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This work is devoted to a theoretical and numerical study of the dynamics of a
two-phase system vapour bubble in equilibrium with its liquid phase under translational
vibrations in the absence of gravity. The bubble is initially located in the container
centre. The liquid and vapour phases are considered as viscous and incompressible.
Analysis focuses on the vibrational conditions used in experiments with the two-phase
system SF6 in the MIR space station and with the two-phase system para-Hydrogen
(p-H2) under magnetic compensation of Earth’s gravity. These conditions correspond to
small-amplitude high-frequency vibrations. Under vibrations, additionally to the forced
oscillations, an average displacement of the bubble to the wall is observed due to an
average vibrational attraction force related to the Bernoulli effect. Vibrational conditions
for SF6 correspond to much smaller average vibrational force (weak vibrations) than for
p-H2 (strong vibrations). For weak vibrations, the role of the initial vibration phase is
crucial. The difference in the behaviour at different initial phases is explained using a
simple mechanical model. For strong vibrations, the average displacement to the wall stops
when the bubble reaches a quasi-equilibrium position where the resulting average force is
zero. At large vibration velocity amplitudes this position is near the wall where the bubble
performs only forced oscillations. At moderate vibration velocity amplitudes the bubble
average displacement stops at a finite distance from the wall, then large-scale damped
oscillations around this position accompanied by forced oscillations are observed. Bubble
shape oscillations and the parametric resonance of forced oscillations are also studied.
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1. Introduction

The present work is devoted to the investigation of the harmonic translational vibration
effect on a two-phase fluid system (liquid in coexistence with its vapour), when gravity
effects are not present. In addition to the obvious interest of investigating the behaviour
of fluids under new conditions, the study is also motivated by the need to manage fluids
in space conditions. Under such conditions, gravity is often absent and vibrations often
present, making the vapour and liquid phase localization uncertain. Vibrations can help to
know where the vapour phase is localized, in particular when it is pressed onto a wall, as
outlined in this work.

It is possible to obtain experimentally two-phase systems with different values of the
gas volume fraction

ϕ = Vv

Vv + Vl
, (1.1)

by adjusting the temperature and carefully controlling its deviation from the critical density
and temperature conditions. Note that ϕ also controls the bubble size. Here, Vv (Vl) is the
vapour (liquid) volume and subscript v (l) stands for vapour (liquid).

When a bubble surrounded by a liquid of different density is subjected to vibrations,
it responds in different ways. Since the bubble is an oscillatory system, eigen and forced
oscillations are expected. In addition, mean effects should occur such as average shape
deformation and average displacement of the bubble. Some of these phenomena were
observed with drops under acoustic fields (Marston 1980; Trinh & Hsu 1986; Lee,
Anilkumar & Wang 1994). The present paper deals with the investigation of the behaviour
of a bubble surrounded by a liquid of different density in a finite-size container which
undergoes sinusoidal translational vibrations of non-acoustic frequency when both the
host liquid and the bubble can be considered as incompressible.

In many situations a hydrodynamic system in the absence of vibrations is capable of
performing periodic motions and exhibits a spectrum of natural frequencies. Examples of
this kind are capillary–gravity waves on a free surface of a fluid or on a fluid interface.
Another example of a hydrodynamic system with a spectrum of natural oscillations is a
liquid drop or a gas bubble suspended in a fluid of different density. The natural frequency
spectrum of a non-viscous spherical liquid drop was calculated by Rayleigh (1879). Lamb
(1881) extended the results obtained by Rayleigh, taking into account low viscosity. The
damping of the viscous drop oscillations was considered by Chandrasekar (1959) and Reid
(1960).

In the presence of periodical forcing the drop (bubble) undergoes forced oscillations
with an imposed vibration frequency whose amplitude depends on the bubble–liquid
density difference. It is known (Faraday 1831) that vibrations of a container filled with
a fluid or a system of fluids can lead to parametrically excited waves (Faraday ripple) at
a free surface of the fluid or at a fluid interface. Similar phenomena can take place for a
drop (bubble) suspended in a fluid of different density when such a system is subjected
to vibrations. Since this system shows eigenfrequencies, at certain ratios between them
and the imposed vibration frequency one should expect a resonant phenomenon. In the
literature, resonant oscillations of a liquid drop (or gas bubble) suspended in a fluid of
different density have been intensively studied for the vibrations of acoustic frequencies
(see, for e.g. Marston 1980; Marston & Apfel 1980; Miles & Henderson 1990; Mei & Zhou
1991).

Resonance oscillations of a spherical drop (bubble) in a vibrational field of non-acoustic
frequency were considered in Lyubimov, Lyubimova & Cherepanov (2021). As the authors
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Vibration-induced wall–bubble interactions

note, although in the considered problem one cannot derive directly the Mathieu-type
equation for the perturbations, the stability map obtained, which is typical for parametric
resonance, indicates that a kind of parametric resonance is observed. The external forcing
frequency splits into two natural frequencies, as is the case of the Mathieu equation,
but, differ from this equation, these frequencies are different. They correspond to the
neighbouring modes of natural oscillations. This situation is typical for parametric
oscillations of coupled systems (Schmidt 1975). Accounting for viscous dissipation, as
carried out in Lyubimov et al. (2021) within a phenomenological approach, leads to
two effects. First, the excitation of parametric resonance acquires a threshold character
and oscillations occur (for the minimum of the neutral curve) at values of the vibration
amplitude exceeding the critical value. Second, there is a viscous frequency shift. The
threshold value of the vibration amplitude required to excite the resonance is determined
by the viscous dissipation and increases with the number of resonant modes. Thus, the
easiest way to excite is the resonance in which the second and third eigenmodes interact.

The threshold for the excitation of the resonant oscillations of the drop (bubble)
increases with increasing frequency of the vibrations. Therefore, for high-frequency
vibrations, the average vibrational mechanisms should play the major role. A fluid of
uniform density that completely fills a closed container subjected to high-frequency
translational vibrations can remain motionless relative to the container. In this case, the
fluid performs a translational pulsational motion as a whole together with the container,
and average flow does not arise. In the case of a non-uniform fluid (this non-uniformity
can be associated with the presence of a solute, non-uniform heating, the presence of
solid, liquid or gas inclusions, a free surface or fluid interface) subjected to high-frequency
translational vibrations, the absence of average flow is, generally speaking, impossible. In
those situations where it is nevertheless possible, it may be unstable. Average effects in
fluids subjected to monochromatic sinusoidal translational vibrations arises from nonlinear
effects, the nonlinear interaction of the pulsational flow non-uniformities with the density
non-uniformities.

The effect of vibrations on the average shape of a spherical drop (bubble) suspended in
a fluid of different density was studied in Lyubimov, Cherepanov & Lyubimova (1996).
The case of non-acoustic but high-frequency vibrations (vibration period much smaller
than the viscous time scale) with small amplitudes (vibration amplitude much smaller
than the drop size) was considered. These restrictions allow an averaging method to be
applied by separating the processes into fast and slow ones. The governing equations for
the average and pulsational components in this approximation are obtained in Lyubimov
et al. (2003). In Lyubimov et al. (1996) it was assumed that the size of the container
is large compared with the size of the drop, located far from the container walls. This
allowed us to accept that the average velocities of the fluids are equal to zero (the
so-called quasi-equilibrium state Lyubimov et al. 2003). For low vibration intensities,
when the drop shape is just slightly non-spherical, the problem of determining the
quasi-equilibrium shape was solved by the perturbation method. It is found that, at the
first order, the average shape of the drop is described by a formula which, up to the
terms of the second order with respect to the vibrational parameter B = a2ω2R(ρl + ρv)/σ

(ratio of vibrational and surface energies, where a and ω are the vibration amplitude and
frequency, R is the bubble radius, ρl and ρv are the liquid and vapour densities, σ is
the surface tension coefficient), corresponds to an ellipsoid of revolution oblate in the
direction of the vibration axis (the parameters in B are defined below in § 2). Thus, the
vibrations tend to change the drop shape in such a way that the larger part of its surface
becomes perpendicular to the vibration axis. With an increase in the vibration intensity, the
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eccentricity grows linearly with an increase in the vibration velocity amplitude aω. For the
vibrations of finite intensity, the variational method proposed in Lyubimov et al. (1996)
(see also Lyubimov et al. 2003) was used. According to Lyubimov et al. (1996, 2003),
the quasi-equilibrium state corresponds to the minimum of the functional F, which has
the meaning of the average energy of the two-phase system in the reference frame of the
inclusion. As the comparison of the analytical results obtained by the perturbation method
and the numerical results obtained by the variational method shows, the analytical formula
adequately describes the deviation of the average drop shape from spherical for B < 100.
At larger values, overestimated values are obtained.

In experiments (Chelomey 1985) a paradoxical behaviour of bodies placed in a container
with a liquid subjected to vertical vibrations was observed. In some cases, the floating of
bodies was observed despite the fact that the density of the bodies was greater than the
density of the liquid. Conversely, bodies less dense than the liquid in which they were
suspended could sink under certain conditions.

A theoretical explanation of the above effects was suggested in Lugovtsov & Sennitskiy
(1987), Lyubimov, Lyubimova & Cherepanov (1987) and Lyubimov et al. (2001a). In these
papers the behaviour of a solid inclusion in a container filled with a liquid and subjected
to high-frequency translational vibrations was considered within the framework of the
high-frequency approach (neglecting viscosity). It was shown that an average vibrational
force arises, which acts on the inclusion from the oscillating liquid. As a result, the
inclusion is attracted to the nearest wall. It follows from the analytical expressions obtained
in Lyubimov et al. (1987, 2001a) that the vibrational attraction force rapidly decreases
with the increasing distance between the inclusion and the wall. As shown in Lyubimov
et al. (2001a), both in the cases of vibrations parallel to the wall (tangential vibrations)
and perpendicular to the wall (normal vibrations), the force of interaction between the
inclusion and the wall in a non-viscous liquid is attractive. The only difference is in the
numerical factors, which are different in the expressions for the forces. The origin of the
average vibrational force is related to the Bernoulli effect: the increase of the pulsational
flow velocity between the wall and the inclusion results in the lowering of the pressure
in this area, which leads to the attraction of the inclusion to the wall. The existence of an
average vibrational attraction force acting on the inclusion from the oscillating fluid was
experimentally confirmed in Hassan et al. (2006).

The interaction of two solid cylinders in a pulsational flow was studied in Lyubimov,
Cherepanov & Lyubimova (1992) and Lyubimov et al. (2001a) by using the same approach
as in Lyubimov et al. (1987). Explicit formulas are obtained for the average vibrational
force of interaction between the cylinders. It follows from these formulas that the cylinders
attract each other if the pulsational flow is induced by the vibrations normal to the line
connecting the cylinder centres and repel if the vibrations are parallel to that line.

In Lugovtsov & Sennitskiy (1987), Lyubimov et al. (1987), Lyubimov et al. (1992,
2001a) and Hassan et al. (2006), the forces acting on an inclusion in an oscillating fluid
were studied within the framework of an inviscid approach. When the inclusion is located
in the vicinity of wall, this inviscid approach becomes invalid since the viscosity plays an
important role inside the Stokes boundary layer. In Sennitskii (1988) the motion of a gas
bubble in a container filled with an incompressible liquid was studied taking into account
the viscosity. It was assumed that the walls of the container are deformed according to a
prescribed law (compress and expand). It is found that the oscillations of a liquid can cause
a non-zero average displacement of the bubble. According to the authors, the reason for
this displacement is in the different conditions for the up and down motions of the bubble
along the axis of the container vibrations.
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The effect of viscosity on the behaviour of a gas bubble in an oscillating viscous liquid
under zero gravity conditions was first studied in Lyubimova & Cherepanova (2008).
It was found that the attraction of a bubble to the nearest wall, typical for low-viscosity
fluids, is replaced by a repulsion when viscosity increases. This phenomenon was studied
experimentally by Saadatmand & Kawaji (2010), who investigated the interaction of a solid
spherical particle suspended on a wire with the wall of a rectangular container filled with
liquid and subjected to horizontal vibrations.

