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The coherent vortical structures in turbulent flow through a strong 16 : 1 three-dimensional
contraction are studied using time-resolved volumetric measurements. Visualization using
the vorticity magnitude criterion shows the emergence of long, stretched cylindrical
vortices aligned with the mean flow. This alignment is quantified by probability density
functions (p.d.f.s) of the direction cosines. We propose two measures to quantify the
alignment, the peak height in the probability and a coefficient from the moment of the
p.d.f., both of which reaffirm the strong streamwise alignment. The root mean square
streamwise vorticity grows within the contraction to become 4.5 times larger than the
transverse component, at the downstream location where the contraction ratio is C = 11.
The characteristic vortices become as long as the measurement volume, or more than 4
times the integral scale at the entrance to the contraction. We also characterize the vorticity
enhancement along individual vortices, measuring 65 % strengthening over the distance
where C goes from 4 to 11. The prevalence of these coherent structures is estimated from
700 000 measured volumes, showing that near the outlet, it is more likely to have one or
two of these structures present than none.
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1. Introduction

Ever since the seminal work of Brown & Roshko (1974), the study of turbulent flows
has increasingly focused on the presence and role of coherent vortical structures. Besides
the rollers in the mixing layer, other examples are the hairpin structures in the boundary
layers (Head & Bandyopadhyay 1981; Zhou et al. 1999; Ganapathisubramani, Longmire
& Marusic 2003; Hutchins & Marusic 2007) as reviewed by Marusic & Monty (2019),
vortices in swirling jets (Ianiro et al. 2018), and structures in turbulent Taylor–Couette
flow (Grossmann, Lohse & Sun 2016). In wall-bounded flows, streamwise rolls transport
the low-speed fluid near the wall away from it to form long streamwise streaks, which
subsequently break down by bursting (Kim, Kline & Reynolds 1971). The roll–streak
interaction maintains turbulence by the self-sustaining mechanism (Hamilton, Kim &
Waleffe 1995; Schoppa & Hussain 2002; McKeon 2017). The advent of volumetric
measurements of turbulent velocity fields has opened up new avenues for the identification
and study of such coherent structures (Elsinga et al. 2006; Schröder & Schanz 2023).
Identifying and characterizing these coherent structures in a variety of turbulent flows
should aid in lower-order modelling of their behaviour for fundamental elucidation and
various applications (Rowley et al. 2009; Schmid 2010).

There exist numerous studies of turbulent flow through contractions, because of their
relevance to many industrial flow configurations, as concerns mixing, pressure drop, noise,
and so on. Early on, Prandtl (1933) suggested treating random distributions of vorticity
as a primary quantity underlying the turbulent velocity fluctuations, with stretching of
strain-aligned vortex filaments amplifying their vorticity. By applying continuity and
conservation of angular momentum, one can express, in terms of a streamwise contraction
ratio c, that the stretched fluctuating vorticity component in the streamwise direction grows
by c, while in the compressed transverse directions, the fluctuations reduce by a factor
c−1/2. On the other hand, the velocity fluctuations are tangential to the cross-section
of the vortex filaments, hence their streamwise variation can be obtained using similar
arguments, i.e. streamwise fluctuations urms decay as c−1 while the transverse fluctuations
vrms and wrms grow proportional to c1/2. Similar scaling was obtained from spectral
theory by Taylor (1935) and Ribner & Tucker (1952). Taylor (1935) used one Fourier
mode to represent vorticity disturbances in three-dimensional (3-D) Taylor–Green cells,
and obtained its amplification at the contraction exit. He showed that urms decays within
the range between c−1 and 2c−1. In contrast, the transverse vrms grows as c1/2, similar
to Prandtl’s theory, but the prefactor depends on the initial anisotropy and the strength
of the contraction. Ribner & Tucker (1952) used detailed spectral analysis of an initially
isotropic turbulent field to obtain relations for the ratio of root mean square (r.m.s.)
velocity fluctuations before and after the contraction. Batchelor & Proudman (1954)
independently derived such relations by assuming rapid distortion of fluid elements
relative to their displacement, which was later called rapid distortion theory (RDT)
(Sreenivasan & Narasimha 1978; Hunt & Carruthers 1990). They suggested that for
a symmetric contraction, the ratio of streamwise turbulent energy from outlet to inlet
u2

rms,2/u2
rms,1 varies as 3

4 c−2[log(4c3) − 1], for c � 2. Similarly, the ratio of energies of the
two lateral velocity components (v2

rms,2 + w2
rms,2)/(v

2
rms,1 + w2

rms,1) is approximately 3
4 c.

Sreenivasan & Narasimha (1978) generalized the theory of Batchelor & Proudman (1954)
for the distortion of an initially homogeneous, axisymmetric turbulence. They used Fourier
transforms in terms of two scalar functions of the wavenumber vector and its projection
on the axis of symmetry to express the velocity spectral tensor, in order to obtain the ratio
of energies before and after the distortion. They compared their predictions to those of
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isotropic models and experiments. For large-c planar and axisymmetric contractions, their
longitudinal energy predictions matched isotropic theory.

Experiments, primarily using single-point hot-wire measurements (Uberoi 1956;
Hussain & Ramjee 1976; Tan-Atichat, Nagib & Drubka 1980; Thoroddsen & Van Atta
1995; Ayyalasomayajula & Warhaft 2006) have verified qualitatively the above framework
for the velocity fluctuations, but only for small contraction ratios. Uberoi (1956), in his
pioneering measurements in many different axisymmetric contractions with total ratios
C = 4, 9 and 16, verified the decay of urms and increase in the lateral vrms for the smaller
C. This was done in grid-generated wind tunnel turbulence over a large range of Reynolds
numbers ReM = UiM/ν = 3700–12 000, where Ui is the mean velocity at the inlet, and
M is the grid mesh size. However, for the strongest contraction with C = 16, urms initially
decreases, but then increases towards the exit. He concluded that Prandtl’s theory applies
only for C < 4.

