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The impact of intrinsic compressibility effects – changes in fluid volume due to
pressure variations – on high-speed wall-bounded turbulence has often been overlooked
or incorrectly attributed to mean property variations. To quantify these intrinsic
compressibility effects unambiguously, we perform direct numerical simulations
of compressible turbulent channel flows with nearly uniform mean properties. Our
simulations reveal that intrinsic compressibility effects yield a significant upward shift
in the logarithmic mean velocity profile that can be attributed to the reduction in the
turbulent shear stress. This reduction stems from the weakening of the near-wall quasi-
streamwise vortices. In turn, we attribute this weakening to the spontaneous opposition
of sweeps and ejections from the near-wall expansions and contractions of the fluid,
and provide a theoretical explanation for this mechanism. Our results also demonstrate
that intrinsic compressibility effects play a crucial role in the increase in inner-scaled
streamwise turbulence intensity in compressible flows, as compared with incompressible
flows, which was previously regarded to be an effect of mean property variations alone.
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1. Introduction
Understanding the impact of compressibility effects on turbulent flow is crucial for a
wide range of engineering applications, as it influences the performance and efficiency
of aerospace vehicles, gas turbines, combustion processes and high-speed propulsion
systems. Turbulence in compressible flow involves effects related to heat transfer – also
termed as variable-property effects – and intrinsic compressibility (IC) effects –
also termed as ‘true’ compressibility effects (Smits & Dussauge 2006), ‘genuine’
compressibility effects (Yu, Xu & Pirozzoli 2019), or simply ‘compressibility’ effects
(Lele 1994). Heat transfer is in turn responsible for two main effects. First, heat transfer
is associated with mean temperature variations and hence variations in the mean density
and viscosity. Second, it can cause fluctuations in fluid volume (or density) as a result
of a change in entropy (Livescu 2020). On the other hand, IC effects are associated with
changes in fluid volume in response to changes in pressure (Lele 1994). While variable-
property effects can be relevant at any (even zero) Mach number, IC effects become
important only at high Mach numbers.

In 1962, Morkovin postulated that the changes in fluid volume due to entropy and
pressure, mentioned above, are negligible such that only mean property variations are
important. This hypothesis is commonly referred to as ‘Morkovin’s hypothesis’ (Morkovin
1962; Bradshaw 1977; Coleman, Kim & Moser 1995; Smits & Dussauge 2006). Some
years later, Bradshaw (1977) performed a detailed study on this hypothesis, and provided
an engineering estimate as to when the hypothesis should hold. According to Bradshaw,
Morkovin’s postulate may be true in flows where the root mean square (r.m.s.) of the
density fluctuation is below 10 % of the mean density. Subsequently, Coleman et al. (1995)
noted that most of these density fluctuations arise from passive mixing across mean density
gradients. Since Morkovin’s hypothesis implicitly assumes that the spatial gradients of the
mean density, and thus the fluctuations resulting from them, are small, they argued that
the density r.m.s. is not a rigorous evaluator of the hypothesis. Instead, they claimed that,
consistent with the original conjecture, the r.m.s. of pressure and total temperature scaled
by their respective means should be considered. We note that pressure fluctuations scaled
by mean pressure are a direct measure of IC effects. However, the justification for why
total temperature fluctuations should be small for the hypothesis to hold is unclear; see
Lele 1994. To the best of the authors’ knowledge, there is no engineering estimate for
these fluctuations such as the one for density proposed by Bradshaw.

If Morkovin’s hypothesis holds, then turbulence statistics in compressible flows can be
collapsed onto their incompressible counterparts by simply accounting for mean property
variations. The first key contribution in accounting for variable-property effects was
proposed by Van Driest (1951), who incorporated mean density variations in the mean
shear formulation such that

dū

dy
=

√
τw/ρ̄

κy
, (1.1)

where u is the streamwise velocity, τw is the wall shear stress, ρ is the fluid density, and κ

is the von Kármán constant. The overbar denotes Reynolds averaging, and the subscript w

indicates wall values. Equation (1.1) led to two major outcomes: (i) the Van Driest mean
velocity transformation (Van Driest 1956a; Danberg 1964) given as

Ū+
V D =

∫ ū+

0

√
ρ̄

ρw

dū+, (1.2)
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where the superscript + denotes wall scaling; and (ii) the Van Driest skin-friction theory
(Van Driest 1956b). These scaling breakthroughs are still widely used, despite their known
shortcomings (Bradshaw 1977; Huang & Coleman 1994; Trettel & Larsson 2016; Patel,
Boersma & Pecnik 2016; Griffin, Fu & Moin 2021; Kumar & Larsson 2022; Hasan et al.
2024).

Another key contribution is attributed to Morkovin (1962), who proposed scaling the
turbulent shear stress with ρ̄/ρw such that

ũ′′v′′∗ = ρ̄

ρw

ũ′′v′′
u2

τ

(1.3)

collapses with the incompressible distributions. Here, uτ = √
τw/ρw is the friction

velocity scale, the tilde denotes density-weighted (Favre) averaging, and the double primes
denote fluctuations from Favre average. The contributions of Van Driest and Morkovin can
be consolidated by interpreting their corrections as if they were to change the definition
of the friction velocity scale from uτ to u∗

τ = √
τw/ρ̄ – termed the ‘semi-local’ friction

velocity scale (instead of ‘local’, because the total shear stress in its definition is still taken
at the wall) – such that equations (1.1), (1.2) and (1.3) can be rewritten as

dū

dy
= u∗

τ

κy
, Ū+

V D =
∫ ū

0

1
u∗

τ

dū, ũ′′v′′∗ = ũ′′v′′
u∗2

τ

. (1.4)

Similarly, efforts to account for mean density and viscosity variations in the definition
of the viscous length scale have been made since the 1950s (Lobb, Winkler & Persh
1955), giving rise to the well-known semi-local wall-normal coordinate y∗ = y/δ∗

v (where
δ∗
v = μ̄/(ρ̄u∗

τ ) is the semi-local viscous length scale). Much later, the companion papers
by Huang, Coleman & Bradshaw (1995) and Coleman et al. (1995) gave a comprehensive
analysis where they showed that turbulence quantities show a much better collapse
when reported as a function of y∗ rather than y+. Another major consequence of using
the semi-local wall coordinate is reflected in velocity transformations. The semi-local
velocity transformation, derived independently by Trettel & Larsson (2016) and Patel
et al. (2016), is an extension to the Van Driest velocity transformation accounting for
variations in the semi-local viscous length scale. This transformation (also known as the
TL transformation) can be written as

Ū+
T L =

∫ ū+

0

(
1 − y

δ∗
v

dδ∗
v

dy

)
uτ

u∗
τ︸︷︷︸√

ρ̄/ρw

dū+. (1.5)

In short, the above-mentioned scaling theories in (1.4) and (1.5) show that heat transfer
effects associated with mean property variations can be accounted for in terms of the
semi-local friction velocity and viscous length scales.

In addition to those mentioned above, many other studies have addressed variable-
property effects in low-Mach (Patel et al. 2015) and high-Mach number flows (Maeder,
Adams & Kleiser 2001; Morinishi, Tamano & Nakabayashi 2004; Foysi, Sarkar &
Friedrich 2004; Duan, Beekman & Martin 2010; Modesti & Pirozzoli 2016; Zhang, Duan
& Choudhari 2018; Cogo et al. 2022, 2023; Zhang et al. 2022; Wenzel, Gibis & Kloker
2022; to name a few). However, less emphasis has been placed on studying IC effects in
wall-bounded flows, possibly due to the belief that Morkovin’s hypothesis holds even in
the hypersonic regime (Duan, Beekman & Martin 2011; Zhang et al. 2018).
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Recently, by isolating IC effects, Hasan et al. (2023) (HLPP) found that Morkovin’s
hypothesis is inaccurate at high Mach numbers. These compressibility effects modify the
mean velocity scaling, leading to an upward shift in the logarithmic profile. The authors
attributed this shift to the modified near-wall damping of turbulence and proposed a mean
velocity transformation based on a modification of the Van Driest damping function as

Ū+
H L P P =

∫ ū+

0

(
1 + κy∗D(y∗, Mτ )

1 + κ y∗D(y∗, 0)

)(
1 − y

δ∗
v

dδ∗
v

dy

)√
ρ̄

ρw

dū+. (1.6)

This transformation was found to be accurate for a wide variety of flows including (but
not limited to) adiabatic and cooled boundary layers, adiabatic and cooled channels,
supercritical flows, and flows with non-air-like viscosity laws. The modified damping
function in (1.6) reads

D(y∗, Mτ ) =
[

1 − exp
( −y∗

A+ + f (Mτ )

)]2

, (1.7)

with f (Mτ ) = 19.3Mτ . Despite the evidence that IC effects modify the damping, the
underlying physical mechanism is still unknown.