In Klotsa et al. (2007) and Lyubimova, Lyubimov & Shardin (2011) the interaction of
two solid inclusions in an oscillating liquid was studied taking into account viscosity. In
Klotsa et al. (2007), experiments were performed in which a pair of stainless-steel spheres
were placed in glycerol mixtures with different viscosities and subjected to horizontal
vibrations of different frequencies and amplitudes. An equilibrium distance between the
particles is found at which a transition from an attractive force at large distances between
the particle surfaces to a repulsive force at small distances takes place. It is found that this
equilibrium distance depends on the liquid viscosity and the vibration parameters. A direct
numerical simulation of the system behaviour was carried out. The force of interaction
between the spheres caused by vibrations was determined.

In Lyubimova et al. (2011) the interaction of two solid cylinders with parallel axes
in a pulsational flow of a viscous fluid perpendicular to the plane passing through the
cylinder axes was theoretically studied. Gravity was not considered. It is found that, at
large distances, when the viscosity effect is small, the interaction force tends to bring the
cylinders close to each other. With an increase in the relative role of viscosity, i.e. when the
cylinders approach each other or the frequency of vibrations decreases, the decelerating
effect of viscosity reduces the attraction force. At some critical distance, the decelerating
effect of viscosity becomes so strong that the interaction force changes its sign. Repulsion
is observed instead of an attraction. This critical distance is of the order of the Stokes layer
thickness and increases with increasing viscosity and/or decreasing frequency.

The experimental work by Ivanova & Kozlov (2014) investigated the average force acting
on a solid cylinder or sphere located near the boundary of a cylindrical cavity filled with
a liquid and subjected to rotational vibrations. The repulsive force acting on the solid
body and generated by the viscous interaction with the oscillating boundary was measured
by the solid body suspension in the Earth’s gravity field. It is shown that the repulsive
force resulted in a steady state where the body remained near the upper boundary at a
distance comparable to the thickness of the Stokes layer. The dependence of the average
force on the amplitude and frequency of vibrations and on the distance between the body
and the boundary was explored. Schipitsyn & Kozlov (2020) also studied experimentally
the behaviour of a cylindrical solid inclusion in a horizontal annulus with longitudinal
partition filled with a viscous fluid and subjected to high-frequency rotational oscillations.
The appearance of the repulsion of inclusion from the boundary is found with an increase
in the vibration intensity independently of the inclusion density. It is shown that the
repulsion effect is determined by the shear oscillations of the liquid itself and the viscous
interaction of the solid with the cavity boundary.

The present paper is devoted to the theoretical and numerical investigation of the
behaviour of a bubble surrounded by a liquid of different density in a finite-size container
which undergoes sinusoidal translational vibrations of non-acoustic frequency. Analysis
focuses on the vibrational conditions used in experiments with the two-phase system
SF6 near its critical point in microgravity conditions in the MIR space station and
with the two-phase system para-Hydrogen (p-H2) near its critical point under magnetic
compensation of Earth’s gravity. In the Navier–Stokes equations, written in the reference
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Figure 1. Geometry of the container with the vapour bubble. For notations, see text. (a) General view
showing the bubble (interrupted line) and its two-dimensional simulation (full line). (b) Half-section of
(a) perpendicularly to the z axis at equilibrium. (c) Full section of (a) perpendicularly to the z axis under
vibrations.

frame of the container, the acceleration term is written as γ (t) = aω2k sin(ωt + φ). Here,
ω = 2πf is the angular frequency, f is the frequency, a is the amplitude, φ is the phase and
the vector k is the unit vector of the vibration direction. In the previous paper (Lyubimov
et al. 2001b), some preliminary results were presented for the case φ = 0 concerning SF6.
This condition, however, corresponds to unrealistic initial conditions where the initial fluid
velocity is non-zero (and acceleration is zero). In the present paper, two values of φ are
systematically considered: (a) the condition φ = 0 already considered above, for sake of
comparison with Lyubimov et al. (2001b) and (b) the condition φ = π/2, corresponding
to a maximum acceleration and zero velocity at t = 0, a more realistic case.

The paper is organized as follows. Section 2 is devoted to the analytical investigation of
the behaviour of a drop (bubble) in a fluid subjected to vibrations under the assumption
of small-amplitude high-frequency vibrations (neglecting the viscosity). The next section
deals with the presentation of the numerical model and approach. The case of weak
vibrations (in fluid SF6) is studied in the § 4. The last § 5 is dedicated to the case of strong
vibrations (in fluid p-H2).

2. The behaviour of a drop (bubble) in a fluid subjected to vibrations

Let us consider the behaviour of a cylindrical bubble (drop) of radius R, in a fluid of
different density filling a cylindrical container of radius Rc (figure 1). The container
performs monochromatic translational vibrations of linear polarization in the direction
perpendicular to the cylinder axis according to the law r = k a cos ωt (k is the unit vector
in the direction of vibrations).

We first neglect the viscous effects, assuming that the vibration frequency is large
enough such that the dimensionless thickness of the Stokes boundary layer remains small
δv = √

2ν/ω/R � 1. Here, ν is the kinematic viscosity. The Womersley number is large
Wo = R

√
ω/ν � 1, meaning that the viscous force is much smaller than the inertial

transient force. At the same time, the vibration frequency is assumed to be not too high,
such that the sound wavelength at the vibration frequency is large compared with the
inclusion radius R � c/ω, where c is the sound velocity. It is thus possible to neglect the
effects of compressibility.
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Vibration-induced wall–bubble interactions

Let us first analyse the behaviour of an inclusion in a large container Rc/R � 1.
Let the velocity of the inclusion centroid in the laboratory reference frame be equal
to V = −kξaω sin ωt, where the coefficient ξ is to be determined from the solution of
the problem. Then, the equations of momentum and continuity of fluids in the frame of
reference of the inclusion centroid have the form

∂vj

∂t
+ vj · ∇vj = − 1

ρj
∇pj + kξaω2 cos ωt, div vj = 0. (2.1a,b)

At large distance from the inclusion, we have

vl = −k(1 − ξ)aω sin ωt. (2.2)

Let the surface of the inclusion be described by the equation r = R (1 + f (θ, t)) , where
θ is the azimuthal angle measured from the direction of the vector k; f (θ, t) is the deviation
of the inclusion shape from the cylindrical one normalized by R. On this surface, the
continuity condition for the normal velocity component, the condition of the balance of
normal stresses and the kinematic condition should be satisfied

[vn] = 0,
[
p
] = −σK,

∂(Rf )
∂t

+ vl · ∇(R f ) = vlr, (2.3a–c)

where

K = 1
R

[
1 − f + f 2 + · · · − ∂2f

∂θ2 (1 − 2f ) − 1
2

(
∂f
∂θ

)2

+ . . .

]
, (2.4)

is the interface curvature.
We introduce the following scales: length: R; time: 1/ω; velocity: aω; density: ρl + ρv;

pressure: (ρl + ρv) a2ω2. Additionally, we introduce the velocity potentials vj = ∇Φj, j =
1, 2 and use a cylindrical coordinate system. Then the problem takes the form

Φj = 0, pj = − 1
A

ρ̃j

(
∂Φj

∂t
+ 1

2
A(∇Φj)

2 − ξr cos θ cos t
)

+ Cj(t), (2.5a,b)

r → ∞ : ∇Φl = −k(1 − ξ) sin t, (2.6)

r = 1 + f :
[
p
] = − 1

A2
1

We
K,

∂f
∂t

+ A
1
r2

∂Φl

∂θ

∂f
∂θ

= A
∂Φl

∂r
,

[
∂Φ

∂r

]
= 0. (2.7a–c)

The problem contains the following dimensionless parameters: the dimensionless
vibration amplitude A = a/R, the Weber number We = (ρl + ρv)ω

2R3/σ , which
measures the relative importance of the fluid’s inertia compared with its surface tension,
and the dimensionless densities ρ̃l and ρ̃v , for which the following relation is satisfied
ρ̃l + ρ̃v = 1. The same notations are kept for the dimensionless coordinates, time, velocity,
pressure and velocity potential.

We assume that the dimensionless amplitude of the imposed vibrations is small A � 1
and search for the solution in the form of series of A

pj = A−2p(−2)
j + A−1p(−1)

j + p(0)
j + . . . ,

Φj = Φ
(0)
j + AΦ

(1)
j + A2Φ

(2)
j + . . . ,

f = A f (1) + A2f (2) + . . . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)
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Substituting these expansions into equations one obtains for p(−2)
j one obtains

p(−2)
v = C(−2)

v ≡ C(−2), p(−2)
l = C(−2) − 1

We
, (2.9a,b)

and from the next orders

p(−1)
j = −ρ̃j

(
∂Φ

(0)
j

∂t
− ξr cos θ cos t

)
+ C(−1)

j (t), (2.10)

Φ
(0)
j = 0, (2.11)

r → ∞ :
∂Φ

(0)
l

∂r
= −(1 − ξ) cos θ sin t, (2.12)

r = 1 :

[
∂Φ(0)

∂r

]
= 0,

[
p(−1)

]
= − 1

We

(
f (1) + ∂2f (1)

∂θ2

)
,

∂f (1)

∂t
= ∂Φ

(0)
l

∂r
.

(2.13a–c)

The solution has the form

Φ
(0)
l =

(
A1r + B1

1
r

)
cos θ sin t, Φ(0)

v = A2r cos θ sin t, f (1) = F(1) cos θ cos t,

(2.14a–c)

p(−1)
j = −ρ̃jr(1 − ξ) cos θ cos t + C(−1)

j . (2.15)

The boundary conditions give the following values for the constants:

A2 = −F(1) = ξ − 1 − (ρ̃l − ρ̃v), A1 = ξ − 1, B1 = (ρ̃l − ρ̃v). (2.16a–c)

Since we consider the problem in the reference frame of the inclusion centroid, we have
to set A2 = 0. From this it follows that

ξ = 1 + (ρ̃l − ρ̃v), F(1) = 0, A1 = B1 = (ρ̃l − ρ̃v), (2.17a–c)

therefore

Φ
(0)
l = (ρ̃l − ρ̃v)

(
r + 1

r

)
cos θ cos t, Φ(0)

v = 0, f (1) = 0,

p(−1)
j = ρ̃j(ρ̃l − ρ̃v) r cos θ cos t + C(−1)

j .

⎫⎪⎬
⎪⎭ (2.18)

The obtained solution corresponds to the forced oscillations of inclusion with respect
to the laboratory reference frame with frequency equal to that of the container and the
dimensionless amplitude equal to Aξ = A(1 + (ρ̃l − ρ̃v)) without shape change. The
oscillation amplitude tends to zero for an inclusion much denser than the host fluid,
coincides with the host fluid oscillation amplitude for ρ̃l = ρ̃v since in this case the inertia
force is uniform and is larger than the host fluid oscillation amplitude in the case of light
inclusion. The amplitude of the forced oscillations of the inclusion in the reference frame
of the vibrating container is equal to A (ξ − 1) = A (ρ̃l − ρ̃v).
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Vibration-induced wall–bubble interactions

The influence of the vibration on the inclusion shape is defined from the problem of the
next order of the expansion

p(0)
j = −ρ̃j

⎛
⎝∂Φ

(1)
j

∂t
+

(∇Φ
(0)
j )

2

2

⎞
⎠+ C(0)

j , Φ
(1)
j = 0, (2.19a,b)

r → ∞ :
∂Φ

(1)
l

∂r
= 0, (2.20)

r = 1 :

[
∂Φ(1)

∂r

]
= 0,

[
p(0)

]
= − 1

We

(
f (2) + ∂2f (2)

∂θ2

)
,

∂f (2)

∂t
= ∂Φ

(1)
l

∂r
.

(2.21a–c)

The solution of this problem gives the following expressions for the velocity potentials
and the deviation of the inclusion shape from a cylindrical one:

Φ
(1)
l =

(
D1r2 + E1

r2

)
cos 2θ sin 2t, Φ(1)

v = D2r2 cos 2θ sin 2t, (2.22a,b)

f (2) = F(2)
s cos 2θ + F(2)

a cos 2θ cos 2t, (2.23)

where

F(2)
s = −1

6
ρ̃l
(
ρ̃l − ρ̃v

)2We, F(2)
a = ρ̃l

(
ρ̃l − ρ̃v

)2
3/We − 2

(
ρ̃l + ρ̃v

) ,
D1 = 0, E1 = F(2)

a , D2 = −F(2)
a .