Reynolds & Tucker (1975) performed hot-wire experiments in wind tunnel test sections
with three different straining conditions, which included axisymmetric straining as well as
one axis contracting while the other expands to keep the cross-sectional area constant.
Hussain & Ramjee (1976) also observed the non-monotonic behaviour in urms when
C > 4, when they studied the effects of different axisymmetric contraction shapes while
keeping the total contraction ratio constant at C = 11. Their experiments also focused
on wind tunnel design and used minimal inlet fluctuations using a fine 1.4-mm mesh,
thereby giving ReM = 234, while the exit bulk Re based on the nozzle diameter reached
ReD ∼ 105. The non-monotonic downstream evolution of urms was also reported by
Tan-Atichat et al. (1980), who investigated ten axisymmetric contractions with a wide
range of C = 2–36, while varying their aspect ratios and incoming turbulence levels. They
emphasized the influence of the inlet turbulent length scales on the straining effect. In their
subsequent experiments in a settling chamber followed by an axisymmetric contraction
with C = 9, Nagib, Marion & Tan-Atichat (1984) conclude that a larger contraction ratio
can probably be used to reach small integral scales and low fluctuating intensities for wind
tunnel applications.

Ayyalasomayajula & Warhaft (2006) investigated turbulence evolution through an
axisymmetric contraction, with ratio C = 4, for both passive and active grids producing
a wide range of Reλ = 40–470. They made comparison with RDT predictions of the
turbulence statistics through the contraction and the subsequent return to isotropy. They
found that the ratio of longitudinal r.m.s. fluctuations before and after contraction agreed
well with the RDT limits computed for an initial isotropic spectrum. The measured
transverse r.m.s. fluctuations ratio was, in contrast, smaller than the RDT values.
Following this work, the effect of strain on temperature fluctuations was investigated in
the same contraction by Gylfason & Warhaft (2009), wherein they imposed transverse
mean temperature gradient onto the homogeneous, grid-generated turbulence. They
compared the evolution of the fluctuating temperature gradient anisotropy tensor with RDT
predictions with isotropic inlet condition. They found that the theory overestimated the
transverse, while underestimated the longitudinal component of the fluctuating gradients.
Thoroddsen & Van Atta (1995) previously investigated the straining effect within a
two-dimensional (2-D) contraction having C = 2.5, while adding a passive or strong
transverse thermal gradient to the wind tunnel. The stretching enhancement of the
transverse vertical velocity component is reduced by buoyancy for a strong temperature
gradient generating stable density stratification. Without the temperature stratification,
urms is reduced by ∼40 % through the entire contraction, while wrms grows by a factor
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∼30 %, broadly consistent with the above studies. These r.m.s. velocity components tend
to the same level very slowly downstream of the exit.

Based on their study in contractions with C = 3.69 and 14.75, Ertunç & Durst (2008)
questioned all previous hot-wire measurements of the streamwise urms. They postulated
that urms should decrease monotonically in a contraction as per RDT, and called the
increase after an initial decay a ‘high contraction ratio anomaly’. They attributed this
anomalous behaviour to measurement errors originating from noise in the instruments,
spatial resolution of the wires, or fluctuating inlet flow conditions. Keep in mind that these
sources of noise should not be present in our optical measurement technique, described
herein.

Direct numerical simulations (DNS) can provide time-resolved 3-D velocity, vorticity
and pressure fields, which can be very helpful in understanding coherent structures
and their characteristics, where single-point measurements fail to detect them. However,
in complex geometries, such simulations are limited to moderate Reλ, and rather than
simulating the contracting stream, they are often formulated in idealized conditions of
uniform strain. Below, we list some important numerical studies in straining geometries
wherein the behaviours of vortical structures are discussed. Clay & Yeung (2016)
used DNS to reproduce the experimental results of Ayyalasomayajula & Warhaft
(2006), by applying time-dependent strain on the computational domain to match the
experimental conditions, but only up to a maximum Reλ = 95. Similarly, Gualtieri &
Meneveau (2010) simulated the straining–destraining experiments of Chen, Meneveau
& Katz (2006), wherein they used planar particle image velocimetry (PIV) to study
active-grid-generated turbulence subjected to planar piston-driven compression and
straining cycles in a piston tank device at up to Reλ = 400. This very large value
of Reλ was accomplished with experiments very close to the grid, at x/M ∼ 3.5,
where homogeneity may be affected. Gualtieri & Meneveau (2010) simulated these
experiments, but only up to a maximum Reλ = 40. By visualizing coherent structures
by Δ-criterion, they noted qualitatively that the initially arbitrarily oriented worm-like
structures tend to align along the positive strain direction during the straining phase.
They return to the initial isotropic state when the strain is removed. Jang, Sung &
Krogstad (2011) simulated fully developed turbulent pipe flow through an axisymmetric
contraction, focusing on the boundary layer structures. They noted that the spanwise
vortical structures, visualized based on swirling strength, get stretched in the contraction,
with the long ‘streaky’ structures aligned in the streamwise direction towards the exit of
the contraction. Lee et al. (2015) studied dynamics of particle-laden turbulence subjected
to axisymmetric expansion at Reλ = 117 and 193. Qualitatively, coherent filaments,
visualized by vorticity magnitude, are seen to align with the extensional directions in the
contraction.

