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Abstract. We performed populations synthesis calculations of single
stars and binaries and show that binary evolution is extremely important
for Galactic astronomy. We review several binary evolution models and
conclude that they give quite different results. These differences can be
understood from the assumptions related to how mass is transfered in
the binary systems. Most important are 1) the fraction of mass that
is accreted by the companion star during mass transfer, 2) the amount
of specific angular momentum which is carried away with the mass that
leaves the binary system.

1. Introduction

Binaries are characterized by “the union of two stars, that are formed together
in one system, by the laws of attraction” (Herschel 1802). They form the basic
building blocks of the Milky Way as galaxies are the building blocks of the Uni-
verse. In the absence of binaries many astrophysical phenomena would not exist
and the Galaxy would look completely different over the entire spectral range.
A considerable fraction of the astrophysical community would be unemployed,
Doppler (1842) would not have written his famous paper, Herschel’s nearest
neighbor distribution of field stars would look different. Even life as we know
it would not have evolved in the Universe as Type Ia supernovae, which enrich
the interstellar medium with elements required to enable life, would not occur.

2. Galaxy Models without Binaries

Let’s assume that the Galaxy contains only single stars and that the evolu-
tion of a single star passes through three stages; main-sequence (ms), giant (gs)
and remnant, which again we subdivide into white dwarf (wd) and neutron
star (ns), black holes are neglected here. Tablel presents the distribution of
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stars over these subtypes at different times during the lifetime of the Galaxy
if all stars were born at the same time (columns 2-5) and if the star forma-
tion was constant for the last 10 Gyr (column 6). We assumed that the initial
mass function is given by the distribution proposed by Scalo (1986) between
0.1 Mgand 100 Mg. Calculations were performed with the SeBa population syn-
thesis code (Portegies Zwart & Verbunt 1996, see the starlab software tool set
http://www.sns.ias.edu/~starlab).

Table 1. Stellar types and total mass as a function of time. Calcu-
lation are performed with 10° stars, but the numbers are rescaled to
100 stars. The first column gives the stellar type followed by the nor-
malized number of stars of that type at zero age, 100 Myr, 1 Gyr and
10 Gyr after formation. The last column gives the stellar population
if the star formation rate was constant over 10 Gyr. The bottom line
gives total mass in Mg.

time [Myr] 0] 100 1000 10000 0-10000
ms 100 [ 99.03 9498 8624  90.14
gs 0| 022 052 085 0.80
wd 0| 041 416 12.57 8.72
ns 0| 034 034 034 0.34
mass [Mg] 61.6 | 553 46.8  40.1 42.9

At all times the stellar population is dominated by main sequence stars
(of which the majority lives longer than 10 Gyr), followed by white dwarfs and
giants. The ~ 14% of the stars which evolve reduces the total mass with ~ 35%.
The population of neutron stars builds up within a couple of 10 Myrs and remains
constant at later times.

3. Galaxy Models with Binaries

If we fill the Galaxy with binaries things become more interesting and consider-
ably more complicated (see Table2).

Except for the initial mass function we now have to select the mass of the
secondary star, the orbital period and the ellipticity of the binary system. In
our numerical experiment these were all selected following model A of Porte-
gies Zwart & Verbunt (1996). The initial conditions are representative for the
G-dwarfs in the solar neighborhood (Duquennoy & Mayor 1991), which are well
established. The orbital elements and masses of the two stars for binaries with
other spectral types are still ill known and recent work is painfully sparse.

Instead of evolving single stars we now have to evolve two stars synchro-
nously. And at the same time account for the effects of their evolution on the
orbital parameters of the binary system. Furthermore the evolution of each star
may be affected by its companions’ evolution, i.e. through tidal effects and mass
transfer.
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Table 2.  Stellar types from population synthesis of 10° binaries. All
stars are born in binaries and they are evolved in time with SeBa. For
binaries the two stellar types are enclosed by parenthesis, a bracket
indicates that the star is transferring mass to its companion.

time [Myr] 0 100 1000 10000 O - 10000
ms 0 0.07 0.02 0.01 0.02
gs 0 0.03 0.10 0.11 0.08
wd 0 0.09 0.76 2.68 1.90
ns 0 045 0.46 0.46 0.51
(ms, ms) 100 98.60 94.47 84.27 89.07
(ms, gs) 0 018 047 0.77 0.63
(ms, wd) 0 015 1.80 5.97 4.01
(ms, ns) 0 001 0.00 0.00 0.00
(gs, gs) 0 0.01 0.01 0.02 0.01
(gs, wd) 0 004 016 0.27 0.23
(gs, ns) 0 000 000 0.00 0.00
(wd, wd) 0 003 104 3.72 2.47
(wd, ns) 0 002 0.02 0.01 0.02
(ns, ns) 0 000 000 0.00 0.00
[ms, ms] 0 051 071 14l 0.96.
[gs, ms) 0 000 002 0.01 0.01
[ms, wd) 0 0.00 0.00 0.06 0.03
mass [Mg] | 96.9 87.8 76.3 64.9 69.6

Table 2 shows the distribution of binaries over the various subtypes at sev-
eral moments in time (as in Table1). The single stars originate from binaries
which are broken up or have coalesced. We keep the same simple subtypes as
before and write a binary as the two stars enclosed with parenthesis following
the notation introduced by Portegies Zwart & Verbunt (1996). The number of
possible outcomes is much larger than for the evolution of a population of single
stars.

The total mass in binaries is slightly higher than 1.5 times the total mass in
single stars (see Table 1), as one would expect from a flat mass ratio distribution.
This is because we limit the masses of the primary and secondary stars to >
0.1 M.

