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ABSTRACT. Laboratory results are presented concerning ice creep at minimum
creep rate (at ~1% strain) for fine-grained, initially isotropic, polycrystalline samples.
The effect on the creep rate of ice density, sample shape (aspect ratio) and size, grain-
size and ratio of grain-size to sample size is examined. Provided sample density is
above ~0.83 Mgm ° (i.e. the close-off density), there is no effect of density on ice-creep
rate. Results provide no evidence of a creep rate dependence on test sample length for
cylindrical samples. Sample diameter, however, does affect creep rate. Over the range
of sample diameters studied (16.2 to 90 mm) creep rate decreases monotonically by a
factor of ~4. This effect is independent of sample aspect ratio. Experiments examining
size effects in simple shear indicate no dependence of minimum flow rate on shape or
size in this stress configuration. Two grain-sizes were represented within the samples
tested for the effect of sample size. As expected from earlier work, no grain-size effect
on minimum creep rate is evident. In addition, there was no evidence of an effect on

creep rate of the ratio of grain-size to sample size.

INTRODUCTION

In a review paper examining theoretical predictions,
laboratory data and field data concerned with the flow of
polycrystalline ice, Hooke (1981) concluded that “The
substantial discrepancies among different laboratory
studies require detailed investigation. Inter-laboratory
exchange of samples would facilitate resolution of this
problem.” Hooke considered (and rejected) three
factors — density, grain-size and sample size—to ac-
count for variability he had noted among different
laboratory studies. Inter-laboratory exchange of ice test
samples is now occurring as part of an international
collaboration (Australia, France, Denmark, Canada)
concerning the flow properties of Antarctic, Agassiz and
Greenland ice. In the meantime, however, laboratory
studies now indicate that we may be able to account for
some of the discrepancies in terms of test sample
geomelry.

In this paper all three of the above factors are re-
examined through a series of systematic laboratory tests
which compare the flow of different ice samples at
minimum strain rate. Ice flow at minimum strain rate is
not steady state. Minimum strain rate, however, does
provide a unique, identifiable point on the ice-creep
curve of particular value for comparison of the effect on
the flow of parameters such as density, sample size, crystal
size, etc.
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DENSITY

Despite suggestions (e.g. Hooke, 1981) that density might
influence the results of laboratory studies of ice flow, and
that it might be one parameter which could account for
discrepancies amongst the various ice deformation
studies, to this author’s knowledge no systematic study
has been published of the effect of this parameter. Mellor
and Smith (1966) carried out uniaxial compression tests
on laboratory-prepared snow with densities of 0.436,
0.531, 0.644 and 0.832Mgm °. They found that
secondary strain rate increased by several orders of
magnitude as density decreased over this range. Haefeli
and von Sury (1975) performed compression tests on firn
from Greenland at —10°C. Their flow parameter, which
represented a shear velocity under a unit shear stress,
increased by approximately two orders of magnitude as
density decreased from 0.75 to 0.47 Mgm !

Here, the effect of density on minimum ice-creep rate
is studied, particularly in the range of densities above and
below 0.83 Mgm °, this being near to the value at which
close-off (interconnecting air passages between firn grains
are sealed off) occurs in natural ice masses (Paterson,
1981).

Twenty-three cylindrical ice samples were tested. Four
of these were of isotropic ice, prepared by the method
described by Jacka and Lile (1984). The density of each

of these samples was 0.912Mgm ®. The remaining 19
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samples were cut from different depths of an ice core
(BHQ, Law Dome, Antarctica) exhibiting different
densities. Samples were cut such that the compression
axis was near to parallel to the core length. Each sample
was machined to 25.6 mm diameter, while lengths ranged
from 39.3 to 58.7 mm.

Thin sections were cut from each sample before and
after testing, with normals parallel to the compression
axis. C-axis orientations were measured under a modified
Rigsby stage (Morgan and others, 1984) and were plotted
on Schmidt equal-area nets. Each orientation fabric
exhibited a near-random pattern prior to testing.