Herein, we experimentally identify and study the evolution of coherent vortical
structures in a turbulent flow through a rapid 16 : 1 3-D contraction. Using time-resolved
volumetric Lagrangian particle tracking (LPT) velocimetry, we collect a sufficient number
of realizations to quantitatively characterize the length, orientation and prevalence of
these vortical structures. Besides our earlier study in a weaker 2-D contraction, with
C = 2.5 (Mugundhan et al. 2020), we present for the first time the time-resolved
volumetric measurements in this ‘axisymmetric’ geometry for C = 16. It is important
to note that most previous studies have focused on single-point hot-wire measurements,
which precludes them from capturing any coherent vortical structures or even measuring
vorticity.
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2. Experimental set-up

2.1. Water tunnel
The water flow facility (figure 1a) is the same as used by Mugundhan et al. (2020), but with
a different contraction section, which now contracts the flow in both horizontal directions.
The 16 : 1 area contraction reduces the square cross-section from 180 × 180 mm2 at the
inlet to 45 × 45 mm2 at the outlet. The water is pumped into a constant-head inlet tank
from a 500 litre supply tank using a centrifugal pump. A constant water level is maintained
in the overhead tank by setting the bypass valve at a constant opening with the valve at
pump suction and the two ball valves in the return lines left fully opened, thus operating
at maximum flow rate. Honeycomb and perforated plates kill off large-scale motions and
make the flow uniform as it enters the active grid through a 203 mm long converging
section that reduces the cross-section from 260 × 260 mm2 to 180 × 180 mm2. The active
grid consists of 10 independently rotated rods with flat blades with holes, and mesh
size M = 30 mm. This allows synchronized or random grid rotation protocols to inject
turbulent fluctuations, as explained in Mugundhan et al. (2020). Here, we use mostly
results from the random mode where the shafts are rotated at a constant speed 210 or
240 rpm but the cruise time is varied randomly between 0.5 and 1.5 times the period of
one full revolution. This is referred to as the single-random mode in the literature (Larssen
& Devenport 2011). Our previous studies in the same set-up showed that the random mode
resulted in higher Reλ and better transverse homogeneity than for the synchronized mode
(Mugundhan et al. 2020; Mugundhan & Thoroddsen 2023). Following the active grid, we
include a 478 mm long channel of uniform cross-section before the inlet to the contraction,
to improve transverse homogeneity. On the other hand, this long section reduces the
turbulence intensity to urms/〈Uin〉 = 5.8 %, while producing Reλ = 192 at the inlet to the
contraction.

The contraction is formed with four 15 mm thick acrylic plates which are assembled
to make an angle 11◦ with the vertical. To avoid any feedback effects from the outlet,
a 500 mm long downstream straight section is provided before water exits the vertical
channel symmetrically into two outlet pipes recirculating the flow to the supply tank. The
inlet velocity is 〈Uin〉 = 0.28 m s−1, but it reaches 2.52 m s−1 near the bottom of region P3,
i.e. the closest measurement to the outlet. Table 1 lists other turbulent quantities slightly
inside the inlet of the contraction, at x = 5 mm. Figure 1(b) shows the locations of the
three measurement volumes, which were investigated in experiments on separate days,
as they require rearrangement of the laser optics and cameras. All experimental runs are
conducted at least 5 min after steady flow is reached. The measurements are taken near
room temperature 21 ◦C, where the water density is ρ = 998 kg m−3 and the dynamic
viscosity is μ = 9.79 × 10−4 Pa s.

2.2. Volumetric velocity measurements
We employ 3-D LPT velocimetry with the shake-the-box (STB) algorithm (Schanz,
Gesemann & Schröder 2016), as implemented by LaVision (DaVis 10.2 software) to obtain
time-resolved volumetric flow fields. We utilize four high-speed 4 Mpx video cameras
(Phantom V2640, which can capture up to 6600 frames per second (fps) at the full
2048 × 1952 resolution) equipped with 85 mm Nikkor tilt lenses for a Scheimpflug set-up
to align the focal plane with the laser. The aperture is set at f/22, to ensure sufficiently
large depth of focus. Two of the cameras are mounted on each side of the test section, with
optimal angles between adjacent cameras ∼28◦–32◦ for the particle triangulations, i.e.
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Figure 1. (a) Schematic of the gravity-driven water tunnel with a two-directional 16 : 1 contraction. (b) The
three measurement volumes P1–P3 with respect to the coordinate axes positioned at the start of the contraction.
The depth of the measurement volumes into the board is 23 mm; M is the mesh size of the active grid, and SOC
and EOC represent the start and end of the contraction. (c) A 3-D rendering of the contraction. All dimensions
are in mm.
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Parameter urms/〈Uin〉 k ε LI λ η ReL Reλ �x/η S∗
Unit (%) (m2 s−2) (m2 s−3) (mm) (mm) (mm) — — — —

Value 5.77 5.04 × 10−4 8.12 × 10−5 30.19 8.37 0.33 691 192 2.01 301

Table 1. Turbulence quantities slightly inside the contraction, at x = 5 mm: mean inlet velocity 〈Uin〉 ≈
0.28 m s−1, streamwise velocity fluctuation urms, turbulent kinetic energy k, dissipation rate ε, streamwise
integral length scale LI , and Taylor microscale λ, computed by the two-point spatial correlation function f (r) =
[〈u(x) u(x + exr)〉]/〈u2〉. The Kolmogorov length scale is η = (ν3/ε)1/4, and Reynolds numbers are based on
LI and λ. The velocity grid measurement resolution is �x, and S∗ characterizes the maximum mean strain, in
terms of a time scale ratio from the mean strain and the turbulent straining, as S∗ = √

3 (∂〈U〉/∂x)(k/ε), with
the prefactor for an axisymmetric contraction, according to Ayyalasomayajula & Warhaft (2006).

using a set-up similar to that in our previous experiments in a 2-D contraction (Mugundhan
et al. 2020). The cameras are positioned such that the viewing direction is approximately
normal to the contraction walls to minimize optical distortions. A high-speed dual-cavity
pulsed Nd-YLF green laser (527 nm Litron LDY 300 PIV) provides a beam that is
expanded with two cylindrical lenses to illuminate a volume slice approximately 23 mm
wide. The laser pulse duration is 100 ns width, with maximum energy output, pulsing
both cavities simultaneously, 23 mJ pulse−1, at 70 % power and frequency 1 kHz. The
tracers are surfactant-treated fluorescent red polyethylene microspheres ∼50–70 μm (from
Cospheric). These particles are close to neutrally buoyant with density 1.05 g cm−3,
which gives Stokes number 2 × 10−4 and suggests that the particles will follow the flow
faithfully.