⎫⎪⎪⎬
⎪⎪⎭ (2.24)

The term in f (2), which does not depend on time, describes the effect of average shape
deformation. As one can see, independently of the density ratio, a compression of the
inclusion in the direction of imposed vibrations takes place. The shape of the inclusion
can be characterized by its smaller dimension bx = |xC − xA| and larger dimension by =
|yB − yD|, where A and C denote the equatorial nodes, B and D the polar nodes (figure 1c).
The ratio by/bx can thus be expressed as

by

bx
= 1 + A2ρ̃l

(
ρ̃l − ρ̃v

)2We/6

1 − A2ρ̃l
(
ρ̃l − ρ̃v

)2We/6
. (2.25)

The term in f (2) depending on time is of resonance type: the oscillation
amplitude unboundedly grows when the frequency approaches the resonance value. The
eigen-frequencies of the inclusion oscillations are given by the formula (in our scaled
units)

Ω2
n = 1

We
n(n2 − 1), n � 2, (2.26)

a relation obtained by Lamb (1881).
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From similar but more cumbersome calculations for the cylindrical container of finite
radius we obtain

Φ
(0)
l =

(
ρ̃l − ρ̃v

)
1 + (R/Rc)

2 (ρ̃l − ρ̃v

) (r + 1
r

)
cos θ cos t, Φ(0)

v = 0, f (1) = 0,

F(2)
s = − ρ̃l

(
ρ̃l − ρ̃v

)2
6
[
1 + (R/Rc)

2 (ρ̃l − ρ̃v

)]2 We.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.27)

It thus appears that, in the case of finite-size container, the dimensionless amplitude of
the forced oscillations of the inclusion with respect to the laboratory reference frame is
equal to

ALf = A

(
1 +

(
ρ̃l − ρ̃v

) (
1 − (R/Rc)

2)
1 + (R/Rc)

2 (ρ̃l − ρ̃v

)
)

, (2.28)

and with respect to the reference frame of the vibrating container it equals to

Acf = A

(
ρ̃l − ρ̃v

) (
1 − (R/Rc)

2)
1 + (R/Rc)

2 (ρ̃l − ρ̃v

) = A

(
ρ̃l − ρ̃v

)
ρ̃l

1 + (R/Rc)
2

1 − (R/Rc)
2 + ρ̃v

. (2.29)

The average shape deformation of the inclusion is written as

by

bx
= 1 + δ

1 − δ
, δ = A2 ρ̃l

(
ρ̃l − ρ̃v

)2
6
[
1 + (R/Rc)

2 (ρ̃l − ρ̃v

)]2 We. (2.30a,b)

Thus, the average bubble shape deformation is determined by the dimensionless
parameter A2We. Note that it can be also related to the Weber number as usually defined in
the context of bubble dynamics if we choose a = AR as the length scale in order to define
the actual kinetic energy causing the bubble deformation.

The frequencies of eigen-oscillations of a cylindrical inclusion suspended in an inviscid
liquid confined in a vibrating cylinder of finite radius are defined (in our scaled units) by
the formula (Myshkis et al. 1987)

(
Ω±

n
)2 = 1

We
n(n2 − 1)(
ρ̃lκ

2
n + ρ̃v

) , (2.31)

where κ2
n = coth(n ln(q)), q = Rc/R.

In Myshkis et al. (1987) the damping rate of eigen-oscillations of a cylindrical inclusion
suspended in a low-viscosity fluid of different density in a rotating cylindrical container
of finite radius was calculated taking into account the effect of the viscous boundary layer.
Based on the formulas obtained in Myshkis et al. (1987), the following expression can
be obtained for the damping rate of eigen-oscillations in the limit case of zero angular
velocity of rotation:

Re(λ±n ) = n
(

1 − q−2n
)−1 ρ̃l

√
ν̃l(

ρ̃lκ
2
n + ρ̃v

)√∣∣Ω±
n
∣∣ ( ρ̃v

√
ν̃v(

ρ̃v

√
ν̃v + ρ̃l

√
ν̃l
) + q−2n−1

)
δ∗
v ,

(2.32)
where δ∗

v = √
2(νl + νv)/ω/R.
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Vibration-induced wall–bubble interactions

The formulas for infinitely large container are obtained from (2.31), (2.32) at q → ∞,
κn → 1

(
Ω±

n
)2 = 1

We
n(n2 − 1), Re(λ±n ) = n

ρ̃l
√

ν̃l(
ρ̃l + ρ̃v

)√∣∣Ω±
n
∣∣ ρ̃v

√
ν̃v(

ρ̃v

√
ν̃v + ρ̃l

√
ν̃l
)δ∗

v .

(2.33a,b)

Note that these formulas are valid for the parameter range satisfying the conditions
δv � 1, A � 1, R � c/ω. In the present work we study the behaviour of two different
two-phase systems of liquid and its saturated vapour under isothermal conditions (SF6 and
parahydrogen p-H2). The phase changes are not considered. The temperature for each of
the systems is close to the critical point, such that the difference in the kinematic viscosities
of phases can be neglected. At the same time, the distance from the critical point is not
too small, such that both phases can be considered as incompressible. For both systems,
experiments were carried out in microgravity conditions, for SF6 in the Mir space station
and for p-H2 on Earth under gravity compensation by an inhomogeneous magnetic field.

3. Modelling and numerical approach

3.1. General
We consider a cylindrical cell filled with an isothermal two-phase system, liquid–vapour,
without phase change, under the weightlessness condition g = 0. The cell is submitted
to a sinusoidal acceleration γ (t) of linear polarization in the plane perpendicular to the
cylinder axis (figure 1)

γ (t) = aω2k sin(ωt + ϕ). (3.1)

The bubble motion and the deformation of its liquid–vapour interface is studied. In the
numerical simulation it is assumed that the bubble is initially at the centre of symmetry
of the container. Situations of high confinement are considered, i.e. the inclusion size
is comparable to the container size. In the zero-gravity condition, without vibrational
excitation, the vapour phase is a bubble of spherical shape. The temperature of the system
is taken not too close to the critical temperature, such that both phases can be considered
as incompressible; in addition, the densities of the phases are assumed to be comparable.

The case of an inclusion near a planar vibrating wall without the confinement effect has
been previously investigated neglecting the viscosity by Lyubimov et al. (1987), Lugovtsov
& Sennitskiy (1987) and Lyubimov et al. (1992). It was shown that the wall attracts the
inclusion, with a force that increases when the distance between the wall and inclusion
decreases. For the two-phase configuration assumed in the present study (figure 1), one
thus could expect that the bubble, initially located at the symmetry centre of the system,
would be attracted preferably by the closest wall when vibration starts. For the vibrational
velocity amplitudes exceeding some threshold, one can also expect parametric resonance
oscillations of the L-V interface (Lyubimov et al. 2021).

3.2. Basic equations
One considers the isothermal flow of two immiscible fluids assumed to be viscous and
Newtonian. The fluids are also assumed to be incompressible and homogeneous. Densities
and viscosities are then constant within each fluid. A numerical investigation of the
problem is carried out in the framework of a single fluid continuum model (Lyubimov
& Lyubimova 1990). In this case the governing equations of mass and momentum
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conservation of the fluid system written in the reference frame of the oscillating container
can be written in dimensionless form as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ ·
[
μ
(
∇u + ∇Tu

)]
+ ρAcΩ

2k sin(Ωt + φ) + La F σ ,

(3.2)

∇ · u = 0. (3.3)

Here, u denotes the velocity vector, p is pressure, ρ is the variable density, μ is the variable
dynamic viscosity and Fσ is the surface tension force. The container radius, Rc, is chosen
as the length scale, the viscous time, τv ≈ R2

c/ν as the time scale, ν/Rc as the velocity
scale and the quantities (ρv + ρl) and (μv + μl) respectively as the scales for the density
and the dynamic viscosity of each fluid phase.

The equations contain the following dimensionless parameters: dimensionless vibration
amplitude Ac = a/Rc, dimensionless vibration frequency Ω = 2πfR2

c/ν, the Laplace
number La = σRc/[(ρv + ρl)ν

2] representing the ratio of surface tension to the
momentum transport and the dimensionless densities and viscosities. The ranges of these
parameters for the problem under consideration are indicated in table 2 (SF6 case) and
table 5 (p-H2 case).

Assuming that the surface tension is constant along the interface and adopting the
continuum surface force (CSF) model (Brackbill, Koth & Zemach 1992), the interface is
represented through the volume fraction field C. In our discrete numerical implementation,
C is approximated by C̃, which represents a smooth transition across three to four grid
elements (Popinet 2018). The surface tension force F σ in the dimensionless form can then
be written as follows:

F σ = KδSn with K = −∇ · n and n = ∇C̃∣∣∣∇C̃
∣∣∣ . (3.4)

Here, K is the local interface curvature, δS is the Dirac delta function localized on the
interface and n is the unit vector normal to the interface. As in Kothe & Mjolsness (1992)
and Popinet (2018), we reformulate the CSF model by simply replacing the product of
the delta function and the unit normal with the gradient of the smoothed volume fraction,
δSn ≈ ∇C̃. Steep gradients in the marker concentration C represent the interface location.
In a way equivalent to solving the advection of the phase-dependent density, one considers
the advection of the C function by the fluid velocity u, governed by the relation

∂C
∂t

+ u · ∇C = 0. (3.5)

Here, 0 � C � 1, C = 1 corresponds to the vapour phase, C = 0 is the liquid phase and
C = 0.5 is the interface.

In the reference frame of the container, a no-slip boundary condition is imposed for the
velocity field at the container walls. Along the symmetry axis (y = 0), classical symmetry
boundary conditions are applied. A homogeneous Dirichlet boundary condition, C = 0,
is applied along the container walls for the C function. At initial time (t = 0), the fluid
is at rest and the vapour bubble is placed at the centre of the cylinder. The liquid–vapour
interface is a coaxial cylinder.

In a single fluid continuum model context, the variable physical properties (ρ and μ) are
expressed by the following linear combinations (where subscript v stands for vapour and l
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Vibration-induced wall–bubble interactions

for liquid):

ρ = C
ρv

ρv + ρl
+ (1 − C)

ρl

ρv + ρl
, μ = C

μv

μv + μl
+ (1 − C)

μl

μv + μl
. (3.6a,b)

The direct numerical simulation of our problem is restricted to a two-dimensional
approach where the inclusion is assimilated to a vapour cylindrical column (figure 1a).
In addition, one assumes that the fluid motion remains symmetrical with respect to the
plane (z, k). The computational domain is thus restricted to the half-plane of the container
section (see figure 1b), where k is parallel to x.

3.3. Numerical approach
The governing equations are solved using a Galerkin finite-element method based on
iso-parametric elements of Lagrange type. Space discretization relies on two-dimensional
quadrilateral elements satisfying the Brezzi–Babuska stability condition (4-node linear
element using bilinear interpolation functions for velocity components and a piecewise
constant discontinuous pressure approximation with the pressure degree of freedom
located at the centroid element) (Datt & Touzot 1984; Zienkiewicz, Taylor & Zhu 2013).
The Eulerian description of the fluid motion is used in this work: structured conformal
fixed mesh and symmetry with respect to the Oy axis.

