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Abstract  

Although research on the relationship between lean body mass and blood pressure (BP) has 

been inconsistent, most studies reported that measures of lean body mass are associated with 

a higher risk of hypertension. We explored relationships between body composition (fat and 

skeletal muscle mass) and BP in 1162 young adult African women. DXA-derived measures 

of whole body, central and arm fat mass were associated with higher systolic and diastolic 

BP, while leg fat percentage was associated with lower systolic and diastolic BP. However, 

only the associations with diastolic BP remained after adjusting for appendicular skeletal 

muscle mass (ASM). ASM was associated with higher systolic and diastolic BP, before and 

after adjusting for whole-body fat percentage and VAT.  

While there was no overlap in targeted proteomics of BP and body composition, REN was 

lower in the elevated BP than the normal BP group and was inversely associated with 

diastolic BP (false-rate discovery adjusted p<0.050).  Several proteins were positively 

associated with both VAT and ASM (LEP, FABP4, IL6, and GGH) and negatively associated 

with both VAT and ASM (ACAN, CELA3A, PLA2G1B, and NCAM1). NOTCH3, ART3, 

COL1A1, DKK3, ENG, NPTXR, AMY2B, and CNTN1 were associated with lower VAT 

only, and IGFBP1 was associated with lower ASM only.  

While the associations between body fat and BP were not independent of skeletal muscle 

mass, the associations between muscle mass and BP were independent of overall and central 

adiposity in young adult African women. Future interventions targeting muscle mass should 

also monitor BP in this population. 

Key words: Skeletal muscle mass; Body fat mass, Systolic blood pressure; Diastolic blood 

pressure. 
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Introduction 

The major risk factors for cardiovascular diseases (CVDs) include smoking, dyslipidaemia 

and diabetes, but hypertension—protracted elevated blood pressure (BP)—is the most 

prevalent and strongest CVD predictor [1]. In the past few decades, there has been a 

significant increase in the global prevalence of hypertension, with low- and middle-income 

countries being disproportionally affected [2]. This increase is largely due to risk factors such 

as unhealthy diets, insufficient physical activity and excess weight gain due to poorly planned 

urbanisation [3]. Amongst these risk factors, excess weight gain (as seen in obesity) accounts 

for at least 65% of all primary hypertension cases [4]. 

Body composition mainly comprises adipose tissue (body fat), fat-free tissue (lean body 

mass), and extracellular water [5], but excess weight gain is generally characterised by 

accumulation of more fat than lean mass [6]. Skeletal muscles comprise a large portion of 

lean body mass and are well acknowledged determinants of overall health. This is partly 

because skeletal muscles play key roles in regulating systemic metabolism, energy 

expenditure, and homeostasis [7–9], and also serve as the primary site of glucose uptake [10]. 

Accordingly, individuals with a combination of high body fat mass and low skeletal muscle 

mass are at the highest risk of developing CVDs [11]. Such observations have led to the 

hypothesis that while body fat mass associates with increased hypertension risk [12–14], lean 

body mass is protective against hypertension [15]. The associations between body fat mass 

and hypertension risk are likely due to unfavourable body fat distribution, including high 

visceral adipose tissue (VAT) and low subcutaneous adipose tissue (SAT). This is because 

SAT has less deleterious effects than VAT, mainly due to differences in receptor expression, 

adipocyte size, secretome and other metabolic features [16]. The deleterious effects of VAT 

on hypertension risk are also attributed to its location in the intra-abdominal cavities and 

around internal organs, where it releases active proteins that influence key metabolic 

functions in organs like the pancreas, liver and heart [17–19]. 

Conversely, studies that have investigated associations between measures of lean body mass 

and BP have been inconsistent. Some findings have shown that lean body mass was lower in 

individuals at higher risk of hypertension, supporting the hypothesis that lean body mass is 

protective against hypertension [9,20]. However, most studies have reported the opposite 

direction of association, and regardless of whether an index or absolute measure of lean mass 

was used [13,18,21,22]. The conflicting associations between lean body mass and BP may be 

attributed to differences in body fat distribution, age, metabolic health, sex, and ethnic 
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variations. Positive associations are often reported in populations with higher VAT and older 

adults with cardiometabolic diseases, while negative associations were more common in 

younger, healthier populations with higher SAT [9,13,17]. Additionally, methodological 

differences in measurement techniques and study design also contributed to these varying 

findings. For example, the formula used by Han et al. to estimate muscle mass was calculated 

from anthropometric measurements. The study utilised measurements such as body weight, 

height, and other relevant anthropometric data to derive the muscle mass estimation formula 

[9].  We have demonstrated that in men and women of African ancestry, living in urban 

Soweto, South Africa, the ratio of adiposity (dual-energy x-ray absorptiometry (DXA)-

derived fat mass) to lean mass (DXA-derived fat free soft tissue mass) was the most strongly 

associated with hypertension [23]. Based on the observation that most populations with high 

adiposity report a positive association between muscle mass and BP, we hypothesised that 

young adult women of African ancestry will also show a positive association due to their 

generally high body fat mass [23]. Studies in European children and adolescents have shown 

that lean body mass was associated with BP independent of body fat, and that lean body mass 

was a stronger predictor of BP compared to body fat mass [24,25]. These relationships were 

recently confirmed in a multi-ethnic study of young and middle-aged adults, which 

demonstrated that both skeletal muscle mass and body fat independently associate with 

higher systolic BP [22].  

Studying associations between body composition and BP in populations of African ancestry 

is crucial due to the notable ethnic disparities in both body composition and cardiometabolic 

disease risk [26]. For example, women of African ancestry typically have higher body fat 

mass, lower VAT and are at a higher risk of developing diseases such as hypertension and 

type 2 diabetes than their European counterparts [27,28]. Further, investigating protein 

biomarkers of body composition, through targeted proteomics, has the potential to yield 

important insights into the biological mechanisms involved in the association between body 

composition and hypertension risk  [29–31]. This is because the human proteome serves as an 

intermediate measurement between the genetics and the environment, and the complex 

disease risk [32]. Therefore, identifying protein biomarkers that overlap between measures of 

skeletal muscle mass, body fat mass, and blood pressure could elucidate the pathways 

through which body composition influences blood pressure regulation and the risk of 

hypertension. 
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Therefore, the primary aim of this study was to investigate whether body fat mass and its 

distribution, and skeletal muscle mass, are associated with BP in young adult women of 

African ancestry, and whether these associations are independent of the other. We also aimed 

to use a targeted proteomics approach to gain some insights into the potential biological 

mechanisms that may explain these relationships. 

