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SUBDIRECT DECOMPOSITIONS OF THE LATTICE OF
VARIETIES OF COMPLETELY REGULAR SEMIGROUPS

P.G. TROTTER

It is shown that if V is an element of the lattice £(CR) of the title then the map given
by U -» (V A U, V V U) is a complete lattice embedding of £(CR) into (V] x [V) if
and only if V is a join-infinitely distributive element. In this case the image of the map
is a subdirect product of the principal ideal (V] by the principal filter [V) generated by
V. Some important varieties in £(CR) are shown to be join-infinitely distributive.

0. INTRODUCTION

Completely regular semigroups are semigroups that are unions of their subgroups.
They form the class CR of universal algebras that have an associative binary operation
(multiplication) and a unary operation (inversion) and satisfy the identities

X = X, XX
i i / i\—l

= X X, [X ) = X.

Hence CR is a variety. Denote by £(CR) the lattice of subvarieties of CR ordered
by inclusion.

Although many papers have appeared in which £(CR) or some of its sublattices
have been studied, we still have little knowledge of the structure of the lattice. As
might be expected the best known portion of £(CR) is at the bottom of the lattice.
The sublattice consisting of the varieties of bands has been fully described in [1, 2, 3]
and [5]. The sublattice consisting of the varieties of completely simple semigroups is
relatively well known (for example see [8, 11, 16] and [21]). Other sublattices have
been studied in [4, 7, 14, 20] and [22]. Recently some general results on £(CR) have
appeared in [9, 10, 12, 13, 15, 17, 18, 19] and [23].

In [12], £(CR) is shown to be modular. It is well known (see [6]) that V is a
neutral element in a lattice £ (or V is a distributive element in a modular lattice) if
and only if there is a lattice embedding of £ into the direct product of (V] by [V) given
by U - » ( V A U , V V U ) , where (V] and [V) are respectively the principal ideal and
principal dual ideal of £ generated by V . A stronger result applies if £ is complete;
then V is both meet- and join-infinitely distributive and separates £ if and only if the
embedding is a complete lattice embedding. This and other relevant results are stated in
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Section 1. In Section 2, it is seen that join-infinitely distributive elements are also meet-
infinitely distributive and separate £(CR). Some join-infinitely distributive elements
are found; these include all of the varieties of bands, and the varieties respectively of all
groups, all completely simple semigroups, all orthodox members of CR, and all locally
orthodox members of CR.

1. RELEVANT LATTICE THEORY

The reference used for this section is [6]. The results are either straightforward
refinements to complete lattices of well-known results, or are easily proven; hence the
proofs are omitted.

Let £ be a lattice. An element V £ £ is distributive if V V (U A W) = ( W U) A
(V V W) for all U, W £ £ . An element V is neutral if V is distributive and dually
distributive and separates £ in the sense that V V U = V V W and V A U = V A W
together imply U = W .

An element V of a complete lattice £ is called meet-infinitely distributive (MID)
if VV (/\ A) — /\{V V A; A £ A} for each subset A of £ . An element satisfying the
dual property is called join-infinitely distributive (JID).

By [6], V 6 £ is neutral if and only if there is a lattice embedding of £ into the
direct product of (V] by [V) given by U -» (V A U, W U). Furthermore, if £ is
modular then distributivity, dual distributivity, and neutrality are equivalent properties
for an element of £ . Clearly a (MID) element is distributive.

Suppose V,X 6 £ and V ^ X. Define V(X), if it exists, to be the greatest
element of £ such that V(X) A V = X. In the terminology of [6], V(X) is the
pseudocomplement of V relative to X.

THEOREM 1.1. Let £ be a complete lattice and V 6 £ . Then the map

a: £-> (V] x [V) ;Ua = (V A U, W U)

is a complete injective lattice homomorphism if and only if V is a (MID) and (JID)
element that separates £ . In this case V(X) exists for each X ^ V and the range of
a is the subdirect product

range a = {(X, Y)e(V] x[V); Y< W V(X)}.

The lattice isomorphism /3: £ —> range « given by U/? = Ua has its inverse given by

An element V of a complete lattice £ is compact if for each subset A of £ then
V ^ \J A implies V ^ V-^o for some finite subset A) of A. A complete lattice £ is
algebraic if each element of £ is a join of compact elements.
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PROPOSITION 1.2. Let V be a dually distributive element of an algebraic lattice
£ . Then V is a (JID) element of £ .