The L-V interface is characterized by a volume of fluid type representation on the mesh
(Hirt & Nichols 1981; Liang 1991). Advection and reconstruction of the fluid volume
is performed by a volume tracking method (Rider & Kothe 1998; François et al. 2006).
Starting from a given velocity field, the volume tracking method determines a new fluid
interface (fluid volume advection and reconstruction steps). From the new fluid volume,
the decoupled finite-element equations are then resolved sequentially in terms of primary
variables to predict the kinematics. The reconstruction of the fluid volume within an
element depends only upon its fill state and the fill of its neighbours (real and imaginary
elements sharing a common side). During the advection step, a method referred to as
advection adjustment (an alternative to flux limiting) is used in this work. The idea behind
this method is to iteratively adjust the C marker to maintain it between 0 and 1 (with a
cutoff value equal to 10−8, thus addressing a very small error to the overall mass balance.
For the purpose of determining the behaviour of fluid at the mesh boundaries, imaginary
neighbours are created along the exterior of the computational mesh and their influence
is important. When they are full, a tracked fluid is reconstructed so that it contacts the
mesh boundary. When they are empty, the corresponding construction leaves a small gap
between the fluid and the boundary. Since it is assumed in the numerical model that the
liquid completely wets the wall, there is no triple line.

Equations (3.3), (3.4) and (3.5) are solved using a temporal integration based on
the first-order accurate implicit backward Euler scheme. A variable time increment is
determined by the control of the local time truncation error tn+1

u /tnu =
√

ε/‖dn+1‖
where the superscripts n and (n + 1) denote values from two consecutive time steps, tu
is the hydrodynamic time step, ε is a tolerance (ε = 10−3) and ‖dn+1‖ is the local time
truncation error based on the predictor (forward Euler)/corrector (backward Euler) step
(Gresho, Lee & Sani 1980). In (3.2), the surface tension in La is explicitly discretized in
time, which introduces a capillary time step restriction (Galusinski & Vigneaux 2008;
Popinet 2018; Ebo-Adou et al. 2019). In our relatively small-scale flow situation, this
numerical stability condition can be slightly relaxed by the viscosity (Galusinski &
Vigneaux 2008). Equation (33) is solved using an explicit first-order accurate forward
Euler scheme.
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A standard Courant–Friedrichs–Lewy condition is then used to limit the interface
advection tf = CFL h/|u|, where CFL denotes the Courant number, tf stands for the
kinematic equation time step and h is an element size. A CFL value of the order of 10−1

or less is then chosen to satisfy the most restrictive capillary time step value. Our choice
is motivated by the fact that the magnitude of the velocities generated by the capillarity is
of the same order of magnitude as the magnitude of the induced translational vibrations
velocities. They even remain somewhat lower throughout the study.

The time step taken for the full set of governing equations is simply chosen equal to the
smallest time scales t = min(tu, tf ) satisfying thus the aforementioned numerical
stability requirements. A sub-cycling strategy can also be used in the overall time stepping
scheme, where multiple fluid advection steps are taken for a single velocity time step
(Gresho et al. 1980).

Each conservation equation is solved separately in a sequential manner (segregated
approach) (Haroutunian, Engelman & Hasbani 1993). Each nonlinear flow equation is
linearized using the fixed-point Picard method (also known as the successive substitution
method) and a hybrid relaxation scheme (implicit and explicit factors) is employed to
increase its asymptotically linear convergence rate. Combining the two components of
the momentum equation with the continuity equation leads to an explicit equation for
the pressure. The velocity–pressure coupling is then performed at discrete level using a
simplified form for the pressure equation (less expensive in terms of computer memory).
The efficient pressure projection (PP) algorithm (a finite-element counterpart of the
SIMPLER algorithm) is used (Haroutunian et al. 1993).

Linear iterative solvers are employed for solving each linearized sub-system (Saad
2000). In addition to the conventional preconditioning, an implicit preconditioning is used
to accelerate the convergence (Haroutunian et al. 1993). The implicit preconditioning,
performed before the conventional preconditioning, is achieved by using implicit
relaxation of the non-symmetric advection-diffusion type linear equation systems and
explicit relaxation of the pressure in the PP algorithm. A conjugate gradient (CG) solver
with symmetric successive over-relaxation preconditioning is used for solving symmetric
equation systems (pressure equation), and the conjugate gradient squared (CGS) solver
with diagonal preconditioning is used for solving non-symmetric equation subsystems
(advection-diffusion equations).

Since iterative solvers are used in the inner loop (instead of the direct Gaussian
solver), the segregated approach requires an iterative process at two different levels and
appropriate convergence criteria are required for each of these levels. For the outer loop,
the convergence criterion used to stop the iterations is based on the relative variations of
the primary variables ‖γi − γi−1‖/‖γi‖ � εu where the norm ‖γ ‖ is a root mean square
norm summed over all the elements and computed separately for each degree of freedom
γ , with i denoting the iteration index, and where εu is a specified tolerance εu = 10−4.
The iterative solvers, CG and CGS, in the inner loop also require convergence criteria to
terminate the iterative procedure before attempting convergence of the nonlinear iterations
in the outer loop. Hence, a suitable convergence criterion, based on the normalized residual
vector, is ‖R(ui)‖/‖R(u0)‖ � εR, where R(u0) is a reference vector and εR = 10−4 is a
specified tolerance.

An appropriate density and repartition of nodes is selected to deal with the presence
of the vibrating wall and with the fact that the inclusion may exhibit relatively large
displacements. A symmetrical structured conformal mesh with good orthogonality
properties based on quadrilaterals is used. The maximal aspect ratio for a given cell is
taken equal to 2.5 and the ratio between the smallest and the largest cell is taken equal
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to 5. For the entire set of simulations related to the SF6 fluid, a mesh with 11 776 cells
was employed and for the p-H2 fluid, mesh sizes varying between 11 776 and 47 104 cells
were used. Even less sensitivity of the results in the ortho-radial direction is observed
(Lundgren & Mansour 1988; Basaran 1992), a maximal aspect ratio value equal to 5 is
maintained. The results were tested at different mesh sizes to verify mesh independency.
An acceptable tolerance value representing 0.1 % relative variation of bubble deformation
and length of periods of excited eigen-oscillations whenever possible was used (Basaran
1992; Meradji et al. 2001). In addition, according to the dimensionless Stokes boundary
layers thicknesses mentioned in table 2 (for SF6) and table 5 (for p-H2), and to the grid
cell sizes used in radial direction (∼1 % of container radius for SF6 and from ∼0.05 % of
container radius for higher vibration frequencies to 1 % for moderate ones in the case of
p-H2), 3–4 cells were used in the case of SF6 (weak vibrations) and 4–6 cells in the case
of p-H2 (strong vibrations) to capture the viscous boundary layers. The simulation process
requires between a few tens and a few hundred of time steps to describe every period of
forcing oscillations. Several tens of forcing periods are necessary on average to reach a
quasi-stationary position. In the context of a variable time stepping strategy, a maximal
allowed value of the time step equal to 5 ms is imposed for a good compromise between
accuracy requirement and computing cost. In practice, the time step can be lower than
1 ms, satisfying thus the numerical stability conditions. The usual CPU time using the
sequential version of the implemented model is approximately 20 h for 5000 time steps.

3.4. Parameters of the study
For a given vibrational excitation (Ac, Ω), the dimensionless inclusion radius R/Rc is
varied in the range 0.33–0.9. In the present two-dimensional (2-D) approach, the rate of
volumic occupation of the vapour phase ϕ = ϕV,3D is replaced by the rate of surfacic
occupation ϕS,2D in the median plane (x, y). Let us compare this configuration with the
experimental conditions where the bubble is a 3-D spherical bubble. According to the
following (3.7a,b), with the same bubble radius R/Rc the value ϕV,3D would be smaller
by the factor (2/3)(Rc/H)(R/Rc), where H represents the half-height of the cylindrical
container

ϕS,2D = Sv

Sv + Sl
=
(

R
Rc

)2

, ϕV,3D = Vv

Vv + Vl
= 2

3

(
Rc

H

)(
R
Rc

)3

. (3.7a,b)

Here, S and V denote the surface area in the median plane and the volume of the bubble,
respectively. The 2-D inclusion, initially circular at the centre of the container, is subjected
to a flattening in the vibration direction and becomes anisotropic. The shape of the vapour
inclusion is characterized by its smaller dimension bx and larger dimension by (bx = |xC −
xA|, by = |yB − yD| in figure 1c). We will thus consider in the following the evolution of
the ratio:

by

bx
= |yB − yD|

|xC − xA| . (3.8)

Two kinds of experimental conditions are considered, corresponding to fluids SF6
and p-H2, in different set-ups with different container sizes and for different vibrational
conditions. The different bubble sizes investigated, corresponding to various surfacic
fraction ϕS,2D and volumic fraction ϕV,3D, are reported in tables 2 and 5.
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Density Temperature behaviour ρl,v = ρc(1 ± B(1 − T/Tc)
β)

with B = 1.62, β = 0.325
ρl + ρv = 2ρc with Tc = 318.69 K, ρc = 730 kg m−3

T − Tc = −100 mK ρl = 815 kg m−3, ρv = 645 kg m−3, ρv/ρl = 0.79
Kinematic viscosity T ≈ Tc νc = 1.0 × 10−7 m2 s−1, viscous time τv = R2

c/νc ≈ 360 s
Dynamic Viscosity Temperature behaviour μl,v = ρcνc(1 ± B(1 − T/Tc)

β)

with B = 1.62, β = 0.325,
μl + μv = 2μc, μc = 0.73 × 10−4 Pa s

T − Tc = −100 mK μl = 8.16 × 10−5 Pa s, μv = 6.44 × 10−5 Pa s
L-V interfacial tension Temperature behaviour σ(T) = σ0(1 − T/Tc)

μ

with σ0 = 47.85 × 10−3 N m−1, μ = 1.26
T − Tc = −100 mK σ(T) = 1.844 × 10−6 N m−1

Table 1. Physical properties of SF6 (Zappoli, Beysens & Garrabos 2015).

4. Weak vibrations (SF6)

The data on the physical properties of SF6 used in the simulation are given in
table 1. Temperature is assumed uniform at T = Tc − 100 mK with Tc = 318.69 K. The
experimental set-up (ALICE-2) is described in detail in Marcout et al. (1995), Polezhaev
et al. (2001) and Garrabos et al. (2007).

In table 2 the geometrical and vibrational parameters of the experiments with SF6 are
presented in dimensional and non-dimensional forms. The values of non-dimensional
parameters are calculated taking the scales as the ones used in the direct numerical
simulations (DNS); such scales are chosen in the numerical modelling since Rc and ν

remain constant for each system (SF6 and p-H2), whereas the inclusion radius and the
vibration frequency are varied.

For comparison with the analytical formulas obtained under the assumptions of
small-amplitude high-frequency vibrations one needs to have Ac � 1, Ω � 1 (δv �
1). As we will see, these restrictions are satisfied in these experiments. Thus, their
results can be successfully described by the theory developed in the small-amplitude and
high-frequency (low-viscosity) approach.

The dimensionless average vibrational force (per unit of cylinder length), which is
responsible for the average displacement of the bubble to the nearest wall, is small enough
for SF6 experiment. One thus could expect small average bubble displacement due to
this force. Because of that we call the vibrational conditions in the SF6 experiment weak
vibrations.

4.1. Bubble displacement
The displacement of the bubble is characterized by the evolution of the position of its
centre of mass (centroid), xg. The numerical results on the temporal evolution of the
bubble centroid position for two different initial phases φ = 0, φ = π/2 are shown in
figures 2(a) and 2(b), respectively. As one can see, in both cases the bubble undergoes
forced translational oscillations with the frequency equal to the frequency of the imposed
vibrations.

Numerical data on the amplitude of these oscillations are well described by (2.29)
obtained for the dimensionless amplitude of bubble oscillations in the reference frame of
an oscillating container. Indeed, substituting the values of the dimensionless amplitude
of the imposed vibrations and the dimensionless densities of the two-phase system
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Figure 2. Evolution of the bubble centre of mass (xg) for different dimensionless bubble radii R/Rc in SF6 at
Ac = 0.0667, Ω = 3.6 × 103: (a) φ = 0, (b) φ = π/2.

under consideration, one obtains for the case R/Rc = 1/2 the value Acf ≈ 0.0057 (in
the container radius units). Analysis of the results of direct numerical simulation gives
Acf ≈ 0.0062.

Additionally to the translational forced oscillations, the bubble is subjected to an average
displacement. In the case φ = 0, a considerable average displacement of the bubble
centroid from the container centre is observed. This displacement continues until the
bubble reaches the vicinity of a wall. In the case φ = π/2, the initial impulse leads to
some average displacement of the bubble centroid from the container centre. However, in
the course of further oscillations, a gradual return to the container centre is observed. At
large time scales, stationary oscillations occur around the average position at the symmetry
centre.

