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‘A REMARKABLE ARTIFICE’: LAPLACE, POISSON AND
MATHEMATICAL PURITY

BRAM PEL

Independent Scholar

Abstract. In the early nineteenth century, a series of articles by Laplace and Poisson discussed
the importance of ‘directness’ in mathematical methodology. In this thesis, we argue that their
conception of a ‘direct’ proof is similar to the more widely contemplated notion of a ‘pure’
proof. More rigorous definitions of mathematical purity were proposed in recent publications
by Arana and Detlefsen, as well as by Kahle and Pulcini: we compare Laplace and Poisson’s
writings with these modern definitions of purity and show how the modern definitions fail to
grasp some more nuanced aspects.

§1. Introduction. At the onset of the nineteenth century, two leading French
mathematicians argued over proper methods of proof through a series of publications:
In 1809 the back-and-forth was kicked off by Pierre-Simon Laplace (1749–1827),
whose initial article prompted responses from Siméon-Denis Poisson (1781–1840)
over several years.

The particular discussion between these two leading mathematicians which we will
investigate started when Laplace published his Mémoire sur divers points d’analyse [22],
wherein he employed a novel method to solve a particular problem. In response to this
publication by Laplace, Poisson [30] criticised the novel method used by Laplace and
proposed an alternative way to solve the same problem. More responses followed from
both sides discussing the novel method employed by Laplace.

In his 1809 article [22], Laplace computed a specific class of improper integrals,
namely ∫ ∞

0
x–α cos(x)dx and

∫ ∞

0
x–α sin(x)dx,

wherein 0 < α < 1 is a constant. Laplace was interested in these integrals because they
were useful to the study of a physical system. After his investigation of these integrals,
he ‘applied his results to the study of an elastic lamina wound on itself in the form of
a spiral’ [7, p. 96] in the second half of the article, which we won’t discuss.

In his article from 1811, Poisson highlighted the part of Laplace’s paper which
concerns the integrals, and he provided an alternative proof for the results that Laplace
had derived. In Laplace’s article, a crucial step in his solution of the integrals was a
complex-valued substitution. This step of introducing complex numbers to solve a
real-valued integral is what bothered Poisson: he did not believe that we are ‘allowed’
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2 BRAM PEL

to prove statements in real analysis by using complex numbers—why would something
external to our notion of real numbers, specifically the use of complex numbers, be
able to teach us anything about strictly real integrals? Poisson’s response to Laplace’s
article attacked this step. Instead, Poisson proposed a way to avoid it through what he
called ‘direct’ methods [30, p. 243]. Laplace himself was hesitant to use the complex
substitution, but he was still convinced of the truth of his findings.

The purpose of this paper is to investigate Laplace and Poisson’s thoughts on this
methodological issue of ‘directness’ and to compare our findings to recent work on
similar issues. Specifically, we will argue that Poisson’s ‘directness’ is similar to what
we today call ‘mathematical purity’: the importance of mathematical purity, wherein
a proof is considered pure if the methods used in it are in some sense intrinsic to
the problem at hand, has been pondered by various philosophers and mathematicians
throughout history.

In fact, sentiments similar to Poisson’s were expressed by thinkers as far back as
Aristotle. Aristotle was one of the earliest proponents of purity of proof methods,
stating that ‘we cannot in demonstrating pass from one genus to another. We cannot,
for instance, prove geometrical truths by arithmetic’ [4, p. 10]. This aspiration to avoid
‘crossing from one genus to another’, or metabasis eis allo genos in Aristotle’s words,
is one way to characterise the ideal of purity. Aristotle’s reasons for promoting purity
appeal to his view of how knowledge is developed: knowledge pertaining to a certain
topic or subject should be inferred from the ‘essence’ of the subject. It seems that
arithmetic truths are not part of the essence of geometry, and can thus not teach us the
causes of geometrical truths.