It is easy to see that the lattice of congruences of a universal algebra is algebraic, as
is the sublattice of fully invariant congruences. Consequently £(CR) is dually algebraic
(see Section 2). Since a (JID) element of £(CR) is dually distributive and £(CR) is
modular then the element is also neutral; so it is distributive and therefore is also an
(MID) element. In light of this and Theorem 1.1 our attention will be concentrated on
(JID) elements. It should be noted that the results of the paper (other than Theorem
2.11) have analogues for dually distributive elements.

PROPOSITION 1.3. Let V be a (JID) element of a complete lattice £. If U is a
(JID) element of (V] then U is a (JID) element of £ .

PROPOSITION 1.4. Let V be a neutrai (JID) element of a complete lattice £. If
U is a (JID) element of [V) then U is a (JID) element of £ .

PROPOSITION 1.5. The set of neutral (JID) elements of a complete lattice £ is a
sublattice of £ .

2. VARIETIES OF COMPLETELY REGULAR SEMIGROUPS

A remarkable new representation of £(CR), due to Polak [18], will be used. Some
preliminary information is needed for its description.

Let X denote a denumerable set and F be the free object in CR on X. For any
variety V £ £(CR) there is a fully invariant congruence pv of F such that F/py is
the free object in V on X. There is a lattice anti-isomorphism of £(CR) onto the
lattice C of fully invariant congruences of F given by V —» pv . Hence, as noted after
Proposition 1.2, £(CR) is dually algebraic.

Let E be the set of idempotents of F and £ and fl be the Green's relations on
F. Consider the following equivalence relations on £(CR), where U,V £ £(CR):

ur,v«
\JTrV <

urv «
UKV 4

$ Pu v £ =
* pjj V 7J =

:> U{epu;e

= pvVH;

*E) = p,

£E} = 1

fn(Ex.

>{epv;e e

The corresponding equivalence relations on congruences are well-known and significant
in the theory of regular semigroups.

The following properties of T,, T r , T and K are from [12] and [13], or [17]
and [18]. For H € {Th Tr, T, K}, H is a complete lattice congruence on £ ( C R ) .
For V G £ ( C R ) the #-class of V is a closed interval [VH, VH] of £ ( C R ) ; that is;
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U € VH if and only if VH < U < V H . The variety V is uniquely determined by its
T- and A'-classes; {V} = VTnVK. Furthermore T = T,nTr while V T = VT( V VTr

and V T = VT| nV T p . There are complete lattice endomorphisms of £(CR) given by
V -> VT, , V -> VTr and V -> V * .

The subvarieties of CR that will be mentioned are listed below, along with their
members and equivalent formulations.

T
LZ

R Z

SL

ReB

LNB

RNB

N B

B

G

CS

O

LO

trivial semigroups
left zero semigroups x

right zero semigroups /

semilattices

rectangular bands

left normal bands

right normal bands

normal bands

bands

groups

Completely simple

semigroups

orthodox semigroups

in CR

locally orthodox

semigroups in CR

• the atoms of £(CR)

LZ V RZ, ReBT

LZ V SL, LNBT, LNBTr

RZ V SL, RNB T , RNBT/

LNB V RNB

TT,GK

ReBT, CStf

G *

C S *

The first eight varieties from a principal ideal (NB] of £(CR) that is contained in the
principal ideal (B]. Also SL = SLy, = SLxP > CSJJ = RZ and CSxr = LZ.

The representation of [SL, CR] that follows is an interpretation of the main the-
orem of [18] based on the description in [12].

Let T = {(i, n); i e {0, 1}, n 6 Z, n ^ 0}. Let V = {L, R, O} be a three element
meet semilattice with L A R = O. Let A be the ordinal sum of V with £(CR)/K;
so A is a complete lattice with VP = TK.

For V 6 £(CR) define inductively for (0,n), (l,n) £ T,

V(0,0) = = V, V(0,n + 1) = V(l,n)Tr, V(l,n + 1) - V(0,n)T(.
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Now define for V E [SL, CR] and (i,j) e T,

O if j ^ 1 and V(i,j) = SL,

L if j ^ l , i = 0 and V(t,j) = LNB,
13 ~ I R if j ^ 1, i = 1 and V(i, j) = RNB,

otherwise.

With the direct power of A by F denoted by Ar , define a map

t: [SL, CR] -> Ar ; V((i,j) = Vy.