The measurements were performed in three separate regions (P1, P2 and P3) along
the length of the contraction, as shown in figure 1(b). The corresponding volume slices
were 106 × 106 × 23 mm3, 106 × 58 × 23 mm3 and 85 × 42 × 23 mm3. To capture
the particles in the accelerating flow, the frame rate must be increased in the different
regions within the contraction, increasing in the streamwise direction from 1000 to 2000
to 4000 fps in volume P3 nearest to the outlet.

Spatial calibration maps the physical coordinates in the volume of interest to the
sensor coordinates, using third-order polynomials in multiple planes. This process is
performed with the test section filled with water, illuminated by normal lighting using
an 11.8 mm thick double-sided calibration plate from LaVision (number 106-10). The
whole 106 mm × 106 mm size of the calibration plate is used for region P1, while in
the narrower regions, P2 and P3, it is trimmed from the sides to fit without touching the
contraction walls. The plates used in P2 and P3 measure 106 mm × 58 mm and 106 mm ×
42 mm, respectively. Following image pre-processing (which involves subtracting a sliding
minimum over 5 pixels and normalizing intensities with a local average), the volume
self-calibration is applied (Wieneke 2008). The volume self-calibration corrects for any
misalignment between the original calibration and the experimental runs, and is performed
using up to 20 000 brightest particles in the full recording. The self-calibration also
implements the optical transfer function, to account for the different distortions of the
particle images, depending on their location away from the lens centre.

The particle tracking algorithm (STB) identifies the 3-D location of particles by
triangulating their images from the four cameras. To start the tracking, STB relies on
a standard correlation or particle tracking velocimetry (PTV) algorithms. The original
tracks at t are then fitted and extrapolated to predict the future location of each particle
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at time t + �t. The particle position is then corrected by ‘shaking’ the particle in all
three directions until its projection matches the real images in all four cameras. This
is done by minimizing a cost function that is the difference between the projected and
captured images, using iterative particle reconstruction (Wieneke 2013). The recent review
of Schröder & Schanz (2023) gives details of this 3-D LPT technique and its recent
advances. The STB algorithm in DaVis 10.2 provides the particle statistics for every time
step, which includes the number of particles identified, the number of particles that can
be tracked, and the number of new particles entering the measurement volume. In our
experimental runs, on average, the algorithm tracks around 210 000, 80 000 and 50 000
particles in the differently sized volumes P1, P2 and P3, respectively.

The Lagrangian particle tracks are then mapped onto a regular Eulerian grid, using
the ‘binning’ step implemented in DaVis 10.2 software. Here, one considers all the
particles within a cubical volume of size 48 × 48 × 48 voxels, which corresponds to
2.64 × 2.64 × 2.64 mm3. The velocity at the centre of the volume is calculated based
on spatial second-order polynomial fits to the velocities of the typically 10–14 particles
contained within the volume. With 75 % overlap of adjacent volumes, we reconstruct
Eulerian velocities on a uniform grid with spacing �x = 0.66 mm, which is approximately
twice the estimated Kolmogorov scale. This interpolation provides 1 million, 600 000 and
300 000 velocity vectors within the P1, P2 and P3 regions, respectively. The choice of
these parameters for the conversion from the Lagrangian tracks to Eulerian velocities is
based on our previous study, where we used similar camera magnification and particle
size and concentration. A systematic study was performed on the effect of volume size
and time filter length on the r.m.s. statistics, as explained in the supplemental material of
Mugundhan et al. (2020). We see that smaller volumes of 36 or 32 voxels can overpredict
the r.m.s. values and the velocity gradients, hence all our calculations are based on
velocities obtained from 48 voxels. Also, the vorticity field is ‘more’ continuous in time
with 48 voxels as compared to the smaller volumes. We use time filter lengths 5 for r.m.s.
statistics and 11 time steps to improve ‘trackability’ of the coherent vortical structures.

With the current magnification, we do not resolve the smallest scales. Casey, Sakakibara
& Thoroddsen (2013) and Mugundhan et al. (2020) show a clear shift in the peak of
the probability density function (p.d.f.) of vorticity to higher values with increase in the
camera magnification by ∼2 times. The zoomed-in experiments resulted in higher values
for the gradients and thus enhanced vorticity magnitude. Though the small scales are not
fully resolved with the lower magnification, the large structures are captured as noted by
Casey et al. (2013). We find that the current set-up is a good compromise between volume
size and resolution. The uncertainty and convergence of our measurements is discussed in
the supplementary material available at https://doi.org/10.1017/jfm.2024.859.

