence, this paper uses λi1,max to reflect the influence of β on λij. Here, λi1,max represents
the extremum in the time direction. For the specific derivation process, please refer to the Appendix C.
The three-dimensional surface plot can be referred to in Figure 7. It is easy to see that different rope
tensions will directly affect the maximum value of the rope tension in the trajectory planning. Generally,
the greater the rope tension, the stronger the anti-interference ability of the CDPR, so the rope tension
should be as large as possible within the allowable output torque range of the motor. Considering all
factors, the values of β1 and β2 can be chosen as shown in Table I.

4.3. Calculation of θd

When the cable tensions and end displacement are determined, the angle of the end effector is no longer
arbitrary. This is because the angular displacement of the end effector of a CDPR (cable-driven parallel
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robot) is coupled with its displacement, requiring the calculation of the end effector’s angular displace-
ment based on the cable tensions and end trajectory. By applying the moment balance equation to the
end effector, we have:

m θ̈d =
∑

i

fi(ri × ui)

=
∑

i

fi(ri1 ui2 − ri2 ui1) (38)

Here, ri and ui represent the position vector and unit vector of cable i, respectively. Thus, it can be
known that:

θd =
∫ t

0

(∫ t

0

θ̈ddt

)
dt (39)

For an arbitrarily complex trajectory, its θd generally cannot be analytically solved. The reason is that
ui in Eq. (38) is a function of θ . Therefore, in the subsequent simulation, numerical integration will be
used for Eq. (39) (Figure 8).

4.4. Simulation analysis
Based on the previous selection, the expression for pd1 can be reverse calculated as follows:

pd1 = (pd1, pd2, pd3)

pd1 = 0.53 (t + 4.08) log (t + 4.08)

− 0.62 log
(
(t + 1.71)

2 + 1.428
)

− 0.26 (t + 1.71) log
(
(t + 1.71)

2 + 1.43
)

− 0.63 (t + 1.71) atan (0.84 t + 1.43)

+ 1.04 atan (0.84 t + 1.43) − 1.2 t − 3.5

pd2 = pd3 = 0 (40)
The values of λi1 at this time are as follows:

λ11 = λ41 = −2.16 t2 − 3.47 t + 3.37

3.14 t2 − 12.00 t + 11.64

λ21 = λ31 = 4.77 t2 − 7.68 t + 7.45

2.82 t2 − 10.80 t + 10.48
(41)

Substituting into Eq. (20), we can obtain the values of T11 and T41:

T11 = T41 = 345.37 t2 − 555.87 t + 539.30

Tden

T21 = T31 = 847.13 t2 − 1363.46 t + 1322.78

Tden

Tden = 8.47 t5 + 30.33 t4 − 55.46 t3

− 203.99 t2 − 6.72 t + 551.64 (42)
Substituting Eq. (42) into Eq. (33), the tension |T i| of the cable can be obtained. Furthermore,

dynamic simulations yield the results shown in Figure 9(a). Figure 9(b) displays the simulated trajectory
and error obtained using the Newton Slack Any P method [30]. Here, pci represents the simulated tra-
jectory in the ith direction, and peri represents the error between the simulated trajectory and the desired
trajectory (i = x, y).

From Figure 8, it can be observed that the cable tension calculated using the proposed method is con-
tinuous. Figure 9 demonstrates that the results obtained from dynamic simulations using the proposed
tension distribution method align well with the desired trajectory. Running the simulation trajectory 20
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Figure 8. Tension of the cable in the x direction.
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Figure 9. (a) Simulated trajectory and error in the ith direction using the proposed method. (b)
Simulated trajectory and error in the ith direction using the Newton Slack Any P method (i = 1, 2).

times and taking the average runtime yields an average time of 31.44 s for the simulation model using
the proposed cable tension distribution method, while the average runtime for the simulation program
using the Newton Slack Any P method is 35.37 s.

5. Conclusion
From the wave equation, this paper defines the influence factor φi of the ith cable on the end effector and
defines the influence coefficient λij to allocate the cable tension. A mathematical model is established
for λij and p̈d1, and it is proven that it has a solution in at least cubic polynomial form. This solution is a
rational polynomial fraction form, which is computationally simple and can better meet real-time force
allocation requirements. Finally, a specific numerical example is provided to verify the correctness of
the algorithm and demonstrate its real-time capability. A simple comparison is made with the Newton
Slack Any P method proposed by scholar Einar Ueland. However, when using this algorithm, if the
position of the end effector is specified, its angle cannot be freely determined. Part of the reason is that
the solution provided by this algorithm is not the solution in the entire space, but a curve in the solution
space. Another reason is that the position and angle of CDPRs are strongly coupled, and specifying the
displacement and angular displacement of the end effector does not necessarily result in a force helix
curve within the feasible space of CDPRs.

Our team’s future work includes the following: (1) Planning to change λij to expand the range of
trajectories applicable to this algorithm, aiming to make this algorithm usable for any curve within the
feasible space of force helixes in CDPRs. (2) Planning to introduce a friction model to more compre-
hensively describe and predict the behavior of cables in actual operations. (3) Expanding the range of
applications for the algorithm, not limited to four-cable 3-DOF CDPRs, extending to spatial CDPRs.
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Appendix A. Condition for Rank-2 of A

There are multiple methods to determine the rank-2 condition of A, and this paper provides the following
method:

ac1 = −16 CP
2

75

ac2 = −4 Cp
(
4 c2 − π CP

2

)2

5

− 8 Cp
(
4 c2

2 − π CP c2
2

)
5

+ 8 CP c2

(
4 c2 − π CP

2

)
5

ac3 = 6 c2

(
4 c2 − π CP

2

)(
4 c2

2 − π CP c2

2

)

− 3

(
4 c2

2 − π CP c2

2

)2

c1 = −ac2 + −√a2
c2 − 4 ac1 ac3

2 ac1

c0 = 4 c2
1 c2 − π

2
c2

1 CP

4 c1 c3 + 4 c2
2 − π

2
CP

(43)

Where c2 and CP are arbitrary real numbers, and c0 and c1 determined by Eq. (43) make the rank of
A equal to 2.