By [18], £ is a lattice embedding whose image is a complete sublattice of Ar . Hence

LEMMA 2.1. £ is a complete lattice embedding of [SL, CR] into Ar .

Recently Pastijn [12] used the representation to prove that £(CR) is modular.
Hence by [6]

PROPOSITION 2.2. For V € £(CR) the following are equivalent:

(i) V is distributive; (ii) V is dually distributive; (Hi) V is neutral; and (iv) there is

a lattice embedding of £(CR) into (V] x [V) given by U -f (V D U, W U).

The only neutral elements of £(CR) that have been listed in the literature are the
elements of the principal ideal (NB] (see [9]).

PROPOSITION 2.3. The set (NB] U {G, CS, CR} generates a suWattice of (JID)
elements of £(CR).

PROOF: In [9] it was shown that G and CS are dually distributive in £(CR).
The proof in [9] generalises directly to show that G and CS are also (JID) elements.
Obviously CR is a (JID) element.

It is well known (for example see [12]) that for any A € £(CR),

A n L Z = T<s>AnLZ^LZ<s>As; RNB V G.

It follows easily that LZ is a (JID) element of £(CR). Likewise the atoms RZ and

SL are (JID) elements of £(CR). The result follows by Proposition 1.5 and 2.2. |

The aim now is to extend the (JID) property of a variety to related varieties.

PROPOSITION 2.4. ([18] and [19]J. For V e £(CR) then

V K = [VK]T( = [V*]Tr - [V*]T and [V*%- = VK for all (i,j) € I\
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COROLLARY 2.5. Suppose V e [SL, C R ] . Then V is a (JID) element in £ (CR)

if and only if Vo o is a (JID) element in £(CR)/A" and V ^ is a (JID) element in A

for each (i,j) € F, j ^ 0.

PROOF: For any V G £ ( C R ) , VK 6 [SL, CR] . So the lattice homomorphism
£(0,0) maps [SL, CR] onto £(CR)/AT. Furthermore by Proposition 2.4 and the
definition of £(i,j), the lattice homomorphism £(i,j) maps [SL, CR] onto A . The
result follows from Lemma 2.1, and Propositions 1.4 and 2.3. |

PROPOSITION 2.6. If V is a (JID) element of £ (CR) then so are VT( and VTr .

PROOF: First suppose V < C S . Then VT | £ {T, RZ} and the result is by
Proposition 2.3. Alternatively suppose V e [SL, C R ] . Then V T | = V( l , 1) and
[VT,]00 = V( l , 1)AT. Hence either [VT,]Oo = V n , or V ( l , 1) € {SL, R N B } and
[VT,]oo = TAT. In the first case V n € £(CR)/AT and since V n is a (JID) element of
A , it is a (JID) element of the complete sublattice C(CH)/K. Furthermore, TA' is a
(JID) element of £(CR)/AT, so in both cases [VT|]Oo is a (JID) element of C(CR)/K.
Since V T | = VT | T ( then V T , (1 , 1) = VT |(0, 0) = VT ( (1 , 0) = V ( l , 1). Hence when h

Therefore [YTl]ij is a (JID) element in A for each (i,j) 6 T, j > 0. By Corollary 2.5

Vx, is a (JID) element in £ ( C R ) . The proof is similar for VTT • I

PROPOSITION 2.7. If V is a (JID) element of £ (CR) then so is VK .

PROOF: For all (i,j) £ T, [VK]ij = VK by Proposition 2.4. Since K is a com-
plete congruence then ~VK is a (JID) element in £(CR.)/K. Let A be a subset of A,
V = {L, R, O}, B = An(C{CR)/K) and £ = AnV;so A=BU£ while
Then

| y£ = y{\KAE; E e £} if B = 0.

Thus VK is a (JID) element in A . The result now follows by Corollary 2.5.

THEOREM 2.8. For V £ £ ( C R ) the following are equivalent:

(i) V is a (JID) element of £(CR) ;
(ii) VT( , V T r and VA" are (JID) elements of £ (CR) ;

(iii) VT and VK are (JID) elements of £(CR);
(iv) V{i,j)K is a (JID) element of £(CR)/AT for all (i,j) € T.
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PROOF: That (i) implies (ii) is by Proposition 2.6 and 2.7. Since V T = V T | W r ,
then (ii) implies (iii) by Proposition 1.5. Note that V(0,0)K = V(l,O).fi: = VK =

(VK)K. Also since VT, = VTT, and V T r = VTTr then V(i,j) = VT(i,j) for aU
ihj) e r , j ^ 0 ; that is V(i,j)K = VT{i,j)K. Because AT is a complete lattice
congruence, then by Proposition 2.6, (iii) implies (iv).

