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First-order sensitivities and adjoint analysis are used widely to control the linear stability
of unstable flows. Second-order sensitivities have recently helped to increase accuracy.
In this paper, a method is presented to calculate arbitrary high-order sensitivities based
on Taylor expansions of the incompressible base flow and its eigenproblem around a
scalar parameter. For the incompressible Navier–Stokes equations, general expressions for
the sensitivities are derived, into which parameter-specific information can be inserted.
The computational costs are low since, for all orders, a linear equation system has to
be solved, of which the left-hand-side matrix stays constant and thus its preconditioning
can be exploited. Two flow scenarios are examined. First, the cylinder flow equations
are expanded around the inverse of the Reynolds number, enabling the prediction of
the two-dimensional cylinder base flow and its leading eigenvalue as a function of the
Reynolds number. This approach computes accurately the base flow and eigenvalue even
in the unstable regime, providing, when executed subsequently, a mean to calculate
unstable base flows. This case gives a clear introduction into the method and allows
us to discuss its constraints regarding convergence behaviour. Second, a small control
cylinder is introduced into the domain of the cylinder flow for stabilization. Higher-order
sensitivity maps are calculated by modelling the small cylinder with a steady forcing.
These maps help to identify stabilizing areas of the flow field for Reynolds numbers within
the laminar vortex shedding regime, with the required number of orders increasing as the
Reynolds number rises. The results obtained through the proposed method align well with
numerically calculated eigenvalues that incorporate the cylinder directly into the grid.

Key words: instability control, Navier–Stokes equations, computational methods

† Email addresses for correspondence: s.knechtel@tu-berlin.de, a.orchini@tu-berlin.de

© The Author(s), 2024. Published by Cambridge University Press 985 A32-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:s.knechtel@tu-berlin.de
mailto:a.orchini@tu-berlin.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.195&domain=pdf
https://doi.org/10.1017/jfm.2024.195


S.J. Knechtel, T.L. Kaiser, A. Orchini and K. Oberleithner

1. Introduction

In the last decades, adjoint methods have been used extensively in the field of fluid
dynamics to compute flow gradient information with respect to a number of parameters,
within the constraints of the Navier–Stokes equations. These methods are computationally
convenient when compared to other gradient computation techniques – e.g. finite
difference estimations – particularly when the sensitivity of the flow with respect to many
control parameters is of interest (Baysal & Eleshaky 1992). A prototypical application of
adjoint methods is the calculation of the first-order sensitivity of the stability margins
of a given flow configuration (Luchini & Bottaro 2014a). In particular, the stability
properties of the flow past a circular cylinder, which often serves as a benchmark case
for the analysis of hydrodynamic instabilities, has been investigated extensively. In a
seminal work, Hill (1992) used adjoint stability analysis to re-stabilize the cylinder wake
through passive control, by placing a small control cylinder into the cylinder wake.
By using adjoint methods, Giannetti & Luchini (2007) localized the most sensitive
regions to momentum forcing or mass injection. In particular, by analysing the first-order
sensitivity to a localized feedback mechanism that inserted a forcing proportional to
the perturbation velocity, they achieved good qualitative agreement with experiments
conducted by Strykowski & Sreenivasan (1990), who traced the regions in which a small
control cylinder had a stabilizing effect. Marquet, Sipp & Jacquin (2008) formalized the
calculation of the first-order sensitivity to base flow modifications. By introducing a steady
forcing proportional to the base flow velocity, they refined predictions regarding the small
control cylinder. These sensitivity calculations could also be performed on non-stationary
solutions, e.g. on limit cycle oscillations, as discussed in Giannetti, Camarri & Citro
(2019).

All the aforementioned studies are based on a gradient (first-order sensitivity)
analysis. While first-order sensitivities provide a good insight into the development
of the flow properties while varying a certain parameter, and can be used for
gradient-based optimization, evaluating second-order sensitivities is necessary for some
flow configurations. This is the case, e.g. for configurations with symmetry properties,
in which the first-order sensitivity vanishes. For example, Hwang, Kim & Choi (2013)
investigated a two-dimensional wake with a spanwise wavy perturbation of the base flow.
They first observed that the sensitivity of the eigenvalue is proportional to the square of the
perturbation amplitude, thus rendering the first-order sensitivity zero. Del Guercio, Cossu
& Pujals (2014) obtained analogous results. Tammisola et al. (2014) first computed the
second-order sensitivity of the eigenvalue for the purpose of controlling the cylinder wake
flow with steady spanwise wavy actuation. Boujo, Fani & Gallaire (2015, 2019) computed
the second-order sensitivity for parallel shear flows and the circular cylinder, respectively,
by investigating the effect of spanwise waviness. Tammisola (2017) conducted a spanwise
shape optimization of the cylinder, where the shape contour was parametrized with more
than one parameter, and the second-order Hessian matrix was computed.

The importance of second-order (and higher-order) sensitivities is, however, not limited
to scenarios with zero gradient. First-order sensitivity provides only gradient (linear)
information on the overall sensitivity, i.e. it is accurate only for infinitesimally small
variations of a parameter. To assess the effect that a real-world finite variation of a
parameter has on the base flow/eigenvalues, higher-order (nonlinear) sensitivities are
useful. Assessing in one high-order calculation the effect of a large variation of a
parameter can reduce computational costs compared to assessing the same effect with
many first-order linear steps. To obtain equations for the high-order sensitivities, one can
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exploit perturbation theory (Van Dyke 1975). Perturbation theory allows one to derive
polynomial approximations to the variation of a flow quantity with respect to a parameter.
This results in the construction of a series whose coefficients need to be evaluated order
by order. As for any power series, the obtained series do not necessarily converge for
arbitrarily large values of the perturbation parameter, but have a region of convergence,
which may or may not be small (Bender & Orszag 1999). It is a general result of
perturbation theory that within the region of convergence, the higher the perturbation
order, the more accurate the results.

In this study, we present a perturbation theory framework for the computation of
arbitrary high-order sensitivities for the incompressible Navier–Stokes equations with
respect to a scalar parameter, together with a discussion on the convergence properties of
the obtained solutions. The perturbation framework is applied to three classic problems:
(i) the evaluation of base flows while varying the Reynolds number; (ii) the variation of the
eigenvalues as the Reynolds number is increased; (iii) the influence of a passive forcing on
the stability margins of the cylinder flow.

1.1. Base flow sensitivity to the Reynolds number
The computation of steady-state (time-independent) solutions of the nonlinear
Navier–Stokes operator can be challenging for globally unstable flow fields. In these cases,
classic pseudo-time-marching schemes fail, since the solution naturally diverges from the
base flow configuration. A common valid alternative is the use of Newton-like methods.
These methods do usually converge but may require a relatively accurate initial guess and
thus a large number of steps. An alternative approach is the method of selective frequency
damping (Akervik et al. 2006). This method can be integrated into pseudo-time-marching
schemes and is therefore particularly suitable for large flow problems. Nevertheless, Jordi,
Cotter & Sherwin (2015) and Casacuberta et al. (2018) pointed out shortcomings regarding
its application to unstable systems with a steady unstable eigenmode or more than one
unstable mode.