More evidence on the importance of intrinsic (or ‘genuine’) compressibility effects
has been provided in a series of recent publications by Yu and co-workers (Yu et al.
2019, 2020; Yu & Xu 2021), who analysed these effects in channel flows through direct
numerical simulations (DNS). They performed a Helmholtz decomposition of the velocity
field, and mainly focused on dilatational motions and their direct contribution to several
turbulence statistics. Their main observations were as follows. (i) The IC effects, if present,
are likely concentrated in the near-wall region, where the wall-normal dilatational velocity
field exceeds the solenoidal counterpart. (ii) The correlation between the solenoidal
streamwise and the dilatational wall normal velocity is negative and can constitute up to 10
% of the total shear stress. (iii) This negative correlation was attributed to the opposition
of sweeps near the wall by dilatational motions. (iv) The dilatation field (and thus the
dilatational velocity) exhibits a travelling wave-packet-like structure, whose origin is yet
unknown (see also Tang et al. 2020; Gerolymos & Vallet 2023; Yu et al. 2024).

In this paper, we will focus mainly on the indirect effects of IC, namely, those that
result not directly from contributions by dilatational motions, but as a consequence of
changes in the solenoidal dynamics of turbulence. To achieve this, we first perform
DNS, employing the methodology described in Coleman et al. (1995), whereby variable-
property effects are essentially removed by cancelling the aerodynamic heating term in
the energy equation. These simulations will allow us to study IC effects by isolating them.
With this approach, our main goal is to answer why the near-wall damping of turbulence
changes with increasing Mach number, as observed in Hasan et al. (2023). Since this is
also observed for conventional flows, we believe that the knowledge obtained from our
simplified cases is directly applicable to those flows. With the simulated cases, we look
into various fundamental statistics of turbulence such as turbulent stresses and pressure–
strain correlation, and into coherent structures, eventually tracing back the change in
near-wall damping of the turbulent shear stress to the weakening of quasi-streamwise
vortices. Subsequently, with the help of what is known from the incompressible turbulence
literature, we provide a theoretical explanation as to why the vortices weaken.

The paper is structured as follows. Section 2 describes the cases and methodology used
in this paper. Section 3 explains the change in damping of near-wall turbulence as a result
of the change in turbulent stress anisotropy, caused by a reduction in the pressure–strain
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correlation. Section 4 connects this reduced correlation with the weakening of quasi-
streamwise vortices, which is then explained using conditional averaging. Finally, the
summary and conclusions are presented in § 5.

2. Computational approach and case description
In order to investigate turbulence in high-speed wall-bounded channel flows with uniform
mean temperature (internal energy) in the domain, we perform DNS by solving the
compressible Navier–Stokes equations in conservative form, given as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∂ρui

∂xi
= 0,

∂ρui

∂t
+ ∂ρui u j

∂x j
= − ∂p

∂xi
+ ∂τi j

∂x j
+ f δi1,

∂ρE

∂t
+ ∂ρu j E

∂x j
= −∂pu j

∂x j
− ∂q j

∂x j
+ ∂τi j ui

∂x j
+ f u1 + Φ.

(2.1)

The viscous stress tensor and the heat flux vector are given as

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
∂uk

∂xk
δi j

)
, q j = −λ ∂T

∂x j
, (2.2 a,b)

where ui is the velocity component in the i th direction, and where i = 1, 2, 3 correspond
to the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. Here,
ρ is the density, p is the pressure, E = cvT + ui ui/2 is the total energy per unit mass, μ

is the viscosity, λ is the thermal conductivity, Pr = μcp/λ is the Prandtl number, cp and
cv indicate specific heats at constant pressure and constant volume, respectively, and f
is a uniform body force that is adjusted in time to maintain a constant total mass flux in
periodic flows (e.g. a fully developed turbulent channel or pipe).

As outlined in the Introduction, herein we attempt to remove mean property gradients
to isolate IC effects. For that purpose, we follow the approach presented by Coleman et al.
(1995), whereby the energy equation is augmented with a source term

Φ = −τi j
∂ui

∂x j
(2.3)

that counteracts the effects of viscous dissipation. Consequently, the mean internal energy
remains approximately uniform across the entire domain. For an ideal gas, this implies
that the mean temperature is also approximately constant, which, when combined with
a uniform mean pressure, leads to a nearly uniform mean density. Furthermore, the
mean dynamic viscosity and mean thermal conductivity are also uniform. However, it
is important to note that the simulations still permit fluctuations of these properties –
primarily along isentropes, as we will see below.

Using this approach, four cases with increasing Mach numbers are simulated, as
presented in table 1. These simulations are performed with STREAmS (Bernardini et al.
2021) using the assumption of a calorically perfect ideal gas (constant specific heat
capacities), constant Prandtl number 0.7, and a power law for the viscosity with an
exponent of 0.75. The domain is periodic in the streamwise and spanwise directions, while
at the walls an isothermal boundary condition is used for temperature, and a zero normal
gradient is specified for pressure. Since the four cases have similar Reτ values, we use
the same grid for all simulations. The computational grid consists of nx = 1280, ny = 480
and nz = 384 points for a domain of size Lx = 10h, L y = 2h and Lz = 3h, where h is the
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Case name Mb Mcl Mτ Reτ Reτc Line colour

Mach 0.3 0.3 0.34 0.0162 556 556
Mach 2.28 2.28 2.59 0.1185 546 539
Mach 3 3.0 3.37 0.1526 547 527
Mach 4 4.0 4.47 0.1968 544 513

Table 1. Description of the cases, where Mb = Ub/
√

γ RTw is the bulk Mach number, Mcl = Uc/
√

γ RTc is
the channel centreline Mach number, Mτ = uτ /

√
γ RTw is the wall friction Mach number, Reτ = ρwuτ h/μw

is the friction Reynolds number based on the channel half-height h , and Reτc corresponds to the value of the
semi-local friction Reynolds number (Re∗

τ = ρ̄u∗
τ h/μ̄) at the channel centre.
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Re
τ*

(c)

Figure 1. Wall-normal distributions of (a) density ρ, (b) viscosity μ and (c) the semi-local friction Reynolds
number Re∗

τ = ρ̄u∗
τ h/μ̄ for the cases described in table 1. The red lines represent the M∞ = 14 case of Zhang

et al. (2018). These quantities are plotted as a function of the wall-normal coordinate scaled by the channel
half-height for the channel flow cases, and by boundary layer thickness (δ99) for the M∞ = 14 boundary layer
case.

channel half-height. This gives near-wall resolution 	x+ = 4.3 and 	z+ = 4.3. The grid
in the wall-normal direction is stretched in such a way that y+ ≤ 1 is achieved for the first
grid point.

Figure 1 shows the mean density, viscosity and semi-local Reynolds number profiles for
the four cases introduced in table 1. The figure also shows the profiles of a conventional
boundary layer at free-stream Mach number 14, taken from Zhang et al. (2018). Compared
to the conventional M∞ = 14 boundary layer case, our cases show little to no variation in
mean properties. This implies that mean heat transfer effects are indeed negligible in the
present cases.

To determine whether other heat transfer effects associated with changes in fluid volume
as a result of changes in entropy are important, we compute density fluctuations using the
isentropic relation

ρis
rms

ρ̄
≈ 1

γ

prms

p̄
, (2.4)

and compare it with the density fluctuations obtained from DNS in figure 2(a). With the
exception of the viscous sublayer, the two distributions appear to collapse, which implies
that entropic heat transfer effects are negligible in the present cases. Hence any deviations
from incompressible flows observed in these cases should be attributed to IC effects.