Similarly to Aristotle, Poisson objected to the application of some mathematical
techniques to specific problems. In particular he warned against the use of complex
numbers in real analysis, or freely using Aristotle’s terms, the crossing between the
genera of real and complex analysis: the crossing from one genus to another mentioned
by Aristotle is paralleled by a ‘passage from the real to the imaginary’ mentioned by
Poisson and Laplace. Unfortunately it is not clear how exactly a ‘genus’ would be
defined here since Aristotle did not know complex numbers. To Aristotle, geometry
and arithmetic could easily be viewed as separate fields, as geometry was then based on
geometric construction and was largely thought of without resorting to notions from
arithmetic. Today, it is arguably harder to divide mathematical disciplines into separate
‘genera’, when for example complex and real analysis can be connected easily.1 As such,
we can’t definitively view Poisson and Laplace’s discussion through Aristotle’s lens, as
it is not immediately apparent whether Laplace’s complex substitution constitutes a
‘crossing from one genus to another’.

The familiar reader may notice that Aristotle’s phrasing when arguing against the
crossing of genera is reminiscent of a different, though related topic in the philosophy
of mathematics, that of mathematical explanation. Philosophers of mathematics have
noted an opposition between proofs that are explanatory and those that are not—
this is based on the notion that a proof of a given theorem may convince the reader
of its truth, while not giving a conceptual explanation of why it is true. Attempts
to formalise our understanding of mathematical explanation have been proposed by

1 Attempts at dividing up all of mathematics into separate fields have been made in spite of
the perceived difficulty of the endeavour, for example, by Bourbaki in [8].
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for example Steiner [31] and more recently by Pincock [29].2 The quote above from
Aristotle contests whether arithmetic truths can teach us anything about the causes of
geometrical truths, which may seem to tie the issue of purity to that of explanation.
An in-depth discussion of how Aristotle views the relation between the two concepts
can be found in a recent article by Arana [3, pp. 26–27].

This same article also provides some contemporary insight into how purity relates
to explanation. Arana shows that pure proofs are not necessarily explanatory, and vice
versa. Our case study fits well with Arana’s analysis of mathematical explanation as
a concept distinct from that of mathematical purity. We shall see that Laplace and
Poisson are concerned with the formal question of whether a calculation involves
complex numbers or not. They find it desirable to eliminate dependence on complex
numbers as an end in itself, with no regard for whether the alternative proofs so
obtained are any more psychologically illuminating.

Bernard Bolzano (1781–1848), a contemporary of Laplace and Poisson, also stressed
the importance of pure proofs. He was particularly concerned about the circularity
of proofs in real analysis which appealed to geometric results, since he believed
geometry to be a more specialised, applied field that was in the end derived from
the principles of real analysis. As a consequence, mixed-field proofs could be circular
when an analytic result is ‘proven’ using geometric reasoning which relies on the truth
of the very analytic result we set out to prove: he cited contemporary proofs of the
intermediate value theorem as an example, because these proofs would often “borrow
a truth from geometry” [12, p. 183]. Talking thus about impurity, Bolzano stated
that it was ‘an intolerable offense against correct method to derive truths of pure3

(or general) mathematics from considerations which belong to a merely applied (or
special) part, namely, geometry. Indeed, have we not felt and recognized for a long
time the incongruity of such metabasis eis allo genos?’ [6, p. 228], quoting Aristotle.

By arguing that geometry is derived from real analysis, Bolzano argues that impure
proofs (at least analytic proofs that rely on geometry) can lead to circular reasoning,
which means that proofs thus obtained are epistemically worthless. Bolzano’s argument
relies heavily on his view that geometry is a more specialised subject, derived from
analysis: circular reasoning of the kind that Bolzano warns us about only occurs if
we use results from ‘more specialised’ areas to derive more general results. It’s not
entirely obvious that geometry is a specialised branch of real analysis (Aristotle would
disagree), so Bolzano’s argument is not obviously right.

Bolzano’s ideas don’t translate directly to those of Poisson and Laplace either.
Bolzano warns against the use of more ‘specialised’ knowledge to prove more general
statements, but from this understanding it’s unclear what he would think about the use
of complex numbers in real analysis. It’s unclear whether complex analysis is a derived
branch of real analysis—the case can be made that the opposite is true—so Bolzano’s
argument does not answer our question of what exactly constitutes a pure proof in our
context, nor does it tell us why such proof methods are important in general cases,
where the circularity Bolzano warns against is not apparent.