The system therefore demonstrates quite different behaviours in the cases φ = π/2 and
φ = 0. This difference concerns not only the behaviour at small time scales but also the
asymptotic limit behaviour at large time scales.

4.2. Discussion and explanation by a simple mechanical model
Some features of the bubble behaviour observed in the DNS can be understood by using a
simple mechanical model. If one neglects the bubble deformation and the wall influence,
one can write an equation for motion in the following form:

mẍ + αẋ = −χmaω2 sin(ωt + φ). (4.1)

Here, m is the sum of the inclusion mass and added mass, α is an effective friction
coefficient, V is the volume of inclusion and χ = (ρl − ρv)V/m. The phase φ has the
same meaning as in the DNS case.

By choosing ω−1 as the time scale and the product (aχ) as the length scale, the equation
of the inclusion motion can be written in the dimensionless form as

ẍ + ᾱẋ = − sin (t + φ) . (4.2)
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Figure 3. Evolution of the bubble position in the absence of friction (4.4). Panels show (a) φ = 0,
(b) φ = π/2. Here, x and t are dimensionless (see text).

Here, the same notations are kept for the dimensionless time and coordinate and ᾱ =
α/(mω) is the dimensionless friction coefficient. Equation (4.2) is written in the reference
frame of the container such that x represents the bubble displacement from the container
centre.

The initial conditions at t = 0 : x = 0, ẋ = 0.
The solution to the problem is

x = ᾱ2 cos (t + φ) − ᾱ2 cos (φ) − e−ᾱt sin (φ) ᾱ + ᾱ sin (t + φ) − cos (φ) + e−ᾱt cos (φ)(
ᾱ2 + 1

)
ᾱ

. (4.3)

4.2.1. Inviscid regime
In the limit case ᾱ → 0 (4.3) gives

x = sin (t + φ) − t cos (φ) − sin (φ) . (4.4)

According to (4.4), a continuous motion of the bubble from the container centre is thus
observed for φ = 0 (figure 3a) while, for φ = π/2 the bubble oscillates around a non-zero
value (figure 3b).

4.2.2. Influence of friction
The presence of friction substantially modifies the behaviour. For ᾱ → ∞ the bubble
does not move. This is due to the fact that, when the viscosity tends to infinity, the
properties of the fluid tend to the properties of an absolutely solid body. If the initial
bubble velocity were non-zero, the bubble velocity would decrease instantaneously to
zero, due to an infinite friction force. For very large but finite viscosity one obtains an
asymptotic behaviour in the form of damped exponential without oscillations. Indeed,
when the viscosity is very high, the inclusion does not have enough time to make even
one oscillation, the time decay being very fast. The evolution of the bubble position
described by (4.3) was directly compared with the results of DNS. Figure 4 shows the
superposed graphs obtained from (4.3) with ᾱ = 0.125 and by DNS at R/Rc = 1/2 for
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Figure 4. Evolution of the bubble centre of mass for (a) φ = 0 and (b) φ = π/2 in the presence of friction.
The DNS results for SF6 fluid at (T − Tc) = −100 mK, R/Rc = 1/2, Ac = 0.0667, Ω = 3.6 × 103 vs the
mechanical model predictions (theory) for ᾱ = 0.125.

φ = 0 and φ = π/2. Both graphs are presented in the dimensionless form using the scales
introduced in the § 4.2. As one can see, the results are in a quite good agreement. For
φ = 0, the bubble quickly moves away from the centre of the container at the beginning of
the process, as in the case without friction, but reaches a final equilibrium position around
which oscillations can be seen. For φ = π/2, one observes the bubble moving back to the
centre, its position at late times being xg = 0.

4.3. Evolution of the bubble shape

4.3.1. Case φ = 0
The evolution of the bubble shape can be represented by the time dependence of the aspect
ratio by/bx of the ellipse that approximately describes the bubble shape (see figure 1c).
For the case φ = 0, the evolution of the aspect ratio is presented in figure 5. The ratio
by/bx remains always larger than unity, indicating a flattening in the vibration direction x,
as predicted in Lyubimov et al. (1996, 1997). For bubbles of smaller size R/Rc = 0.5
and 0.7, the flattening appears to be very important at the early times, where by/bx
exhibits damped oscillations of large pseudo-period compared with the imposed vibration
period. These oscillations apparently correspond to the eigen-oscillations of the bubble,
which are damped with time. After this transitory oscillatory regime, by/bx reaches an
asymptotic value, representing the permanent regime. This asymptotic value increases
with the ratio R/Rc, in agreement with the theoretical predictions in Lyubimov et al.
(1996). All curves also present oscillations of small amplitudes and forcing frequency.
These oscillations correspond to the quadrupole mode which is usually dominant in the
shape deformation. The oscillations are attenuated for bubbles of large size, probably due
to an effect of confinement. For the largest bubble (R/Rc = 0.9), the asymptotic behaviour
is not obtained after dimensionless time equal to 0.278 (100 s). The reason can be found
in the dependence of the period of eigen-oscillations on the bubble radius (see (2.31)).

4.3.2. Case φ = π/2
Figure 6 shows the evolution of the ratio by/bx, φ = π/2. Similar to the case φ = 0,
at early times one observes a damped oscillatory behaviour for small size bubbles
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Figure 5. Evolution of the aspect ratio by/bx of the bubble (assimilated to an ellipse), for different R/Rc.
Fluid SF6, φ = 0, Ac = 0.0667, Ω = 3.6 × 103.
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Figure 6. Evolution of the aspect ratio, by/bx of the bubble (assimilated to an ellipse), for different
dimensionless bubble radii R/Rc; fluid SF6; φ = π/2, Ac = 0.0667, Ω = 3.6 × 103.

(R/Rc = 0.5 and 0.7). The oscillations presumably correspond to the viscous damping of
the eigen-oscillations of the bubble. One notes that the (quadrupole) oscillations at forcing
frequency, clearly visible in the former case of § 4.3.1 where φ = 0 (figure 5), become now
hardly visible. This is related to the fact that, as seen from figures 2(a)–2(b), in the case
φ = 0, the bubble is subjected to a fast average displacement from the container centre
whereas at φ = π/2, the average displacement of the bubble is very small.
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Fluid Tc − T (K) Ac Ω
R
Rc

by

bx
(2.30a,b)

by

bx
(num)

SF6 0.1 0.067 3.60 × 103 0.5 1.098 1.105
0.1 0.067 3.60 × 103 0.7 1.132 1.152

p-H2 0.5 0.133 5.09 × 103 0.5 1.134 1.140
0.5 0.117 5.09 × 103 0.5 1.101 1.091
0.5 0.100 5.09 × 103 0.5 1.073 1.070
0.5 0.083 5.09 × 103 0.5 1.050 1.053
0.5 0.067 5.09 × 103 0.5 1.032 1.036
0.5 0.033 5.09 × 103 0.5 1.008 1.017
0.5 0.167 2.64 × 103 0.5 1.054 1.061
0.5 0.167 3.30 × 103 0.5 1.086 1.101
0.5 0.167 3.96 × 103 0.5 1.127 1.130
0.5 0.167 5.95 × 103 0.5 1.310 1.133
0.2 0.167 2.64 × 103 0.5 1.094 1.110
0.2 0.133 2.64 × 103 0.5 1.059 1.060
0.2 0.117 2.64 × 103 0.5 1.045 1.048
0.2 0.100 2.64 × 103 0.5 1.033 1.037

Table 3. Ratio by/bx. Comparison between (2.30a,b) and numerical simulations.

4.3.3. Aspect ratio estimation
As shown in § 2 (see also Lyubimov et al. 1996, 1997), and already discussed in §§ 2,
4.2.1 and 4.2.2, under the action of vibrations the inclusion is subjected to an average
shape deformation – flattening in the direction of the vibration axis. The average shape
deformation of a cylindrical bubble in a cylindrical container of finite size is defined by
(2.30a,b). This expression is obtained from a perturbation theory and is valid within the
assumptions of high frequency of vibrations (low viscosity) Ω � 1 (δv � 1), Ac � 1.

The above relationship does not depend on the initial phase φ. Comparisons of the by/bx
values as calculated from (2.30a,b) and resulting from DNS are shown in table 3. As one
can see, the agreement is within a few per cent.

4.3.4. Pseudo-periods
The pseudo-periods and damping rate obtained in the calculations can be compared
with the characteristics of a free oscillating bubble. Let us consider the second mode
n = 2 (quadrupole deformation), which is usually dominant in the interface deformations.
For this mode, with R/Rc = 1/2, (2.31) and (2.32) give a period of oscillations of
T = 0.034 (12.3 s) and damping time Td ≈ 0.050 (17.9 s). Processing the results of DNS
presented in figure 6 we obtain T = 0.034 (12.3 s) for the period of oscillations and
Td ≈ 0.033 (12.0 s) for the damping time. Note that, (2.31) and (2.32) give the frequency
and damping time for free oscillations in the absence of forcing and figure 6 presents the
results of DNS for temporal evolution of the bubble shape (in terms of aspect ratio) for
oscillations of the bubble under the influence of forced vibrations, so we see superposition
of the eigen and forced oscillations which finally (when eigen-oscillations are completely
damped) results in the elliptical quasi-equilibrium average shape of the bubble (in our
case, with the aspect ratio equal approximately to 1.1). Thus, the agreement of analytical
and DNS results could be considered as good enough.
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(b)(a)

Figure 7. An SF6 bubble (underlined by interrupted circle or ellipse) for (T − Tc) = −113 mK and R/Rc =
0.75. (a) At equilibrium, (b) submitted to a harmonic vibration with frequency 1.6 Hz and amplitude 0.8 mm;
double arrow indicates the vibration direction – experiment in MIR station carried out in parallel with the study
by Garrabos et al. (2007). With the courtesy and permission of D. Beysens.

Non-monotonic behaviour can be expected for all values of R/Rc. However, the
eigen-oscillation period increases with R/Rc, as shown by (2.31). The time needed to
observe such oscillations becomes very large for the bubbles of the largest sizes (R/Rc =
0.8 and 0.9). This time becomes comparable to or larger than the damping time. Then the
oscillatory regime is over-damped and is not observed, even after large simulation times
(see figures 5 and 6).

4.3.5. Comparison with experiment
The results of calculations for SF6 were compared with the experiments performed at the
MIR station in parallel with the study of Garrabos et al. (2007). In figure 7 experimental
photos obtained in these experiments are presented (these photos were kindly presented
to us by the PI of the experiment). The left picture shows the bubble in the absence of
vibrations and the right picture shows the bubble under vibrations at frequency 1.6 Hz and
amplitude 0.8 mm. As one can see, under the action of vibrations the bubble is elongated
in the direction perpendicular to the vibrations. This is due to the orienting effect of
vibrations formulated for the first time in Lyubimov et al. (1997): under the influence
of vibrations, the surfaces of constant density are oriented perpendicular to the direction
of vibrations. From (2.30a,b) for the parameter values used in the experiment one obtains
the mean aspect ratio of the bubble equal to 1.57. Note, however, that (2.30a,b) is valid for
A � 1 (dimensional vibration amplitude is much smaller than the bubble radius) and in
the experiment A ≈ 0.178, which is beyond the applicability of (2.30a,b). That is why one
should expect anoverestimated value of by/bx from (2.30a,b). From figure 5 one obtains
by/bx = 1.35, which allows us to conclude that there is good enough agreement.