Figure 2(a) also shows the total and isentropic density fluctuations for the M∞ = 14
flow case computed by Zhang et al. (2018). As can be seen, the total density fluctuations
are much higher than the isentropic ones in the buffer layer and beyond. This suggests
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ρrm

s / 
ρ̄,

  p
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s /
(γ

p̄)
(a)

y*y* y*

Mt

(b)
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0
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(c)

Figure 2. Wall-normal distributions of (a) the r.m.s. of the total (solid) and isentropic (dashed) density
fluctuations (2.4), (b) the turbulence Mach number Mt = √

2k/
√

γ RT̄ and (c) the semi-local friction Mach
number M∗

τ = u∗
τ /
√

γ RT̄ , for the cases described in table 1. The red lines represent the M∞ = 14 case of
Zhang et al. (2018).

that a significant portion of the density fluctuations is also caused by heat transfer effects,
such as passive mixing across mean density gradients or heat-induced volume changes,
corroborating that both heat transfer and IC effects are important for the M∞ = 14 case.
Interestingly, our highest Mach number case (Mach 4) and Zhang’s M∞ = 14 boundary
layer have similar isentropic density r.m.s. (or similar pressure r.m.s.). Given that the
pressure r.m.s. scaled by mean pressure is an effective measure of IC effects (Coleman
et al. 1995), we can expect that these effects are of comparable magnitude for our Mach 4
case and the conventional M∞ = 14 boundary layer.

In addition to the pressure r.m.s., IC effects can also be quantified in terms of
Mach numbers. Figure 2(b) shows the turbulence Mach number, defined as Mt =
(˜u′′

i u′′
i /γ RT̄ )1/2, where the denominator is the local speed of sound for ideal gases. Three

out of four cases are above the threshold Mt = 0.3, above which IC effects are considered
important (Smits & Dussauge 2006). Due to the inhomogeneous nature of wall-bounded
flows, Mt is not constant throughout the domain, becoming zero at the wall where the
pressure and density r.m.s. are the strongest, as shown in figure 2(a).

Other parameters have been proposed in the literature as a better measure of IC effects
in wall-bounded flows, most prominently the friction Mach number Mτ = uτ /

√
γ RTw

(Bradshaw 1977; Smits & Dussauge 2006; Yu et al. 2022; Hasan et al. 2023). When
defined in terms of local properties, one obtains the semi-local friction Mach number
M∗

τ = u∗
τ /
√

γ RT̄ . Figure 2(c) shows that, in contrast to Mt , the distribution of M∗
τ is

nearly constant, even for flows with mean property variations. The reason why M∗
τ is

constant for flows with ideal gases is because T̄ /Tw ≈ ρw/ρ̄ such that

M∗
τ = u∗

τ√
γ RT̄

= uτ

√
ρw/ρ̄√

γ RT̄
≈ uτ

√
T̄ /Tw√

γ RT̄
= uτ√

γ RTw

= Mτ . (2.5)

As seen in figures 2(b), the profiles of Mt and M∗
τ are equivalent for the Mach 4 constant

property and M∞ = 14 conventional cases, further supporting the statement made above
that the IC effects in these cases are comparable.

3. Intrinsic compressibility effects on turbulence statistics
Having introduced the flow cases, we first discuss the modified near-wall damping of the
turbulent shear stress and its consequence on the mean velocity scaling. Unless otherwise
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Figure 3. (a) The TL-transformed mean velocity profiles (1.5) and (3.3), (b) viscous and turbulent shear
stresses for the cases described in table 1.

stated, all quantities will be presented in their semi-locally scaled form. Nevertheless,
since the cases have approximately constant mean properties, there is no major difference
between the classical wall scaling (denoted by the superscript +) and the semi-local
scaling (denoted by the superscript ∗).

3.1. Outward shift in viscous and turbulent shear stresses
In the inner layer of parallel (or quasi-parallel) shear flows, integration of the mean
streamwise momentum equation implies that the sum of viscous and turbulent shear
stresses is equal to the total shear stress, given as

μ

(
∂u

∂y
+ ∂v

∂x

)
− ρu′′v′′ = τtot , (3.1)

where τtot ≈ τw in zero-pressure-gradient boundary layers, whereas it decreases linearly
with the wall distance in channel flows. Neglecting terms due to viscosity fluctuations and
normalizing (3.1) by τw, we get for the latter case

μ̄

μw

dū+

dy+ − ũ′′v′′∗ ≈ 1 − y

h
, (3.2)

where h is the channel half-height.
Integrating the viscous shear stress yields the TL-transformed mean velocity profile

(Trettel & Larsson 2016; Patel et al. 2016) as

Ū+
T L =

∫ y∗

0

μ̄

μw

dū+

dy+ dy∗. (3.3)

Figure 3(a) shows the transformed velocity profiles for the cases listed in table 1 (or simply
ū+, since the mean flow properties are nearly constant). A clear shift in the logarithmic
profile is seen, which increases with the Mach number. Based on (3.3), an upward shift
in the mean velocity profile corresponds to an equivalent upward shift (or increase) in
the viscous shear stress. This is evident from figure 3(b). Since the total shear stress is
universal for the four flow cases under inspection, an increase in the viscous shear stress
directly implies a decrease in the turbulent shear stress. Indeed, figure 3(b) shows that the
turbulent shear stress reduces with increasing Mach number. In other words, the log-law
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Figure 4. Wall-normal distributions of (a) streamwise, (b) wall-normal and (c) spanwise turbulent stresses, (d)
the TKE for the cases described in table 1.

shift observed in figure 3(a) is a consequence of the modified damping of the turbulent
shear stress, as also noted by Hasan et al. (2023).

3.2. Outward shift in wall-normal turbulent stress: change in turbulence anisotropy
The outward shift in the turbulent shear stress corresponds to an outward shift in the wall-
normal turbulent stress, because wall-normal motions directly contribute to turbulent shear
stress by transporting momentum across the mean shear (Townsend 1961; Deshpande,
Monty & Marusic 2021). This is also reflected in the turbulent shear stress budget, whose
production is controlled by the wall-normal turbulent stress (Pope 2001).

Figure 4(b) shows profiles of the wall-normal turbulent stress. A clear outward shift is
evident, which is consistent with the observed outward shift in the turbulent shear stress.
Now, the decrease in the wall-normal stress can either be due to less energy being received
from the streamwise component (inter-component energy transfer), or due to an overall
reduction of the turbulence kinetic energy (TKE). In order to clarify this, we report the
streamwise and the spanwise turbulent stresses, along with the TKE in figures 4(a,c,d),
respectively.

Figure 4(a) shows that the streamwise turbulent stress becomes stronger with increasing
Mach number. The increase in the peak streamwise turbulence intensity in compressible
flows, compared with incompressible flows at similar Reynolds numbers, has also been
observed in several other studies (Gatski & Erlebacher 2002; Pirozzoli, Grasso & Gatski
2004; Foysi et al. 2004; Duan et al. 2010; Modesti & Pirozzoli 2016; Zhang et al. 2018;
Trettel 2019; Cogo et al. 2022, 2023). However, none of these studies assessed whether
IC effects play a role in peak strengthening. In fact, the higher peak observed in the

1006 A14-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1238


A.M. Hasan, P. Costa, J. Larsson, S. Pirozzoli and R. Pecnik

0 10 20 30 40

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6
−

Π
1
1
/P

1
1

Mb ↑

(a) (b) (c)

0 10 20 30 40 0 10 20 30 40

y* y* y*

Figure 5. Wall-normal distributions of the streamwise pressure–strain correlation (−Π11) scaled by the
production term (P11) for (a) Mach 2.28, (b) Mach 3 and (c) Mach 4 cases described in table 1, compared
with the Mach 0.3 case.

M∞ = 14 boundary layer was attributed to variable-property effects by Zhang et al. (2018).
Our results instead demonstrate unambiguously that IC effects play a central role in the
strengthening of streamwise turbulence intensity, since our flow cases are essentially free
of variable-property effects.

Similar to the wall-normal stress, the spanwise turbulent stress also decreases with
increasing Mach number, shown in figure 4(c). The increase in the streamwise stress
and the decrease in the wall-normal and spanwise stresses imply suppression of inter-
component energy transfer with increasing Mach number. However, before discussing this
in more detail in the next subsection, we first note that the increase in the streamwise
turbulent stress is much more pronounced than the decrease in the other two components,
which essentially results in an increase in the TKE with Mach number as shown in
figure 4(d). This suggests that in addition to the change in inter-component energy transfer,
there is also a change in the production of ˜u′′u′′∗. This change in production can be
attributed to the changes in viscous and turbulent shear stresses observed in figure 3, since
it is their product that governs the production term. This is further discussed in detail in
Appendix A, where we present the budget of the streamwise turbulent stress, and provide
a phenomenological explanation for the increase in ˜u′′u′′∗.