Experimental methods 

Study population  

The present study included participants from the BUKHALI (BUilding Knowledge and a 

foundation for HeALthy lIfe trajectories) trial, the South African component of the Healthy 

Life Trajectories Initiative (HeLTI) international collaboration which was described 

elsewhere [33]. Briefly, the BUKHALI study is a randomised trial testing the efficacy of 

micronutrient supplements and behaviour change interventions to improve diet and physical 

activity during preconception; health during pregnancy; reduce perinatal depression and 

increase exclusive breastfeeding and improve parental nurturing care. Inclusion criteria in 

BUKHALI were women aged 18 to 28 years at baseline and residing in Soweto—an urban 

township in Johannesburg South Africa. Exclusion criteria were women with type-I Diabetes 

Mellitus, cancer or epilepsy, intellectual disability or those who were not able or willing to 

provide consent. Data and samples used in the present cross-sectional study were collected 

between June 2018 and June 2019, and were the baseline data from the pilot phase of the 

BUKHALI trial, comprising of 1168 participants with body composition data [34]. Data 

included socio-demographic, lifestyle and health questionnaire data, anthropometry, 

peripheral BP, and DXA-derived body composition.  
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Questionnaire data 

Socio-demographic, health, and lifestyle data were collected by a Computer-Assisted 

Personal Interview mode. Age was confirmed using dates of birth from respective national 

identity documents. Participants were asked if they currently smoked and were subsequently 

classified into current smokers and non-smokers. Likewise, the participants were classified as 

alcohol consumers or non-alcohol consumers. Participants were asked to bring all their 

medications to the research centre for recording chronic medication use. To determine HIV 

status, each participant was asked if they have ever tested HIV positive, and those who 

replied “Yes” were classified as living with HIV.   

Anthropometry, body composition, and blood pressure 

All anthropometric values were measured in triplicate and then the mean values were used in 

the analyses. The participants were wearing light clothing and no shoes when height and 

weight were measured. A wall-mounted stadiometer (Holtain, Wales, UK) was used to 

measure height to the nearest 0.1 cm, and a calibrated digital scale (SECA, Hamburg, 

Germany) was used to measure weight to the nearest 0.1 kg. Body mass index (BMI) was 

then calculated as weight (kg) divided by height squared (m
2
). Waist circumference was 

measured halfway between the iliac crest in the midaxillary plane and the lowest rib margin, 

using a soft measuring tape and to the nearest 0.1 cm.  

A QDR 4500A DXA machine (Hologic, Bedford, USA) was used to measure whole-body 

composition, including body fat mas, lean mass, and bone mineral content (BMC). The DXA 

data were then analysed with APEX software version 13.4.2.3 (Hologic, Bedford, USA). 

Subsequently, fat-free soft tissue mass (FFSTM) was calculated as lean mass minus BMC 

and used as a proxy for skeletal muscle mass. The FM/FFSTM ratio was calculated by 

dividing whole body fat mass by FFSTM. Total appendicular skeletal muscle mass (ASM) 

was calculated as a sum of skeletal muscle mass of both arms and legs and the ASM index is 

calculated as ASM divided by height squared (kg/m²). DXA-derived fat variables included 

sub-total (total body minus head) fat mass and as a percentage of the whole body; leg and 

arm fat (kg and % of sub-total body fat); VAT and SAT.  

Systolic and diastolic BP were measured on the left arm using an automated BP machine 

(Omicron M6, Kyoto, Japan) and appropriately sized cuffs. Participants were required to be 

seated for at least 5 min after which three BP readings were taken at 2-minute intervals. The 

average of the second and third readings was used in the analyses.  
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Power calculation and sample selection  

Our statistical power estimate was based on the associations between appendicular skeletal 

muscle mass (the main predictor) and BP (the main outcome). The effect size estimate was 

from a recently reported association between ASM and systolic BP in adult men of mixed 

ancestry, which suggested an effect size of 0.13 [22]. Using the ‘pwr.f2.test’ function from 

the ‘pwr’ package in R, we found that a total of 63 participants would be required to reach 

80% power in a simple linear regression statistical model, given an alpha level of 0.05, in a 

two-sided test. Power analysis is typically not conducted for OLINK (the proteomics method 

used in this study) for several reasons including the exploratory nature, and use of normalised 

protein expression (NPX) values—which are logarithmic and based on internal controls and 

inter-sample comparison [35]. For these types of proteomic studies, power is maximised by 

having equal sample sizes in both groups, and this is known as a balanced design [35]. 

Accordingly, as the prevalence of hypertension was relatively low among young adults in the 

BUKHALI cohort, we maximized our statistical power by ensuring that 50% of the samples 

had elevated BP or hypertension.  

Figure 1 summarises the steps used to select the samples and participants included in the 

present study. To test the associations between measures of body composition and BP, all 

participants from the BUKHALI pilot (baseline) were considered (n=1655). From that 

sampling frame, we removed 485 participants because of missing DXA measurements and 

two participants because of missing age values. Six participants were using BP lowering 

medication and were excluded. Therefore, a total of 1162 participants were included when 

testing the associations between measures of body composition and BP (primary aim of the 

study).  

The sample plate for proteomics could accommodate up to 88 samples. Hence, for 

proteomics (secondary aim), we selected a total of 88 samples, of which 44 (50%) had 

elevated BP or hypertension, using the steps also summarised in Figure 1. Firstly, the entire 

sample (n=1162) was divided into five groups based on their BP measurements as follows. 

“Elevated BP 1” were participants with systolic BP ≥140 and diastolic BP ≥90 mm Hg (n=5). 

“Elevated BP 2” were participants with systolic BP ≥140 or diastolic BP ≥90 mm Hg (n=36). 

“Elevated BP 3” included participants with systolic BP in the range of 130–139 mm Hg and 

diastolic BP in the range of 80–89 mm Hg (n=11). “Elevated BP 4” included participants 

with systolic BP in the range of 130–139 mm Hg or diastolic BP in the range of 80–89 mm 
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Hg (n=254). “Normal BP” included participants with systolic BP in the range of <130 mm 

Hg and diastolic BP in the range of <80 mm Hg (n=856).  

Notably, 2 and 13 samples from the elevated BP groups 1 and 2, respectively, were excluded 

because of insufficient plasma volumes.  To select 88 samples, we first included all available 

samples from Elevated BP groups 1 to 3 (n=3+23+11=37). Thereafter, we used a sampling 

computer programme (“sample” function in R), to randomly select 7 participants from the 

Elevated BP 4 group and 44 participants from the Normal BP group. Ultimately, the samples 

selected from the four Elevated BP groups were combined to form one group called 

“Elevated BP” (n=44).  

Blood sampling and proteomic analysis  

Standard venepuncture techniques were used to collect random (non-fasting) blood samples 

which were used for the determination of plasma protein biomarkers. Targeted proteomics 

analyses were conducted at the BioXpedia laboratory services (Aarhus, Denmark) using 

OLINK proteomics panels. OLINK proteomic analyses use proximity extension assay 

technology, which is a 96-plex immunoassay for high throughput detection of protein 

biomarkers in plasma samples. The principles behind this method are described elsewhere 

(www.bioxpedia.com/olink-proteomics). For the present study, we selected the Explore 

Cardiometabolic Panel I service which included 366 cardiometabolic biomarkers. The 

proteomic data were reported as NPX values. An NPX value is OLINK's relative protein 

quantification unit on log2 scale. In the present study, three protein biomarkers (BMP6, 

EPHX2, and PGLYRP1) were excluded because they failed OLINK’s batch release quality 

control criteria. Therefore, only 363 cardiometabolic biomarkers were included in the 

statistical analysis. 