4.4. Summary
The main difference between the results obtained for SF6 in the cases φ = 0 and φ = π/2
appears in the average displacement of the bubble. The bubble centre of mass oscillates
at the centre of the container for φ = π/2 and moves away from the centre for φ = 0.
The reason for this difference can be explained using a simple mechanical model. There
is no major difference between the cases φ = 0 and φ = π/2 concerning the aspect ratio
by/bx of the bubble. One observes in both cases a transitory regime of similar nature
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Density Temperature behaviour ρl,v = ρc(1 ± B(1 − T/Tc)
β)

ρl + ρv = 2ρc with Tc = 32.976 K, ρc = 31.426 kg m−3

T − Tc = −500 mK ρl = 44.39 kg m−3, ρv = 18.46 kg m−3, ρv/ρl = 0.42
T − Tc = −200 mK ρl = 41.05 kg m−3, ρv = 21.80 kg m−3, ρv/ρl = 0.53

Kinematic viscosity T ≈ Tc νc = 1.07 × 10−7 m2 s−1, viscous time: τv = R2
c/νc ≈ 21 s

Dynamic Viscosity Temperature behaviour μl,v = ρcνc(1 ± B(1 − T/Tc)
β)

T − Tc = −500 mK μl = 4.75 × 10−6 Pa s, μv = 1.98 × 10−6 Pa s
T − Tc = −200 mK μl = 4.39 × 10−6 Pa s, μv = 2.33 × 10−6 Pa s

L-V interfacial tension Temperature behaviour σ(T) = σ0(1 − T/Tc)
μ

with σ0 = 5.67 × 10−3 mN m−1, μ = 1.26
T − Tc = −500 mK σ(T) = 2.890 × 10−5 N m−1.
T − Tc = −200 mK σ(T) = 0.912 × 10−5 N m−1.

Table 4. Physical properties of p-H2 (Jouers 1986; Zappoli et al. 2015). The subscript l denotes liquid and
v, vapour.

and period. One notes, however, a slight difference. In the case φ = 0 small oscillations are
superimposed onto the main evolution of the aspect ratio, in contrast to the case φ = π/2
where these oscillations are not visible. This could be related to the fact that, as is seen
from figures 2(a) and 2(b), in the case φ = 0 the bubble is subjected to a fast average
displacement from the container centre whereas, at φ = π/2, this displacement remains
very small.

5. Strong vibrations (p-H2)

This section deals with a vapour bubble under vibrations as used in the experiments with
parahydrogen. Typical values of the parameters are chosen to correspond at best to both
the experimental data and the simulation constraints.

5.1. The physical properties of p-H2

The experiments with hydrogen were performed at the typical cryogenic temperatures of
500 mK and 200 mK below the critical temperature Tc = 33.19 K. When p-H2 is cooled
in the cell, the normal-H2 (n-H2)–para-H2 (p-H2) equilibrium is shifted and the percentage
of p-H2 increases from 25 % at room temperature to 96 % at 30 K, with a time constant of
approximately 50 h (Wunenburger et al. 2000). In the conditions where the experiments
were carried out, the H2 was in its p-state. The useful data are summarized in table 4.

5.2. Numerical simulation scenarios
The conditions used to simulate the experiments with Ac = 0.0333–0.267 (a =
0.05–0.4 mm) and Ω = 2.64 × 103–5.95 × 103 ( f = 20–45 Hz) are given in table 5.

As one can see, the restrictions Ac � 1, Ω � 1 (δv � 1) are satisfied for this
experiment too. Vibrations could be thus considered as being of (i) small amplitude and
(ii) high frequency and the results can be successfully described by the theory developed
in the small-amplitude and high-frequency (low-viscosity) approach.

The dimensionless average vibrational force (per unit of cylinder length), which is
responsible for the average displacement of the bubble to the nearest wall, is much larger
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than for the SF6 experiment. One thus could expect much larger average displacement of
the bubble due to this force. Because of this we call the vibrational conditions in the p-H2
experiment ‘strong vibrations’.

In Lyubimov et al. (2021) it was shown that the forced oscillations of a spherical drop
or bubble surrounded by a fluid of different density under vibrations of non-acoustic
frequency with linear polarization can become unstable with respect to the parametrically
excited oscillations, represented by the superposition of drop eigen-oscillations. In the
absence of viscosity, the most easily excited oscillations are the oscillations which satisfy
the synchronism condition

Ωr = Ωn + Ωn+1. (5.1)

Here, Ωr is the dimensionless resonance frequency and Ωn and Ωn+1 are the
dimensionless frequencies of two neighbouring modes of eigen-oscillations.

In (5.1) two neighbouring modes are involved because their interaction is performed
through a translational mode. In this sense, the condition for the excitation of the
parametric resonance should be the same for spherical and cylindrical inclusions.
Accordingly, in the case of the cylindrical bubble studied in the present paper by DNS,
one should also expect the excitation of the parametric resonance when the synchronism
condition equation (5.1) is satisfied.

Substituting the values of the eigen-frequencies calculated from (2.31) for the two-phase
system p-H2 at (T − Tc) = −500 mK in (5.1), one obtains for R/Rc = 1/2: Ω2 = 1.63 ×
103, Ω3 = 3.36 × 103, Ωr2,3 = 4.99 × 103 ( f2 ≈ 12.3 Hz, f3 ≈ 25.5 Hz, fres,2–3 ≈
37.8 Hz). At (T − Tc) = −200 mK, one obtains from (2.31) for R/Rc = 1/2:
Ω2 = 0.916 × 103, Ω3 = 1.89 × 103, Ωr2,3 = 2.81 × 103 (f2 ≈ 6.93 Hz, f3 ≈ 14.3 Hz,
fres,2–3 ≈ 21.2 Hz).

A few scenarios in terms of vibration frequency and amplitude have been chosen for
two small size bubbles (R/Rc = 0.50 and 0.33) taking into account the conditions of the
linear stability analysis in Lyubimov et al. (2021) and the above frequency calculations.
In the first scenario, the vibration frequencies were chosen with respect to the resonance
condition for each bubble size R/Rc. Most of the scenarios therefore consist of varying
the vibration amplitude around the threshold value beyond which parametric oscillations
are expected. As already noted, for reasons of drop stability, the vibration amplitude had
to be limited Ac = [0.0333–0.333] (a = [0.05–0.50] mm). The other scenario consists of
varying the vibration frequency for a given value of the amplitude.

5.3. Discussion of the numerical results
The numerical simulations have been performed for the vibrational parameters (amplitude
and frequency) and the physical properties and geometrical conditions given in tables 4
and 5. The comparison between the solutions corresponding to φ = 0 and φ = π/2 has
been performed only for a few pairs of (Ac, Ω) values.

Figures 8–10 illustrate the evolution of the bubble centroid position at different
amplitudes and frequencies of the container vibrations, bubble sizes and initial phases.
In figure 8 the evolution of the bubble centroid position is described for (T − Tc) =
−500 mK, φ = π/2, R/Rc = 1/2, Ω = 5.09 × 103 ( f = 38.5 Hz) and different values
of the dimensionless vibration amplitude Ac.

The bubble moves on average from the container centre to one of the walls. This average
displacement is due to appearance of an average vibrational force acting on the bubble
from the oscillating liquid. As shown in Lyubimov et al. (2001a) for the case of a flat wall,
a cylindrical inclusion located at a distance d from the wall in an inviscid oscillating fluid
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Figure 8. Evolution of the bubble centre of mass, xg for φ = 0 and different values of the non-dimensional
vibration amplitude Ac. Fluid p-H2 at (T − Tc) = −500 mK. Here, Ω = 5.09 × 103 ( f = 38.5 Hz), R/Rc =
1/2.
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Figure 9. Evolution of the bubble centre of mass, xg, for different values of non-dimensional vibration
amplitude Ac. Fluid p-H2, R/Rc = 1/2, case φ = π/2. Panels show (a) (T − Tc) = −500 mK, Ω = 5.09 ×
103 ( f = 38.5 Hz); (b) (T − Tc) = −200 mK, Ω = 2.64 × 103 ( f = 20 Hz).

is attracted to the wall by the following force:

F = π

2
a2ω2Rρl(ρl − ρv)

2

(ρl + ρv)
2

(
d
Rc

)−3

. (5.2)

Due to the symmetry of the system, the average vibrational force vanishes when
the inclusion is located in the container centre. This state corresponds to an unstable
equilibrium. When the inclusion is displaced from the centre, even slightly, a non-zero
mean vibrational force appears and the inclusion starts to move (on average) to one of the
walls (figures 8–10). Additional calculations with the initial position of the bubble slightly
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Figure 10. Evolution of the bubble centre of mass, xg, for different values of dimensionless frequency Ω .
Fluid p-H2 at (T − Tc) = −500 mK, φ = π/2, Ac = 0.167 (a = 0.25 mm) and R/Rc = 1/2.

shifted from the centre were carried out. They show that, in such a case, the bubble is
always subjected to an average displacement in the same direction.

As seen from tables 2 and 5, the dimensionless average vibrational attraction force
for the p-H2 experiment conditions is much larger than for SF6. This explains why the
average displacement, not pronounced in the case of weak vibrations for SF6, turns out to
be considerable in the case of strong vibrations for p-H2.

Equation (5.2) for the average vibrational force has been obtained by neglecting the
viscosity and is valid at a not too small inclusion–wall distance. In the vicinity of the wall,
viscous effects become important. As shown in Klotsa et al. (2007) and Lyubimova et al.
(2011), for the case of interaction of two inclusions in a viscous oscillating fluid (when
the vibration axis is perpendicular to the line connecting the inclusions), the interaction
force changes its sign with the decrease of distance between the inclusions. At small
distances the inclusions therefore repulse each other. The ‘equilibrium’ distance where
the interaction force changes its sign is proportional to the viscous Stokes layer thickness.

A similar behaviour should be also observed in the case of a wall–inclusion interaction.
The average displacement of an inclusion to the nearest wall in a viscous fluid subjected
to vibrations should therefore stop at an ‘equilibrium’ distance from the wall, a
distance which decreases with increasing frequency. Before stopping (on average) at this
quasi-equilibrium position, the bubble performs around this site damped oscillations with
large amplitude and large period due to the elastic properties of the bubble surface. At
high frequencies of vibrations, the viscous Stokes layer is very thin. In this case, the
bubble eventually locates just at the wall and its surface performs small-amplitude forced
oscillations with vibration frequency. These phenomena are observed in figures 8–10.

5.3.1. Bubble displacement for φ = 0
The evolution of xg in the case R/Rc = 1/2 is shown in figure 8. As one can see, all
the curves exhibit oscillations of small amplitude with frequency equal to the forcing
frequency. In addition to these forced oscillations, the inclusion shows a well-defined
behaviour at larger time scale. Similar to the case of weak vibrations, the inclusion,
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initially placed at the centre, is immediately propelled in the direction of initial impulse
x < 0. Then, it exhibits different behaviour: (i) for larger values of the dimensionless
vibration amplitude, the inclusion moves (on average) towards the wall and stabilizes
there in quasi-contact with the vibrating wall (|xg| ≈ 0.533) (0.8 mm) to be compared
with (Rc − R)/Rc = 0.5 (0.75 mm); (ii) for lower values of Ac, large-scale oscillations
around some quasi-equilibrium position at finite distance from the wall occur and are
progressively damped, with some tendency for the bubble to stabilize at this position.

5.3.2. Bubble displacement in the case φ = π/2
In this case, both amplitude and frequency are varied at a constant bubble volume fraction
(R/Rc = 1/2).

Variable amplitude
Figure 9 shows the evolution of the centre of mass for various values of Ac

and temperatures (T − Tc) and two frequencies. For Ω = 5.09 × 103 ( f = 38.5 Hz)
(figure 8a) and (T − Tc) = −500 mK, the corresponding velocities are in the range
AcΩ = [1.68 × 102–8.40 × 102] (1.2 cm s−1 � aω � 6.0 cm s−1). In contrast to the φ =
0 case, and similar to the case of weak vibrations at φ = π/2, the bubble is not
immediately propelled in the x < 0 direction. The centre of mass oscillates in the vicinity
of the centre during a time equal to 5–6 forcing periods (i.e. approximately 0.0076 or
0.16 s). Then, the xg evolution exhibits the following behaviour, depending on Ac:

(i) For larger values of the dimensionless vibration velocity amplitude 0.117 <

Ac < 0.167 (0.175 mm < a < 0.25 mm), i.e. 5.89 × 102 � AcΩ � 8.41 × 102

(4.2 cm s−1 < aω < 6.0 cm s−1) the initial position being unstable, the inclusion is
attracted by the closest vibrating wall. This result is in agreement with the theoretical
prediction in Lyubimov et al. (1987), where an inclusion should move in the
direction of the initial acceleration. When Ac increases, one observes a progressive
lowering of the damping time, the inclusion coming into quasi-contact with the wall.
This is especially true for the largest vibration amplitude (|xg| ≈ 0.5–0.57) to be
compared with (Rc − R)/Rc = 0.5 (0.75 mm). Figure 8(a) also shows that the forced
oscillation amplitude increases with Ac for a given value of Ω , a behaviour expected
from (2.29).