3.3. Reduced inter-component energy transfer
The strengthening of the streamwise turbulent stress and the weakening of the other two
components, as observed in figures 4(a–c), imply an increase in turbulence anisotropy,
which was also previously observed in several studies on compressible wall-bounded flows
(Foysi et al. 2004; Duan et al. 2010; Zhang et al. 2018; Cogo et al. 2022, 2023), mainly
regarded as a variable-property effect.

From turbulence theory, one can argue that the change in turbulence anisotropy is due to
reduced inter-component energy transfer. Since the negative of the streamwise pressure–
strain correlation (−Π11 = −2 p′ ∂u′′/∂x) is a measure of the energy transferred from the
streamwise turbulent stress to the cross-stream components, we expect it to decrease with
increasing Mach number for our cases. To verify this, figure 5 shows −Π11 scaled by the
TKE production (Duan et al. 2010; Patel et al. 2015; Cogo et al. 2023), for (a) Mach 2.28,
(b) Mach 3 and (c) Mach 4 cases, compared with the Mach 0.3 case. The figure clearly
corroborates our claims. We further note that Π11 scaled by semi-local units (ρ̄u∗3

τ /δ∗
v )

also reduces for the three high-Mach-number cases compared with the Mach 0.3 case (not
shown).
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Figure 6. Wall-normal distributions of the total and solenoidal (a) streamwise, (b) wall-normal and
(c) spanwise turbulent stresses as per (3.5), for the cases described in table 1. The inset shows profiles of

the terms ˜

vd ′′
vd ′′∗ (dotted) and 2 ˜

vs′′
vd ′′∗ (dash-dotted).

3.4. Identifying direct and indirect effects of IC
So far, we have observed strong IC effects on various turbulence statistics. Are these
strong effects due to a direct contribution from the dilatational motions or due to IC effects
on the solenoidal motions? To answer this question, we apply Helmholtz decomposition
to the velocity field obtained from DNS to isolate the solenoidal (divergence-free) and
dilatational (curl-free) parts, namely

u′′
i = us′′

i + ud
i
′′
. (3.4)

Appendix B reports details on how the decomposition is actually performed. Following
Yu et al. (2019), the turbulent stresses are then split as

˜u′′
i u′′

j

∗ = ˜us′′
i us′′

j

∗
+ ˜ud

i
′′
us′′

j

∗
+ ˜us′′

j ud
j
′′∗ + ˜ud

i
′′
ud

j
′′∗

. (3.5)

The terms involving dilatational motions are absent in incompressible flows, thus any
contribution from them is regarded as a direct effect. However, the first term on the right-
hand side is also present in incompressible flows. Thus any effect of compressibility on
this term will be regarded as an indirect effect.

Figure 6 shows the first term on the right-hand side of (3.5), associated with solenoidal
velocity fluctuations, for the normal turbulent stresses. They are seen to almost overlap
with the total turbulent stresses, which is shown in grey. This implies that any change
in the total stresses as a function of the Mach number is reflected in their respective
solenoidal components, thus IC effects on turbulence statistics are mainly indirect. The
collapse of the total and solenoidal stresses also implies that the correlations involving

ud
i
′′ are small. However, there are some exceptions, particularly the terms ˜

vd ′′
vd ′′∗ and

˜

vs′′
vd ′′∗, that can have large contributions in the near-wall region, as shown in the inset

of figure 6(b). Negative values of ˜

vs′′
vd ′′∗ physically represent opposition of solenoidal

motions (sweeps/ejections) from dilatational wall-normal velocity. This opposition was
first observed by Yu et al. (2019), and plays a key role in the forthcoming discussion.
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Figure 7. Wall-normal distributions of the r.m.s. of (a) streamwise, (b) wall-normal and (c) spanwise vorticity
fluctuations, scaled by u∗

τ /δ
∗
v , for the cases described in table 1.

4. Weakening of the quasi-streamwise vortices
Quasi-streamwise vortices play an important role in transferring energy from the
streamwise to the wall-normal and spanwise components (Jeong et al. 1997). Thus any
reduction in this inter-component energy transfer (see figure 5), and hence any weakening
of the wall-normal and spanwise velocity fluctuations (see figure 4), is directly related
to the weakening of those vortices. To verify this claim, the r.m.s. of the streamwise
vorticity is shown in figure 7(a). This quantity indeed decreases with increasing Mach
number, implying weakening of the quasi-streamwise vortices. Note that the decrease in
the r.m.s. of the streamwise vorticity could also be associated with a reduced population
of the quasi-streamwise vortices, rather than their reduced strength. By visualizing them
using the normalized swirling strength parameter (Wu & Christensen 2006), it becomes
clear that the population of these vortices at any given instant is similar across all Mach
numbers. In contrast to the streamwise vorticity, the r.m.s. of the wall-normal and spanwise
vorticity shows a weak Mach number dependence, as seen in figures 7(b,c).

Choi, Moin & Kim (1994) showed that active opposition of sweeps and ejections
is effective in weakening the quasi-streamwise vortices. As noted in § 3.4, a similar
opposition also occurs spontaneously in compressible flows, in which solenoidal motions
like sweeps and ejections are opposed by wall-normal dilatational motions.

To explain the physical origin of near-wall opposition of sweeps and ejections, and
hence the weakening of the quasi-streamwise vortices, we perform a conditional averaging
procedure that identifies shear layers. Shear layers are in fact inherently associated
with quasi-streamwise vortices, being formed as a consequence of sweeps and ejections
initiated by those vortical structures (Jeong et al. 1997). To educe shear layers, we rely on
the variable interval space averaging (VISA) technique introduced by Kim (1985), which is
the spatial counterpart of the variable interval time averaging (VITA) technique developed
by Blackwelder & Kaplan (1976). Since only the solenoidal motions carry the imprint
of incompressible turbulent structures, like shear layers, the VISA detection criterion is
directly applied to the solenoidal velocity field. More details on the implementation of the
VISA technique are provided in Appendix C.

4.1. Results from the VISA technique
Figure 8 shows the conditionally averaged ξ∗– y∗ planes, at ζ ∗ = 0, of various quantities
for the Mach 2.28, 3 and 4 cases, considering only acceleration events. A similar plot
with deceleration events is not shown since they are much less frequent (Johansson,
Her & Haritonidis 1987). Here, ξ and ζ indicate streamwise and spanwise coordinates,
respectively, centred at the locations of the detected events.
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Figure 8. Conditionally averaged quantities, based on VISA applied to streamwise velocity fluctuations at
y∗ ≈ 15 (see Appendix C), for the Mach 2.28 (left column), Mach 3 (centre column) and Mach 4 (right column)
cases in table 1. The ξ∗–y∗ planes are taken at the centre of the shear layer (ζ ∗ = 0). The velocity contours
(first, second and fifth rows) are scaled by the semi-local friction velocity u∗

τ , the pressure contours (third row)
are scaled by τw , and the dilatation contours (fourth row) are scaled by u∗

τ /δ
∗
v . The overlaying streamlines are

constructed using 〈us′′ 〉∗ and 〈vs′′ 〉∗, and their thickness is scaled by the magnitude of 〈vs′′ 〉∗. The solid black
line indicates y∗ ≈ 15, and the dashed black line indicates ξ∗ = 0.

The first row in figure 8 shows the contours of the conditionally averaged solenoidal

streamwise velocity fluctuations
〈
us′′〉∗

, which clearly represent a shear layer. The second
row shows the contours of the conditionally averaged solenoidal wall-normal velocity

fluctuations
〈
vs′′〉∗

. Positive streamwise velocity fluctuations are associated with negative
wall-normal fluctuations, resulting in a sweep event. Similarly, negative streamwise
fluctuations are associated with positive wall-normal velocity, resulting in an ejection

event. For greater clarity, we also show streamlines constructed using
〈
us′′〉∗

and
〈
vs′′〉∗

,

with their thickness being proportional to the local magnitude of
〈
vs′′〉∗

.
Similar to the velocity field, we also split pressure into solenoidal and dilatational parts,

namely

p′ = ps ′ + pd ′
. (4.1)
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Figure 9. Conditionally averaged profiles of solenoidal streamwise and wall-normal velocities at y∗ ≈ 15, and
wall pressure as a function of space (ξ∗, at ζ ∗ = 0, bottom axis) and time (τ ∗ = τ/(u∗

τ /δ
∗
v ), top axis), for (a)

Mach 2.28, (b) Mach 3 and (c) Mach 4 cases in table 1.