Ethics of human subject participation  

This study was conducted according to the guidelines laid down in the Declaration of 

Helsinki and all procedures involving human subjects were approved by the University of the 

Witwatersrand Human Research Ethics Committee (Medical) (reference: M171137). Written 

informed consent was obtained from all subjects. 

Statistical analysis   

Statistical analyses were conducted in R version 4.2.3 [36]. Normality of the continuous 

variables was assessed using a Shapiro–Wilk test. Continuous variables were not normally 

distributed and were thus presented as median (25th–75th percentiles) when comparing basic 
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characteristics. Accordingly, a Wilcoxon rank-sum test was used to assess statistical 

differences between the normal and elevated BP groups. Categorical variables were presented 

as observations and percentages: N (%), and a Chi-square test was used to assess statistical 

differences between normal and elevated BP groups. Associations between continuous 

predictors and outcomes were tested using linear regressions. For associations between 

measures of body fat distribution (VAT, SAT, and sub-total fat mass %, arm and leg fat %’s) 

and systolic and diastolic BP, three set of regression models were tested. The first set of 

regression models were not adjusted for any potential confounders, while the second set were 

adjusted for the main confounders (age, height, smoking, alcohol, and known HIV status) 

only. In the third set of models, ASM was included as an additional confounder. For the 

associations of the FM/FFSTM ratio, only the first (unadjusted) and second models (adjusted 

for the main founders) were conducted. Conversely, in the associations of ASM and ASM 

index with systolic and diastolic BP, four set of regression models were tested: 1) unadjusted, 

2) adjusted for the main confounders (age, height, smoking, alcohol, known HIV status) only, 

3) adjusted for the main confounders and sub-total body fat percentage, and 4) adjusted for 

the main confounders and VAT. Importantly, height was excluded as a confounder in the 

models where the ASM index was the predictor because this introduced multicollinearity. 

Multicollinearity was ruled out in each adjusted model by evaluating the variance inflation 

factor (VIF) values, all of which were below 2.0. Prior to inclusion in the models, systolic 

and diastolic BP values were mathematically transformed using a Standardized asinh(x) in R, 

to make the data normally distributed.  

The “olink_ttest” function of the Olink® Analyze R package was used to test differences in 

the protein biomarkers between the normal and elevated BP groups of the subsample (n=44 

participants per group). Additionally, we used linear regression models to test associations 

between all protein biomarkers with each of the following continuous outcomes: systolic BP, 

diastolic BP, VAT, and ASM. Prior to inclusion as an outcome in the linear regression 

models, VAT and ASM were mathematically transformed using a box-cox function in R, to 

make the data normally distributed. Each regression model was first run without any 

confounder (unadjusted), and then in the second set, the models were adjusted for the main 

confounders: age, height, smoking, alcohol, and HIV status. The Benjamini–Hochberg false 

discovery rate (FDR) was used to control for multiple testing, and FDR-adjusted p value 

<0.050 was considered sufficient evidence of association in the proteomic analysis. The 
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FDR-adjusted p values were only reported for the adjusted models (adjusted for the main 

confounders). 

Results 

Basic characteristics of the study sample   

Table 1 shows the basic characteristics of the study sample and compares participants with 

elevated BP to their normal BP counterparts. Participants with elevated BP were older and 

had higher weight, BMI, waist circumference, VAT and SAT, all measures of skeletal muscle 

mass (arms, legs, and total, ASM index), and all measures of fat mass (sub-total, arm and leg 

fat mass, and FM/FFSTM), compared to those who had normal BP (all p <0.01). Compared 

to the normal BP group, whole body fat percentage was higher in the elevated BP group (p 

<0.001). Regarding measures of fat distribution, which were in relation to whole body fat, 

arm fat percentage was higher (both p <0.02), while leg fat percentage was lower (both p 

<0.001) in participants with elevated BP, compared to their normal BP peers. 

Regarding lifestyle factors, there were no differences in the proportion of current smokers 

and alcohol consumers when comparing participants with elevated BP to their normal 

counterparts. However, there were less participants living with HIV in the elevated BP group 

compared to the normal BP group (2.9% versus 5.7%, p=0.049).   

Associations between measures of body composition and blood pressure   

Figure 2 summarises linear regression models for the associations between measures of body 

fat distribution and measures of BP (systolic and diastolic BP).  

VAT, SAT, and sub-total body fat percentage were associated with higher systolic and 

diastolic BP, even after adjusting for the main confounders (all p <0.001). However, after 

adjusting for the differences in ASM, the associations only remained for diastolic BP (all p 

<0.001) and not systolic BP (all p >0.05). Similarly, the FM/FFSTM ratio was associated 

with higher systolic and diastolic BP, even after adjusting for the main confounders 

(p<0.001). We also found that arm fat percentage was associated with higher systolic and 

diastolic BP, even after adjusting for the main confounders (both p <0.05), but not after 

adjusting for ASM. Converse to the above relationships, leg fat percentage was associated 

with lower systolic and diastolic BP even after adjusting for the main confounders (all p 

<0.001). However, only the association between leg fat percentage and lower diastolic BP 

remained after adjusting for ASM (p <0.001).  
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Figure 3 summarises results from linear regression models of associations between measures 

of ASM (absolute and index) and measures of BP. Both ASM and ASM index were 

associated with higher systolic and diastolic BP even after adjusting for the main confounders 

(all p <0.001). The evidence of these associations remained even after adjusting for either 

whole-body fat percentage (all p <0.001) or VAT (all p <0.015). 

Differences in NPX between the normal and elevated BP groups  

Out of all proteins included in the analysis (n=363), only 19 proteins were different between 

participants with normal and elevated BP (Table 2). However, after adjusting for multiple 

testing, there was only sufficient evidence of a difference for REN (FDR-adjusted p=0.008) 

(Table 2). 

Associations of the protein biomarkers with measures of BP and body composition 

Only protein biomarkers that showed sufficient evidence of association with systolic BP, 

diastolic BP, VAT, and ASM (p<0.050), after including confounders, are presented in Tables 

3-5. Table 3 shows that although 37 biomarkers were associated with systolic BP, none of 

these relationships remained significant after adjusting for multiple testing (FDR-adjusted 

p>0.050). When exploring associations with diastolic BP, 17 protein biomarkers remained 

significant in the models after adjusting for the main confounders. However, only REN was 

associated with lower diastolic BP after adjusting for multiple testing (FDR-adjusted 

p=0.005, Table 4). 