(ii) For smaller values of the dimensionless vibration amplitude 0.0333 � Ac � 0.1
(0.05mm � a � 0.15 mm), i.e. AcΩ = [1.68 × 102–5.09 × 102] (1.2 cm s−1 �
aω � 3.6 cm s−1) the inclusion moves on average towards the x > 0 side
(opposite to the initial acceleration). This displacement is accompanied by the
forced oscillations. At a later stage, one sees a tendency of stabilization of
the inclusion position at some distance from the centre which becomes closer
and closer to the centre with the decrease of the vibration amplitude |xg| =
[0.5–0.567] (0.75–0.85 mm), to be compared with (Rc − R)/Rc = 0.5 (0.75 mm).

Figure 9(b) corresponds to a situation closer to the experimental configuration, with
(T − Tc) = −200 mK and Ω = 2.64 × 103 ( f = 20 Hz). The corresponding vibration
velocity amplitudes are in the range 4.41 × 102 � AcΩ � 7.05 × 102 (3.1 cm s−1 <

aω < 5.0 cms−1). The same behaviour as above is found. In particular, the range of
amplitudes where large-amplitude damped oscillations with large period are observed
is the same; they are observed for the lowest vibration amplitudes. For Ac = 0.267, i.e.
AcΩ = 7.05 × 102 (a = 0.40 mm, i.e. aω = 5.0 cm s−1) the bubble moves in the x < 0
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direction up to t ≈ 0.047 (1 s); then, it stabilizes at xg ≈ 0.547 (0.82 mm). For Ac = 0.2
AcΩ = 5.28 × 102(a = 0.30 mm, i.e. aω = 3.8 cm s−1), xg also moves to x < 0 up to
t ≈ 0.071 (1.5 s); then the bubble stabilizes at xg ≈ 0.507 (0.76 mm). For Ac = 0.167, i.e.
AcΩ = 4.41 × 102 (a = 0.25 mm, i.e. aω = 3.1 cm s−1), the bubble moves to x < 0 up to
t ≈ 0.057 (1.2 s), then, the large-scale oscillations around some position at finite distance
from the wall accompanied by the forced oscillations are observed.

Variable frequency
Frequency was varied in the range [2.64 × 103–5.95 × 103] ([20–45] Hz) for a moderate
value of Ac (0.167 or 0.25 mm). The evolution of xg is given in figure 10 for various
vibrational velocities in the range 4.35 × 102 � AcΩ � 9.82 × 102 (3.1 cm s−1 < aω <

7.0 cm s−1). The position of the centre of mass starts to oscillate in the vicinity of the
centre during a time equal to 5–6 forcing periods (i.e. approximately 0.0076 or 0.16 s). At
later times, the average displacement of the bubble occurs always in the direction of initial
impulse x < 0. At higher frequencies (5.95 × 103, 5.09 × 103, 3.96 × 103) the bubble
reaches the wall and after 1–2 large-scale oscillations stabilizes at quasi-equilibrium
average position at a small distance from the wall where it performs only forced
oscillations. At lower frequencies (3.30 × 103, 2.64 × 103) the average displacement of
the bubble towards the wall stops at a finite distance from the wall after which the bubble
on average performs large-amplitude damped oscillations with large period around this
quasi-equilibrium position.

The results obtained by DNS for strong vibrations were also compared with the results
obtained from (4.3) of the simple mechanical model. Figure 11 shows the superposed
graphs obtained from (4.3) with the dimensionless friction coefficient equal to 0.04 and
by DNS for p-H2 fluid at 500 mK from the critical point with R/Rc = 1/2, Ω = 5.09 ×
103 ( f = 38.5 Hz), Ac = 0.100 (a = 0.15 mm), for φ = 0 and φ = π/2. Both graphs
are presented in dimensionless form using the scales introduced in § 4.2. For φ = 0 the
curves are plotted up to t = 40 since for φ = 0 at t ≈ 40 the bubble reaches the wall, so
at later stages its behaviour cannot be described by the simple mechanical model which
does not take into account the nonlinear effects. As one can see, good agreement of the
results is obtained for the stages where the nonlinear effects (average vibration force) are
not dominant.

In figure 12 the average pressure field obtained in DNS for p-H2, (T − Tc) = −500 mK,
R/Rc = 1/2, Ω = 5.09 × 103 ( f = 38.5 Hz), Ac = 0.100 (a = 0.15 mm), φ = π/2 is
presented to illustrate the cause of displacement of the bubble towards the wall. The time
moment at which the averaging over the external vibration period starts corresponds to the
displacement of the bubble centre of mass from the container centre equal to 0.2 (0.3 mm).
As one can see, the average pressure between the bubble and wall is lower than on the
opposite side of the bubble, which causes the average displacement of the bubble to the
wall.

5.3.3. Global deformation of the bubble shape
An analysis of the global deformation of the bubble shape has been performed by means
of decomposition in linear modes

h(θ, t) = R/Rc +
∑
n�1

an(t)Tn(cos θ). (5.3)
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Figure 11. Evolution of the bubble centre of mass for φ = 0 (a) and φ = π/2 (b). The DNS results for
p-H2, (T − Tc) = −500 mK, R/Rc = 1/2, Ω = 5.09 × 103 ( f = 38.5 Hz) Ac = 0.100 (a = 0.15 mm) vs
mechanical model predictions (theory) for ᾱ = 0.04.
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Figure 12. Average pressure field obtained in DNS for p-H2, (T − Tc) = −500 mK,
R/Rc = 1/2, Ω = 5.09 × 103 ( f = 38.5 Hz), Ac = 0.100 (a = 0.15 mm), φ = π/2.

Here, h(θ) is the normalized distance measured from the bubble centre of mass xg, θ

denotes the angle with respect to Ox (figure 1) and an is the normalized amplitude of the
nth mode and Tn is the Chebyshev polynomial of order n.
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Figure 13. Evolution of the amplitudes of the first deformation modes of the interface. Fluid p-H2, φ = π/2.
Panels show (a) (T − Tc) = −500 mK, Ac = 0.133 (a = 0.2 mm), Ω = 5.09 × 103 ( f = 38.5 Hz) and
R/Rc = 1/2, (b) (T − Tc) = −200 mK, Ac = 0.167 (a = 0.25 mm), Ω = 2.64 × 103 ( f = 20 Hz).

By using the orthogonality properties of the Chebyshev polynomials, one obtains the
expression of the amplitude of the deformation modes from (5.4)

an(t) = 2
πcn

π∫
0

[
h (θ, t) − R/Rc

]
cos(nθ) dθ, (5.4)

where
c0 = 2, cn = 1 for n � 1. (5.5)

Figure 13(a) shows the evolution of the amplitudes of the first deformation
modes corresponding to (T − Tc) = −500 mK, Ω = 5.09 × 103 ( f = 38.5 Hz), Ac =
0.133 (a = 0.2 mm), R/Rc = 1/2. As indicated above, in these conditions one can expect
the excitation of parametric resonance discovered in Lyubimov et al. (2021) with the
interaction of the modes 2 and 3. The mode n = 1 represents the displacement of the
bubble centre of mass. In addition to the fundamental mode n = 2, the most significant
next modes, n = 3 and n = 4, are also represented. The modes 2 and 3 are initially in
competition, until approximately 0.038 (0.8 s), while the modes 4 and 5 contribute less
significantly to the interface deformation. The contribution of the mode n = 6 is even
smaller. After the initial 0.038 (0.8 s), and up to the end of the simulation, the interface
behaviour exhibits the preponderance of the n = 2 mode. This preponderance means
that the ellipsoidal approximation of the bubble shape is well justified a posteriori. The
numerical simulation is performed for approximately 0.095 (2 s), but the periodic character
already observed after approximately 0.048 (1 s) allows the simulation to be limited to
0.062 (1.3 s).

Concerning the interface shape, the number of exhibited lobes (larger or equal to
two) corresponds to the index of the deformation mode whose amplitude is the highest.
The frequencies of oscillations coincide with frequencies of corresponding modes of
eigen-oscillations. From these observations it is possible to conclude that, in the above
conditions, one sees, as expected, the excitations of parametric resonance with the
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Figure 14. Evolution of the three characteristic nodes of the bubble (xA, xC, xB) A and C denote the equatorial
nodes, and B the polar node (figure 2). Fluid p-H2, φ = π/2, R/Rc = 1/2. Panels show (a) (T − Tc) =
−500 mK, Ac = 0.133 (a = 0.20mm), Ω = 5.09 × 103 ( f = 38.5 Hz); (b) (T − Tc) = −200 mK, Ac =
0.167 (a = 0.25 mm), Ω = 2.64 × 103 ( f = 20 Hz).

interaction of the modes 2 and 3: the growth of the amplitudes of the modes 2 and 3 which
stops when the bubble approaches the wall where it changes to the forced oscillations. The
calculations carried out for Ω = 5.09 × 103 ( f = 38.5 Hz) and different dimensionless
vibration amplitudes have shown that the threshold amplitude for excitation of parametric
resonance equals approximately to 0.067. Figure 13(b) is related to the same behaviour
as in figure 13(a), but at different temperature (T − Tc) = −200 mK, and frequency
Ω = 2.64 × 103 ( f = 20 Hz).

As indicated above, in these conditions one can also expect the excitation of parametric
resonance with the interaction of the modes 2 and 3. As one can see, the same behaviour
as in the previous case is observed, with the modes 2 and 3 initially in competition,
until approximately 0.133 (2.8 s) with less contribution of modes 4 and 5 to the interface
deformation. After this initial time period of 0.133 (2.8 s), and up to the end of the
simulation, the interface behaviour exhibits the preponderance of the n = 2 mode,
corresponding to the forced shape oscillations with ellipsoidal approximation of the bubble
shape and frequency equal to the frequency of forcing.

Thus, our simulations confirm the existence of the specific parametric resonance of
the bubble oscillations discovered in Lyubimov et al. (2021) with the interaction of the
neighbouring modes of eigen-oscillations and the synchronism condition for excitation of
this resonance.

Consider now the evolution of the equatorial nodes (xA and xC) and that of the
polar node yB of the inclusion (see figure 1c). Figure 14(a) shows the evolution of
these three characteristic nodes when R/Rc = 1/2 for the case (T − Tc) = −500 mK,
Ac = 0.133 (a = 0.2 mm), Ω = 5.09 × 103 ( f = 38.5 Hz) and figure 14(b) for the case
(T − Tc) = −200 mK, Ac = 0.167 (a = 0.25 mm), Ω = 2.64 × 103 ( f = 20 Hz).

In the first case (figure 14a), the evolution of the equatorial nodes before 0.04 (1 s)
clearly demonstrates the average displacement of the bubble from the container centre to
the wall accompanied by the bubble oscillations. After a time of approximately 0.04 (1 s),
i.e. when the inclusion is in quasi-contact with the wall, the effect of confinement
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combined with the viscous damping and the attraction of the vibrating wall produces
a decay of the oscillation of the equatorial node A. This is especially true when one
compares the amplitude of node C, which is less confined.

For the second case (figure 14b), the bubble goes in the opposite direction than in
the former case. After a time of approximately 0.143 (3 s), i.e. when the inclusion is
in quasi-contact with the wall, the same effect of confinement and attraction as in the
preceding case is observed and produces a damping of the oscillation of the equatorial
node C that is more pronounced than the equatorial node A. It is also seen that in the
second case the bubble is not in the vicinity of the wall, it demonstrates large-amplitude
damped oscillations with large period with at some distance from the wall.