In this study, we employ perturbation theory to derive equations for the computation
of the base flow modifications at arbitrarily high orders when a parameter (notably the
Reynolds number) is varied. With this approach it is possible to get a continuous power
series representation of the base flow solution along the parameter, within a convergence
region. We then show how the higher-order base flow corrections can be used as an
alternative method to obtain base flow solutions of globally unstable flows. Starting from a
stable configuration (at low Reynolds number), the perturbation scheme allows us to obtain
an accurate solution to a higher Reynolds number – within the region of convergence.
The residuum of the Navier–Stokes equations is used to ensure sufficient accuracy. By
repeating this process multiple times, we can extend the initial solution to an arbitrarily
high Reynolds number. As a result, our method provides a continuous representation
of the solution space. It is also similar to the more classic continuation methods, with
the difference that continuation methods use only first-order gradient information – thus
require small steps – whereas the proposed method uses larger steps, which is possible
because higher-order sensitivity information is available.

1.2. Eigenvalue sensitivity, including base flow variations
When varying the Reynolds number, not only the base flow varies, but also the eigenvalues
that govern its stability move in the complex plane. By using adjoint-based perturbation
theory, it is possible to obtain a power series representation of the dependency of the
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eigenvalue trajectories on the parameter that, within the region of convergence, accurately
approximates the actual eigenvalues. This was demonstrated recently by Mensah, Orchini
& Moeck (2020) and Orchini et al. (2020) in a compressible-flow configuration relevant
for thermoacoustic applications in which the base flow was frozen. It is, however, known
that a variation in the base flow affects the stability of the flow (see e.g. Luchini & Bottaro
2014a). When varying the Reynolds number, therefore, the eigenvalue sensitivity needs to
account for two effects: (i) a direct influence of the Reynolds number on the eigenvalues,
and (ii) an indirect influence on the eigenvalues caused by the variation of the base flow
induced by a change in the Reynolds number. The first-order expressions for the (total)
eigenvalue sensitivity are known; see e.g. Marquet et al. (2008). The expression for the
second-order sensitivity was given in Boujo (2021). However, general expressions for the
higher-order eigenvalue sensitivity accounting for the base flow modifications are, to the
best knowledge of the authors, not available in the literature. In this study, we employ
adjoint-based perturbation theory to derive the eigenvalue corrections, including base
flow modifications to an arbitrarily high expansion order. In the process, we demonstrate
how the base flow perturbation terms feed into the eigenvalue sensitivity problem, order
by order. This implies that the convergence region of the eigenvalue expansions may be
limited by the convergence of the base flow expansions, as will be discussed.

1.3. Effect of a passive forcing on the stability margin
The relevance of second-order sensitivity for flow problems was demonstrated recently
by Boujo (2021), who investigated the second-order influence of a perturbation in the
cylinder wake imposed by a steady forcing, a flow configuration in which the first
order does not vanish. By applying second-order sensitivity analysis, it was shown how
the predictions of stabilizing regions may vary significantly and compare better to the
experimental results of Strykowski & Sreenivasan (1990). An important remark is that
this analysis assumes implicitly that the first- and second-order sensitivities can be
summed straightforwardly. Since the derivation of first- and second-order sensitivities
relies on adjoint-based perturbation techniques, care must be taken in summing the results.
Perturbation solutions, in fact, generally converge not everywhere, but only within a certain
parameter range (Bender & Orszag 1999). Being aware of this limitation is important when
considering high-order expansions, because one has to verify if the constructed power
series actually converges. In this study, we extend the analysis of Boujo (2021) to higher
orders, and we demonstrate that within the region of convergence, the high-order power
series agree with high accuracy with the numerically obtained results when incorporating
a small control cylinder directly into the grid.

1.4. Outline
The paper is structured as follows. In § 2, expressions for arbitrary-order sensitivities of the
base flow of the Navier–Stokes equations with respect to one scalar parameter are derived.
In § 3, adjoint-based perturbation methods are used to obtain high-order sensitivities
of the eigenvalues of the linearized base flow equations, accounting for the base flow
modification effects. The numerical set-up of the cylinder base flow, which is chosen to
demonstrate the validity of the theory, is explained in § 4. The inverse of the Reynolds
number serves as the scalar parameter of the first expansion case. In § 5.1, a base flow and
eigenvalue prediction through a Taylor expansion around Reynolds number 47 is shown.
In § 5.2, the cylinder base flow is subsequently calculated up to high Reynolds numbers,
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and the base flow and eigenvalues are traced until Reynolds number 1000. In § 5.3, some
aspects of the convergence behaviour of the obtained power series approximations are
discussed. As a second example case, higher-order sensitivity maps along the amplitude
of a steady forcing are drawn in § 6, which serve as a model for the passive flow control of
a small control cylinder that is placed inside the domain. The conclusions of the work are
summarized in § 7.

2. Arbitrary-order sensitivities of the base flow

Consider the stationary incompressible Navier–Stokes (NS) equations

N(q) ≡
(

(u · ∇)u + ∇p − 1
Re

∇2u

∇ · u

)
= 0 (2.1)

and their solution q, in the following called the ‘base flow’,

q(x) ≡
(

u(x)

p(x)

)
, (2.2)

where p(x) is the relative pressure, and u(x) ≡ (u(x), v(x))T is the velocity vector,
here in this cylinder set-up in two dimensions, but generally having three velocity
components. The Reynolds number Re ≡ u∞D/ν is defined by a characteristic velocity
u∞, a characteristic length scale D, and a constant kinematic viscosity ν, and the NS
equations are made dimensionless with these characteristic quantities.

Consider now a scalar parameter a, which changes the NS equations and thus also the
base flow via

N(q(a), a) = 0. (2.3)

We are interested in the higher-order sensitivities of the base flow with regard to this
parameter a. Expanding q in a Taylor polynomial of order n around a0 yields

q(a) ≈ q(n)(a0 + ε) = q(n)(a) ≡
n∑

k=0

1
k!

qkε
k, (2.4)

with ε = a − a0, and a being in the vicinity of a0. In the limit n → ∞, the series (2.4)
is guaranteed to converge asymptotically within the (a priori unknown) radius of the
convergence r, i.e. if |ε| < r (Bender & Orszag 1999). For a finite value of n, however,
the truncated series may nonetheless provide a good approximation even outside of the
radius of convergence, a fact also known as Carrier’s rule (Boyd 1999). The coefficients
qk are defined as

qk ≡ dkq(a)

(da)k

∣∣∣∣∣
a=a0

. (2.5)

For the incompressible NS equations, the Taylor polynomial reads

N(q(a), a) ≈ N (n)(q(a), a) ≡
n∑

k=0

1
k!

Nkε
k = 0. (2.6)

According to (2.1) and (2.3), (2.6) vanishes for all a and q(a) by definition, which also
implies that for each k, it must hold that Nk = 0.
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2.1. Taylor coefficients for the base flow
We now show how the Taylor coefficients, i.e. the higher-order sensitivities of the base
flow with respect to a, can be computed. In this subsection, the scalar parameter a will be
kept generic. We start with a detailed discussion on the first- and second-order coefficients,
before presenting a general formulation for coefficients of arbitrary order.