Tables 6 and 7 summarise linear regression models for the associations of the protein 

biomarkers with VAT (n=76) and ASM (n=44), respectively, before and after adjusting for 

the main confounders and multiple testing. After adjusting for multiple testing, four proteins 

(LEP, FABP4, IL6, and GGH) were positively associated with both VAT and ASM (all FDR-

adjusted p<0.050). Likewise, four other proteins (ACAN, CELA3A, PLA2G1B, and 

NCAM1) were inversely associated with these two outcomes. Table 5 also shows that eight 

other proteins (NOTCH3, ART3, COL1A1, DKK3, ENG, NPTXR, AMY2B, and CNTN1) 

were associated with lower VAT only (all FDR-adjusted p<0.050). Table 6 shows that only 

IGFBP1 was associated with lower ASM after adjusting for multiple testing (FDR-adjusted 

p=0.009).
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Discussion 

Recent findings in populations of non-African ancestry have demonstrated that skeletal muscle mass 

was associated with higher BP, suggesting that having higher muscle mass may not always yield 

positive health outcomes. In the present study, we confirmed that ASM was associated with higher 

systolic and diastolic BP in young adult black South African women, and that these associations were 

independent of overall and central adiposity. Further, using a targeted proteomics approach, we also 

demonstrated that renin (REN) expression was lower in women with elevated BP and associated with 

lower diastolic BP, but not systolic BP, and we identified several proteins that were associated with 

both ASM and VAT. The study did not find sufficient evidence to suggest that the associations 

between measures of body composition and BP were mediated by any of the protein biomarkers 

measured.  

The relationship between skeletal muscle mass and BP has been investigated in many studies with 

contradictory results [9,13,18,20–22]. Many of the previous studies were conducted in predominantly 

older participants who were already at increased CVD risk, and often the studies failed to test whether 

these relationships were independent of body fat [9,13,18,20–22]. Our observation that ASM was 

associated with higher systolic and diastolic BP is in accordance with most of these previous findings 

[13,18,21,22]. For example, the multi-ancestry study that included both young and middle-aged adults 

(median age of 36 years) also suggested that skeletal muscle mass was positively associated with BP 

independent of body fat mass [22]. The few studies that suggested an inverse relationship between 

measures of skeletal muscle mass and BP either failed to adjust for height, which is key in accounting 

for body size, or only focused on hypertension rather than the specific BP measurements [9,20].  

The relationship between skeletal muscle mass and higher BP is well acknowledged and may be 

influenced by many physiological factors including metabolic activity. For example, higher skeletal 

muscle mass leads to higher BP due to greater demand on the heart to pump blood through a larger 

body mass, which increases the workload on the heart and arteries [37]. Additionally, the muscle tissue 

is metabolically active, and can produce substances like cytokines and other metabolites, which can 

have a direct effect on blood vessels [38]. These substances can cause vasoconstriction, which 

increases the resistance to blood flow, and ultimately increases BP and CVD risk [39]. Accordingly, a 

recent study that included young adult men and women of European ancestry showed that skeletal 

muscle gain was associated with markers of increased CVD risk, including increased atherogenic 

substances such as very-low-density lipoprotein [40]. 

The above potential mechanisms are also in line with our observations that the associations between 

ASM and BP were independent of measures of body fat and its distribution. The notion that skeletal 
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muscle mass associates with higher BP independent of body fat had been suggested by some studies 

conducted in European children [24,25]. To the best of our knowledge, we have shown this for the first 

time in women of African ancestry, who are known to have a unique body composition phenotype and 

a higher risk of developing CVDs [27]. Notably, a recent multi-ethnic study, comprising a small 

portion of young and middle-aged Africans, also demonstrated that skeletal muscle mass was 

associated with higher BP independent of body fat [22]. Findings from that study further suggested that 

trunk (central) fat mass was the major contributor (38% to 61%) to both higher systolic and diastolic 

BP, while ASM was a relatively major contributor (35% to 43%) to higher systolic BP only [22]. Our 

observations were partially in line with these previous findings, as we demonstrated that the 

associations between overall and central body fat with diastolic BP were independent of ASM, while 

the associations with systolic BP were not. This suggests a different mechanism for systolic BP and 

warrants further investigations to understand the confounding role of skeletal muscle mass.  

Due to multifactorial nature of the regulation of both skeletal muscle mass and BP, the mechanisms 

involved in the influence of skeletal muscle mass on systolic and diastolic BP are complex [41]. To 

identify proteins that may mediate the association between body composition and BP, we investigated 

363 protein biomarkers that are related to cardiometabolic disease risk. The biomarkers included those 

involved in inflammatory response and regulation of body weight, some of which are known to 

influence skeletal muscle mass and BP [42,43]. In our study, we only identified one protein biomarker, 

REN, that was associated with BP and as this was not associated with skeletal muscle mass, there was 

not sufficient evidence to support our hypothesis that the associations between skeletal muscle mass 

and BP are mediated by the included proteins.  

The association of REN with lower diastolic BP but not with body composition suggested that the 

influence of renin on BP is independent of body composition. REN plays a crucial role in the Renin-

Angiotensin-Aldosterone System (RAAS), a complex system that regulates BP [44]. Traditionally, 

plasma REN concentrations were expected to associate with higher BP in all populations. This is 

because the role of REN is to initiate a cascade of events that ultimately lead to increased BP, 

specifically, by increasing the production of angiotensin II—which narrows blood vessels, and 

production of aldosterone—which promotes sodium retention [44]. However, studies conducted in 

populations of African ancestry have consistently reported an inverse association between circulating 

REN and BP [45–47]. The ethnic disparity in the relationship between REN levels and blood pressure 

are thought to be complex and likely to involve interactions between genetic, environmental, and 

lifestyle factors [48]. For example, some studies in populations of African ancestry have reported 

higher frequency of genetic variants that associate with increased salt sensitivity [49]. Accordingly, 

increased salt sensitivity is common in Africans [50].  
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Since our proteins were measured in circulation, urinary or tissue-specific RAAS components might 

show different results. Previous studies have shown that tissue-specific RAAS activity can vary 

significantly from circulating levels, which may provide additional insights into localised BP regulation 

[44]. While circulating REN can offer some approximation of renal/urinary RAAS activation, it is not a 

direct measure. Renal-specific measurements would be necessary to fully understand the local RAAS 

activity and its impact on BP [45]. Future studies should consider both systemic and local RAAS 

components in understanding BP regulation in the context of body composition, particularly in 

different populations. 

All the protein biomarkers that were associated with higher central body fat (VAT) were also 

associated with higher skeletal muscle mass. The positive associations of circulating LEP (leptin), 

FABP4 (fatty acid binding protein 4), and IL6 (interleukin 6) with both VAT and ASM were expected 

as the physiological pathways in the regulation of these two components of body composition are 

established. LEP is a hormone that is primarily produced by fat cells and signals the brain about energy 

storage levels [51], while this hormone is also known to influence skeletal muscle growth [52]. FABP4, 

also strongly associated with VAT and ASM has a role in promoting lipogenesis in skeletal muscle 

cells by activating the PPAR γ signalling pathway [53], while IL6, a well acknowledged cytokine that 

participates in inflammation and B cell maturation [54] has a role in promoting hypertrophic skeletal 

muscle growth [55]. While there are potential physiological pathways by which the enzyme Gamma-

Glutamyl Hydrolase (GGH) could influence VAT and skeletal muscle mass, the specific relationships 

are not established. GGH plays a role in folate metabolism and thus indirectly influences the synthesis 

of both amino acids and nucleotides—which are important in cellular growth and replication [56]. 