3. Results

3.1. Mean velocity and fluctuation levels
Figure 2(a) shows the mean streamwise velocity along the centreline of the contraction.
Near the exit, at the lowest part of the measurement volumes, the mean velocity has
increased to ∼9 times the inlet velocity, while the transverse mean velocities are near
zero, as expected by symmetry. The r.m.s. velocity components shown in figure 2(b) are
consistent with earlier experiments (Uberoi 1956; Hussain & Ramjee 1976; Tan-Atichat
et al. 1980), starting with suppression of the streamwise urms, with steady increase in
the transverse fluctuations, owing to stretching of streamwise vortices. In the lowest test
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Figure 2. (a) Mean velocity components along the centreline of the contraction. (b) The r.m.s. velocity
components normalized by the mean inlet velocity 〈Uin〉. (c) Vorticity r.m.s. for the streamwise ωx,rms and
transverse component ωz,rms.

volume, urms starts growing again, through nonlinear interactions. The gaps between
measurement regions are due to experimental constraints that require the experimental
runs in each region be conducted on separate days. This is necessitated by significant
adjustments to the optical system, camera arrangement and new calibration. However,
care is taken to ensure that the centreline of the laser volume aligns with the contraction
axis; but there could be a shift by 2–3 mm that can cause small jumps between the
regions P1, P2 and P3 in figure 2. Figure 2(c) shows the same scenario in terms of the
vorticity components, where the streamwise ωx,rms grows by factor 4, while the transverse
component reduces slightly then stays approximately constant, with ωx,rms/ωz,rms ≈ 4.5,
at the lowest measurement location in P3, 10 mm before the end of contraction, with local
c ≈ 11. The vorticity fluctuations, which have not been measured previously, show results
qualitatively consistent with the above basic inviscid theory, while the magnification is
much below a factor of c.
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3.2. Comparison with RDT
The reduction in streamwise r.m.s. velocity and increase in transverse r.m.s. can
be compared to the theoretical predictions of RDT. We consider the square of the
ratio of fluctuating r.m.s. velocities between inlet and outlet expressed as μ1 =
[urms(xout)/urms(xin)]2, and compare to Batchelor & Proudman (1954) (obtained
independently by Ribner & Tucker 1952) for our results at Reλ ≈ 110 and 190 in figure 3,
corresponding to synchronous and random grid rotation protocols. The theory decomposes
the fluctuations into Fourier modes in wavenumber space, and ignores viscous stress and
the nonlinear advection term to derive expressions for these energy ratios. The underlying
assumptions of incompressibility, homogeneity, isotropy and rapid distortion apply in our
case to a reasonable extent. The expressions for the longitudinal μ1 and transverse μ2
energy ratios, in terms of the local contraction ratio c, are given by

μ1 =
〈
u2〉〈
u2

o
〉 = 3

4c2

[
1 + α2

2α3 log
(

1 + α

1 − α

)
− 1

α2

]
, (3.1)

μ2 =
〈
v2〉 + 〈

w2〉〈
v2

o
〉 + 〈

w2
o
〉 = 3

4
c + 3

4c2

[
1

2α2 − 1 − α2

4α3 log
(

1 + α

1 − α

)]
, (3.2)

where α2 = 1 − c−3, and the subscript ‘o’ represents conditions at the inlet to the
contraction. The streamwise energy ratio agrees reasonably well with the monotonic
theoretical curve, but only up to c = 3, after which it deviates greatly from the theory.
This non-monotonic behaviour of urms has been documented before in experiments with
contraction ratios C > 4; see Uberoi (1956), Hussain & Ramjee (1976) and Tan-Atichat
et al. (1980). These studies observed that μ1 reaches its minimum close to c = 4, while
in our case the minimum is at approximately c = 3 for both cases, following which it
increases. On the other hand, while the transverse energy μ2 evolves qualitatively similarly
to the theory, figure 3(b) shows a constant deviation being lower by a factor 2–3, which is
consistent with previous studies. Consistently larger values for μ1 and μ2 are observed for
our lower Reλ case. Close to the exit, at c = 11, the values of μ1 and μ2 are 1.6 and 3 for
our lower Reλ = 110, but 2 and 4 for the higher Reλ = 190. The corresponding values in
the experiments of Uberoi (1956) are 0.9 and 6, and in Hussain & Ramjee (1976) they are
0.5 and 4. Later, Tsugé (1984) explained this discrepancy between theory and experiments
by the theory’s lack of consideration of the interaction of the turbulent vortices with the
mean flow. He proposed that the small eddies decay in accordance to the theory, whereas
the large eddies get amplified along the contraction. His modifications to the theory could
match the results of Uberoi (1956) and Hussain & Ramjee (1976).

3.3. Coherent vortical structures
Having acquired volumetric measurements, we can, in addition to the r.m.s. fluctuations,
investigate coherent vortical structures. Figure 4 shows examples of the vortical structures
in the three measurement regions within the contraction, the locations of which were
shown in figure 1(b). The structures are identified by the isosurfaces of vorticity. At the
entrance to the contraction, the vortices are small and fairly randomly oriented, while in
the centre, they become longer and a few of them are more prominent. On the other hand,
near the outlet, where the mean strain is largest, the flow is characterized by isolated long
streamwise vortices. Furthermore, the strength of these vortices has been greatly enhanced
towards the outlet. In these plots, the |ω| threshold is increased in the streamwise direction,
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Figure 3. Comparison of the (a) streamwise μ1 and (b) transverse μ2 kinetic energy ratios with the linear
RDT of Batchelor & Proudman (1954) (BP-54). The theoretical expressions (black lines) are given by (3.1) and
(3.2). The two Reynolds numbers arise from the random (blue asterisks) and synchronous (red circles) grid
rotation protocols.

from 15 to 20 to 40 s−1. These coherent streamwise structures emerge repeatedly and
dominate the observed turbulent structure. Figure 5 shows five examples in the lowest
volume P3, taken from five different experimental runs.

Using a |ω| threshold and a watershed algorithm, we identify the coherent structures
based on their volumes. We also fit an ellipsoid around the largest vortices, which provides
an estimate for their orientation and length. The choice of |ω| threshold and the ellipsoid
fitting is discussed in the supplementary material. Figure 6(a) shows the probability of
vortex lengths L, which grows greatly as the flow is advected through the contraction. Keep
in mind that the threshold used in this calculation is increased as the vortices strengthen
in regions P1, P2 and P3. Furthermore, in volume P3, closest to the exit, the vortices
frequently span the entire length of the measurement volume (see figure 4c), and L is
therefore a lower bound for the longest vortices.