As expected, main-sequence binaries are most common but at later age a
considerable fraction of binaries contain at least one white dwarf. Note that
the fraction of single stars produced from the evolution of binaries is small and
the majority of these are white dwarfs. Most of the single white dwarfs are the
result of a merger in the common envelope phase after the formation of the first
white dwarf.

The simple representation used here is insufficient to describe the evolution
of binary stars in detail. It neglects interesting information about the distribu-
tions of masses, mass ratios, orbital period and eccentricities and it lacks detailed
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information to, for example, distinguish blue stragglers from main sequence stars
or identify low mass carbon-oxygen white dwarfs (see for example Nelemans et
al. 2000). It shows, however, that the possible outcomes of the evolution of a
population of primordial binaries are vastly larger than for single stars.

4. Binary Evolution

There are many binary population synthesis programs available which claim to
be able to evolve any binary in time. This industry was started in the early
eighties by Kornilov & Lipunov (1983), Iben & Tutukov (1984) followed by
Dewey & Cordes (1987) and continues to the present time.

We will show an evolutionary sequence produced by three of these programs
together with the fully conservative case which is easily computed by hand.
We can not present the evolution of more scenarios or those produced by other
models because most publications do not provide sufficient information to follow
the complete evolution of a particular binary system. In Table3 we show one
evolutionary track of one of the rare comparisons which can be made.

Table 3 shows that various groups obtain quite different results from iden-
tical initial conditions (see also Verbunt 1996, who performed a similar com-
parison between two models). The conservative case is most radically different,
indicating that all groups agree that the evolution of such a binary should pro-
ceed rather inconservative. The other extreme in this example is provided by
the Scenario Machine of Lipunov et al. (1996) in which case the accreting star
hardly gains any mass but most mass is ejected from the binary system (last
three columns). The large period after mass transfer indicates that little angular
momentum is carried with the lost material. (The change in orbital period can
be reconstructed assuming that mass lost from the binary carries 0.71 times the
specific angular momentum of the binary system, which is about the specific
angular momentum of the accreting star at the onset of the mass transfer.) This
model results in a single Thorne-Zytkow object (a giant with a neutron star
core) after the second phase of mass transfer.

The two models in the middle of Table 3 (Tutukov & Yungelson and SeBa)
both lead to a neutron star binary. In these cases the intermediate stages of
the binaries, however, are quite different; the binary in the TY93 model remains
rather close, where SeBa results in a much wider intermediate state. So in the
TY93 case, more mass is lost carrying, on average, more angular momentum. In
SeBa mass leaves the binary system with 3 times the specific angular momentum
of the binary; applying this prescription to the model of TY93 we find that ~ 5.3
times the angular momentum of the binary system is lost per unit mass. Note
however, that TY93 use a completely different treatment of non-conservative
mass transfer. The differences in the treatement of the common envelope in the
second phase of mass transfer makes that the final binaries computed with the
TY93 and SeBa models are very similar.
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Table 3.  Various stages (first column) of the evolution of a close
binary with massive stars; (A): birth [t = 0], (B): start 15 Roche-
lobe contact [t ~ 14.2Myr], (C): before 1%t supernova [t ~ 16.1 Myr],
(D): after 1%t supernova, (E): start 2°¢ Roche-lobe contact [t ~ 19.9
Myr], (F): before 2°¢ supernova [t ~ 20.8 Myr], (G): after 2°¢ su-
pernova (not present in the LPP96 case). Masses (M and m) are
in solar units, orbital period (P) in days. The various evolution-
ary models are: fully conservative (indicated by Conservative), Tu-
tukov & Yungelson (1993, TY93), Portegies Zwart & Verbunt (1996,
SeBa, see also http://ww.sns.ias.edu/~starlab) and Lipunov,
Postnov & Prokhorov (1996, LPP96, see http://xray.sai.msu.ru/
sciwork/scenario.html).

Stage Conservative TY93 SeBa LPP96

M m P M m P M m P M m P
A: 13.1 9.8 39.2 | 13.1 9.8 39.2 | 13.1 9.8 39.2 | 13.1 9.8 39.2
B: 131 9.8 39.2 | 131 98 39.2 127 9.8 40.7| 122 9.6 432
C: 3.0 19.9 390 33 154 203 3.7 18.7 204 3.7 10.0 301
D: 1.4 199 411 1.4 154 30.7 1.3 18.7 259 14 10.0 241
E: 1.4 199 411 1.4 154 24.6 1.3 176 263 14 9.9 181
F: 14 51 9.7 1.4 42 0.1 1.3 34 0.2 4.3 TZO
G: dissociated 14 14 22 1.3 13 24 4.3  black hole

5. Why Are the Models so Different

The differences between the calculations presented in Table3 are rather big
but can be brought back to a few assumptions about the mass transfer. These
assumptions determine 1) the fraction of mass that is accreted by the companion
star during mass transfer, 2) the amount of specific angular momentum which
is carried away with the mass that leaves the binary system.

Even bigger differences are expected from introducing new physics in the
models, which may lead to unexplored channels for the formation of various
types of binaries or to completely new classes of objects. An example is the
model in which a neutron star in a common envelope accretes a significant
fraction of this envelope. This causes the neutron star to grow in mass until it
exceeds the stability limit and collapses into a low-mass black hole (Chevalier &
Kirshner 1979). Bethe & Brown (1998) used this new understanding to calculate
the number of neutron star binaries in the Galaxy with an analytic model.
The computer powered population calculations of Portegies Zwart & Yungelson
(1998) gave identical numbers for the models with similar assumptions (see their
model H). The agreement between the two completely different techniques
indicates that the uncertainties in binary population synthesis are mainly caused
by differences in the assumption about the underlying physics and in a lesser
extent in the proper choice of various key parameters. By lack of a proper
understanding of some of the background physics these parameters are, for now,
to be adjusted such that the observed binaries can be explained.
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