The first-order sensitivity of N towards a is

N1 ≡ dN(q(a), a)

da

∣∣∣∣
a=a0

= ∂N(q(a), a0)

∂q

∣∣∣∣
q(a)=q0

dq(a)

da

∣∣∣∣
a=a0

+ ∂N(q0, a)

∂a

∣∣∣∣
a=a0

,

(2.7)

where q0 is the base flow that solves (2.3) when a = a0. For reasons of brevity, we replace
the partial derivatives with subscripts from now on, and rewrite (2.7) as

N1 ≡ Nqq1 + Na = 0. (2.8)

Here, Nq is the linearization of the NS equations with respect to q at q0, thus a linear
operator or a tensor of order two, which explicitly reads

Nqqk =
(

(u0 · ∇)uk + (uk · ∇)u0 + ∇pk − 1
Re

∇2uk

∇ · uk

)
(2.9)

when applied on any qk. The explicit expression for Na depends on the parameter chosen
for the expansion, as discussed later.

The first-order sensitivity of q towards a can now be obtained by solving the linear
system

Nqq1 = −Na. (2.10)

The first-order Taylor polynomial then reads

q(a) ≈ q(1)(a0 + ε) = q0 + q1ε. (2.11)

Following an analogous procedure, the equation for the second-order expansion reads

N2 = Nqq2 + qT
1 Nqqq1 + 2Nqaq1 + Naa = 0, (2.12)

where Nqq is a symmetric bilinear form or a tensor of order three that reads

qT
j Nqqqk =

(
(uj · ∇)uk + (uk · ∇)uj

0

)
(2.13)

when applied on any qj and qk. We will provide explicit expressions for Nqa and Naa later
when we specify a. We obtain the second-order sensitivity of q with respect to a by solving
the linear equation system

Nqq2 = −qT
1 Nqqq1 − 2Nqaq1 − Naa, (2.14)

and the Taylor polynomial of order 2 is complete with

q(a) ≈ q(2)(a0 + ε) = q0 + q1ε + 1
2 q2ε

2. (2.15)

This procedure can be pursued until arbitrary order. To obtain a general expression, it
comes in handy that the higher-order derivatives of the NS equations with respect to the
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base flow vanish, i.e. that we have

Nqqq = 0 = Nqqqa = Nqqqq = · · · . (2.16)

A closed formula for the computation of qk for any scalar parameter a then reads

Nqqk = −
k−2∑
i=1

k−i−1∑
j=1

(
k
i

)(
k − i

j

)
1
2

qT
j Nqqaiqk−i−j

−
k−1∑
i=1

(
k
i

)[
1
2

qT
i Nqqqk−i + Nqaiqk−i

]
− Nak , (2.17)

where we adopted the notation Naa = Na2 and so on for higher-order derivatives. The
individual qk have to be calculated one after the other from k = 1 until k = n, the order of
the desired Taylor polynomial. Note that the left-hand side of each linear equation system
always contains the same linear operator Nq, which is advantageous for a fast computation
of several higher orders.

2.2. Expansion of the equations with respect to the parameter 1/Re
We will now specify the parameter a as the inverse of the Reynolds number

a = 1
Re

, (2.18)

and define explicit expressions for the operators defined in § 2.1. This choice for the
parameter a is convenient because 1/Re enters linearly in the NS equation. The case
a = Re is also briefly discussed in this study and can be found in Appendix A. The first
partial derivative of the NS equations (2.1) with respect to a is

Na =
(−∇2u

0

)
, (2.19)

and the higher order derivatives follow with

Naa = Naaa = · · · = 0. (2.20)

Similarly, the first partial derivative of the linear operator (2.9) with respect to a is

Nqaqk =
(−∇2uk

0

)
(2.21)

and for the higher orders,
Nqaa = Nqaaa = · · · = 0. (2.22)

Furthermore, it holds that
Nqqa = Nqqaa = · · · = 0. (2.23)

For the case a = 1/Re, (2.17) thus simplifies to

Nqqk =

⎧⎪⎨
⎪⎩

−Na, for k = 1,

−
(

k
1

)
Nqaqk−1 − 1

2

k−1∑
i=1

(
k
i

)
qT

i Nqqqk−i, for k > 1.
(2.24)
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3. Arbitrary-order sensitivities of the eigenvalues

In the following, adjoint-based perturbation methods are used to obtain the arbitrary-order
sensitivities of the eigenvalues of the linearized base flow equations with respect to one
scalar parameter. The base flow sensitivities, which were derived in the previous section,
are needed here to account for the base flow modifications that the parameter causes. In
the following, we will assume that the eigenvalue(s) that we track are simple, i.e. not
degenerate. For these eigenvalues, it can be shown formally that the radius of convergence
of a Taylor series expansion is greater than zero (Lancaster, Markus & Zhou 2003).

The linear stability of the base flow is determined by the eigenvalues of the linear
operator of the NS equations. The base flow is linearly unstable if at least one eigenvalue
has a positive real part. The eigenproblem can be written as

(L(q) − λM) q̂ = 0, q̂ =
(

û
p̂

)
, (3.1)

where L ≡ Nq from (2.9), and

λM q̂ = λ
(

û
0

)
. (3.2)

An adjoint eigenproblem can be defined by introducing the adjoint operator L∗ as(
L∗(q) − λ∗M

)
q̂∗ = 0, (3.3)

with

L∗(q) q̂∗ =
(

(∇u)û∗ − (∇û∗)Tu − ∇p̂∗ − 1
Re

∇2û∗

−∇ · û∗

)
. (3.4)

Consider again the scalar parameter a: a variation in a changes not only the NS equations
and the base flow, but also the eigenproblem:[

L(q(a), a) − λ(a) M
]

q̂(a) = 0. (3.5)

We proceed as in the previous section by expanding λ, q̂ and L into Taylor polynomials of
order n. The Taylor polynomial for the eigenvalue λ reads

λ(a) ≈ λ(n)(a0 + ε) = λ(n)(a) ≡
n∑

k=0

1
k!
λkε

k, (3.6)

with

λk = dkλ(a)

(da)k

∣∣∣∣∣
a=a0

, (3.7)

and analogously for the eigenvector q̂,

q̂(a) ≈ q̂(n)(a) ≡
n∑

k=0

1
k!

q̂kε
k, (3.8)

and for the linear operator L,

L(q(a), a) ≈ L(n)(q(a), a) ≡
n∑

k=0

1
k!

Lkε
k. (3.9)

Note that (3.6) and (3.8) hold only within a radius of convergence around a0, as was
explained for the Taylor expansion of the base flow. The radius of convergence for the
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eigenvalue expansion is limited by singularities, which include exceptional points (EPs) in
the spectrum of the considered operator (Kato 1980). The EPs are spectral singularities
at which not only two (or more) eigenvalues coalesce, becoming degenerate, but also
two (or more) eigenvectors coalesce, causing the linear operator to be defective. The
EPs are expected to be found for complex-valued parameters, making also the linear
operator complex-valued, implying that they are often not physically realizable (Seyranian,
Kirillov & Mailybaev 2005). Still, their existence in the complex plane poses limits to the
convergence of perturbation expansions.