A direct-load uniaxial compression apparatus (Jacka
and Lile, 1984) was used to deform samples to beyond
minimum strain rate. Strain was estimated from the
linear shortening (measured with dial indicators resolv-
able to 0.001 mm) of the ice sample in these constant load
tests. Tests were carried out at an octahedral shear stress
of 0.2 MPa and at a temperature of —3.3°C. Temperature
was maintained by enclosing the entire compression
apparatus in an insulated box in which the air
temperature was thermostatically controlled using a
method based on the technique described by Morgan
(1979). Usually for deformation tests, to avoid ablation of
the ice sample it is immersed in a fluid bath of silicon oil
or kerosene. However, for the current set of tests, since
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many of the samples were porous, they were not immersed
in a fluid, but completely coverered with petroleum jelly.

Table 1 presents the results of the 23 tests. Figure 1 is a
plot of minimum octahedral shear strain rate as a
function of ice-sample density. In the density range 0.65
to 0.80 Mgm >, the minimum strain rate decreases by an
order of magnitude. At densities higher than 0.80 Mgm ?,
however, the rate of minimum strain-rate decrease is
lower, and the minimum strain rate at the close-off
density is within a factor of two of that for dense (i.e.
0.912 Mgm™) ice.

Mellor and Smith’s (1966) figure 4 suggests that
within the range 0.65 to 0.83 Mgm ™, the effect of density
on strain rate is independent of temperature. The dashed
line of Figure 1 has the same slope as the lines in the above
density range from Mellor and Smith. Similarly, the
dotted line of Figure 1 has the same slope as the line from
Haefeli and von Sury’s (1975) figure 7. While Mellor and
Smith’s samples were laboratory prepared, Haefeli and
von Sury’s were surface firn samples collected on the
EGIG traverse of Greenland. The strain-rate dependence
on density from these two studies agrees well with the
present study. In addition, the present study extends the
data to include densities between close-off and dense ice.

Figure 2 is a plot of total axial strain at minimum
strain rate as a function of sample density. It is clear that

Table 1. Results of tests concerning the effect of density on minimum ice strain rate

Depth from Initial density Density relative Minimum Relative Strain at Final density

ice core to dense ice octahedral minimum minimum
strain rate strain rate strain rate

m Mgm—3 s} % Mgm_'“)'

31 0.659 0.723 1.57 x 1077 11.2 4.31 0.739

34 0.670 0.735 199 % 1077 8.7 7.22 0.693

34 0.683 0.749 1.54 x 107 11.0 1.86 0.703

42 0.693 0.760 1.30 x 1077 9.3 .39 0.724

49 0.706 0.774 .12 =10 8.0 2.36 0.736

45 0.735 0.806 4.20 x 10°® 3.0 2.01 0.760

45 0.700 0.768 9.30 x 10°® 6.6 1.38 0.770

46 0.719 0.788 6.00 x 10°® 4.3 2.06 0.733

46 0.719 0.788 7.00 x 10°® 5.0 1.57 0.728

50 0.756 0.829 3.10 x 107® 2.9 1.62 0.770

59.5 0.790 0.866 2.30 x 1078 1.6 0.76 0.800

60 0.791 0.867 2.50 x 10°® 1.8 0.74 0.807

66 0.814 0.892 2.40 x 107® 1.7 0.97 0.809

66 0.827 0.907 1.80 x 10°® 1.3 1.02 0.823

78 0.818 0.897 2.80 x 107® 2.0 0.59 0.826

78 0.858 0.941 1.60 x 10°® 1.1 1.03 0.861

83 0.870 0.954 1.30 x 1078 0.9 1.05 0.873

83 0.875 0.959 1.80 x 1078 1.3 1.77 0.873

122 0.891 0.977 1.30 x 10°® 0.9 1.08 0.897

laboratory 0.912 1.000 1.10 x 10°® 0.8 0.71 0.912

laboratory 0.912 1.000 1.40 x 10°® 1.0 f.v3 "0.912

laboratory 0.912 1.000 2.00 x 10°® 1.4 0.93 0.912

laboratory 0.912 1.000 1.10 x 10°® 0.8 0.68 0.912
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Fig. 1. Plot of minimum octahedral shear strain rate
(measured in compression) as a function of ice-sample
density, compared with the results obtained by Hacfeli and
von Sury (1975) (dotted line) and Mellor and Smith
(1966) (dashed line). Data from laboratory sample tests
are shown as dots; data from ice-core sample tests are
shown as triangles.

this parameter too is affected little by sample density at
values above the close-off density. The total strain value
at minimum strain rate (~1%) for the high-density ice
agrees well with the results for isotropic fine-grained ice of
Mellor and Cole (1982) and Jacka (1984a).