Now suppose V G [SL, C R ] . Observe that TK is a (JID) element of £ ( C R )
by Proposition 2.3 and 2.7. So by Proposition 2.4 and Corollary 2.5, TK is a (JID)
element of A , and then by Proposition 1.3 O, L and R are also (JID) elements of
A. As in the proof of Proposition 2.7 the (JID) property for V(i,j)K in £ (CR) /A '
extends to A . But V ^ e {V(i,j)K, O, L, R} so by Corollary 2.5, (iv) implies (i) in
this case.

Finally assume V < C S . Then VT < R e B so V T = (VT)T is a (JID) element
of £ ( C R ) / T . Recall that any variety of £ ( C R ) is uniquely determined by the meet
of its T- and if-classes, while T and K are complete congruences. So for any subset
A of £ ( C R ) and with U = V{V n A ; A e A } then, assuming (iv),

{vn (V-4)} = ( V n (V•A))Tn (vn\/ A\K = UTnUK = {u}.

Thus (iv) also implies (i) in this case. |

COROLLARY 2.9. Tie set (B] U {G, CS, O, LO, CR} generates a subJattice of
(JID) elements of £(CR).

PROOF: Since TK = B then B is a (JID) element in £(CR). Furthermore, by
the well known description of the lattice of bands, (B] is an algebraic dually distributive
lattice; so each of its elements is a (JID) element of (B]. Thus by Proposition 1.3, each
element of (B] is a (JID) element of £(CR). Also O = GK and LO = CS^ so the
result now follows from Proposition 2.3 and 1.5. |

The converses of Proposition 2.6 and 2.7 are false as can be seen by the following
examples.

Suppose V is not dually distributive in the lattice (G] of all varieties of goups.
We have VJJ = Vy, = Vj- = T which is a dually distributive element of £(CR); thus
the converse of Proposition 2.6 and of its analogue for dually distributive elements are
false. Now put U = V i f V G . We have V(0, 0)K = VK and V{i,j)K = TK for all
(i,j) £ r , j ^ 0, so by the analogue of Theorem 2.8 VK is not dually distributive
in £(CR)/is:. Furthermore U n = (VK V G) K = (VK V T)K = VK so by the
analogue of Corollary 2.5, U is not dually distributive in £(CR). However XJK —
(VK V G ) ^ = (V V G)K = GK = O which is dually distributive in £(CR). Thus
the converse of Proposition 2.7 and of its analogue for dually distributive elements are
false.
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The following was noted before Proposition 1.3.

PROPOSITION 2.10. If V is a distributive element of £(CR) then V is an (MID)

element.

As a consequence of this, Proposition 2.2 and Theorem 1.1 we get

THEOREM 2.11. A variety V of £(CR) is a (JID) element if and only if V(X)
exists for each X ̂  V , there is a iattice isomorphism f3 of £(CR) onto the subdirect

product {(X, Y) G (V] x [V); Y < V W ( X ) } given by U/3 = (V n U, W U), and
the subdirect product is a complete sublattice of (V] x [V). The inverse of /? is given

by (X,Yr'=YnV(X).

This result applies for any V in the sublattice of Corollary 2.9. In particular when
V = B or V = G the Theorem generalises the subdirect decompositions of the lattice
of varieties of bands of groups obtained respectively in [7] and [9]; also when V = G
it generalises the corresponding result for the lattice of varieties of completely simple
semigroups in [16].

As was previously mentioned, the lattice (B] of all varieties of bands has been fully
described. By the Theorem and Corollary 2.9, the problem of determining the structure
of £(CR) has been reduced to that of determining the structure of [B)'. Although they
are not fully described there is a considerable body of information on the lattices (G]
and (CS]. By [19] the lattices (O] and (LO] can be described modulo the iiT-classes of
varieties of (G] and (CS] respectively. Consequently, by Theorem 2.11 and Corollary
2.9, the study of £(CR) has essentially been reduced to a study of [LO).

Remark . The results of this paper were announced at the International Conference
on Universal Algebra, Lattices and Semigroups in Lisbon (June 20-24, 1988). At the
conference, N.R. Reilly also announced that the varieties of Corollary 2.9 are neutral.
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