Unlike the Helmholtz decomposition for velocities, this splitting is not unique. In this
work, we adhere to the definition of solenoidal pressure given for homogeneous flows by
Ristorcelli (1997), Jagannathan & Donzis (2016) and Wang, Gotoh & Watanabe (2017),
which we extend to inhomogeneous flows as follows:

∂2 ps ′

∂xi ∂xi
= −∂(ρus′′

i us′′
j − ρ us′′

i us′′
j )

∂xi ∂x j
− 2ρ

dũ

dy

∂vs′′

∂x
. (4.2)

This part of the pressure field is also referred to as pseudo-pressure (Ristorcelli 1997), as
it propagates with the flow speed. Looking at the source terms on the right-hand side of
(4.2), the solenoidal pressure can be interpreted as being generated from vortices and shear
layers, similar to incompressible flows (Bradshaw & Koh 1981).

The third row of figure 8 shows the conditionally averaged solenoidal pressure as per
(4.2). Clearly, the pressure maxima occur approximately in between the high-velocity
regions, which suggests a phase shift between velocity and pressure. To shed further
light on this point, in figure 9 we plot the wall-normal velocity at y∗ ≈ 15, and the
solenoidal pressure at the wall as a function of the streamwise coordinate (ξ∗). Since the
wall pressure is contributed mainly by the buffer-layer eddies (Johansson et al. 1987; Kim
1989; Kim & Hussain 1993; Luhar, Sharma & McKeon 2014), its convection velocity is
budget comparable to the speed of the buffer-layer coherent structures (Kim & Hussain
1993). Using this information and Taylor’s hypothesis, one can transform the spatial axis
in figure 9 to a temporal axis (τ ) by taking the mean velocity at y∗ ≈ 15 as the propagation
velocity. Reading figure 9 using the temporal axis (axis on the top), we note that the high
negative sweep velocity corresponds to a high negative rate of change of the wall pressure,
and likewise for the ejection velocity, i.e.

∂
〈
ps
w

′〉∗
∂τ ∗ ∼

〈
vs′′〉∗

. (4.3)

Similar observations were made by Johansson et al. (1987), using the VITA technique,
and by Luhar et al. (2014), using the resolvent analysis. Other interesting observations can
be made about figure 9. First, the magnitude of the conditionally averaged streamwise
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Case name Mbw Mτ (d ps
w )∗rms (vd

p)
∗
rms (v

d,ps
p )∗rms (v

d,nps
p )∗rms

Mach 2.28 2.28 0.1185 0.0096 0.066 0.047 0.059
Mach 3 3 0.1526 0.0160 0.153 0.078 0.140
Mach 4 4 0.1968 0.0311 0.332 0.150 0.323

b 2.42 3.1 2.37 3.3

Table 2. The r.m.s. of the pseudo-sound dilatation at the wall and the peak r.m.s. value of the total, pseudo-
sound and non-pseudo-sound wall-normal dilatational velocities, where b is the exponent obtained from power-
law fitting (aMb

τ ) of the data.

fluctuations increases, whereas the magnitude of the conditionally averaged wall-normal
fluctuations decreases with increasing Mach number, as also seen in the first two rows of
figure 8. This is consistent with the strengthening of the streamwise and weakening of the
wall-normal turbulent stresses observed in figure 6. Second, the wall pressure maximum
shifts upstream with increasing Mach number, as also seen in the third row of figure 8.
While we know that such a shift is attributed to the Mach number dependence of the
solenoidal motions that contribute to the source terms in (4.2), at the moment we cannot
provide a detailed explanation for this, and leave it for future studies.

After establishing the relation between the solenoidal wall-normal velocity and the rate
of change of the solenoidal pressure in (4.3), we continue in our attempt to relate the
solenoidal and the dilatational velocity fields. For that purpose, we first isolate the dilata-
tion generated from the solenoidal pressure – also referred to as ‘pseudo-sound’ dilatation
(superscript ps) in the literature (Ristorcelli 1997; Wang et al. 2017) – as follows:

d ps ≈ −1
γ P̄

(
∂ ps ′

∂t
+ u j

∂ ps ′

∂x j

)
. (4.4)

Pseudo-sound dilatation represents the volume changes of fluid elements caused by
pressure changes associated with solenoidal turbulent structures such as vortices and
shear layers. Normalization by the wall shear stress yields

d ps ≈ −τw

γ P̄

(
∂ ps ′∗

∂t
+ u j

∂ ps ′∗

∂x j

)
, (4.5)

where the factor τw/(γ P̄) is equal to the square of the semi-local friction Mach number
for ideal gas flows. Using M∗

τ ≈ Mτ (see (2.5) and figure 2), we then rewrite (4.5) as

d ps ≈ −M2
τ

(
∂ ps ′∗

∂t
+ u j

∂ ps ′∗

∂x j

)
. (4.6)

According to the pseudo-sound theory (Ristorcelli 1997), the inner-scaled solenoidal
pressure is assumed to be unaffected by compressibility effects. Thus from (4.6), one
would expect d ps to increase with the square of the friction Mach number. However, as
noted in the discussion following figure 9, the solenoidal motions change as a function
of the Mach number, thereby affecting the solenoidal pressure as per (4.2). This suggests
that d ps could increase with an exponent that is close to 2 but not necessarily equal to 2.
To assess the correct scaling, in table 2 we report the r.m.s. of d ps at the wall. Data fitting
yields d ps ∼ M2.42

τ , hence close to what was suggested by (4.6).
Continuing on our path to relate solenoidal and dilatational motions, close to the wall

we can write
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d ps
w

∗ ≈ −M2
τ

∂ ps
w

′∗

∂t∗
, (4.7)

where d ps
w

∗ = d ps
w /(u∗

τ /δ
∗
v ). This equation, when conditionally averaged and combined

with (4.3), leads to 〈
d ps
w

〉∗ ∼ −M2
τ

〈
vs′′〉∗

. (4.8)

Using this result, we expect positive dilatation events (expansions) to be associated
mainly with sweeps, and negative dilatation events (compressions) to be associated with
ejections. The fourth row in figure 8 shows the contours of conditionally averaged pseudo-
sound dilatation defined in (4.6). Consistent with our expectation, positive dilatation is
indeed found to be associated with sweeps, and negative dilatation with ejections, and its
magnitude increases with the Mach number.

Having related the pseudo-sound dilatation and the solenoidal velocity in (4.8), the next
step is to introduce the pseudo-sound dilatational velocity as⎧⎪⎪⎨⎪⎪⎩

∂2φ ps

∂x j ∂x j
= d ps,

vd,ps = ∂φ ps

∂y
,

(4.9)

where φ ps is the scalar potential. Note that this equation is similar to (B2) and (B3) used
to solve for the total dilatational velocity, as reported in Appendix B. Based on (4.9), one
would expect vd,ps to increase with the Mach number at a similar rate as d ps . Power-law
fitting of the data reported in table 2 indeed yields vd,ps ∼ M2.37

τ , hence close to what was
found for d ps .

Equation (4.9) stipulates that the conditionally averaged pseudo-sound dilatational
velocity in the buffer layer should be proportional to and in phase with the dilatation at the
wall. Thus we can write 〈

vd,ps
〉∗ ∼ 〈

d ps
w

〉∗
. (4.10)

Using (4.10) and (4.8), we can finally develop a relation between the solenoidal and
pseudo-sound dilatational velocities, namely〈

vd,ps
〉∗ ∼ −M2

τ

〈
vs′′〉∗

. (4.11)

In our opinion, this relation is quite meaningful as it theoretically supports near-wall
opposition of sweeps and ejections by dilatational motions. Moreover, it suggests that the
opposition effect should approximately increase with the square of Mτ .