3.1. Taylor coefficients for the linear operator
In the following, we will express the higher-order sensitivities of L through partial
derivatives of N that were defined in § 2. Because we have defined L ≡ Nq, it follows
that Lq = Nqq, La = Nqa, and so on. Thus it can be found that at first order,

L1qj = qT
1 Nqqqj + Nqaqj, (3.10)

and for second order,

L2qj = qT
2 Nqqqj + 2qT

1 Nqqaqj + Nqaaqj. (3.11)

The arbitrary-order expression takes the form

Lkqj = qT
k Nqqqj +

k−1∑
i=1

(
k
i

)
qT

k−iNqqaiqj + Nqak qj. (3.12)

3.2. Taylor coefficients for the eigenvalue
The sensitivities of λ(a) are derived by calculating the sensitivities towards a of (3.1). The
first-order eigenvalue sensitivity towards a, λ1, is given by the sesquilinear scalar product

λ1 = 1
c

〈
q̂∗

0, L1q̂0
〉
, c ≡ 〈q̂∗

0, M q̂0〉. (3.13)

This expression can be derived by calculating the first-order sensitivity towards a at a0 of
the eigenproblem (3.1),

(L0 − λ0M) q̂1 + (L1 − λ1M) q̂0 = 0, (3.14)

and then taking the scalar product with the corresponding zeroth-order adjoint eigenvector;
see e.g. Luchini & Bottaro (2014b). From (3.3), it holds that

〈
q̂∗

0, (L0 − λ0L) q̂k
〉 = 0 (3.15)

for any k, therefore λ1 can be calculated without knowing q̂1.
The second-order sensitivity is derived in the exact same manner, i.e. by calculating the

second-order sensitivity of (3.1) and then taking the scalar product with the corresponding
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zeroth-order adjoint eigenvector (Orchini et al. 2020; Boujo 2021):

λ2 = 1
c

〈
q̂∗

0, L2q̂0
〉+ 2

c

〈
q̂∗

0, (L1 − λ1M) q̂1
〉
. (3.16)

Here, the first-order coefficient of the eigenvector, q̂1, is needed, which will be derived in
the next subsection. This procedure can be followed until arbitrary order, arriving at

λk = 1
c

〈
q̂∗

0, Lkq̂0
〉+ 1

c

k−1∑
i=1

(
k
i

) 〈
q̂∗

0, (Li − λiM) q̂(k−i)
〉
. (3.17)

Note that the respective lower-order sensitivities of the eigenvalue and the eigenvector have
to be known beforehand, which means that higher-order eigenvalue coefficients have to be
calculated one after the other.

3.3. Taylor coefficients for the eigenvector
For the first-order sensitivity q̂1, the linear equation system (3.14) is solved:

(L0 − λ0M) q̂1 = − (L1 − λ1M) q̂0. (3.18)

The first-order coefficient of the eigenvalue, λ1, has to be calculated first (see (3.13)). The
operator (L0 − λ0M) is singular by definition, but the equation system is solvable because
of the Fredholm alternative (Oden 1979): if the right-hand side of the equation system is
orthogonal to the adjoint eigenvector q̂∗

0, then a solution can be found. This condition is
met because λ1 in (3.13) was calculated by imposing orthogonality of the right-hand side
to q̂∗

0.
Note that the solution q̂1 is not defined uniquely, but consists of a component orthogonal

to q̂0, which is fully determined, and a component parallel to q̂0, which is undetermined.
As shown e.g. in Mensah et al. (2020) and Boujo (2021), the latter has no influence on the
value of λ2, defined in (3.16). More generally, it can be shown that the component parallel
to q̂0 has no influence on the value of any higher-order eigenvalue coefficient. Once a
choice has been made on the definition of q̂1, the same choice has to be maintained for the
calculation of the higher-order coefficients, since it has an influence on the definition of
the higher-order eigenvector sensitivities.

The second-order sensitivity q̂2 is obtained by solving the equation system

(L0 − λ0M) q̂2 = − (L2 − λ2) q̂0 − 2 (L1 − λ1M) q̂1. (3.19)

As for the first order, despite the operator on the left-hand side being singular, the equation
system is guaranteed to be solvable thanks to the Fredholm alternative condition imposed
by (3.16). Analogously to the first order, also the component of q̂2 parallel to q̂0 is not
defined uniquely. It was shown in Mensah et al. (2020), and generalized to arbitrary high
order, that any solution of (3.19) will lead to the same value of λ3 or any subsequent
eigenvalue coefficient. Similarly to the first-order case, once defined, it is important that
q̂2 remains the same for all higher-order calculations.

A general expression for the equation system of an arbitrary q̂k is

(L0 − λ0M) q̂k = − (Lk − λk) q̂0 −
k−1∑
i=1

(
k
i

)
(Li − λiM) q̂(k−i). (3.20)

The considerations concerning solvability and uniqueness of the Taylor coefficients can be
extended to arbitrary order.
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Ellipse extension Ellipse extension
Mesh �xmin �xmax [xmin, xmax], [ymin, ymax] �xmax [xmin, xmax], [ymin, ymax] N nodes

A 0.01 0.05 [−1, 10], [−1.8, 1.8] 0.1 [−2, 28], [−2.6, 2.6] 57 446
AF 0.002 0.03 [−1, 10], [−1.8, 1.8] 0.07 [−4, 46], [−4.4, 4.4] 209 399
B 0.01 0.06 [−3, 7], [−4.2, 4.2] 0.25 [−4, 22], [−7, 7] 56 934
BF 0.01 0.02 [−3, 7], [−4.2, 4.2] 0.25 [−4, 22], [−7, 7] 139 416

Table 1. Meshes. All meshes are elliptical. The ellipse extensions refer to the inner regions with higher grid
resolution (�xmax in the columns before).

4. Numerics

The numerical simulations are conducted using the FELiCS software (see e.g. Kaiser &
Oberleithner 2021; Kaiser et al. 2023a,b). It uses the Python package FEniCS (Alnæs
et al. 2015) to discretize the NS equations and obtain the cylinder base flow as well as its
prediction along the Reynolds number and steady forcing amplitude.

Furthermore, the PETCs software and the Python package NumPy are used to build the
matrices of the linearized NS equations and to solve the eigenproblem, respectively.

At the cylinder wall, a no-slip boundary condition is applied, and Dirichlet boundary
conditions are used at the inflow and outflow of the domain. To reduce the effects of a
finite domain size, a parabolic sponge function with magnitude 0.01 is added as a source
term to the NS equations at distance 10 from the boundary in the x-direction, and 5 from
the boundary in the y-direction.