The extended time series of volumes allows us to quantify the prevalence of these
coherent vortical structures. We identify them by looking at the time series of the longest
structures within each volume in the bottom section, P3. A section of a typical time series
of vortex structure lengths L is shown in figure 6(b). Over five separate experimental
runs, we identified 795 structures, or on average 159 ± 20 separate structures per each
continuous experimental run of 136 502 volumes. One characteristic structure from each
run is shown in figure 5. The supplementary material includes a snapshot of one volume
from each of the 795 long vortices, to give an indication of the variability in their
morphology. Each structure is advected through the volume and is visible in ∼600 ± 75
volumes, corresponding to 150 ms. For comparison, this time is 2.5 times the advection
time scale computed by T = ∫ t2

t1
dt = ∫ x2

x1
〈U(x)〉−1 dx = 60.5 ms, which marks how long

it takes a fluid element to be advected through the P3 volume at the mean local velocity.
This hints at the vortices being longer than the height of P3, as one should arrive at a time
2T for a vortex of the same length as the volume, counting from the bottom tip of the
vortex entering the volume until the top of the vortex leaves the bottom.
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Figure 4. The time evolution of the isosurfaces of vorticity magnitude normalized by the maximum
mean strain rate |ω|/Smax, where the maximum measured value is Smax = √

3 |∂〈U〉/∂x|max = 51 s−1. The
isosurfaces are coloured based on the rotation direction of each structure with respect to the vertical, i.e.
the sign of ωx. Each row shows a sequence corresponding to the different measurement regions, captured
in different experimental runs. The volumes shown are separated by 60 video frames, captured at frame
rates 1000 fps for P1, 2000 fps for P2, and 4000 fps for P3. This corresponds to time intervals 60, 30 and
15 ms, respectively. The XYZ coordinates shown in the figure are local to the measurement region, as arising
from the separate calibrations. The corresponding x extents and the thresholds used for visualization in each
volume are: (a) volume P1, x = [0, 106] mm, with threshold |ω| = 15 s−1, or |ω|/Smax = 0.29; (b) volume
P2, x = [124, 230] mm, with |ω| = 20 s−1, or |ω|/Smax = 0.39; (c) volume P3, x = [244, 325] mm, with
|ω| = 40 s−1, or |ω|/Smax = 0.78. The depths of the volumes into the board are all 23 mm. Each row is for a
different experimental run.
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(e)(b)(a) (d )(c)

Figure 5. (a–e) Five examples of the coherent vortical structures, each taken from a different experimental
run. The isosurfaces correspond to |ω| = 40 s−1 (|ω|/Smax = 0.78), with the two colours indicating opposite
sign rotation directions. The supplementary material contains snapshots of all 795 observed structures.

The large number of structures investigated also allows us to ascertain the symmetry of
the turbulence in our experimental tunnel. The number of clockwise and anticlockwise
coherent vortices should be identical for perfectly symmetric inlet conditions. This is
indeed observed, with 49/51 % of the structures with each sign of the rotation direction.
This suggests that the grid rotation protocol and the horizontal location of the grid rods do
not bias the formation of the structures towards one sign, and rules out large-scale rotations
in the incoming flow.

3.4. Vortex alignment
The coherent structures are best described by their extensive length and alignment with
the streamwise mean strain. We see that the vorticity field is composed of discrete entities
with vortex tubes oriented randomly. These vortex tubes get aligned with the x-direction
due to stretching by the strong mean strain, and thus increase the strength of ωx,rms. We
see this trend for ωx,rms in our earlier measurements within a much weaker smooth 2-D
contraction with C = 2.5, but obviously with a weaker amplification (Mugundhan et al.
2020). Figure 6(c) shows how strongly the coherent vortices become aligned with the mean
strain, with the peak in the probability concentrating at the angle θ = 0, i.e. cos θ = 1.
However, the height of the peak of the p.d.f. depends on the number of bins used, i.e. how
well it is resolved near cos θ = 1. We calculate the p.d.f. using cos θ to account for the
range of allowed azimuthal space for each θ . We propose here two quantitative measures
independent of the bin size. First, we take the value of the probability when 99.5 % of
cumulative distribution has been reached, starting at cos θ = 0. This is found by fitting the
p.d.f.s with an inverted fifth-order polynomial (see the supplementary material for details).
This value is plotted in figure 6(d). Second, we form an orientation coefficient CA, which
takes value zero for uniform orientation, and unity at fully aligned orientation, which is
defined as twice the moment of the probability around cos θ = 0.5:

CA =
∫ π/2

0
2[cos θ − 0.5] P(cos θ) dθ. (3.3)
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Figure 6. Length and alignment of the coherent vortical structures. (a) Probability of the length of the coherent
structures, for the three measurement regions. The dashed red curve is an approximate extrapolation to highlight
that some of the vortices span the entire length of section P3 and must thereby be longer than the volume, due
to clipping. (b) Time series of the length of the longest vortical structure within the volume P3 near the exit of
the contraction. When the curve exceeds the horizontal line at L = 90 mm, the vortex spans the entire height
of the volume. (c) Streamwise evolution of the p.d.f. of the orientation of coherent vortical structures. Only
structures larger than 100 voxels are included, while the |ω| thresholds in the three locations are varied: in
region P1, |ω| = 15 s−1 (|ω|/Smax = 0.29); in P2, |ω| = 20 s−1 (|ω|/Smax = 0.39); and in P3, |ω| = 40 s−1

(|ω|/Smax = 0.78). The inset plot highlights the orientation a short distance inside the contraction, where the
orientation is closest to uniform, in subregions of P1, with streamwise ranges: for R1, x = 0–35.3 mm; for
R2, x = 35.5–70.7 mm; and for R3, x = 70.7–106 mm. The definition of the alignment angle θ is also shown.
(d) The prevalence of streamwise orientation of the coherent structures along the contraction, quantified by
the orientation coefficient CA (solid symbols) and peak value at 99.5 % probability (open symbols). The red,
green and blue symbols correspond to measurements in volumes P1, P2 and P3, respectively. The streamwise
coordinates from the entrance to the contraction are 18, 54, 90, 141, 175, 209, 256, 284 and 314 mm, which are
normalized by the total length of the contraction H = 350 mm. The arrows point to which axes correspond to
the different data sets.
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Keep in mind that we have multiplied by a factor 2 to confine possible values of the
orientation coefficient in the range CA → [−1, 1]. For perfect alignment in the streamwise
direction, CA takes value 1, while for transverse alignment of the vortices (θ = π/2) this
value becomes −1. Figure 6(d) shows the value of this coefficient and how it approaches
unity travelling through the contraction.