The strain at minimum strain rate for the lower
density ice is density-dependent, increasing to 6 to 8% for
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Fig. 2. Plot of lotal axial strain al minimum strain rate as
a _function of initial sample density.
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Fig. 3. Plot of per cent volume decrease at minimum strain
rate as a_function of initial sample density.

ice with density, 0.65 Mgm *. Some of this extra strain
expended in attaining minimum strain rate is due to
densification of the sample. The densification for the solid
ice is zero and the lower the initial density, the higher the
amount of densification possible. The amount of
densification can be measured by the volume change in
the sample. Figure 3 is a plot of per cent volume decrease
at minimum strain rate as a function ol initial density.
The volume decrease was estimated by measuring the
sample density before and after cach experiment and hy
assuming conservation of mass. Experiments were
terminated at different final strains, each one well
beyond that at minimum strain rate. For the calculation
of volume change up to minimum therefore, it has also
been assumed that the densification process is linear with
experiment duration. The densification process in natural
ice sheets is certainly not linear (e.g. Bader, 1954),
however the approximation over the very small density
changes observed here will not be too unreasonable.

Comparison of Iligures 2 and 3 shows that densific-
ation does not account for all of the additional strain
(compared to high-density ice) required by the low-
density material to attain minimum strain rate. The
remainder of the strain needs therefore to be accounted
for within a study of the mechanical properties of low-
density ice (snow). This is beyond the scope of this paper,
and the reader is referred to the reviews of this topic, e.g.
Mellor (1975).

SAMPLE SHAPE AND SIZE

Uniaxial compression of cylindrical samples

Most laboratory studies of the uniaxial deformation of
cylindrical ice samples have not determined the depen-

dence of the test results on sample size or shape. Some
experimenters have recommended that to minimise end
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Table 2. Minimum strain-rate resulls for cvlindrical samples of various shapes and sizes in uniaxial compression

Sample diameter Sample length — Aspect ratio

Mean erystal

Sample diameter| Minimum octahedral

diameter crystal diameter shear strain rate

d(mm) [(mm) lid D(mm) d/D €onn (57
64.9 68.1 1.05 1.4 46 1.45 x 107°
53.3 66.0 1.24 1.4 38 1.55 x 10°®
40.8 62.0 1.52 1.4 29 1.70 x 10°®
925.4 64.1 9.52 1.4 18 295 x 107"
17.0 70.0 4.112 1.4 12 3.40 x 10 ®
64.6 67.7 1.05 2.9 29 1.30 x 10°®
52.5 66.3 1.26 2.9 18 1.50 x 108
41.1 67.6 1.64 2.9 14 1.40 x 108
24.8 60.4 2.44 2.9 8.6 3.30 x 107
16.2 62.3 3.85 2.9 5.6 4,15 x 107®
53.2 65.8 1.94 1.4 38 1.70 = 16®
41.3 65.4 1.58 1.4 30 1.75 x 10 ®
33.8 65.2 1.93 1.4 24 2.55 x 1078
25.4 63.5 2.50 1.4 18 2.35 x 10°®
16.3 61.5 .77 1.4 12 2.70 x 10°®
95.4 17.4 0.69 1.4 18 2.30 x 10°®
925.4 98.7 1.13 1.4 18 290 3 10°®
25.4 28.7 1.13 1.4 18 370 % 1067
925.4 96.5 3.80 1.4 18 1.95 x 1078
25.4 132.3 5.21 1.4 18 9.95.% 10°°
25.4 29.1 0.87 1.4 18 9 55 3% 107
25.4 36.9 1.45 1.4 18 920 x 108
25.4 50.1 1.97 1.4 18 2.15 x 108
25.4 78.2 3.08 1.4 18 210 x 10°°
25.4 115.8 4.56 1.4 18 230 x 10°®
90.0 80.0 0.88 1.4 64 1.0:% 107
90.0 635.0 0.72 1.4 64 1.05.5 107%
90.0 20.0 0.22 1.4 64 1.00 x 10°®

effects during deformation in compression or extension,
sample length, [ to diameter, d ratios should be greater
than 1. High values of 1/d for compression may lead,
particularly at high strains, to instabilities in the sample
geometry, and an [/d value of approximately 3 has
commonly been chosen (Mellor and Cole, 1983; Jones
and Chew, 1983; Jacka, 1984a).