However, further research is still required to elucidate the role of GGH in fat and muscle cell growth.  

Similarly, limited physiological functions of the protein biomarkers (aggrecan: ACAN; chymotrypsin 

like elastase 3A: CELA3A; phospholipase A2 group IB: PLA2G1B, and neural cell adhesion molecule 

1: NCAM1) that were associated with lower VAT and ASM in the present study have been reported. 

However, the direct roles of these proteins in these two outcomes are unclear. While ACAN contributes 

to cartilage structure and joint function [57], NCAM1 plays a role in multiple neuronal functions, 

including neurite outgrowth, synapse formation, maturation, and plasticity [58]. Conversely, both 

CELA3A and PLA2G1B are involved in digestion. While CELA3A cleaves proteins after alanine 

residues [59], PLA2G1B hydrolyses phospholipids to promote lipid digestion and absorption [60]. 

Further investigations are still required to understand why these proteins associate with both lower 

VAT and skeletal muscle mass. 

The study found several proteins associated with lower VAT only. These proteins have diverse 

physiological functions [61–65], and included pancreatic alpha-amylase (AMY2B), which aids in 
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digestion and may indirectly affect adiposity [61]. Neurogenic locus notch homolog protein 3 

(NOTCH3) inhibits adipogenesis [66], while ADP-ribosyltransferase 3 (ART3) is involved in 

adipocyte differentiation and lipid storage [62]. Collagen1a1 (COL1A1) is an extracellular matrix 

protein with lower levels in obesity, suggesting a role in adipose tissue development [67]. Dickkopf-3 

(DKK3) and endoglin (ENG) may influence adipose tissue by regulating tissue development pathways 

[63,64]. Neuronal pentraxin receptor (NPTXR) and contactin 1 (CNTN1) may affect adiposity through 

neural circuits controlling energy balance and feeding behaviour [65]. 

The only protein that was associated with lower skeletal muscle mass was IGFBP1 (Insulin-like 

Growth Factor Binding Protein 1). This relationship is well known and was reported in our recent study 

of middle-aged black South African men and women [31]. IGFBP1 binds to IGFs (Insulin-like Growth 

Factors) with high affinity and reduces the availability of free IGFs that can interact with the IGF1 

receptor, hindering muscle growth and maintenance [68].  

Study strengths and limitations 

This is a cross-sectional study from which causality cannot be inferred. The generalisation of our 

findings should be limited to populations of African ancestry, as ethnic differences in body composition 

and cardiometabolic disease risk are well known [27]. The use of a targeted proteomics approach could 

have potentially excluded biomarkers that may be relevant to the complex relationships between body 

composition and BP. Our power analysis only considered the effect size in the relationship between 

skeletal muscle mass and systolic BP. Another key limitation of this study was the absence of data on 

physical activity. Physical activity is a crucial factor that significantly influences both body 

composition and blood pressure. Without this data, our ability to fully understand the interplay between 

these variables is limited. Future studies should aim to include detailed physical activity measurements 

to provide a more comprehensive analysis of these relationships. Regardless of these limitations, this is 

the first study to investigate whether the association between measures of muscle and fat, and BP are 

independent of the other component of body composition in a population of African ancestry. The 

study’s use of a target proteomics approach that included 363 proteins has provided some insights into 

the potential pathways involved in body composition and BP in this population. 

Conclusions 

We report that measures of overall and central adiposity and skeletal muscle mass were associated with 

higher systolic and diastolic BP in young adult black South African women. This suggests a need for 

future interventions that aim to increase muscle mass to also monitor BP in this population. We also 

demonstrated that the associations between measures of muscle mass and BP were independent of 

whole-body fat and VAT, suggesting a distinct role of muscle mass in increasing BP. We have also 

shown that renin expression was associated with lower diastolic BP, but not systolic BP in this 
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population. Although we have also identified several proteins that were associated with skeletal muscle 

mass and VAT, none of these proteins were associated with BP.  
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Tables  

Table 1: Basic characteristics of the study sample. 

 
All (n=1162) 

Normal BP 

(n=856) 
Elevated BP (n=306) P 

Blood Pressure      

Systolic blood pressure (mm 

Hg) 

107.0 (99.8 to 

114.3) 

104.0 (97.7 to 

110.3) 

115.0 (110.3 to 122.3) 2.20 

x10
-16

 

Diastolic blood pressure (mm 

Hg) 

75.0 (70.0 to 

80.0) 

72.7 (68.3 to 

76.3) 

83.3 (81.3 to 86.3) 2.20 

x10
-16

 

Age (years) 21 (19 to 23) 21 (19 to 23) 21 (20 to 23) 0.005 

Anthropometry     

Height (cm) 159.5 (155.5 to 

163.5) 

159.4 (155.4 

to 163.5) 

159.8 (156.2 to 164.1)  0.179 

Weight (kg) 61.2 (53.2 to 

72.1) 

60.3 (52.8 to 

70.5) 

65.2 (55.7 to 79.8)  3.04 

x10
-07

 

BMI (kg/m
2
) 24.0 (21.0 to 

28.4) 

23.5 (20.7 to 

27.7) 

25.3 (21.6 to 31.2) 1.60 

x10
-06

 

Waist circumference (cm) 85.9 (76.6 to 

96.9) 

84.7 (75.9 to 

95.0)  

89.6 (78.7 to 103.2) 1.30 

x10
-06

 

Dual-energy X-ray 

absorptiometry 

    

Body fat     

Sub-total fat mass (kg) 22.9 (17.0 to 

30.4) 

22.0 (16.5 to 

29.1) 

25.4 (18.3 to 35.7) 1.41 

x10
-06

 

VAT (cm
2
) 58.2 (38.2 to 

89.3) 

54.2 (36.9 to 

81.9) 

67.2 (44.9 to 109.6) 6.38 

x10
-08

 

SAT (cm
2
) 293.5 (200.5 to 

418.7) 

281.2 (194.7 

to 396.2) 

335.6 (228.2 to 484.6) 9.25 

x10
-07

 

Leg fat mass (kg) 11.0 (8.6 to 

14.1) 

10.6 (8.4 to 

13.5) 

11.7 (9.2 to 15.5) 7.39 

x10
-05

 

Arm fat mass (kg) 2.6 (1.8 to 3.6) 2.5 (1.7 to 

3.4) 

2.9 (1.9 to 4.2) 2.37 

x10
-06

 