Appendix B. Integral form of p̈d1 in the real number domain
For the integration of p̈d1, the most complex case arises when p̈−1

d1 has only one intersection with the
x-axis (which is the case provided in this paper). In this situation, it has a pair of complex conjugate
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roots, and the integration of ṗd1 obtained by conventional methods is a complex solution. However, from
a graphical perspective, the area enclosed by p̈d1, t = 0, and the t-axis is a real number (a real function).
From a mathematical point of view, the solution in the complex number domain (complex function
solution) can always be simplified into a complex number (complex function) with a nonzero real part
and a zero imaginary part. However, this is often difficult or even impossible to achieve. Therefore, in
this paper, an integration method is proposed to avoid using complex numbers.

Assume that when p̈d1(t) has one real solution t0 and a pair of complex conjugate solutions tr + tii
and tr − tii, the following equation holds:

p̈d1(t) = 1

c3(t − t0)((t − tr)2 + t2
i )

(44)

Assume:

p̈d1(t) = 1

c3

(
e1

t − t0

+ e2t + e3

(t − tr)2 + t2
i

)
(45)

By equating the coefficients in Eqs. (44) and (45), the following system of Eq. (46) is obtained:

Ap e = [ 0 0 1 ]T (46)

Where:

Ap =
⎡
⎣ 1 1 0

−2 tr −t0 1
ti

2 + tr
2 0 −t0

⎤
⎦ (47)

e = [
e1 e2 e3

]T (48)

Solving Eq. (46) yields:

e = A−1
p

⎡
⎣0

0
1

⎤
⎦=

⎡
⎢⎣

1
ti2+tr2+2 t0 tr−t0

− 1
ti2+tr2+2 t0 tr−t0

2 tr
ti2+tr2+2 t0 tr−t0

⎤
⎥⎦ (49)

At this point, the difficult-to-integrate part in Eq. (45) is reduced to the second half, given by:

e2t + e3

(t − tr)2 + t2
i

= e2

2

(
2 t − 2 tr

(t − tr)2 + t2
i

+ 2 e3/e2 + 2 tr

(t − tr)2 + t2
i

)
(50)

At this point, it can be easily obtained that:

ṗd1 =
∫ t

0

p̈d1(τ )dτ

= 1

c3

∫ t

0

e1

τ − t0

dτ + e2

2 c3

∫ t

0

2 τ − 2 tr

(τ − tr)2 + t2
i

dτ

+ e3 + e2 tr

c3

∫ t

0

1

(τ − tr)2 + t2
i

dτ (51)

After rearranging, we obtain:

ṗd1 =e1

c3

ln (t − t0) + e2

2 c3

ln ((t − tr)
2 + t2

i )

+ e3 + e2 tr

c3 ti

atan
t − tr

ti

(52)
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Continuing the integration, we have:

pd1 =e1

c3

(−t + (t − t0) ln (t − t0))

+ e2

2 c3

(
−2 t + 2 ti atan

(
t − tr

ti

)
+ log

(
(t − tr)

2 + t2
i

)
(t − tr)

)
+ e3 + e2 tr

c3 ti

(
(t − tr) atan

(t − tr)

ti

− tr

2
ln
(
(t − tr)

2 + t2
i

))
(53)

Combining Eqs. (49) and (53), we obtain the real function integral solution of the integrand with a
third-degree polynomial in the denominator, which has complex conjugate roots in the numerator.

Appendix C. Calculation method for λi1,max

Substituting g11 and g21 into Eqs. (23) and (14), we can obtain:

λi1 = λi1(b0, b1, b2, β1, β2, t) (54)

Taking the partial derivative of the above equation with respect to t, we have:
∂λi

∂t
= (−2 b1 b2 β1 β2) t2 + (−4 b0 b2 β1 β2) t

d4 t4 + d3 t3 + d2 t2 + d1 t + d0

d4 = (
b2

2 β1
2 + 2 b2

2 β1 β2 + b2
2 β2

2
)

d3 = (
2 b1 b2 β1

2 − 2 b1 b2 β2
2
)

d2 = (
b1

2 β1
2 − 2 b1

2 β1 β2 + b1
2 β2

2

+2 b0 b2 β1
2 − 2 b0 b2 β2

2
)

d1 = (
2 b0 b1 β1

2 − 4 b0 b1 β1 β2 + 2 b0 b1 β2
2
)

d0 = b0
2
β1

2 − 2 b0
2
β1 β2 + b0

2
β2

2 (55)

It is not difficult to observe that Eq. (55) has monotonic intervals with respect to t as
(
0, − b0

b1

)
and(− b0

b1
, +∞)

. Therefore, substituting t = − b0
b1

along with b0, b1, and b2 back into Eq. (54), we obtain the
three-dimensional surface plot of λi1,max = λi1(β1, β2), showing the maximum value on t varying with β1

and β2.
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