The two-dimensional computational domain for the cylinder flow is discretized with an
unstructured grid. For the finite element discretization, Taylor–Hood elements are used
with orders 2 and 1 for the velocity and the pressure, respectively. The grid details can
be seen in table 1. All grids are elliptical and span from x−∞ = 30 to x∞ = 80, and
between y±∞ = ±27.5. The results in the following sections are conducted on grid A
for the prediction along the Reynolds number, and on grid B for the prediction along the
steady forcing amplitude. Grids AF and BF, respectively, are used to validate convergence.
No significant differences were observed in the calculation of the base flows, eigenvalues
and convergence regions that are discussed in this paper.

For the prediction of the base flow and the eigenproblem, only one matrix is used in each
case to solve the equation system for each order (see the left-hand side of (2.17) and (3.20),
respectively). Therefore, once a preconditioner has been found, it can be used for all orders.
This results in a very efficient computation of the higher-order coefficients, as soon as the
first-order coefficient has been found. Here, the standard incomplete LU-preconditioner
was used, provided by the FEniCS package.

5. Base flow and leading eigenvalue predictions of the cylinder flow

We now apply the theory outlined in §§ 2 and 3 to the cylinder flow around the parameter
a = 1/Re, as per § 2.2.

5.1. Taylor expansion at Re = 47

We first choose the expansion point to be Reynolds number 47, so that a0 = 1
47 , at the

onset of periodic vortex shedding, and predict with our method the base flow and the
leading eigenvalue of its eigenproblem.
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Figure 1. Taylor series expansion of the base flow along a = 1/Re conducted at a0 = 1/47. Velocity profiles
of the predicted base flows at x = (2, y) are plotted for Reynolds numbers 100 (a,b), 150 (c,d) and 200 (e, f ).
Directly calculated velocity profiles are plotted as black circles for comparison.

For Re ≤ 47, solving the NS base flow equations (2.1) is particularly easy, because the
linear operator has only eigenvalues with negative real part, meaning that several iterative
methods can be applied when solving the nonlinear equation. Here, the base flow equations
were first solved at Re0 = 47 with a Newton method. Then the coefficients for the Taylor
polynomials were calculated until order 40 for the base flow, (2.17), as well as for the
eigenvalues and eigenvectors, (3.17) and (3.20).

In figure 1, the predicted profiles of the velocity in the x-direction, u, and the velocity in
the y-direction, v, are plotted at x = (2, 0). The lightest (darkest) curve is the prediction
of the order 1 (order 40) Taylor polynomial. The exact base flow, calculated with the
method described in § 5.2, is depicted with black circles. It can be seen that for Re = 100,
the prediction is highly accurate, already at order n ≈ 7 no difference to the true base
flow is visible. The same goes for Re = 150: at order n ≈ 12, the difference with respect
to the true base flow is negligible. At Re = 200, however, the Taylor series diverges.

985 A32-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

19
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.195


Arbitrary-order sensitivities in flow stability analysis

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

R
e(
λ

)

Im
(λ

)

Re Re

Order 1...
Order 40

0.50

0.55

0.60

0.65

0.70

0.75

0.80

50 100 150 200 250 50 100 150 200 250

(b)(a)

Figure 2. Taylor series expansion of the eigenproblem along a = 1/Re conducted at a0 = 1/47. The predicted
real and imaginary parts of the eigenvalue are plotted over the Reynolds number for orders n from 1 to 40.
Directly calculated eigenvalues are plotted as black circles for comparison.

The divergence can be seen on the profile of v. The prediction becomes worse at increasing
order of the polynomials. The same behaviour can be observed in the whole computational
domain. Further details on convergence will be discussed in § 5.3. Between Re = 150 and
Re ≈ 180, the base flow is predicted less and less accurately, but the prediction improves
with each order, until it reaches its convergence limit at Re ≈ 180, where the prediction
becomes worse when the order increases. Note that enforcing the transversal velocity v to
be zero at the symmetry axis does not change the convergence behaviour.

When expanding the leading eigenvalue into a Taylor polynomial, a similar convergence
behaviour can be observed. In figure 2, the real and imaginary parts of the eigenvalue
are plotted over the Reynolds number. Again, the lightest curve is the Taylor polynomial
of order 1, the darkest of order 40. Directly calculated eigenvalues are plotted as
black circles for comparison. Until Re = 150, the eigenvalue can be predicted with
the Taylor expansion. From then on, the prediction becomes less accurate, until the
Taylor polynomials start to diverge. A difference between the convergence quality of the
eigenvalue and the base flow cannot be observed. This suggests that at least in this case, the
convergence behaviour of the eigenvalue is dictated by the convergence of the base flow.
This is possible because the base flow coefficients qk feed into the eigenvalue corrections
(3.17).

In figure 3, the computation time is plotted for the calculations of the various
higher-order sensitivities. The calculation time is measured on one CPU and scaled by
the time that is needed to solve one linear equation system with only real entries. This
scaled CPU time is plotted on a logarithmic scale over the order of the Taylor polynomial.
For the base flow sensitivities, computation time increases approximately exponentially.
However, the calculations of base flow sensitivities up to order 40 is still faster than
solving the nonlinear base flow equations (dashed line, calculated with a Newton solver in
7 iterations). For the eigenvalue sensitivities, a similar behaviour can be observed. These
computation times are larger than those of the base flow sensitivities, because for each
coefficient, a linear equation system with complex entries has to be solved, which has
twice as many degrees of freedom. Again, calculating all coefficients until order 40 is faster
than solving the eigenproblem directly for one eigenvalue and eigenvector (calculated as a
shift-inverse problem with the Python package SciPy). For both eigenvalue and base flow
coefficients, the computation time for approximately order 16 is twice as long as the time
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Figure 3. Computation time for the higher-order sensitivities of the base flow and the eigenvalue, plotted over
the order n. Dashed lines refer to the computation time for solving the nonlinear base flow equations (red) and
the eigenproblem (blue). Note the logarithmic scale.

for the first solution of the linear equation system, i.e. the time to calculate the first-order
coefficients. Thus, once the first-order coefficients are computed, higher orders follow at
comparatively low computational costs.

5.2. Subsequent computation of the base flow and its leading eigenvalue up to Re = 1000
Even though the convergence of the base flow polynomial is finite, we can extend our
prediction range by starting a new Taylor expansion at a new a0 inside the convergence
radius. Here, the following procedure was applied. Starting at Re0 = 30, so that the
expansion point is a0 = 1

30 , the base flow was expanded into a Taylor series until Taylor
order 40. Then the Taylor approximation was evaluated at Re0 = 40, thus yielding the base
flow solution at a new Reynolds number inside the converged region. From there, a new
Taylor series was expanded around a0 = 1

40 , and so on. At each step, the Reynolds number
was increased by 10. By this method, the base flow was computed successfully until
Re = 1000. We note that the small step size used here and the high expansion order chosen
may not have been strictly necessary to obtain an accurate solution of the NS equations as
per (2.1), and to keep its residual (numerically) zero. However, a detailed investigation on
the optimal performance of our algorithm in terms of step sizes and perturbation orders is
beyond the scope of our work and will not be discussed here.