3.5. Vortex alignment at different Reλ
We compare the alignment coefficients CA and P(99.5 %) for different Reλ, ranging
between approximately 100 and 200, to help to establish the generality of results. The
variation in Reλ is achieved by changing the grid rotation protocol and the rotation rate
of the active grid. In addition to the experimental conditions discussed above (which we
refer to as set I), we perform experiments with the grid operated in synchronous mode
at 240 rpm (set II) and in random mode at 300 rpm (set III). In the synchronous (sync)
mode, alternate shafts are rotated at the same rotation rate but in opposite directions;
for details, see Mugundhan et al. (2020) where it is referred to as Sync Mode 1. The
experiments in the last set III are performed in a slightly weaker contraction with
C = 13. This contraction has length 260 mm and reduces the channel cross-section from
180 × 180 mm2 to 50 × 50 mm2. In set III, the flaps in the active grid that had holes in
them are now replaced with solid flaps, in an attempt to increase the velocity fluctuations.
The reduced length of the second contraction poses difficulty in accessing the lowest part
of the contraction, hence we perform measurements in only two regions, P1* (x = [4, 110])
and P2* (x = [120, 226]), which are slightly different from P1 and P2 shown in figure 1.
The random mode uses a cruise time between 0.5 to 1.5 times the period of one full
rotation, before randomly changing the rotation direction, separately for each rod.

The important turbulent parameters measured on the centreline close to the inlet of the
contractions are compared between the three cases in table 2. In comparison to set I, set
II with the synchronous mode yields a lower Reλ ∼ 110, whereas set III with the random
mode and solid flaps yields Reλ ∼ 150. This is consistent with our previous experiments,
where we have observed that synchronous modes result in lower Reλ. Set III, on the other
hand, results in lower Reλ compared to set I, in spite of an increase in the rotation rate
by ≈40 %. This is due to the generation of turbulence with a smaller Taylor microscale.
The length scale appears more dependent on the cruise time than the rotation speed. Note
that the turbulence intensity increases by approximately 17 %. Lower Reλ with increase in
rotation rate has been reported by Hearst & Lavoie (2015), who study the effect of grid
conditions of turbulence evolution in a wind tunnel.

We illustrate the time evolution of a coherent vortical structure for set II with the lowest
Reλ in supplementary figure S6. We see the existence of coherent tubular structures as
long as or longer than the measurement region, similar to those presented in figure 4,
which was for the largest Reλ = 192. These structures evolve through the contraction and
can be tracked in time. Examples of independent coherent structures occurring at totally
different instants, one from each realization, are shown in supplementary figure S7. The
structures appear in random time intervals with essentially equal probability for their
rotation directions, with respect to the vertical streamwise direction, which are colour
coded in the figures.

Comparison of the orientation parameters, for the two lower Reλ values, is shown in
figure 7. Comparing with figure 6(d), the preferential alignment of structures with the
mean strain direction is clear in all three experimental sets. The minimum and maximum
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Parameters Set I Set II Set III

Contraction ratio 16 16 12.96
Mode Random Sync Random
Rotation rate (rpm) 210 240 300
〈Uin〉 m s−1 0.28 0.28 0.25
〈u2〉1/2

/〈Uin〉 % 5.77 5.05 6.77
k (m2 s−2) 5.04 × 10−4 2.85 × 10−4 4.96 × 10−4

ε (m2 s−3) 8.12 × 10−5 8.94 × 10−5 1.20 × 10−4

LI (mm) 30.19 21.16 23.98
λ (mm) 8.37 6.58 7.28
η (mm) 0.33 0.32 0.30
ReL 691 697 512
Reλ 192 113 155
�x/η 2.01 2.05 2.10
S∗ 301 226 279

Table 2. Comparison of the turbulence quantities slightly inside the contraction, at x = 5 mm, obtained for the
three sets of experimental conditions. Here, we use C = 16 contraction in sets I and II, and C = 13 contraction
with solid flaps in set III experiments. All results in the earlier sections are from set I, and are repeated here for
comparison. Refer to caption of table 1 for the nomenclature.
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Figure 7. Comparison of the orientation coefficient CA (solid symbols) and peak probability value at 99.5 %
(open symbols) computed for the p.d.f.s of cos θ , for (a) Reλ = 113 in set II and (b) Reλ = 192 in set III. The
red, green and blue symbols correspond to measurements in volumes P1, P2 and P3 in set II. The red and
blue symbols correspond to measurement regions P1* and P2* in set III. The streamwise coordinates from
the inlet are normalized by the corresponding total length of the contraction, i.e. H = 350 mm for set II, and
H = 260 mm for set III. The axis labels corresponding to the different data sets are the same as in figure 6(d).