No systematic comprehensive study of the eflfect of
sample shape or size on ice deformation exists. Theor-
etical and laboratory studies have been published,
however, concerning size and shape effects on the
deformation of other substances including ceramics
(Birch and others, 1976), concrete (Symons, 1970) and
rubber-like materials (Ogden, 1978). A review of uniaxial
testing of rocks (Hawkes and Mellor, 1970) and
subsequent application to ice testing (Hawkes and
Mellor, 1972) summarises the problem at hand. Tvp-
ically, uniaxial compression is applied through a platen or
plunger such that a bond is created between the platen
and the test material. This provides a radial constraint
(usually complete) at both end planes and thus a non-
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uniform stress field within the sample. This is well
illustrated by visual examination of ice samples strained
to high values (10% or more), which exhibit barrelling,
the ends of the samples having diameters unchanged from
the initial sample diameter. A uniform stress field
compatible with the applied load will exist only if the
sample is completely unrestrained radially and circum-
ferentially along the entire sample length.

The platens used to hold the ice samples in position
during the tests described in this paper are constructed of
“Bakelite” — an incompressible resin-impregnated cloth
material exhibiting high thermal insulation propertices.
This material has been used extensively in ice-deforma-
tion tests. For the compression tests, the platen is not
(deliberately) fixed to the ice sample. The platen is
fabricated in a cup shape and its purpose is only to act as
a guide, i.e. to stop the sample from falling over during
the loading stages of the test. However, it has been
noticed that the ice aflixes to the platen immediately the
experimental load is applied. Thus, for the duration of the
test, complete radial constraint does persist.

14%)
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Fig. 4. Minimum octahedral shear strain rate plotted as a function of sample length for all data points. Two crystal sizes are
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In order to achieve a uniform stress field, Hsu (1979)
has recommended that PTFE (Teflon) sheet be placed
between the platens and test material. For unconfined
compression of cylindrical steel samples, Brownrigg and
others (1981) have had some success with this technique.
The PTFE does not act just as a lubricant. During the
initial test stages, the PTFE is squeezed outwards until the
outside rim of the sample encloses a bubble between the
sample end and the platen. Hydrostatic pressure within
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Fig. 5. Minimum octahedral shear strain rate as a_function
of sample diameter. Two crystal sizes are indicated and the
numbers beside each point are sample diameter to crystal
diameter ratio, d|D.
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this PTFE bubble then exerts an outward radial force
during further compression. The thickness of the PTFE
sheeting is therefore critical. If it is too thick, the sample
will assume a bollard shape. For steel test samples, a
PTFE thickness to sample diameter ratio of 0.0l was
found by Brownrigg and others (1981) to produce the
same stress-strain behaviour over a range of sample
diameters. Attempts to use PTFE in the manner
described above for ice tests have so far been unsuccessful.
Thorough theroetical consideration of the internal
distribution of stresses and displacements for circular
cylinders of elastic materials was first given by Filon
(1902). His solutions were later improved by Timoshenko
(1934), Pickett (1944) (who gave a detailed explanation
of the boundary conditons imposed by near-complete
radial constraint at the platen/material interface) and by
Balla (1960). In each of these papers, solutions for the
stress distribution within a cylindrical specimen were
obtained numerically and involved Fourier series with
Bessel function coefficients. Each of the solutions exhibit a
stress-field dependence on the cylinder aspect ratio (or
slenderness), I/d, but not on the absolute dimensions
(Balla, 1960). For the deformation of viscous material
between two plates, Jaeger (1971) also found that the
stress field was dependent upon the ratio of the distance
between the platens and the platen radial dimension.
For the set of uniaxial compression tests described
here, two moulds were used in the sample-making
process, one of 25.4 mm internal diameter, and the other
of 100 mm internal diameter. Test samples of various
diameters were produced by turning down samples from
one or the other mould. An octahedral shear stress of
0.25MPa was applied to the samples and the test
temperature was —5.0°C. Two separate grain-sizes were
chosen (by sieving ice particles during the preparation of
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Table 3. Mintmum strain-rate resulls for reclangular prism samples of various shapes and sizes in simple shear