In figure 4, the calculated base flow is shown for Reynolds numbers 100, 500 and 1000.
It can be seen that the gradients get sharper for higher Reynolds numbers. Accordingly,
the width of the recirculation zone in the wake increases, while the length varies
non-monotonically as the Reynolds number goes up. Near the symmetry axis, the back
flow velocity increases significantly.

Next, the leading eigenvalue was traced until Reynolds number 1000. To do so,
the eigenproblem was solved for several base flow solutions that were obtained with
the method described previously, and the eigenvalue predictions conducted with the
perturbation method were overlaid to construct a continuous curve. In figure 5(a), the
real and imaginary parts of the eigenvalue versus Re are shown. The dotted vertical lines
indicate where the eigenproblem was solved. In the area between Reynolds numbers 200
and 420, the Reynolds number interval had to be decreased due to the poor convergence
of the Taylor polynomials. This coincides with the area in which the convergence of the
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Figure 4. Base flow velocity components (a,c,e) u(x) and (b,d, f ) v(x), for (a,b) Re = 100, (c,d) Re = 500,
and (e, f ) Re = 1000. Computed with subsequent Taylor polynomial prediction, starting point was Re = 30.
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Figure 5. (a) Real and imaginary part of the traced eigenvalue over the Reynolds number. (b) Detail of the
eigenvalue spectrum of the base flow at Re = 1000. The traced eigenvalue is shown in varying colours for
different Reynolds numbers.

base flow is poor, thus indicating that the convergence of the eigenvalue is determined by
the base flow in the whole Reynolds number range that was considered. Figure 5(b) shows
part of the eigenvalue spectrum at Re = 1000 (black dots) and the evolution of the leading
eigenvalue with increasing Reynolds number. While the imaginary part decreases almost
monotonically over the Reynolds number range, the real part first increases very quickly,
and then increases and decreases again with a slowing rate. At Re = 1000 it is still the
leading eigenvalue of the entire spectrum. Figure 6 displays the eigenvectors of the traced
eigenvalue for Reynolds numbers 100, 500 and 1000. Similar to the base flow itself, the
gradients get sharper when the Reynolds number increases.
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û v̂

0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

x

(e)

(b)(a)

(c) (d )

( f )

Figure 6. Eigenvectors for (a,b) Re = 100, (c,d) Re = 500, and (e, f ) Re = 1000.

5.3. Remarks on convergence of the Taylor polynomials
In this subsection, we will take a closer look at the convergence behaviour of the Taylor
polynomials that were computed in the previous subsection.

To quantify the convergence of the predicted base flow, we look at the L2-norm of the
NS base flow equations. We define

L2(n, a, a0) := 1√
A

∥∥∥N
(

q(n)(a), a
)∥∥∥

2
= 1√

A

〈
N
(

q(n)(a), a
)
, N
(

q(n)(a), a
)〉1/2

(5.1)

with the surface area of the computational domain A, and equations (2.1), (2.3) and (2.4).
It holds that

lim
n→∞ L2(n, a, a0) = 0 (5.2)

if
|ε| ≡ |a − a0| < r (5.3)

for a certain convergence radius r. In a looser sense, one may state that the series truncated
at a finite order n provides a good approximation to the actual solution if L2(n, a, a0) < δ,
where δ is a small error threshold. This means that the NS base flow equation should be
(approximately) fulfilled for the predicted base flow in a certain region around a0, and the
smaller L2, the better the prediction.

First, we look at the convergence of the base flow prediction for the parameter a = Re.
The parameter-specific details of the calculations can be found in Appendix A. Figure 7(a)
shows the L2-norm of the NS equations for the predicted base flows when expanded around
a0 = Re0 = 30. The lightest curve depicts the first-order prediction, n = 1, and the darkest
curve depicts the prediction of order 40. The norm is shown on a logarithmic scale.

It can be seen that the Taylor polynomial converges if |a − a0| < a0, and diverges
otherwise. This behaviour can be explained by the manner in which the Reynolds number
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Figure 7. Taylor expansion of the base flow; the L2-norm of the NS equations is plotted over the expansion
parameter and serves as an error measurement. (a) Expansion parameter a = Re, conducted at a0 = 30,
diverges for a < 0 and a > 2a0 = 60 (vertical dashed line). (b) Expansion parameter a = 1/Re, conducted
at a0 = 1/10, diverges for a < 0 and a > 2a0 = 1/5. Note the logarithmic scale of the L2-norm. Mesh A (AF).
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Figure 8. Taylor series expansion of the base flow along a = 1/Re; a norm of the NS equations is plotted over
(a) the inverse of the Reynolds number, and (b) the Reynolds number itself. Starting point is a0 = 1/47. Mesh
A (AF).

appears in the NS equations. Just like the Taylor series for the function f (x) = 1/x, the
NS equations have a singularity at Re = 0. This singularity limits the convergence of any
power series related to the equations, and the base flow convergence radius is therefore
a0 = Re0. Therefore, the base flow cannot be predicted for Re > 2Re0 if the chosen
parameter is the Reynolds number itself, because the related series diverges.

Using the parameter a = 1/Re for the perturbation expansion yields a qualitatively
similar but quantitatively different convergence result. In figure 7(b), the L2-norm of
the NS equations is depicted for the predicted base flows, when expanded around a0 =
1/Re0 = 1/10. It is known that the NS equations have a singular point at a = 0, i.e.
Re = ∞. This divergence is due to the fact that with no viscous term, the NS equations turn
into the Euler equations, which need a different boundary condition at the cylinder wall.
Thus also in this case, a0 defines an upper limit for the convergence radius. Nonetheless,
there may exist other singularities that would reduce the radius of convergence further.

While the convergence behaviour when expanding around small Reynolds numbers is
defined by the singular point at Re = 0, the behaviour when starting at higher Reynolds
numbers is not described as easily. In figure 8, the convergence behaviour of the base flow
Taylor polynomials is depicted for the parameter a = 1/Re and a0 = 1/47. The L2-norm
of the NS equations against the a parameter is plotted in figure 8(a). For convenience, the
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same results are shown in figure 8(b) by using the parameter 1/a = Re on the horizontal
axis. In figure 8(a), it can be seen that the Taylor polynomials converge in a symmetric
region around the expansion point. This symmetry is lost in figure 8(b), because the scaling
1/a stretches the results in different ways for small/large Reynolds numbers. It can be seen
that a good approximation is obtained up to Re ≈ 180. We remark that if we had chosen
to use a = Re as the expansion parameter, then an upper limit for the convergence radius
would be given by Re0 = 47, because of the singularity of the equations at Re = 0. Thus
the result would surely diverge for Re > 94. This comparison shows that the choice of the
expansion parameter has an influence on the largest achievable Reynolds number, and that
in the case considered here, using the parameter a = 1/Re allows us to obtain accurate
results for larger values of Re.