2 A good overview of the history of mathematical explanation in the philosophical literature
(up until 2008) can be found in [26].

3 Bolzano uses the word ‘pure’ here in the sense of dividing mathematics into pure and applied
mathematics, which is a different issue entirely. An interesting account of the pure/applied
dichotomy arising in the German-speaking area around 1800 can be found in [14].
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4 BRAM PEL

Mathematical purity was not just important to people hundreds of years ago.
Michael Detlefsen has argued that the 1950 Fields medal being awarded to the
Norwegian mathematician Atle Selberg was partly due to his elementary (i.e., pure)
proof of the prime number theorem:4 ‘that Aristotelian purity continues to function as
an ideal among contemporary mathematicians is also suggested by the notice that was
taken of Selberg’s and Erdös’ proofs, notice which resulted in Selberg’s being awarded
the Fields medal in 1950’ [12, p. 190]. It is debatable whether the medal was awarded for
this proof and whether it was the proof’s purity that attracted Fields medal attention.5

However, it’s still worth noting that Selberg was looking for an elementary proof in the
first place: if not expressed in the Fields medal, at least we see that twentieth century
mathematicians were still interested in pure proof methods to some extent.

One particularly pointed statement of what a pure proof entails was given by David
Hilbert (1862–1943) in his lectures on the foundations of geometry.6 Speaking on the
impurity of the spatial proof of the planar Desargues theorem, he stated that ‘we are
for the first time in a position to put into practice a critique of means of proof. In
modern mathematics such criticism is raised very often, where the aim is to preserve
the purity of method [die Reinheit der Methode], i.e., to prove theorems if possible
using means that are suggested by [nahe gelegt] the content [Inhalt] of the theorem’ [17,
pp. 315–316]. Discussing this quote from Hilbert, Arana argued that ‘what is critical
for a proof’s being pure or not, according to Hilbert, is whether the means it draws
upon are “suggested by the contents of the theorem” being proved’ [3, p. 29].

Hilbert has also been the subject of some investigation in relation to simplicity of
proof, because of some notes of his on a ‘24th problem’ which he considered to include
in his list of 23 problems addressed to the International Congress of Mathematicians
in Paris in 1900 [18]. The 24th problem asked for a criterion for a proof’s simplicity,
and for a way to find the most simple version of a proof. The question of proof
simplicity has been considered in relation to purity, for example, in another article by
Arana which challenges the claim that impure proofs are simpler than pure ones [2].
Our Laplace–Poisson case study will also show a mismatch in simplicity of pure and
impure proofs, in favor of impure proofs sometimes being simpler.

The purpose of this article is to investigate Laplace and Poisson’s querelle through
the lens of contemporary definitions of purity, starting with a topical definition of
purity formulated by Arana and Detlefsen in their 2011 article Purity of Methods
[13]. We will also consider another definition by Kahle and Pulcini, which they call
operational purity [19]. This operational definition was formulated as an alternative

4 The prime number theorem had already been proven by impure means in 1896 by Hadamard
and de la Vallée Poussin. Both of their proofs use complex analysis, which qualifies them as
not elementary, or impure. The case for impurity here is more easy to make than in the case of
Laplace’s complex substitution, as the connections between arithmetic and complex analysis
are (at least intuitively) less tight than the connections between real and complex analyses.
As such, the use of complex numbers in proving the prime number theorem attracted some
protest as complex numbers seem very foreign to the study of primes. An overview of different
proofs of the prime number theorem given by Hadamard and de la Vallée Poussin, Selberg
and others is given in Dawson’s Why Prove it Again? [11, pp. 111–147]. In his book, Dawson
provides several case studies where mathematicians provided alternatives to existing proofs,
also discussing their reasons for doing so—purity of proof methods is discussed as one reason
for mathematicians to re-prove theorems.

5 For a more nuanced account of the attribution of this medal, see [5, p. 386].
6 A more complete account of Hilbert’s views on purity of methods can be found in [16].
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to topical purity, which the authors argue is flawed. Laplace and Poisson provide us
with an interesting case study to investigate the differences between these two recent
definitions, as well as with an opportunity to reveal their respective limits: we will see
that both definitions fall short when confronted with the Laplace–Poisson case.