In order to verify this, the final row in figure 8 reports the conditionally averaged
contours of the pseudo-sound wall-normal dilatational velocity given in (4.9). As
suggested from (4.10), the contours of vd,ps appear to be in phase with those of d ps .
Thus, consistent with the observations made for the pseudo-sound dilatation, the wall-
normal dilatational velocity is positive during sweeps, and negative during ejections, and
its magnitude increases with the Mach number. This opposition is also clearly seen in
figure 10, which shows the conditionally averaged profiles of vs′′

and vd,ps at y∗ ≈ 15.
Additionally, in figures 8 and 10 we note that the pseudo-sound dilatational velocity
contour (or profile) shifts upstream (leftwards) with increasing Mach number. This is
due to the upstream shift in the pressure contour mentioned above. Interestingly (as also
pointed out by a reviewer), if the vd,ps profile continues to shift upstream with increasing
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Figure 10. Conditionally averaged profiles of solenoidal and pseudo-sound dilatational wall-normal velocities
at y∗ ≈ 15 as a function of ξ∗ (at ζ ∗ = 0) for (a) Mach 2.28, (b) Mach 3 and (c) Mach 4 cases in table 1.
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Figure 11. (a) Conditionally averaged and integrated (4.12) correlations between solenoidal and dilatational
velocities. (b) Conditionally averaged pseudo-sound correlation coefficient (C ps ) as defined in (4.13).

Mach number, then at sufficiently high Mach numbers, the dilatational velocity could
become approximately in phase with the solenoidal velocity, thereby assisting sweeps and
ejections rather than opposing them. Investigating whether this trend persists at higher
Mach numbers is beyond the scope of this work and is left for future studies.

To further quantify the opposition effect, we analyse the conditionally averaged
correlation between solenoidal and pseudo-sound dilatational wall-normal velocity,
i.e.

〈
vsvd,ps

〉
. The correlation is integrated over a window of 300 viscous units in

the streamwise direction, and 40 viscous units in the spanwise direction (Johansson,
Alfredsson & Kim 1991), at each wall-normal location as〈

vs′′
vd,ps

〉
ξζ

(y∗) =
∫ 20

ζ ∗=−20

∫ 150

ξ∗=−150

〈
vs′′

vd,ps
〉
(ξ∗, y∗, ζ ∗) dξ∗ dζ ∗. (4.12)

The integrated correlation, scaled by the squared semi-local friction velocity, is reported in
figure 11 with dashed lines. Figure 11 also shows the pseudo-sound correlation coefficient
defined as
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Figure 12. Opposition of sweeps and ejections by wall-normal pseudo-sound dilatational velocity in the
context of quasi-streamwise vortices. The shaded three-dimensional isosurfaces represent quasi-streamwise
vortices identified by applying the Q-criterion to the conditionally averaged velocity field. Their shadows are
also plotted on the wall below, showing that the vortices are inclined and tilted. Underneath the vortices, the
contours of solenoidal wall pressure are shown. The transparent planes mark regions of high rate of change
of wall pressure and hence high wall-normal pseudo-sound dilatational velocity 〈vd,ps〉∗ (see discussion
related to (4.3)–(4.11)). The arrows between the vortices indicate 〈vd,ps〉∗ as a function of ξ∗ at ζ ∗ = 0 and
y∗ ≈ 20. Note that the line along which the arrows are plotted is slightly shifted away from the wall for better
visibility. The insets show contours of pseudo-sound dilatation 〈d ps〉∗ along the transparent planes, overlaid
with the streamlines generated by quasi-streamwise vortices. These streamlines are constructed using the wall-
normal and spanwise solenoidal velocities, i.e. 〈vs〉∗ and 〈ws〉∗, with their thickness being proportional to the
magnitude of the local planar velocity. In addition, 〈vd,ps〉∗ at y∗ ≈ 15 and y∗ ≈ 25 is shown using arrows
in the left and right planes, respectively. These wall-normal locations correspond to the maximum value of
〈vd,ps〉∗ in those planes. The red and blue colours in the contour plots indicate positive and negative values,
respectively. An interactive version of this figure can be accessed here.

C ps =

〈
vs′′

vd,ps
〉
ξζ√〈

vs′′
vs′′ 〉

ξζ

〈
vd,psvd,ps

〉
ξζ

. (4.13)

The correlation and its coefficient are negative as expected. The magnitude of the
correlation increases approximately with the square of the Mach number, as expected.
However, the correlation coefficient almost collapses across all Mach numbers.

The association of the opposition effect with the quasi-streamwise vortices is visualized
in figure 12 for the Mach 2.28 case, all other cases being qualitatively similar. Indeed,
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Figure 13. Instantaneous x∗–z∗ planes at y∗ ≈ 11 of (a) the non-pseudo-sound and (b) the pseudo-sound wall-
normal dilatational velocities (see the text for definitions) scaled by their respective r.m.s. values for the Mach
3 case in table 1. Note that for clarity, the colour bar is adjusted such that structures stronger than 1.33 times
the r.m.s. value are highlighted.

the figure insets illustrate that sweeps and ejections initiated by quasi-streamwise vortices
are opposed by the near-wall pseudo-sound dilatational velocity, thereby resulting in their
weakening.

4.2. Role of non-pseudo-sound dilatational velocity in near-wall opposition
So far, we have looked into the pseudo-sound dilatational velocity, and provided an
explanation for why it is out-of-phase with respect to the solenoidal motions. However,
from table 2, we see that the peak r.m.s. value of vd,ps is much smaller than that of
the total dilatational velocity. Hence a large portion of the dilatational velocity and its
correlation (if any) with the solenoidal velocity is still unexplained. To address this point,
figure 11(a) shows the integrated correlation between solenoidal and total dilatational

velocities, i.e.
〈
vs′′

vd
〉∗
ξζ

, denoted by solid grey lines. Except very close to the wall, the

total and pseudo-sound correlations almost overlap. This implies that the contribution from
the remaining portion of the dilatational velocity, referred to as the ‘non-pseudo-sound’
component and given by

vd,nps = vd − vd,ps, (4.14)

is small. In other words, despite being stronger in magnitude than the pseudo-sound
component, the non-pseudo-sound dilatational velocity does not play an important role
in opposing sweeps and ejections.

Before concluding, we would like to comment on the travelling wave-packet-like
structures, first identified by Yu et al. (2019) and later studied in Yu, Xu & Pirozzoli
(2020), Yu & Xu (2021),Tang et al. (2020), Gerolymos & Vallet (2023) and Yu et al.
(2024). Figure 13 shows the x∗–z∗ plane with the instantaneous contours of the pseudo-
sound and non-pseudo-sound dilatational velocity at y∗ ≈ 11, for the Mach 3 case in
table 1. The wave-packet structures are predominantly present in the non-pseudo-sound
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Figure 14. A graphical summary of the present findings. Note that the arrows are meant to indicate the chain
of arguments made in this paper, not relations of causality.

component, whereas the pseudo-sound component shows a spotty structure similar to
that observed for the streamwise gradient of wall pressure in incompressible flows
(Kim 1989). Combining the observations above that the non-pseudo-sound component
hardly contributes to the opposition effect, and that the wave-packet-like structures are
present mainly in this component, one can argue that these structures do not play an
important role in opposing sweeps and ejections.

5. Conclusions
In this paper, we have attempted to provide an explanation for the underlying mechanism
through which IC effects modulate the near-wall dynamics of turbulence. To assess
these effects rigorously, we have devised four DNS cases of fully developed high-Mach-
number channel flows with approximately constant mean properties, whereby IC effects
are isolated. Our findings, sketched as a flow chart in figure 14, are summarized as follows.

First, we have decomposed the velocity field into solenoidal and dilatational parts, and
educed shear layers by applying conditional averaging to the solenoidal component. We

1006 A14-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1238


Journal of Fluid Mechanics

have noticed that there exists a streamwise phase shift between the buffer-layer sweeps and
ejections that form shear layers, and the associated ‘solenoidal’ wall pressure. Equivalent
observations were made for incompressible flows by Johansson et al. (1987) and Luhar
et al. (2014). By using Taylor’s hypothesis, this streamwise shift in phase can be interpreted
as a phase shift in time, such that regions of high positive rate of change of wall pressure
correspond to regions of high positive wall-normal velocity. Similarly, regions of high
negative rate of change of wall pressure correspond to the regions of high negative wall-
normal velocity. Close to the wall, the high rate of change of the solenoidal pressure
results in large dilatation values with an opposite sign (also referred to as pseudo-sound
dilatation), which upon integration results in a wall-normal dilatational velocity that
inherently opposes sweeps and ejections. Since sweeps and ejections are initiated by
quasi-streamwise vortices, their opposition directly affects the evolution of those vortices,
causing their weakening. This is depicted schematically in figure 12.

Interestingly, we also found that the remaining portion of the dilatational velocity (also
referred to as the non-pseudo-sound component) does not play an important role in the
opposition mechanism. Moreover, we have observed that the majority of the travelling
wave-packet-like structures, recently discovered in the literature, are present in this non-
pseudo-sound component.

