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SUMS OF THREE INTEGRAL SQUARES IN CYCLOTOMIC FIELDS

CHUN-GANG J I

Let m be an odd positive integer greater than 2 and / the smallest positive
integer such that 2-̂  = 1 (mod m). It is proved that every algebraic integer in the
cyclotomic field Q(Cm) can be expressed as a sum of three integral squares if and
only if / is even.

1. INTRODUCTION

Let K be an algebraic number field of degree n with exactly r real conjugates
\ ... ,K^T\ in particular, the field K is totally real in the case r = n . A number

a in K is called totally positive, a » 0 , whenever the r conjugates a^\... ,a^ are
all positive. Siegel had proved the following two theorems in [5]

THEOREM A. Let K be totally real and suppose that all totally positive algebraic
integers are sums of integral squares in K; then K is either the rational number field
Q or the real quadratic number field <Q(y/E).

THEOREM B . If K is not totally real, then all totally positive algebraic integers
are sums of integral squares in K when and only when the discriminant of K is odd.

These two results are from different aspects of quadratic forms theory: Theorem
A deals with definite forms, and theorem B with indefinite forms. While the proof of
theorem A was elegant, albeit surprisingly elementary, Siegel resorted to a generalisation
of the circle method to show that five integral squares applies for theorem B, and
expressed his belief that perhaps four may be possible. Using the modern powerful
machinery of spinor genus, theorem B is easily reducible to a local question. In fact,
the conjectured value of four integral squares quickly falls out.

THEOREM B* . If K is not totally real, then all totally positive algebraic integers
are sums of four integral squares in K when and only when the discriminant of K is
odd.

In (A), over Q it is well-known that all positive integer v are sums of four squares
(Lagrange) and that such a v is a sum of three squares if and only if v ^ 4° (86 + 7)
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(Legendre). Maass later showed via function-theoretic means that actually three squares
works for Q(\/5) , see [3].

In (B), which formally non-real K has all its integers expressible as sums of three
integral squares in K ?

Using some results from the algebraic K-theory of integral quadratic forms and the
theory of spinor genus of quadratic forms, Estes and Hsia [1, 2] gave a complete answer
to this problem when K is an imaginary quadratic number field, which is stated in the
following.

THEOREM C. Every algebraic integer in K = Q(\/—D), D a positive square
free integer, can be expressed as a sum of three integral squares when and only when
D = 3 (mod 8) and D does not admit a positive proper factorisation D = d\d^ (that
is, di > 1 ) which satisfies the conditions:

(1) di = 5,7 (mod 8) and
(2) (d2/dl) = l.

Let m be a positive integer greater than 2 and K = Q(Cm) a cyclotomic field. If
m = 2 (mod 4) then K = Q(Cm/2) • If m = 0 (mod 4) then it is easy to show that £m

is not expressible as a sum of integral squares in K. If m is odd, then by the above
discussion we know that every algebraic integer in K can be expressed as a sum of four
integral squares. Which cyclotomic field K has all its algebraic integers expressible as
sums of three integral squares? In this paper, we shall give a complete answer to this
problem, in the following theorem.

THEOREM. Let m be an odd positive integer greater than 2 and let the order of 2
modulo m be f (that is, f is the smallest positive integer such that 2f = 1 (mod m)).
Then every algebraic integer in K — Q(Cm) can be expressed as a sum of three integral
squares if and only if f is even.

COROLLARY 1 . Let p = 3 (mod 4) be a prime. Then every algebraic integer

in Q(y/—p) can be expressed as a sum of three integral squares if and only if p =,3

(mod 8).

COROLLARY 2 . Let p = 3 (mod 8) be a prime. Then x2 -py2 = - 2 is solvable

in integers.

2. SOME LEMMAS

LEMMA 1. Let p be an odd prime. If the order of 2 modulo p is even, then - 1

can be represented as a sum of two integral squares in K = Q(CP) •

PROOF: Let / = 2n, n > 1, be the order of 2 modulo p. Then we have

22n _ 2 / = i (mod p), and 2n = - 1 (mod p).
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From

we have

(i) - i = cP
2(i+

Then the result follows from (1) and the following identity

(2) (a2 + b2) (c2 + d2) = (ac + bdf + (ad - be)2.

D
LEMMA 2 . Let m > 3 be an odd positive integer. If -1 can be expressed as

a sum of two integral squares in K — Q(Cm), then every algebraic integer can be
expressed as a sum of three integral squares in K.