FM/FFSTM 1.4 (1.2 to 1.8) 1.4 (1.1 to 1.6 (1.2 to 1.9) 9.40 
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1.7) x10
-05

 

Body fat % in relation to whole 

body fat 

    

Whole body fat (%) 37.1 (31.8 to 

42.5) 

36.9 (31.3 to 

41.7) 

39.1 (33.3 to 44.5) 4.33 

x10
-05

 

Leg fat (%) 48.4 (44.8 to 

52.2) 

48.9 (45.3 to 

52.5) 

46.9 (42.6 to 51.3) 4.63 

x10
-07

 

Arm fat (%) 11.2 (10.1 to 

12.2) 

11.1 (10.0 to 

12.1) 

11.3 (10.3 to 12.4) 0.015 

Skeletal Muscle Mass      

Leg skeletal muscle 

mass (kg) 

12.2 (10.8 to 

14.1) 

12.1 (10.7 to 

13.9) 

12.7 (11.2 to 14.7) 1.10 

x10
-04

 

Arm skeletal muscle 

mass (kg) 

3.6 (3.2 to 4.0) 3.5 (3.2 to 

3.9) 

3.7 (3.3 to 4.3) 1.27 

x10
-07

 

Total appendicular 

skeletal muscle mass 

(kg) 

15.8 (14.2 to 

18.1) 

15.7 (13.9 to 

17.8) 

16.4 (14.8 to 18.8) 1.54 

x10
-05

 

Appendicular skeletal 

muscle mass index 

(kg/m
2
) 

6.2 (5.6 to 7.0) 6.1 (5.6 to 

6.9) 

6.4 (5.7 to7.4) 5.02 

x10
-05

 

Lifestyle and Medication     

Current smokers (N (%)) 275 (23.7) 212 (24.8)  63 (20.6) 0.191 

Current alcohol drinkers (N 

(%)) 

791 (68.1) 587 (68.6) 204 (66.6) 0.481 

Living with HIV (N (%)) 58 (5.0) 49 (5.7) 9 (2.9) 0.049 

Continuous data presented as median (25th–75th percentiles). Wilcoxon rank-sum test was used to 

compare the continuous variables, while a Chi-square test was used to compare the categorical 

variables. BP: Blood Pressure; P: P value; BMI: Body Mass Index; VAT: Visceral Adipose Tissue; 

SAT: Subcutaneous Adipose Tissue; N (%): Number of observations (percentage); FM/FFSTM: 

Whole body fat mass / Fat-free Soft Tissue Mass.  Android, gynoid, leg, and arm percentages were 

calculated in relation to sub-total fat mass. For example, android fat percentage (%) was calculated as 

(android fat mass/sub-total fat mass) x 100%.  
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Table 2: Comparison of normalised protein expressions between the normal and elevated blood 

pressure groups. 

Protein 
Normalised Protein Expression 

P FDR-adjusted P 
Normal BP (n=44) Elevated BP (n=44) 

REN 0.400 -0.409 2.03 x10
-05

 0.008 

FABP4 0.968 1.551 0.002 0.376 

F9 0.998 1.191 0.004 0.376 

ACAN 1.555 1.305 0.004 0.376 

ART3 0.871 0.616 0.011 0.672 

ROR1 1.487 1.260 0.012 0.672 

PAG1 1.428 1.805 0.014 0.672 

IL6 -0.025 0.449 0.015 0.672 

COMT 3.506 4.004 0.017 0.672 

STK11 3.704 4.195 0.019 0.672 

PTN 2.997 2.592 0.020 0.672 

CTSD 0.503 0.725 0.025 0.779 

SLITRK6 1.039 0.836 0.030 0.836 

ITGB1BP2 5.019 5.660 0.031 0.836 

NPTXR 1.107 0.810 0.042 0.879 

COL1A1 1.702 1.474 0.043 0.879 

SNX9 3.224 3.596 0.044 0.879 

CD163 0.849 1.064 0.044 0.879 

GRAP2 6.499 7.139 0.045 0.879 

BP: Blood Pressure; P: P value; FRD: False Discovery Rate.  
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Table 3: Associations between protein biomarkers and systolic blood pressure. 

 Unadjusted Adjusted for confounders 

Protein Beta  P Beta  P FDR-adjusted P 

CTSL 0.074 0.007 0.088 0.001 0.450 

PAG1 0.055 0.005 0.059 0.002 0.317 

PTN -0.052 0.002 -0.046 0.006 0.792 

CD46 0.068 0.009 0.069 0.007 0.621 

REN -0.041 0.008 -0.040 0.009 0.672 

GPNMB 0.099 0.025 0.109 0.012 0.757 

MSMB 0.031 0.050 0.039 0.014 0.742 

MTPN 0.060 0.009 0.056 0.015 0.663 

TNC 0.033 0.061 0.043 0.017 0.692 

LILRB2 0.076 0.037 0.086 0.018 0.666 

BLMH 0.057 0.016 0.055 0.020 0.665 

TCN2 0.084 0.034 0.093 0.020 0.616 

CTSH 0.035 0.045 0.039 0.021 0.596 

FCGR2A 0.075 0.036 0.079 0.022 0.583 

SORT1 0.067 0.018 0.064 0.023 0.556 

GP1BA 0.048 0.048 0.054 0.023 0.526 

ADGRE5 0.070 0.028 0.071 0.023 0.502 

SCARF1 0.036 0.051 0.041 0.024 0.489 

ICAM5 -0.019 0.453 -0.004 0.025 0.479 

CD55 0.067 0.056 0.076 0.026 0.479 

F9 0.078 0.087 0.099 0.026 0.458 

PTPRF 0.069 0.044 0.075 0.028 0.462 

PLAT 0.014 0.214 0.026 0.028 0.445 

PEAR1 0.055 0.109 0.075 0.029 0.437 

NPTXR -0.056 0.007 -0.045 0.030 0.439 

VWF 0.024 0.032 0.024 0.030 0.425 

HSPG2 0.045 0.114 0.060 0.032 0.436 

ITGB2 0.049 0.031 0.049 0.033 0.431 

ITGB1 0.052 0.059 0.059 0.033 0.419 

FABP4 0.030 0.055 0.034 0.033 0.406 
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CHI3L1 0.028 0.083 0.034 0.034 0.401 

CORO1A 0.023 0.058 0.024 0.038 0.432 

LILRA5 0.061 0.044 0.060 0.043 0.478 

NPDC1 -0.031 0.019 -0.027 0.045 0.479 

CD69 0.022 0.055 0.023 0.047 0.486 

IL6ST 0.092 0.119 0.114 0.047 0.476 

STK11 0.032 0.028 0.029 0.047 0.468 

Linear regression models showing associations between protein biomarkers (predictors) and systolic 

blood pressure (outcome). Only models with sufficient evidence of association (p<0.050), after 

including the potential confounders, are shown. Potential confounders included age, height, smoking, 

alcohol, and HIV status). Systolic blood pressure values were mathematically transformed using a 

Standardized asinh(x) function in R. Beta: Beta coefficient; P: P value; FRD: False Discovery Rate.   
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Table 4: Associations between protein biomarkers and diastolic blood pressure. 