6. Stabilization through a small control cylinder

A well-known control scenario of the so-far depicted two-dimensional cylinder flow
instability is a small control cylinder, which is placed inside the domain. In the vortex
shedding flow regime, it stabilizes the flow at certain positions for relatively low Reynolds
numbers. With the help of sensitivity maps, those stabilizing regions can be estimated.
These maps were first calculated by Marquet et al. (2008), who calculated the first-order
sensitivity of the leading eigenvalue. They were extended to second order by Boujo (2021),
who could improve qualitative agreement with experimental results by Strykowski &
Sreenivasan (1990) significantly. They all used a simplified model for the small control
cylinder, which consists of estimating the drag force acting back on the flow as a steady
forcing.

In this section, we extend the calculation of these sensitivity maps to higher orders for
Reynolds numbers 60, 70, 80 and 90, and a control cylinder diameter d = 0.1. We compare
Taylor predictions up to order 10 with low-order predictions, as well as with full eigenvalue
calculations, for which the small control cylinder is built directly into the grid, and no-slip
Dirichlet boundary conditions are imposed.

6.1. Model equations
Following Hill (1992), Marquet et al. (2008) and Boujo (2021), we model the small control
cylinder of diameter d located in xc as a steady forcing acting on the base flow. Its
magnitude is defined by the drag force that would act on the small cylinder in uniform flow,
and the forcing is distributed along a two-dimensional Gaussian function. In particular, we
use the same drag coefficient as Boujo (2021), but add a model for the variance of the
Gaussian function, to make the predictions more accurate and to avoid convergence issues
of the Taylor polynomial. The forcing is thus defined as

F (xc, d) = 1
2 d Cd(xc) ‖u0(xc)‖ u0(xc)χ(x − xc, σ

2), (6.1)

with the local Reynolds number

Red(xc) ≡ d ‖u0(xc)‖
ν

, (6.2)

and the drag coefficient Cd(xc) = 0.8558 + 10.05(Red(xc))
−0.7004. Pivotal is the velocity

of the unperturbed base flow u0 at the centre xc of the small cylinder. Here, χ(x − xc, σ
2)

is a two-dimensional Gaussian function that is distributed symmetrically around xc with
variance σ 2. We add a linear dependence of the standard deviation with regard to the
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magnitude of the forcing to improve results in comparison to the small control cylinder
incorporated directly into the grid. The standard deviation is thus

σ = max
[
σmin, d

(
1
2 Cd ‖u0(xc)‖2 − 1

)]
, (6.3)

where σmin ensures that the Gaussian function can be depicted accurately enough with
the given grid resolution. Here, we choose σmin = 0.025 in combination with grid B (see
table 1). We recall that only dimensionless variables appear in (6.3), and that the velocity
and diameter of the small control cylinder has to be made dimensionless for (6.3) to hold.

In the following, we consider a small control cylinder of diameter d = 0.1. The
expansion parameter a is chosen to be the amplitude of the steady forcing such that the
base flow equations become

N(q, a) =
(

(u · ∇)u + ∇p − 1
Re

∇2u

∇ · u

)
+ a

(
F
0

)
= 0. (6.4)

Thus a is a scalar factor that is expanded from a0 = 0. It is related to the diameter of the
small control cylinder in the above model via

a(d, xc) ≡ d Cd(xc)

0.1 C0.1(xc)
(6.5)

such that a(d = 0.1, xc) = 1.
The first-order partial derivative of the steady NS equations is

Na =
(

F
0

)
, (6.6)

and (2.17) simplifies to

Nqqk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

F
0

)
, for k = 1,

−1
2

k−1∑
i=1

(
k
i

)
qT

i Nqqqk−i, for k > 1.

(6.7)

The coefficients for the Taylor expansion of the linear operator, needed in the prediction
of the eigenvalue, are (see (3.12))

Lkqj = qT
k Nqqqj. (6.8)

6.2. Higher-order sensitivity maps of the control cylinder
The higher-order sensitivity maps are calculated by computing the Taylor coefficients of
the model described above up to order 10 at 0.1 increments in the x- and y-directions.
Thus for each Reynolds number, a total of 496 control cylinder positions were computed.
As discussed before, the preconditioning of the linear equation systems can be exploited
for the whole map once the undisturbed base flow and eigenproblem are given, making
the computation very efficient. Computing one map until Taylor order 10, with the
implementation described here, cost the equivalent of approximately 30 base flow
computations and 26 eigenvalue computations (on one CPU, non-parallel). We recall
that with this method, the base flows and leading eigenvalues were predicted not only
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Figure 9. Predicted stabilizing regions until order 10, using a steady forcing to model the small control
cylinder with diameter 0.1, for Reynolds numbers 60, 70, 80 and 90. Black circles are values calculated
from incorporating the small control cylinder directly into the grid. Small crosses are experimental data from
Strykowski & Sreenivasan (1990). Note that the minimum visible order varies: for Re = 60, order 1 already
depicts a stabilizing region; for Re = 70, order 2 is needed; for Re = 80, order 3; and for Re = 90, order 5 (the
lighter the contours, the higher the expansion order).

for 496 discrete cylinder positions, but also for a continuous range of control cylinder
diameters within the validity of the used model. Also, as will be seen later, calculating
the coefficients up to order 10 is not needed for sufficient convergence at most positions.
Because the computation time increases exponentially with every order (see figure 3),
taking into account the convergence behaviour would reduce the computation time even
further.

In figure 9 the regions in which a small control cylinder stabilizes the flow are drawn
for Reynolds numbers 60, 70, 80 and 90, and Taylor polynomial orders from 1 to 10. The
drawn lines are B-spline interpolations of the calculated grid data. For comparison, the
eigenproblem was also solved with the small control cylinder inserted directly into the grid,
with finer grid resolution in the vicinity of the wall, and Dirichlet boundary conditions. To
identify the value at which the growth rate of the eigenvalue is zero, for each point, two
control cylinder positions were calculated at distance 0.06, and the resulting position was
computed by first-order interpolation. When necessary, one or two additional positions
were calculated. This procedure was possible because the approximate coordinates of the
resulting points were already known from the high-order perturbation expansion results.

As can be seen in figure 9, the higher-order Taylor predictions of the steady forcing
model are generally in very good agreement with the values from a direct computation
using the embedded control cylinder. The deviation for Re = 60 and 70, visible at the
streamwise end of the stabilizing region, stems from the grid resolution: with a finer
grid, a smaller σmin in (6.3) would have been possible. This was verified by performing
calculations on the finer BF grid; see table 1. Since in these regions the respective base
flow shows a comparatively low absolute velocity and thus a comparatively low forcing
value is needed, the borders of the stability regions would have been more accurate with a
steeper Gaussian function. At higher Reynolds numbers, this problem does not occur.
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Note that the higher the Reynolds number, the higher the expansion order needed to
depict the stable regions accurately. While for Re = 60 the second-order prediction is
already fairly accurate, for Re = 70 it is vital for detecting a stabilizing area at all, since the
first-order expansion predicts no stabilization in the whole computational domain. These
results compare well to the second-order results from Boujo (2021). Subsequently, for
Re = 80, expansion order 3 is needed to detect the stabilizing area, and for Re = 90, the
region appears only for orders n ≥ 5. Experimental data from Strykowski & Sreenivasan
(1990) for Reynolds numbers 60 and 70 have been added for completeness. They are
slightly more unstable than the numerical data. The authors themselves discuss that, due to
the experimental set-up, three-dimensional effects occur, and thus the two-dimensionality
assumption is not completely accurate. In this light, the results compare well to the
numerical data depicted here.