In the next few sections we will investigate Laplace and Poisson’s writings, first
analysing the mathematical contents of their initial articles after which we will delve
into their own comments on ‘directness’. We shall then confront this historical case
study with the concept of purity as defined by Detlefsen and Arana as well as Kahle
and Pulcini.

§2. Laplace’s Mémoire sur divers points d’analyse. In his Mémoire sur divers points
d’analyse, Laplace employed what he called a ‘remarkable artifice’ for solving real
integrals through a ‘passage from the real to the imaginary’ [22, p. 193]. By modern
standards Laplace’s use of complex numbers is in some places unrigorous and arguably
ill-defined.

In order to find values for improper integrals involving sines and cosines later on,
Laplace began by considering the improper complex integral∫ ∞

0
x–αeixdx, (1)

wherein 0 < α < 1. By Euler’s identity, we have∫ ∞

0
x–αeixdx =

∫ ∞

0
x–α cos(x)dx + i

∫ ∞

0
x–α sin(x)dx,

so to evaluate the complex-valued integral (1) it suffices to evaluate two real-valued
integrals involving sines and cosines. In fact, Laplace was interested in these two real
integrals rather than the complex one: he only used the complex integral (1) in order
to distinguish its real and imaginary parts later on to find his desired values.

As inefficient as this may seem, these integrals cannot easily be solved with more
elementary methods. If we look at the integral

∫ ∞
0 x

–α sin(x)dx, we might consider
using integration by parts to eliminate the x–α term. This won’t work because α is not
an integer; the derivatives and primitives of x–α will always leave some power of x,
leaving us with yet another difficult integral. The term sin(x) won’t cancel out either,
as its derivatives are simply more sines and cosines.

Another approach which Laplace could have considered and which was common-
place at the time, would be to rewrite the sin(x) or cos(x) parts of the integrals as
series expansions, in order to then invert the sum and integral symbols. Attempting
this for the integral

∫ ∞
0 x

–α sin(x)dx does not immediately work:

∫ ∞

0
x–α sin(x)dx =

∫ ∞

0
x–α

( ∞∑
n=0

(– 1)n
x2n+1

(2n + 1)!

)
dx

=
∞∑
n=0

(– 1)n

(2n + 1)!

∫ ∞

0
x–αx2n+1dx.

As each of these individual integrals diverges, this first straightforward attempt doesn’t
work. We might continue our investigation by trying to approximate the desired result,
for example, by integrating up to some large number instead of up to infinity, to
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then combine the individual integrals in order to obtain an approximate expression
that could be generalised. Alternatively, we might look for a clever way to recombine
individual terms from the series of diverging integrals to somehow get a series of
converging terms. Attempting a proof along these lines was a popular approach at
the time, and it turns out that other mathematicians had already tried to solve the
integrals from this article in this way. The Italian mathematician Lorenzo Mascheroni
in particular had already ‘found’ values for such an integral using an approach by
series expansion [27], but Laplace would show later on in this paper that Mascheroni’s
findings were incorrect.

As such, finding these integrals is a non-trivial task. This could explain why Laplace
bothered with using complex numbers at all; these integrals had not been solved using
the standard methodology, prompting him to try some less orthodox methods.

His first step was to make the complex substitution x := it
1

1–α , which gives dx =
1

1–α it
α

1–α dt. We then have

x–αeixdx = (it
1

1–α )–αei(it
1

1–α ) 1
1 – α

it
α

1–α dt

= i–αt
–α
1–α e–t

1
1–α i

1 – α
t
α

1–α dt

=
i1–α

1 – α
e–t

1
1–α dx.