The weakening of quasi-streamwise vortices directly hinders the energy transfer from
the streamwise velocity component to the other two components, resulting in an outward
shift (reduction) in the wall-normal turbulent stress with increasing Mach number. Since
the wall-normal motions actively contribute to the transport of momentum across mean
shear, thereby generating turbulent shear stress, the outward shift in the wall-normal
turbulent stress results in a corresponding outward shift in the turbulent shear stress. This
reduction in the turbulent shear stress is in turn responsible for an upward shift in the
logarithmic mean velocity profile (Hasan et al. 2023).

A long-standing question in the compressible flow community is why the inner-scaled
streamwise turbulent stress is higher in compressible flows than in incompressible flows,
with similar Reynolds numbers. In this respect, our results suggest that IC effects play a
central role. Specifically, the increase in the peak value is a consequence of the outward
shift in the turbulent and viscous shear stresses, since their product yields the production of
the streamwise turbulent stress. This implies that the near-wall opposition mechanism out-
lined above is also responsible for the strengthening of the streamwise turbulence intensity.

Some questions related to the findings made in this paper remain unanswered as of yet.
First, why do the solenoidal pressure maxima, and hence the pseudo-sound dilatational
velocity contours, shift upstream with increasing Mach number (see figures 8–10), and
would this trend continue at higher Mach numbers? Second, what is the Mach number
scaling of the turbulence statistics presented in the paper? This could help to explain the
quasi-linear increase in the log-law constant observed by Hasan et al. (2023). Moreover,
knowing the Mach number scaling of the peak streamwise turbulence intensity would help
in developing empirical scaling laws. Third, why is the dissipation of TKE, and thus the
small scales of turbulence, not affected by IC effects (see Appendix A)? A spectral analysis
of the velocity field could shed more light on this important issue.
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Appendix A. Increase in the streamwise turbulence intensity
In order to explain the increase in the streamwise turbulent stress and hence in the TKE, we
consider the streamwise turbulent stress budget for a fully developed compressible channel
flow:

P11 + ε11 + T ν
11 + T u

11 + Π11 + C11 = 0, (A1)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P11 = −2 ρu′′v′′ ∂ ũ

∂y
, ε11 = −2 τ ′

1 j
∂u′′

∂x j
,

T ν
11 = 2

∂

∂y
(τ ′

12u′′), T u
11 = − ∂

∂y
(ρu′′u′′v′′),

Π11 = 2 p′ ∂u′

∂x
, C11 = 2 u′′ ∂τ̄12

∂y
.

(A2)

The distributions of the production, viscous and turbulent diffusion terms, and the sum
of dissipation and pressure–strain correlation, are shown in figure 15, scaled by ρ̄u∗

τ
3/μ̄.

The compressibility term C11 is omitted because of its negligible magnitude.
Three observations can be made. First, there is an outward shift in P∗

11 with increasing
Mach number. Since the production term in scaled form is simply the product of the
turbulent and viscous shear stresses, its outward shift is explained by the corresponding
shift in the shear stresses in figure 3(b) as follows. Assuming that the total stress is
approximately equal to τw, such that the sum of the scaled stresses is unity, one can
substitute the viscous shear by the turbulent shear stress in P11 to obtain (Pope 2001)

P∗
11 ≈ −2 ũ′′v′′∗(1 + ũ′′v′′∗) = 2( − ũ′′v′′∗) − 2( − ũ′′v′′∗)2. (A3)

Taking the derivative of P∗
11 with respect to the turbulent shear stress yields

dP∗
11

d( − ũ′′v′′∗)
≈ 2 − 4( − ũ′′v′′∗). (A4)

Between the wall and the location where −ũ′′v′′∗ is equal to 0.5, the derivative is
positive, while it is negative above this location. On the other hand, from figure 3(b), we
observe that the rate of change of the turbulent shear stress with the Mach number, i.e.
∂(−ũ′′v′′∗)/∂ Mb, at a fixed y∗ is negative. Combining these two observations, we can
conclude that the rate of change of production of the streamwise turbulent stress with the
Mach number, i.e. ∂ P∗

11/∂ Mb, is negative close to the wall and becomes positive away
from it, resulting in an effective outward shift.

Second, except very close to the wall, the sum of the two sink terms in the budget
of the streamwise turbulent stress (A1), namely ε∗

11 and Π∗
11, shows a weak Mach number

dependence. Interestingly, the TKE dissipation (2ε∗
k = ε∗

11 + ε∗
22 + ε∗

33), reported with grey
dashed lines in figure 15, also shows marginal dependence on the Mach number. This is
consistent with the observation made by Hasan et al. (2023) regarding the universality
of the local Kolmogorov length scale. The universalities of ε∗

11 + Π∗
11 and ε∗

k are related
as follows. Any Mach-number-dependent reduction in Π∗

11 would imply that less energy is
being received by the lateral turbulent stresses, hence less TKE is being dissipated through
the terms ε∗

22 + ε∗
33. This suggests that the Mach-number-dependence of Π∗

11 and ε∗
22 + ε∗

33
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Figure 15. Wall-normal distributions of (a) the streamwise turbulent stress budget (A1) scaled in semi-local
units, and (b) the sum of viscous and turbulent fluxes obtained upon integrating the semi-locally scaled viscous
and turbulent diffusion terms (A5), for the cases described in table 1.

is linked, such that the universality of ε∗
11 + Π∗

11 is connected to the universality of the TKE
dissipation.

Third, above y∗ ≈ 12, the production term is higher at higher Mach numbers, which,
combined with the observation that the total sink ε∗

11 + Π∗
11 is universal, implies more

negative values of the diffusion term. This means that the surplus production is transported
away from the buffer layer towards the wall. For further insight, figure 15(b) shows the sum
of the viscous and turbulent fluxes obtained by integrating the transport terms as

Φ∗
11 =

∫ y∗

0
(T ν∗

11 + T u∗
11 )dy∗, (A5)

such that positive values signify that energy is transported towards the wall, and negative
values signify the opposite. As one can observe, the flux is positive close to the wall and
increases with the Mach number. This implies that more energy is being carried towards
the wall at higher Mach numbers. Between the wall and the peak location of the streamwise
turbulence intensity, the total flux is mainly controlled by the viscous flux, which can be
approximated as d˜u′′u′′∗/dy∗. Thus a higher positive flux at increasing Mach numbers
implies a higher gradient of the streamwise turbulent stress, which results in a higher peak
value upon integration.

The strengthening of the streamwise velocity fluctuations can also be explained based
on a phenomenological mixing-length model. The semi-locally scaled streamwise stress
can be written as

(u′u′∗)1/2 ∼ �∗ dŪ∗

dy∗ , (A6)

where �∗ is the mixing length scaled by δ∗
v , and dŪ∗/dy∗ is the semi-locally scaled mean

velocity gradient, which is equivalent to dŪ+
T L/dy∗. Note that the streamwise stress is

written in the Reynolds averaged form, since we observe that the peaks of both Reynolds
and Favre averaged stresses increase alike (not shown), therefore the error incurred by
excluding density fluctuations from (A6) is small. The mixing length is determined as

�∗ ∼
√

v′v′∗ T (Durbin 1991), where T ∼ k∗/ε∗. For the present cases, this definition of
mixing length yields universal distributions across the Mach number range (not shown).
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This is because the velocity with which a fluid parcel travels reduces with increasing
Mach number. However, the time scale over which it retains its streamwise momentum
increases with the Mach number (due to higher TKE and almost universal dissipation),
thus effectively travelling the same distance. Due to the universality of the mixing length,
(A6) implies that the increase in mean shear observed in figure 3 is directly responsible
for an increase in the peak streamwise turbulence intensity. Interestingly, an increase in the
mean shear was also found to be responsible for higher production in the buffer layer (see
figure 15) that formed the basis of our explanation above, making the phenomenological
model consistent.

Appendix B. Helmholtz decomposition of the velocity field
The Helmholtz decomposition in compressible flows is the representation of the velocity
field as the sum of divergence-free ‘solenoidal’ and curl-free ‘dilatational’ components.
This is written mathematically as

ui = us
i + ud

i , (B1)

where superscripts s and d stand for solenoidal and dilatational components. This equation
is similar to (3.4) in the main text, the only difference being that there the decomposition
was written explicitly for the fluctuating velocity field.