 Unadjusted Adjusted for confounders 

Protein Beta  P Beta  P FDR-adjusted P 

REN -0.062 2.24 x10
-05

 -0.061 1.47 x10
-05

 0.005 

PAG1 0.056 0.004 0.060 0.001 0.173 

CTSD 0.077 0.010 0.074 0.013 1.000 

NT-proBNP 0.017 0.045 0.020 0.017 1.000 

ITGB1BP2 0.029 0.004 0.024 0.017 1.000 

F9 0.098 0.028 0.098 0.021 1.000 

USP8 0.026 0.004 0.021 0.023 1.000 

SLITRK6 -0.075 0.020 -0.068 0.026 1.000 

FABP4 0.037 0.017 0.033 0.027 1.000 

MPHOSPH8 0.029 0.009 0.025 0.030 1.000 

NADK 0.037 0.014 0.032 0.031 1.000 

SNX9 0.039 0.016 0.034 0.033 1.000 

CDH5 -0.055 0.058 -0.059 0.034 0.962 

PLAT 0.016 0.154 0.024 0.036 0.939 

COMT 0.037 0.009 0.029 0.041 0.989 

VAMP5 0.036 0.052 0.040 0.043 0.981 

FCGR3B 0.032 0.171 0.045 0.043 0.924 

Linear regression models showing associations between protein biomarkers (predictors) and diastolic 

blood pressure (outcome). Only models with sufficient evidence of association (p<0.050), after 

including the potential confounders, are shown. Potential confounders included age, height, smoking, 

alcohol, and HIV status). Diastolic blood pressure values were mathematically transformed using a 

Standardized asinh(x) function in R. Beta: Beta coefficient; P: P value; FDR: False Discovery Rate.   
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Table 5: Associations between protein biomarkers and visceral adipose tissue 

 Unadjusted Adjusted for confounders 

Protein Beta  P Beta  P FDR-adjusted P 

LEP 0.607 < 2 x10
-16

 0.608 < 2 x10
-16 

7.32 x10
-14

 

FABP4 0.776 3.31 x10
-14

 0.790 3.73 x10
-14

 6.83 x10
-12

 

IL6 0.549 5.10 x10
-07

 0.523 2.85 x10
-06

 3.48 x10
-04

 

NOTCH3 -0.756 1.82 x10
-05

 -0.749 2.20 x10
-05

 0.002 

ACAN -1.190 1.09 x10
-06

 -1.170 2.68 x10
-05

 0.002 

NCAM1 -0.900 1.71 x10
-05

 -0.879 4.15 x10
-05

 0.003 

ART3 -0.838 1.36 x10
-04

 -0.885 1.13 x10
-04

 0.006 

PLA2G1B -0.658 1.40 x10
-04

 -0.639 2.52 x10
-04

 0.012 

COL1A1 -0.786 5.71 x10
-05

 -0.742 0.001 0.025 

DKK3 -0.767 2.50 x10
-04

 -0.787 0.001 0.023 

CELA3A -0.428 0.001 -0.452 0.001 0.022 

ENG -1.357 0.001 -1.349 0.001 0.020 

NPTXR -0.534 4.50 x10
-04

 -0.514 0.001 0.026 

GGH 0.784 0.001 0.754 0.001 0.033 

AMY2B -0.511 0.006 -0.607 0.002 0.044 

CNTN1 -0.806 0.001 -0.755 0.002 0.043 

AMY2A -0.551 0.007 -0.651 0.002 0.050 

MSTN -0.454 0.003 -0.456 0.004 0.081 

DDC -0.375 0.005 -0.389 0.004 0.082 

IGFBP1 -0.177 0.003 -0.174 0.004 0.081 

CST6 -0.480 0.007 -0.528 0.005 0.081 

PDGFRA -0.726 0.002 -0.668 0.005 0.089 

LDLR 0.391 0.013 0.451 0.005 0.085 

ADGRG2 -0.813 0.005 -0.794 0.006 0.098 

APLP1 -0.340 0.002 -0.312 0.006 0.095 

TGFBR3 -0.255 0.020 -0.308 0.007 0.101 

PLTP -0.478 0.013 -0.524 0.007 0.102 

ANGPTL1 -0.622 0.012 -0.660 0.008 0.104 

KITLG -0.448 0.009 -0.456 0.008 0.101 

LGALS3 0.658 0.006 0.653 0.009 0.114 
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LTBP2 -0.433 0.043 -0.575 0.010 0.115 

BOC -0.418 0.018 -0.459 0.010 0.114 

CNDP1 0.261 0.035 0.328 0.011 0.118 

TFPI -0.483 0.003 -0.423 0.012 0.126 

LEPR -0.605 0.017 -0.644 0.012 0.128 

ENTPD6 -0.360 0.038 -0.440 0.015 0.147 

PRSS27 -0.388 0.021 -0.424 0.015 0.149 

NOTCH1 -0.978 0.016 -0.983 0.016 0.153 

THBD -0.720 0.011 -0.699 0.016 0.154 

CDHR5 0.386 0.021 0.408 0.017 0.158 

PTPRS -0.750 0.009 -0.692 0.018 0.158 

F9 0.812 0.015 0.813 0.018 0.154 

SFTPD -0.217 0.063 -0.279 0.019 0.162 

ROR1 -0.598 0.016 -0.590 0.020 0.166 

PTGDS -0.662 0.012 -0.626 0.020 0.163 

IGFBP2 -0.290 0.015 -0.273 0.023 0.179 

FUCA1 -0.375 0.036 -0.422 0.023 0.177 

VCAM1 -0.903 0.009 -0.800 0.023 0.175 

LILRA5 0.527 0.020 0.513 0.023 0.172 

PEAR1 -0.696 0.006 -0.591 0.025 0.181 

AOC3 -0.555 0.016 -0.520 0.026 0.186 

PTN -0.301 0.020 -0.291 0.027 0.188 

CHI3L1 0.272 0.022 0.271 0.028 0.195 

FBP1 0.124 0.017 0.115 0.029 0.197 

CBLIF -0.324 0.027 -0.330 0.031 0.203 

THPO -0.233 0.062 -0.275 0.031 0.200 

COL4A1 -0.343 0.008 -0.290 0.031 0.198 

FCN2 0.431 0.023 0.424 0.031 0.197 

ANG -0.673 0.018 -0.623 0.032 0.195 

CTSB -0.303 0.028 -0.300 0.033 0.199 

CTSD 0.503 0.028 0.515 0.033 0.197 

APOM -0.475 0.028 -0.460 0.037 0.216 

HMOX1 -0.169 0.106 -0.237 0.038 0.222 

HYAL1 -0.527 0.048 -0.556 0.039 0.225 
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IGFBPL1 -0.475 0.041 -0.488 0.040 0.222 