Thus, in both cases the evolution of the modes confirms the growth of the oscillation
modes 2 and 3 before the bubble reaches the wall. A parametric study performed by
varying the dimensionless vibration amplitude for the first case Ω = 5.09 × 103 ( f =
38.5 Hz) shows that the oscillation amplitude of the equatorial node A, at quasi-contact
with the wall, decreases when Ac increases. In addition, it is possible to estimate the
contribution (superposition) of all the modes to the amplitude of deformation of the
equatorial node xC(θ = 0), thanks to the following property:

Tn(θ = 0) = 1, ∀ n ⇒ h(θ = 0) − R/Rc =
∑
n�1

an(t). (5.6)

Thus, the position xC of the equatorial node C is equal to the sum of all an(t) plus a
constant.

5.3.4. Analysis of the global interface behaviour
In order to complement the results about the evolution of the characteristics nodes
(xA, xC, xB), figure 15(a) shows the evolution of the aspect ratio of the inclusion, by/bx
at (T − Tc) = −500 mK, in the case φ = π/2, for Ac = 0.133 (a = 0.20 mm), Ω =
5.09 × 103 ( f = 38.5 Hz) and R/Rc = 1/2. After a transient regime of approximately
0.038 (0.8 s) showing large oscillations, one observes, as in figure 13, regular oscillations
with a frequency equal to the forcing frequency. The mean value of the aspect ratio is
1.14, which compares well with the calculation of (2.30a,b) whose value is 1.134, with all
validity criteria fulfilled (table 4). Figure 15(b) is concerned with the same parameters as
figure 15(a), but at (T − Tc) = −200 mK.

As an example, we present in figure 16 the evolution of the shape and position of the
liquid–vapour interface at (T − Tc) = −500 mK, φ = 0, Ω = 4.41 × 103 ( f = 33.4 Hz),
Ac = 0.167 (a = 0.25 mm), R/Rc = 1/3. The bubble is seen to exhibit characteristic
periodic deformation.

To verify that the main features of the bubble dynamics in a liquid of different density
in a finite-size container subjected to vibrations are well reproduced by 2-D calculations
we have performed 3-D calculations for a few selected sets of parameters. In figure 17,
3-D numerical results are presented for p-H2 fluid at (T − Tc) = −500 mK, Ω = 5.09 ×
103 ( f = 38.5 Hz), Ac = 0.133 (0.20 mm), R/Rc = 1/2, φ = 0. Figure 17 shows the time
evolution of the bubble centre of mass. Another 3-D simulation was also performed for
the same set of parameters with a lower reduced amplitude 0.1 (0.15 mm). Comparing
these results with the results of 2-D calculations we may conclude that the 2-D approach
describes well the main features of the behaviour of the bubble suspended in a liquid of
different density in a finite-size container subjected to vibrations.
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Figure 15. Evolution of the bubble aspect ratio, by/bx; fluid p-H2, φ = π/2, R/Rc = 1/2; (a) (T − Tc) =
−500 mK , Ac = 0.133 (a = 0.20 mm) and Ω = 5.09 × 103 ( f = 38.5 Hz). The mean value is by/bx = 1.14;
(b) (T − Tc) = −200 mK, Ac = 0.167 (a = 0.25 mm), Ω = 2.64 × 103 ( f = 20 Hz). The mean value is
by/bx = 1.10.
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Figure 16. Evolution of the liquid–vapour interface shape and position: (a) 0.238 × 10−3 (0.005 s);
(b) 0.903 × 10−3 (0.019 s); (c) 1.521 × 10−3 (0.032 s); (d) 2.187 × 10−3 (0.046 s) ; (e) 3.137 × 10−3 (0.066 s);
( f ) 4.183 × 10−3 (0.088 s); (g) 5.799 × 10−3 (0.122 s); (h) 7.51 × 10−3 (0.158 s); (i) 9.22 × 10−3 (0.194 s);
( j) 11.3 × 10−3 (0.238 s); (k) 13.5 × 10−3 (0.283 s); (l) 15.6 × 10−3 (0.328 s). Fluid p-H2 at (T − Tc) =
−500 mK, φ = 0, Ω = 4.41 × 103 ( f = 33.4 Hz), Ac = 0.167 (a = 0.25 mm), R/Rc = 1/3.
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Figure 17. Evolution of the bubble centre of mass in three dimensions for p-H2 fluid at

(T − Tc) = −500 mK, Ω = 5.09 × 103 ( f = 38.5 Hz), Ac = 0.133 (0.20 mm), R/Rc = 1/2, φ = 0.

To compare the results for p-H2 fluid with experiments, 3-D numerical simulations were
carried out using the same parameter values as in experiment except for the dimensionless
vibration amplitude A which was taken equal to 0.363 (0.55 mm) instead of 0.4 (0.6 mm).
The parameter A was chosen in such a way that one can clearly identify the excited
deformation modes of the interface (avoiding thus irregular interface shape deformations
such as the ones observed for A = 0.4 (0.6 mm) in the leading phase of the simulation).
Insofar as the experiment was not carried out in true microgravity conditions and initial
inclusion position and shape are not known, only a qualitative comparison is possible
here. The calculations show that the bubble initially located in the container centre moves
towards the wall (due to the vibrational attraction effect) and oscillates there. In figure 18,
the location and shape of the bubble obtained in DNS are shown (top view) for different
instants. Comparing these pictures with the experimental ones presented in Beysens (2004)
and Beysens & Evesque (2005) one can see good qualitative agreement.

6. Conclusions and perspectives

The dynamics of a vapour bubble in equilibrium with its liquid phase when submitted
to a harmonic translational vibration in the absence of gravity is studied. The system
is contained in a cylindrical container vibrating perpendicular to its axis. The bubble is
initially located in the container centre. Liquid and vapour phases are considered viscous
and incompressible. The analysis focuses on the vibrational conditions used in experiments
with a two-phase system SF6 near its critical point under weightlessness in the MIR space
station and with a two-phase system para-Hydrogen (p-H2) near its critical point under
magnetic compensation of Earth’s gravity.

The dimensionless vibrational parameters for the two experiments considered in the
present paper (both for SF6 and p-H2) correspond to small vibration amplitude and high
vibration frequency (small Stokes boundary layer thickness). This results in similarities
of the behaviour of the two systems under vibrations. In both cases numerical results
show forced translational oscillations at the forcing frequency with an amplitude in good
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y
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(b)(a)
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Figure 18. Snapshots of p-H2 spherical bubble in a cylindrical vibrating container (top view) obtained in
3-D calculations at different instants. Here, (T − Tc) = −200 mK, Ac = 0.33 (a = 0.50 mm), Ω = 2.64 ×
103 ( f = 20 Hz) and R/Rc = 0.55. (a) t = 0.053 (1.12 s); (b) t = 0.107 (2.25 s); (c) t = 0.149 (3.13 s);
(d) t = 0.223 (4.67 s).

agreement with analytical formulas obtained for the finite-size containers, assuming small
vibration amplitude and neglecting viscosity. Additionally to the forced translational
oscillations, an average effect of the bubble shape deformation is observed, the flattening
of the bubble in the direction of vibrations. The dimensionless parameter responsible for
the average shape deformation corresponds to the ratio of the vibrational and surface
energies and is determined by the product of the Weber number and the dimensionless
squared vibration amplitude. Numerical data concerning the average deformation of the
bubble shape are in good agreement with the analytical formulas obtained within the
framework of small-amplitude and high-frequency vibrations. The degree of the average
shape deformations is similar for SF6 and p-H2 cases since both cases exhibit similar
ranges of dimensionless vibration amplitudes and Weber numbers.

Additionally to the average shape deformation the bubble subjected to vibrations
demonstrates the displacement to the wall due to the average vibrational force related to
the Bernoulli pressure, where the increase of the pulsational flow velocity between the wall
and the inclusion results in the lowering of the pressure in this area, leading to the attraction
of the inclusion to the wall. The values of the dimensionless vibrational attraction force in
the SF6 and p-H2 cases are quite different, substantially larger for p-H2 (strong vibrations)
than for SF6 (weak vibrations). As a result, the average displacement to the wall, almost
not seen for SF6, is very fast for p-H2.

For weak vibrations the influence of the initial phase φ of the vibrations on the bubble
dynamics is crucial. The bubble oscillates around a central position for φ = π/2, while
for φ = 0 it moves to the container wall due to the influence of the initial impulse.
This difference is explained by using a simple mechanical model. Direct comparison of
analytical results obtained using the mechanical model and DNS results for the SF6 case
shows very good agreement.
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For strong vibrations the influence of the initial phase is more important at the initial
stage: at φ = 0, similar to the case of weak vibrations, the inclusion, initially placed at
the centre, is immediately propelled in the direction of initial impulse and at φ = π/2
the bubble oscillates in the vicinity of the container centre during a time equal to 5–6
forcing periods, then starts to move on average to the nearest wall under the action of the
average vibrational force. This average motion is accompanied by the translational forced
oscillations. Direct comparison of analytical results obtained using the mechanical model
and DNS results for the p-H2 case (strong vibrations) shows very good agreement for the
stages where the nonlinear effects (average vibration force) are not dominant.

The initial state of the bubble in the container centre is an unstable quasi-equilibrium.
The average vibrational force is zero by symmetry. The bubble, initially located in the
container centre, can thus move to any wall when submitted to the vibration. Additional
calculations with the initial position of the bubble slightly shifted from the centre have
shown that, in such a case, the bubble is always subjected to average displacement in the
same direction. The bubble behaviour under strong vibrations at the later stage depends
on the dimensionless vibration velocity amplitude AcΩ . At large values of AcΩ the
bubble reaches the wall and after 1–2 large-scale oscillations around this quasi-equilibrium
position performs only forced oscillation there. At this quasi-equilibrium position the
average resulting force, which is the sum of the average vibrational attraction force, the
repulsion force arising in the Stokes boundary layer due to the decelerating effect of
viscosity and the surface force, equals to zero and the average position of the bubble does
not change with time. The quasi-equilibrium distance from the wall increases with the
decrease of the dimensionless vibration frequency (increase of the dimensionless Stokes
boundary layer thickness). At moderate values of AcΩ the bubble does not reach the wall.
Its average motion stops at a finite distance from the wall. At later time the bubble performs
on average the damped large-scale oscillations (with large amplitude and large period)
around this quasi-equilibrium position accompanied by forced oscillations. The amplitude
and period of these large-scale oscillations decrease with the decrease of the dimensionless
vibration velocity amplitude. The damping of these oscillations is faster for larger AcΩ .
When the bubble is stabilized at the quasi-equilibrium position, the average force, which
is the sum of the average vibrational attraction force and surface force, will take zero value
and the average position of the bubble will not change with time.

Thus, under strong vibrations, a bubble initially located in the container centre is always
stabilized at the quasi-equilibrium position where the average force is zero such that
the average position of the bubble does not change with time, only forced oscillations
around this position are observed. The parametric resonance of the forced oscillations
(already discussed in Lyubimov et al. 2021) was also studied for p-H2. For this purpose
the frequency of the vibration was taken close to the frequency corresponding to the
synchronism condition obtained in Lyubimov et al. (2021). The calculations demonstrate
that in these conditions the resonance growth of the amplitudes of the second and third
modes of shape oscillations is observed until the bubble reaches the wall (2–3 resonances).

Thus, the results of 2-D numerical simulation of the behaviour of a cylindrical bubble
suspended in a viscous liquid in a cylindrical container, vibrating perpendicular to its
axis, are in good agreement with the exact solution obtained for the same configuration
as in DNS using a simple mechanical model and the analytical results obtained under the
assumption that the vibration amplitude is small neglecting the viscosity. Comparison of
the results of the selective 3-D modelling with the results of 2-D calculations allows us
to conclude that the 2-D approach describes well the main features of the behaviour of
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the bubble suspended in a liquid of different density in a finite-size container subjected
to vibrations. Comparison of the results with the available experimental data shows good
enough agreement both for SF6 fluid and p-H2.

Thus, the obtained results could help us to understand the general features of the
behaviour of two-phase systems under vibrations and to develop methods for control of
these systems by vibrations and can be used as a guide for future 3-D calculations and
experiments.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.541.
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