Sample length Sample herght Sample width — Length|height — Length|width — Height|widith Minimum
strain rate
) H W L/H L/W H/W ém
min min min S I
42.50 19.94 10.04 2.13 4.23 1.99 2.30 x 107
63.60 15.98 9.42 3.98 6.75 1.70 2.00 x 107
81.25 20.52 9.48 3.96 8.57 92.17 1.30 x 107
98.70 21.55 10.10 4.58 9.77 2.13 2.50 x 1077
123.18 20.87 9.21 5.90 13.37 9.97 1.40 x 107
136.76 20.30 7.44 6.74 18.38 2.7% 1.10 x 1077
146.02 20.96 10.09 6.97 14.47 2.08 1.50 x 107
146.77 20.50 8.50 7.16 159 2.41 1.10 x 107
39.75 9.85 19.75 4.04 2.01 0.50 2.80 x 107
37.94 16.50 20.92 2.30 1.81 0.79 1.30 x 107
40.20 26.56 19.00 1.51 9.19 1.40 250 x 107
40.69 39.67 21.10 1.25 1.93 1.55 1.80 x 107
39.80 38.76 19.85 1.03 2.01 1.95 1.80 x 107
49 .40 45.40 20.42 0.94 2.08 2.99 1.80 x 107
38.01 20.70 18.81 1.84 2.02 1.10 1.80 x 107
41.08 20.54 23.80 2.00 1.73 0.86 1.30 x 107
41.15 20.35 29.63 2.02 1.39 0.69 1.80 x 107
40.99 20.74 33.87 1.98 Ll 0.61 1.60 x 107
40.15 20.75 38.48 1.93 1.04 0.54 1.20 x 107

the samples) so that the effect of crystal size, and of
sample-size to crystal-size ratio, on deform-ation rates
could be studied. Before testing, the sample mean crystal
size was determined by counting the number of grains per
unit area from enlarged thin-section photographs taken
through crossed polaroids. Mean crystal diameter was
estimated by assuming circular crystal cross-sections.
Crystal orientation was determined from thin sections
cut from the test samples prior to testing. Universal stage
analysis consistently indicated approximately random
crystal orientation fabrics.

Twenty-eight samples were tested for size effects. Ior
16 of these, the test sample length was set between 60 and
70mm while diameters ranged from
90.0 mm.Twelve samples with diameters of 25.4 mm had
lengths ranging from 174. to 132.3 mm and three samples
of 90 mm diameter had lengths of 20.0, 65.0 and 80.0 mm.
The rtotal range of aspect ratio, {/d, covered by the
experiments was 0.22 to 5.21. Two mean crystal sizes (1.4

16.2mm to

and 2.9 mm diameter) were represented, and with some
overlap of the above classes, the effect of sample length, [,
sample diameter, d, aspect ratio, [/d, crystal diameter, D,
and sample diameter to crystal diameter ratio, d/D were
each able to be assessed independently.

Table 2 summarises results at minimum strain rate.
Figure 4 shows plots of minimum octahedral shear strain
rate, €gmin as a function of sample length for each test.
Sample diameter, d, is indicated in Figure 4a beside each
data point. It is seen from the data points for samples of
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25.4 mm diameter that sample length has little effect on
the minimum strain rate. There is, however, a clear
pattern of smaller minimum strain rates for larger sample
diameters.

In Figure 4b sample aspect ratio, l/d, is indicated
beside each point, and contours of constant aspect ratio
are shown as dashed lines. It is seen that even [or constant
aspect ratio, strain rate decreases with increased sample
diameter.