Reλ cases (sets I and II) show very similar streamwise variation of CA and P(99.5 %) in
the initial part of the contraction. Set II has slightly lower values of P(99.5 %) towards
the exit of the contraction compared to set I. Note that the contraction used in set III has
a slightly larger contraction angle, but still shows variation similar to that in sets I and II.
This shows clearly that the coherent structures exist, are similar in shape and size, and have
preferential alignment to the same degree for Reλ in the range 110–190.
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Figure 8. (a) Instantaneous vortical structure for Reλ = 192, visualized in region P3 with threshold |ω| =
40 s−1 (|ω|/Smax = 0.78), with three corresponding horizontal cuts through the vortex cores, showing their
vorticity. (b) The streamwise variation of |ω| in the cores of typical coherent vortices. In regions P1 and P2, the
core strength is extracted from approximately 24 structures in each region. In P3, the vorticity is tracked along
the longest coherent structures extending for the entire region, with the mean of a quadratic fit obtained from
48 strong structures. The red line indicates the local contraction ratio c, shown on the right-hand ordinate. The
arrows point to which axes correspond to the curves.

3.6. Vortex stretching
Vortices aligned with the mean strain should experience an increase in the local vorticity
strength along their length, due to the stretching and near constancy of circulation. This is
verified in figure 8(b), where the peak vorticity along the coherent vortices in P3 increases
on average by approximately 65 %, much smaller than the increase in C. The vortex
strengths are also significantly larger than near the inlet, where the vortices are more
randomly oriented. Figure 8(a) shows that the diameters of the typical coherent vortices
are ≈3–6 mm. The above core sizes are determined by the equivalent cross-section of the
structures above the cut-off |ω| � 40 s−1, and their full size is ∼50 % larger.

4. Discussion and conclusions

Our time-resolved volumetric vorticity measurements are novel in this geometry, but
comparison can be made with earlier velocity measurements. This showed increase in the
streamwise urms after an initial decay, and steady increase in the transverse fluctuations
consistent with the earlier hot-wire measurements (Uberoi 1956; Hussain & Ramjee 1976;
Tan-Atichat et al. 1980). In line with earlier hot-wire measurements, we confirm that
Prandtl-like theoretical predictions of urms do not hold for our large contraction ratio.
Ertunç & Durst (2008) attributed the discrepancy between theory and measurements to
hot-wire measurement errors and fluctuating inlet conditions. In contrast, our optical-based
method employed here is not subject to those errors and still shows eventual growth in urms,
thereby disputing this explanation.

Our time-resolved volumetric vorticity measurements have identified prominent
coherent streamwise vortical structures dominating the turbulence in a rapid contraction.
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Figure 9. (a) The time series of the volume fraction Vstruct/Vtotal of the coherent vortical structures, for
Reλ = 192, in region P3 for one complete experimental realization (time between frames dt = 0.25 ms).
Here, Vstruct is the total volume of all structures identified by |ω| � 40 s−1 (|ω|/Smax = 0.78) and having a
volume greater than 300 voxels, while Vtotal is the total volume of the measurement region. The instantaneous
coherent structures corresponding to the maximum volume fraction values marked by red dots are shown in
supplementary figure S2. (b) Histogram of the number of coherent structures observed in each volume, for two
different thresholds of structure volumes, of 500 and 800 voxels (144 and 230 mm3), corresponding to 0.17 %
and 0.27 % of Vtotal.

Even though these coherent structures can be anticipated from the basic conceptual picture
of vortex stretching by the streamwise mean strain, their strength, extensive length and
prevalence have not been characterized before. Such vortical structures have been reported
and discussed qualitatively in some DNS studies of strained flows (Gualtieri & Meneveau
2010; Jang et al. 2011; Lee et al. 2015). However, they do not quantify the characteristics of
these structures. We believe that this study is the first to quantify these structures in great
detail. Such quantification could be useful in the framework of structure-based models
used in large eddy simulations of turbulent flows. The coherent vortices frequently span
the entire length of the imaged volume P3, which is approximately four times the integral
length scale of the incoming turbulent flow, and about 14 times the Taylor microscale.

We propose two quantitative ways of characterizing the alignment of the structures in the
streamwise direction, i.e. P(99.5 %) and CA. Both measures verify this strong alignment.

The typical diameter of the structures, ∼7 mm, is approximately an order of magnitude
larger than the characteristic size of the Burgers vortex D = 2

√
4ν/Smax = 0.6 mm, where

viscous diffusion of vorticity is balanced by its enhancement by axial stretching, showing
that these coherent structures are not viscous controlled. The streamwise velocity inside
the vortex cores is only ∼1 % slower than the mean, thereby not contributing much to
the urms fluctuations. The equal number of clockwise and anticlockwise coherent vortices
suggests that they are not driven by large-scale rotation in the inlet flow into the tunnel.

Even though the coherent structures are the prominent vortical features in the flow, their
volume is minimal. Using the watershed algorithm, we measure the volume of coherent
structures with |ω| � 40 s−1 in each measurement volume. Figure 9(a) shows how this
volume fraction changes with time, but looking at only the longest structures in each
volume, they instantaneously occupy ≈1.25 % of the total measurement volume in P3.
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Figure 9(b) shows the number of these structures that are likely to occupy any random
volume. The histogram shows that it is more likely that there are one or two of these
structures rather than none, destroying any notion of small-scale isotropy.

What sets the size of these coherent structures, and how general are they? It also remains
an open question whether these structures will persist at higher Reλ. The main results
presented herein are for the largest possible Reλ ∼ 200 in our facility. We can, however,
change the grid rotation protocol to lower Reλ to 110, which we have shown for the
synchronous mode. The results at lower Reλ show the emergence of the same coherent
structures, with very similar alignment statistics.

Future simultaneous measurements with multiple tomographic systems could identify
the progenitors of these coherent structures and how the multitude of vortices are
winnowed down to one or two near the outlet. Our results are in sharp contrast with
the rapid distortion theory, where the turbulence is constructed from a myriad of
intertwined modes, evolving independently. Here, the randomized inlet conditions lead
to the emergence of one prominent mode.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.859.
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