The dilatational component is computed as the gradient of a scalar potential φ, namely

ud
i = ∂φ

∂xi
, (B2)

where φ is obtained by solving a Poisson equation as

∂2φ

∂x j ∂x j
= ∂ui

∂xi
. (B3)

Equation (B3) is solved using a second-order accurate fast Fourier transform based
Poisson solver (see e.g. Costa 2018) with periodic boundary conditions in the streamwise
and spanwise directions, and no-penetration boundary condition ∂φ/∂y = 0 (or vd = 0)
at the wall. Note that with these boundary conditions, no-slip is not satisfied at the wall,
i.e. ud and wd are not equal to zero. While seemingly counter-intuitive at first glance, this
is not unphysical, as pointed out in Sharma & Girimaji (2023).

Likewise, the solenoidal component can be obtained using the vorticity field as
described in Yu et al. (2019) and Sharma & Girimaji (2023). However, here we will make
use of the fact that the total velocity field is available from the DNS. Thus the solenoidal
field is simply computed using (B1) as

us
i = ui − ud

i . (B4)

Appendix C. Steps to perform VISA
In this conditional average technique, strong sweep and ejection events resulting in a shear
layer are said to occur when the short-space variance, given by

var(x, z, t) = 1
L

∫ L
2

− L
2

[us′′
(x + s, yre f , z, t)]2 ds −

(
1
L

∫ L
2

− L
2

us′′
(x + s, yre f , z, t) ds

)2

,

(C1)
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exceeds K [us
rms(yre f )]2, where K is the threshold level. Here, yre f is the location of

the reference x –z plane where the detection criterion is applied, and L is the size of
the averaging window, representative of the length scale of the shear layer identified by
this technique (Johansson et al. 1987). Following Johansson et al. (1991), we take K = 1,
y∗

re f ≈ 15 and L∗ ≈ 200. To analyse the sensitivity of the results with respect to these
parameters, we varied each one individually, and assessed its impact on the correlation
shown in figure 11(a) (not presented here). The correlation remains almost unaffected
when K is increased from 1 to 1.2, or when L∗ is increased from 200 to 240. However,
when y∗

re f is increased from 15 to 20, we observe that the peak of the correlation shifts
outwards, and there is a slight increase in the peak value. Despite these differences, the
results remain qualitatively similar, and the conclusions made from them still hold.

Having computed the short-space variance at the reference plane, a condition variable
C is set to non-zero values in regions where the variance exceeds the threshold, and zero
otherwise. The assigned non-zero value is 1 for acceleration events and –1 for deceleration
events. Mathematically, this is written as

C(x, z, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, for var > K [us

rms(yre f )]2 and
∂us′′

∂x
< 0,

−1, for var > K [us
rms(yre f )]2 and

∂us′′

∂x
> 0,

0, otherwise,

(C2)

where ∂us′′
/∂x < 0 implies ∂us′′

/∂t > 0 and vice versa, as per Taylor’s hypothesis. This
will result in patches on the reference x–z plane with values 1 and –1 as shown in
figure 16. Within these patches, the location where the short-space variance is locally
maximum is also shown. Let the coordinates of these locations be denoted by (xo, zo).
These coordinates, detected at y∗ ≈ 15, will form the basis around which conditional
averaging is performed at all wall-normal locations.

With the detected VISA locations, the conditional average of any variable Ψ is then
given as

〈Ψ 〉 (ξ, y, ζ ) = 1
N

N f∑
f =1

Ne∑
n=1

Ψ (xn
o + ξ, y, zn

o + ζ, t f ), (C3)

where ξ and ζ are the streamwise and spanwise displacements with respect to the reference
or detected locations (xo, zo), and they vary from −Lx/2 to Lx/2 and from −Lz/2 to
Lz/2, respectively. The inner sum is over the number of detected events (Ne) in a particular
snapshot f (at time instant t f ), whereas the outer sum is over the number of snapshots
(N f ), such that the global sum of the detected events over all the snapshots is N .

Note that (C3) leads to a conditional average from which phase jitter is yet to be removed
(Johansson et al. 1987). The concept of phase jitter is explained with an example as
follows. It is known that an acceleration VISA event detected at the location (xo, y+ ≈
15, zo) corresponds to a wall pressure peak directly underneath, i.e. at (xo, y+ ≈ 0, zo).
However, there can be a small and random phase lag or lead. This means that in reality, the
pressure peak may occur at a location that is randomly shifted in the streamwise–spanwise
direction with respect to the detected location, i.e. it may occur at (xo + 	x , y+ ≈
0, zo + 	z). This misalignment leads to a reduction in the magnitude of the pressure peak
obtained after conditional averaging.
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Figure 16. (a) An x∗–z∗ contour plot of the instantaneous solenoidal streamwise velocity fluctuations at
y∗

re f ≈ 15 for the Mach 2.28 case. Boundaries of patches where the short-space variance exceeds the Reynolds
averaged value (see (C2)) are overlaid on the contour plot. Additionally, the location inside each patch where
the short-space variance is locally maximum is also displayed by a black circle or a grey square for acceleration
and deceleration events, respectively. (b) Instantaneous solenoidal streamwise velocity fluctuation along the
horizontal line indicated in the top plot. The black circle is the same point as in the top plot. The short-space
variance (C1) is also shown using a grey dashed line.

To fix this issue, we employ a cross-correlation technique (Johansson et al. 1987)
that is described using the above example as follows. We first compute the conditional
average of wall pressure as usual without fixing the phase jitter issue. We then cross-
correlate this conditionally averaged wall pressure plane with the instantaneous wall
pressure plane using the Fourier transform. Having done this, we should obtain an
x–z plane of correlation coefficients on the wall that displays a local maximum close
to but not necessarily at the point of detection, i.e. (xo, zo). This maximum implies that
the conditionally averaged wall pressure profile has its imprint in the instantaneous plane
around the detection location. The shift between the detection location (xo, zo) and the
local maximum around (xo, zo) gives the amount of phase lag or lead in the streamwise
and spanwise directions, i.e. 	x and 	y discussed above. In order to remove the phase lag
or lead, we compute a new conditional average by shifting the instantaneous planes by this
	x and 	y around the detection points, thereby aligning them. Mathematically, (C3) is
modified for wall pressure as

〈
p′〉 (ξ, 0, ζ ) = 1

N

N f∑
f =1

Ne∑
n=1

p′(xn
o + 	n

x + ξ, 0, zn
o + 	n

z + ζ, t f ). (C4)

Now, the same procedure described for pressure at the wall can be repeated for pressure
at any wall-normal location. Doing this results in 	x and 	y that depend on y for each
detected event. With this, (C4) can be rewritten for the entire pressure field as

〈
p′〉 (ξ, y, ζ ) = 1

N

N f∑
f =1

Ne∑
n=1

p′(xn
o + 	n

x (y) + ξ, y, zn
o + 	n

z (y) + ζ, t f ). (C5)
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Figure 17. Contours of the solenoidal pressure along the ξ∗–y∗plane at ζ ∗ = 0 (a) after (C3) (no alignment),
and (b) after (C5) (first alignment iteration). The left, middle and right columns correspond to the Mach 2.28,
3 and 4 cases in table 1, respectively.

Although this gives more control on the alignment of three-dimensional conditionally
averaged structures, it may result in a conditionally averaged profile that may not be very
smooth in the wall-normal direction, such that layering is observed (some layering can be
seen in figure 8).

In the phase jitter removal procedure, events for which the required shift is greater than
approximately 40 viscous lengths in the streamwise or spanwise directions are excluded
from the averaging procedure, and the total number of detected events (N ) is reduced
accordingly. Since the applied shifts are wall-normal dependent, the excluded number of
events would also be wall-normal dependent.

Figure 17 shows the ξ∗–y∗ pressure contours taken at the centre of the shear layer,
i.e. at ζ ∗ = 0, after no alignment (see (C3)) and after one iteration of alignment (see (C5)).
As seen, the pressure contours remain qualitatively similar in both the cases; however, the
magnitude after one iteration of alignment has increased substantially.

The conditionally averaged profile obtained from (C5) can be cross-correlated again
with the instantaneous field, and the procedure above can be repeated to further improve
the alignment. However, as noted in Johansson et al. (1987), and also verified for our cases,
the maximum jitter is eliminated in the first iteration. Thus the results presented in the main
text are obtained after one iteration.
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