Figure 5 shows a plot of minimum strain rate, €_, , as

min ?
a function of sample diameter. The tendency to lower
minimum strain rate for larger sample diameter is clear.
There is some indication that for large enough sample
diameter (larger than 100 mm) minimum strain rate may
cease to be dependent on this parameter. Because of the
high loads required to run tests on samples with diameters
greater than 100 mm, these tests are difficult to conduct.
At lower stresses (thus requiring smaller loads) tests take
an unacceptably long time to attain minimum strain rate.

Simple shear of rectangular prism samples

Rectangular prism ice samples were prepared by first
making cylindrical samples by the method of Jacka and
Lile (1984), then cutting these to shape and to various
sizes using a band saw. The range of sample lengths was
37.94 to 146.77 mm; of heights, 9.85 to 45.40 mm; and
widths, 7.44 to 38.48mm. To test the effect that these
different sample dimensions might have on ice deform-

151
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ation rate, 19 samples were deformed in simple shear at
an octahedral shear stress of 0.2 MPa and temperature of
—2.0°C. All tests were run beyond minimum strain rate.
The shear apparatus and further details of these tests have
been presented by Gao (1992).

Results are presented in Table 3. In shear there
appears to be little dependence of minimum strain rate on
sample dimensions or on sample dimension ratios. All
minima are similar to within a factor of ~2.3 and there
appears to be no evidence of any systematic trend in the
minimum strain rates.

CRYSTAL DIAMETER AND RATIO OF CRYSTAL
DIAMETER TO SAMPLE DIAMETER

In Figure 5, the numbers alongside each data point
represent the ratio of sample diameter, d, to crystal
diameter, D). There is no indication of this parameter
affecting the minimum strain rate. Note in particular that
samples of the same diameter but different crystal size
exhibit similar minimum strain rates, while samples of
different diameters but similar crystal size exhibit
different minimum strain rates.

Jones and Chew (1981, 1983) concluded for their

constant strain-rate tests at 5 x 107*s™!, that the

maximum yield stress was dependent on the ratio of
sample diameter to crystal diameter, only for ratios less
than ~12. In order to vary this ratio, they varied the
sample diameter, while the crystal diameter was un-
changed at 1 mm. Results presented here suggest that it
may have been the variation in sample diameter which
resulted in different maximum yield stresses. Variations in
crystal diameter within samples of the same diameter
presented here did not affect the minimum flow rate,
despite sample-diameter to crystal-diameter ratios as low
as 6.

CONCLUSIONS

Density

Provided the density of ice is greater than at close off (i.e.
~0.83 Mg m ™) the minimum strain rate seems unaffected
by this parameter. While this result is a useful one for
field, laboratory and computing studies of ice masses, it is
not difficult to produce ice of density higher than this
value in the laboratory. Therefore the result would seem
to imply that discrepancies between the results of different
laboratories examining the flow of ice are not accounted
for by this parameter.

Table 4. Summary of published data normalised lo a common lemperature and stress

Reference  Sample Octahedral ~ Temperature

Minimum octahedral strain rate

Normalised minimum octahedral

diameler stress strain rate
D T 0 éo. .. N
mm MPa 20 5! s
(a) Data normalised to 7y = 0.25 MPa, 6y =-5.0°C
1 9.00 0.25 -5.0 1.00 x 1078 1.00 x 1078
1 25.4 0.25 -5.0 2.95 x 1078 295 x 10
1 95.4 0.25 -5.0 1.95 x 1078 1.95 x 1078
2 50.8 0.377 -5.0 7.21 x 10°® 2.10 x 108
2 50.8 0.377 5.0 7.28 x 10°® 212 x 10°®
3 80 0.236 4.6 1585 s JGE 1.58 x 10°®
(b) Data normalised to 7y =0.25 MPa, Oy = ~10.0°C
4 925.4 0.26 -10.0 9.3 x 107° 8.27 x 107°
4 25.4 0.26 -10.0 12 = 1078 1.07 x 10°®
5 19.5 0.26 9.1 9.19 x 107° 8.17 x 10°°
5 19.5 0.26 -9.1 9.54 x 107° 8.48 x 10°®
3 80 0.231 -7.9 2.89 x 107° 3.66 x 107
References:

1. This study — one value at 90.0 mm diameter, at the highest and lowest minimum strain rate recorded for a diameter of
25.4 mm over the entire sample length range examined.