GP2 -0.203 0.090 -0.248 0.040 0.223 

NID1 -0.511 0.023 -0.464 0.041 0.225 

PAM -0.602 0.038 -0.608 0.041 0.222 

CLEC5A -0.391 0.048 -0.413 0.042 0.220 

IGSF8 -0.378 0.054 -0.411 0.042 0.220 

FABP6 -0.272 0.036 -0.266 0.042 0.219 

DCN -0.508 0.077 -0.590 0.042 0.216 

GHRL -0.125 0.071 -0.146 0.043 0.217 

TNF -0.170 0.020 -0.147 0.048 0.237 

ADH4 0.196 0.033 0.200 0.049 0.241 

GSTA1 0.206 0.061 0.229 0.049 0.237 

Linear regression models showing associations between protein biomarkers (predictors) and visceral 

adipose tissue (outcome). Only models with sufficient evidence of association (p<0.050), after 

including the confounders, are shown. Confounders included age, height, smoking, alcohol, and HIV 

status). Visceral adipose tissue values were mathematically transformed using a box-cox function in R. 

Beta: Beta coefficient; P: P value.   
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Table 6: Associations between protein biomarkers and appendicular skeletal muscle mass 

 Unadjusted Adjusted for confounders 

Protein Beta  P Beta P FDR-adjusted P 

LEP 0.483 6.43 x10
-10

 0.452 1.50 x10
-09

 5.49 x10
-07

 

FABP4 0.618 1.64 x10
-08

 0.609 6.22 x10
-09

 1.14 x10
-06

 

ACAN -0.971 1.05 x10
-04

 -1.179 5.45 x10
-06

 0.001 

CELA3A -0.493 1.29 x10
-04

 -0.506 3.62 x10
-05

 0.003 

PLA2G1B -0.602 0.001 -0.649 6.79 x10
-05

 0.005 

NCAM1 -0.702 0.001 -0.794 8.85 x10
-05

 0.005 

IL6 0.391 0.001 0.419 9.26 x10
-05

 0.005 

IGFBP1 -0.233 6.05 x10
-05

 -0.209 2.06 x10
-04

 0.009 

GGH 0.732 0.002 0.791 2.82 x10
-04

 0.011 

COMP 0.930 1.48 x10
-04

 0.761 0.001 0.050 

ART3 -0.475 0.036 -0.653 0.003 0.098 

AMY2A -0.302 0.145 -0.596 0.003 0.091 

GP2 -0.356 0.002 -0.331 0.003 0.086 

AMY2B -0.258 0.172 -0.536 0.004 0.092 

APOM -0.466 0.031 -0.590 0.004 0.095 

DKK3 -0.338 0.118 -0.606 0.006 0.129 

LEPR -0.726 0.004 -0.660 0.006 0.131 

PEAR1 -0.594 0.021 -0.653 0.008 0.161 

LDLR 0.409 0.010 0.401 0.009 0.165 

ADGRG2 -0.634 0.029 -0.716 0.009 0.165 

CBLIF -0.229 0.120 -0.370 0.009 0.164 

SERPINB5 -0.187 0.059 -0.245 0.009 0.158 

COL1A1 -0.494 0.014 -0.531 0.010 0.163 

TFPI -0.418 0.010 -0.399 0.011 0.173 

IGFBP2 -0.282 0.018 -0.283 0.011 0.167 

PRSS2 -0.293 0.050 -0.384 0.012 0.164 

REG1B -0.381 0.013 -0.408 0.013 0.176 

ADAMTS13 -0.306 0.137 -0.504 0.016 0.205 

SSC4D 0.138 0.034 0.151 0.016 0.204 

CCL5 -0.214 0.017 -0.200 0.020 0.249 
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ENG -0.684 0.088 -0.853 0.025 0.291 

COL4A1 -0.236 0.071 -0.283 0.025 0.286 

LGALS3 0.556 0.022 0.531 0.025 0.281 

NOTCH3 -0.348 0.059 -0.379 0.028 0.301 

DDC -0.319 0.019 -0.280 0.030 0.314 

REG1A -0.379 0.024 -0.360 0.038 0.390 

ANG -0.482 0.094 -0.563 0.039 0.385 

ESAM -0.275 0.132 -0.356 0.039 0.380 

NPTXR -0.308 0.048 -0.305 0.040 0.379 

THBS4 0.387 0.056 0.394 0.040 0.370 

NID1 -0.380 0.093 -0.432 0.043 0.385 

CPB1 -0.203 0.095 0.241 0.044 0.385 

MB 0.452 0.010 0.347 0.048 0.407 

HYAL1 -0.335 0.211 -0.500 0.049 0.404 

Linear regression models showing associations between protein biomarkers (predictors) and 

appendicular skeletal muscle mass (outcome). Only models with sufficient evidence of association 

(p<0.050), after including the potential confounders, are shown. Potential confounders included age, 

height, smoking, alcohol, and HIV status). Total appendicular skeletal muscle mass (ASM) values were 

mathematically transformed using a box-cox function in R. Beta: Beta coefficient; P: P value. FDR: 

False Discovery Rate.  
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Figure 1: Selection of the participants for proteomic analysis from the BUKHALI (BUilding 

Knowledge and a foundation for HeALthy lIfe trajectories) cohort. DXA: Dual-energy X-ray 

Absorptiometry, BP: Blood Pressure. 
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Figure 2: Associations of measures of body fat and body fat distribution (predictors) with systolic 

(A) and diastolic (B) blood pressure (outcomes). Linear regression models unadjusted; adjusted for 

main confounders (Age, Height, Smoking, Alcohol, and HIV status) only; and adjusted for main 

confounders plus total appendicular skeletal muscle mass (ASM). Systolic and diastolic blood pressure 

(BP) values were mathematically transformed using a Standardized asinh(x) function in R, prior to 

inclusion in the models. **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, NS: Not significant. 

VAT: Visceral Adipose Tissue; SAT: Subcutaneous Adipose Tissue; FM/FFSTM: Whole body fat mass / 

Fat-free Soft Tissue Mass. Leg, and arm percentages were calculated in relation to sub-total fat mass. 

For example, leg fat percentage (%) was calculated as (leg fat mass/sub-total fat mass) x 100. 
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Figure 3: Associations of measures of appendicular skeletal muscle mass (predictors) with 

systolic (A) and diastolic (B) blood pressure (outcomes). Linear regression models unadjusted; 

adjusted for main confounders (Age, Height, Smoking, Alcohol, and HIV status) only; and adjusted for 

main confounders plus whole-body fat percentage; adjusted for main confounders plus whole-body fat 

percentage plus VAT (Visceral Adipose Tissue). **** p <0.0001, * p <0.05. NB: Height was excluded 

as a confounder in the models where the ASM (appendicular skeletal muscle mass) index was the 

predictor because of multicollinearity. Systolic and diastolic blood pressure values were 

mathematically transformed using a Standardized asinh(x) function in R.   
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