P R O O F : By Siegel's theorem B*, we know that every a € Z[Cm], the ring of integers
of K, is expressible as a sum of four integral squares in K. Write

Then there exists a 7 € Z[£m] such that

a+ (ft +/32 +fo + /34 + I)2 = (7+ I)2 -7 2 -

So there exist x,y,z € Z[£m] such that

a = x2-(y2 + z2).

Because - 1 can be expressed as a sum of two integral squares in K and using (2) we
can obtain the result. D

LEMMA 3 . Let m > 3 be an odd positive integer and K = Q(Cm)- Then s{K)
(the stufe of K, that is to say, the smallest number of squares necessary to represent
- 1 in K ) is equal to 2 or to 4 depending on whether the order of 2 modulo m is
even or odd.

PROOF: See [4]. D
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3. P R O O F OF THEOREM

If the order of 2 modulo m is odd, then by Lemma 3 the stufe s(K) = 4. So - 1

can not be expressed as a sum of three integral squares in K.

Next we consider the order of 2 modulo m is even. According to lemma 2, we shall

only show that —1 can be expressed as a sum of two integral squares in Z[£m]. Let

where the pj are distinct odd primes. Then K is the composite of the fields Kj

— Q[Cp
a} ) ) 3 = 1>2,... ,t. If the order of 2 modulo p°j is odd, that is, the residue

class degree above 2 in Kj is odd, then the residue class degree above 2 in K is odd.

Thus we may assume that m = pa, p is an odd prime, and the order of 2 modulo pa

is even. We must prove that the order of 2 modulo p is even. We know that

Suppose the order of 2 modulo p were odd. Then the residue class degree above 2 in
Q(CP) is odd. Using [Q(CP

Q) : Q(CP)] = P**"1 is odd, we get the residue class degree
above 2 in Q(CP

a) is odd, that is, the order of 2 modulo pa is odd, this contradicts the
assumption. By lemmas 1 and 2, the proof of theorem is finished.

4. P R O O F OF COROLLARY 1

If p = 7 (mod 8), then 2 splits completely in Q( v
/ = p ) and [Q(CP) : Q(>/=p)]

= (p - l ) /2 is odd. So the order of 2 modulo p is odd. Hence by lemma 3, s(Q(CP))
= 4. So —1 can not be expressed as a sum of three integral squares in Q ( \ / - p ) .

In the following, we consider the case p = 3 (mod 8). In this case the residue class
degree above 2 in Q(-\/—~P) is 2. By

3?) c

we obtain the order of 2 modulo p is even. So there exist x, y € Z[£p] such that

(3) -I=x2 + y2.

Let G = Gal(Q(CP)/Q(v/ I Ip)). So that \G\ = (p - l ) /2 is odd. From (3) we have

, that is,

(4)

<T6G
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Now let

where U, V are algebraic integers in Q(CP, >/—1) • Then for r e G, we have

T{U + y/=T) = r ft {xa + V^y") = J ] {xT° + v^T2/T<T) = U+ V^

since a runs through G, so does TO . It follows that U + >/—TV is an algebraic integer
i n Q(Cpi \ / - T ) , that is, that U, V are algebraic integers in Q(-v/~p) • Hence

Y[ (xa - V^ly") = U- \f^\

Now (4) gives

(5) -1 = (U-

where U, V are algebraic integers in Q ( v / - p ) . By theorem B* and using a similar
method of proof to Lemma 2, we finish the proof of the Corollary.

5. P R O O F OF COROLLARY 2

Since p = 3 (mod 8), from (5) we have a, b, c, d € Z such that

<6> " 1 = ( - 2 J - V 2
and

— T)\ 2

(7) a = 6 (mod 2), c = d (mod 2).

Let

(8) s = b2 + d2.

Then by (6) we have

(9) s p - 4 = a2+c2 ,

(10) 0 = ab + cd.

From (8), (9) and (10), we have

(11) (sp - 4)s = (a2 + c2) (b2 + d2) - (ab + cd)2 = (ad - be)2.

From (7) and (10) we have a = b = c = d (mod 2) . I f a = 6 = c = d = 0 (mod 2),

then by (8) we have (s, sp- 4) —A. From (11) we get

s = 4n 2 , s p - 4 = 4m 2 , ( (m,n) = I,ad- be = 4 m n ) ,

so m 2 - n2p = - 1 , which contradicts with p = 3 (mod 8) . Hence a = b = c = d=l

(mod 2) , furthermore (s, sp - 4) — 2. Again from (11) we get

s = 2x2, sp-4 = 2y2, ((x,y) - l,ad- be = 2xy),

that is, x2 - py2 = —2 is solvable in integers.
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