2. Mellor and Cole (1982) — two points at their lowest stress and therefore as close as possible to 0.25 MPa.

3. Duval and LeGac (1980) — one point at —4.6°C and the lowest (and therefore most likely to be at minimum) strain
rate at —7.2°C.

4. Jacka (1984b) — the highest and lowest minimum strain rate recorded over the range of crystal sizes studied.

5. Baker (1978) — the highest and lowest secondary creep rate recorded over the range of crystal sizes studied.

https://doLorgl@?ﬂ 89/1994A0G19-1-146-154 Published online by Cambridge University Press


https://doi.org/10.3189/1994AoG19-1-146-154

Sample shape and size

In compression, evidence has been found that the sample
diameter, but not sample length or aspect ratio, affects the
minimum ice-creep rate. It also seems that the ratio of
sample diameter to crystal diameter has little affect on the
creep rate.

Examination of published results of uniaxial compres-
sion tests on polycrystalline ice, to ascertain whether the
diameter effect found here accounts for inter-laboratory
discrepancies, is hindered by several factors. Unfor-
tunately the various ice mechanics experiments have
not, in the past, chosen a common test temperature,
stress, crystal size or sample size and shape. It is thus
difficult to compare results directly. For direct compar-
ison of published results, it is essential that these results
have attained minimum strain rate, that the sample
diameter is known and they they be considered at the
same temperature and stress. Since very few published
results are available which include all of these data, it has
been necessary to consider experiments at stresses and
temperatures near to the same value and to apply a
normalising technique.

The equation (Hooke and others, 1972)

@Qrl 1

R (9 9N)
was used to convert published minimum octahedral shear
strain rates, €ymin at octahedral shear stress, 7, and
temperature, #(K) to normalised minimum octahedral
shear strain rates, éy pertaining to an octahedral shear
stress, 7y and temperature, Oy (K). R = 8.314 ] mol 'K
is the gas constant, and @ is the ice-creep activation
energy. Q ~ 162kJmol ' at —5°C and 100k] mol™ at
—10°C. For the current exercise, the ice-creep power law
exponent, n was taken as 3.

Table 4 displays a summary of data used for a
comparison of results of published data. The data have all
be adjusted to the same units and to octahedral values.
The righthand column of Table 4a shows the minimum
octahedral shear-strain rates normalised to —5°C at
0.25 MPa (which includes data recorded at temperatures
and stresses near to these values). Table 4b comes from
three papers which deal with the effect of crystal size on
ice-creep rates. Those studies were done at temperatures
near —10°C.

Figure 6 shows plots of normalised data. The dashed
curve on the plots comes from Figure 5. Secondary creep
rates observed by Baker (1978) are considerably higher
than those observed by Jacka (1984b) at approximately
the same temperature and stress. Secondary creep rates
found by Duval and LeGac (1980) are lower. Duval and
LeGac in fact normalised their own and Baker’s results to
a common temperature and stress, and noted that their
minimum strain rates were for every test, substantially
lower than Baker’s. Baker’s sample diameters were
19mm. Jacka's samples diameters were 25.4mm dia-
meter. The Duval and LeGac sample diameters were
80 mm. These data provide some evidence to demonstrate
that the effect of sample diameter on creep-rate results
may account for some of the discrepancies which have
been noted between various studies.

(1)

én = éo,,, (TN/To)" exp
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A final dilemma arising from the above findings
concerns the relation between results from laboratory
experiments and the flow of natural ice masses. While
further theoretical and experimental study continues on
the stress distribution within laboratory deforming ice
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Fig. 6. Minimum octahedral shear strain rates from past
published studies, plotted as a_function of sample diameter
Jor results normalised to a, ™~ = 0.25 MPa, Oy =
-5.0°C and b, ™y = 0.25 MPa, Oy = —-10.0°C. The

curves are parallel to the curve of Figure 5.
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samples, for the time being the most convenient solution
to this problem may be by direct comparison of field
measurements with laboratory measurements.

Above all, the findings highlight the need for
experimenters to publish data resulting from their work
in detail. Inter-laboratory comparison of data are made
especially difficult if the usefulness of good quality results
is lessened by failure to include basic yet essential
information such as preparation technique, experimental
technique, sample dimensions, etc.
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