7. Conclusion and outlook

In this study, base flow and eigenvalue sensitivities of arbitrary order with respect to
a generic scalar parameter were derived for the incompressible Navier–Stokes (NS)
equations. With these, we showed how the base flow and eigenvalues of the linear operator
of the NS equations can be expanded in Taylor polynomials. Given the structure of the
incompressible NS equations, the calculation of the higher-order sensitivities prove to be
very computationally efficient. For each higher-order coefficient, a linear equation system
has to be solved, whose left-hand side contains the same linear operator for all orders.
Thus once the first-order sensitivity is found and a preconditioner has been computed,
each following higher order can be calculated very efficiently. The derived equations
were applied on the two-dimensional cylinder base flow, first by using the inverse of the
Reynolds number as parameter, and later to calculate sensitivity maps of higher order for
the case of a small control cylinder inserted into the domain.

For Re = 47, i.e. at the onset of flapping, a Taylor expansion of the base flow and
of the leading eigenvalue was conducted until order 40. The prediction in these two
cases was accurate until approximately Re = 150, after which inaccuracies occurred,
even for high orders. The Taylor polynomials were shown to diverge for Re > 180, due
to the finite radius of convergence of the computed power series. As the radius of
convergence limits the prediction horizon when expanding the cylinder base flow into
a Taylor polynomial around the Reynolds number, a procedure is proposed to extend
the predictions further by performing another expansion around a new parameter value
that lies within the convergence area. Following this procedure, the cylinder base flow
was calculated efficiently up to Re = 1000. The leading eigenvalue was also traced for
the whole Reynolds number range by solving the eigenproblem at distinctive Reynolds
numbers and predicting the eigenvalues in between by Taylor expansions. No additional
symmetry condition had to be imposed, and the base flow could be computed regardless
of the kind or number of unstable eigenmodes.

The convergence behaviour of the Taylor polynomials was investigated further and found
to be dependent on several quantities. First, the choice of parameter was shown to be
important. For the Reynolds number as scalar parameter, when expanding around small
values of Re, the maximum convergence radius is the Reynolds number itself, because the
NS equations have a singularity at Re = 0. The same holds for the inverse of the Reynolds
number, since the equations are singular also at Re = ∞. Second, we showed that the
radius of convergence is dependent on the actual value of the parameter around which
the Taylor polynomials are expanded. One possible explanation for this behaviour comes
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from singular points for complex values of the Reynolds number, which then dictate the
convergence behaviour for real-valued expansion parameters. In the case considered, the
convergence radius of the eigenvalue polynomials is approximately the same as for the
respective base flow, suggesting that for the Reynolds number range that is investigated
in this work, the convergence behaviour of the eigenvalue expansion is determined by the
convergence behaviour of the base flow expansion.

Finally, we have demonstrated the use of the high-order perturbation method on a
passive flow control application; we have calculated sensitivity maps of higher order to
determine the regions in the domain, where a small control cylinder stabilizes the flow for
Reynolds numbers 60–90. We modelled the control cylinder with a Gaussian-distributed,
steady forcing. The agreement with numerical data, for which the control cylinder was
incorporated directly into the grid, was found to be very good. Depending on the Reynolds
number, Taylor orders 3–8 are necessary to draw the areas with sufficient precision.
Because the base flow was calculated only once, and because for each order only one
equation system had to be solved, which was already preconditioned, these calculations
prove to be computationally efficient. As before, once the preconditioner is computed, it
can be exploited for the whole computational domain and all Taylor orders.

The work presented here has the potential to be extended and applied to other scenarios.
For instance, the method to calculate unstable base flows could be improved to make it
computationally more efficient, by answering the questions of the optimal expansion order
and the optimal step size. Furthermore, there is still scope for understanding the reasons
that limit the convergence of the constructed series. While for first-order computations
a large number of parameters is possible, at higher orders the number of parameters is
limited. Nevertheless, the method presented here can be extended to a finite number of
parameters and relatively low expansion orders. A last area of use for the demonstrated
method is the RANS equations, by including the higher-order derivatives of the turbulence
model. With the method presented here, a continuous range of RANS solutions along a
scalar parameter could be computed.
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Appendix A. The parameter a = Re

Consider the parameter a being the Reynolds number Re. Then (2.3) reads for the
incompressible NS equations

N(q(a), a) =
(

(u(a) · ∇) u(a) + ∇p(a) − 1
a

∇2u(a)

∇ · u(a)

)
= 0. (A1)
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Only four types of terms are needed for the calculation of qk and Lk, because every partial
derivative with respect to a vanishes if it is greater than first order in q, i.e.

Nqqa = 0 = Nqqaa = Nqqaaa = · · · . (A2)

With this simplification, (2.17) becomes

Nqqk = −
k−1∑
i=1

(
k
i

)[
1
2

qT
i Nqqqk−i + Nqaiqk−i

]
− Nak , (A3)

and (3.12) simplifies to

Lkqi = qT
k Nqqqi + Nqak qi. (A4)

The terms appearing are

Nqqk =
⎛
⎝(u0 · ∇)uk + (uk · ∇)u0 + ∇pk − 1

a0
∇2uk

∇ · uk

⎞
⎠, (A5)

qT
i Nqqqj =

(
(ui · ∇)uj + (uj · ∇)ui

0

)
, (A6)

Nak =

⎛
⎜⎝

(−1)k k!

ak+1
0

∇2u0

0

⎞
⎟⎠, (A7)

Nqak qi =

⎛
⎜⎝

(−1)k k!

ak+1
0

∇2ui

0

⎞
⎟⎠ . (A8)

Appendix B. Further remarks on the convergence behaviour when expanding along
the Reynolds number

Here, we will take a (very short) closer look at the relation of the convergence quality to
a0. To do so, we define a maximal Reynolds number until which the L2-norm of the NS
equations (5.1) is smaller than 10−10,

Remax := 1
a0 − ε

,

∥∥∥N
(

q(n)(a0 − ε), a0 − ε
)∥∥∥

2
≈ 10−10, ε > 0, (B1)

depending on the Reynolds number Re0 := 1/a0 from which the Taylor polynomial was
expanded. Figure 10 shows the difference of Remax and Re0 plotted over Re0 for orders 10,
20, 30 and 40. It can be seen that the quality of the prediction improves with the order, as
expected. The prediction horizon has a noticeable dent between approximately Re0 = 100
and Re0 = 450, where the Taylor polynomial can reproduce the correct base flow only in
a very small Reynolds number range. Also, the differences between the respective orders
are small in this region. This shows that the convergence quality of the Taylor polynomials
can diverge significantly for different starting points a0.
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Figure 10. Plots of (Remax − Re0) for n = 10, 20, 30, 40 plotted over Re0.
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