Simply putting this expression as the integrand, Laplace claimed that∫ ∞

0
x–αeixdx =

i1–α

1 – α

∫ ∞

0
e–t

1
1–α dt. (2)

However, a non-trivial step seems to be missing in this line of reasoning. When
performing a substitution, the domain of integration should be adjusted according
to the variable transformation. One might think that by taking ‘t from 0 to infinite’ [22,
p. 194], Laplace meant that t goes to infinity in absolute terms, in which case he would
be right; later on we will see that this is not what he meant. In contrast to Laplace’s
claim, by virtue of the used substitution being imaginary, the domain of integration
should change from x ∈ [0,∞) to t on some ray l(α), which does not align with the
positive real axis. Noting that x = it

1
1–α implies t = iα–1x1–α = e–i �2 (1–α)x1–α , we see

that for 0 < α < 1 the ray l(α) is in the fourth quadrant of the complex plane at a
negative angle of magnitude (1 – α) �2 to the positive real axis, as in Figure 1.

As such, we would expect the new expression arising from the complex substitution
x = iz

1
1–α to involve a line integral along this ray l(α), as follows:∫ ∞

0
x–αeixdx =

i1–α

1 – α

∫
l(α)
e–z

1
1–α dz.

Curiously, this oversight of Laplace’s does not impact the truth of his findings. It seems
that in this particular case, it doesn’t matter whether we integrate along the positive
real line or the ray l(α). However, the equality of the two integrals∫ ∞

0
e–t

1
1–α dt =

∫
l(α)
e–z

1
1–α dz (3)
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Figure 1. The domain of integration after complex substitution, for α = 0.5.

is not a simple matter of rotational invariance. The ray l(α) is given by the numbers on
the positive real axis ‘rotated’ by multiplying with � := iα–1, so it would be convenient

if e–t
1

1–α dt = e–(�t)
1

1–α (�dt). If this were the case, the proof would be finished: we’d have∫ ∞

0
e–t

1
1–α dt =

∫ ∞

0
e–(�t)

1
1–α (�dt)

=
∫
l(α)
e–z

1
1–α dz,

where we used the substitution z = �t which gives dz = �dt. Unfortunately, it’s not

that simple. To see that e–t
1

1–α �= e–(�t)
1

1–α � , we must rewrite

e–(�t)
1

1–α � = e–i
α–1
1–α t

1
1–α ei(

�
2 (α–1))

= e
i

(
t

1
1–α + �2 (α–1)

)
,

which is evidently a number on the unit circle in the complex plane, whereas e–t
1

1–α

takes on values on all of R+. Therefore, the equality (3) is not obvious, as simply
comparing integrands to ‘realign’ l(α) with R+ gets you nowhere.

Using our modern theory of complex integration, we can, however, prove the
equality of the integrals. We will use some findings by Cauchy on the integration
between imaginary limits, published some years after Laplace’s article; Cauchy’s
integral theorem in particular is essential.

We show that ∫
l(α)
e–z

1
1–α dz =

∫ ∞

0
e–t

1
1–α dt. (3)

Consider the closed curve Γ obtained by the concatenation of three curves, defined by
real constants R > 0 and 0 < α < 1; a first curve along the interval [0, R], a second
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Figure 2. Γ plotted in the complex plane.

curve which we will call l(α,R) along l(α) with length R and a final curve connecting
the two along an arc, as in Figure 2, with the entire contour oriented counterclockwise:

Since t �→ e–t
1

1–α is analytic on all of C, Cauchy’s integral theorem tells us that
the contour integral along Γ of this function is equal to 0. Using a straightforward
parametrisation of the arc curve, we find

0 =
∮

Γ
e–z

1
1–α dz,

0 =
∫
l(α,R)

e–z
1

1–α dz +
∫ 0

�
2 (α–1)

e–(Rei� )
1

1–α iRei�d�

+
∫ 0

R

e–t
1

1–α dt,

∫ R

0
e–t

1
1–α dt =

∫
l(α,R)

e–z
1

1–α dz +
∫ 0

�
2 (α–1)

e–(Rei� )
1

1–α iRei�d�.

From this we see that when we let R approach infinity, the difference between the
‘correct’ integral and the one that Laplace finds is given by

lim
R→∞

∫ 0

�
2 (α–1)

e–(Rei� )
1

1–α iRei�d�,

since limR→∞ l(α,R) = l(α). We will show that the limit above is equal to 0. First,
notice that for α ∈ (0, 1), we can derive an upper bound for the absolute value of the
integrand:

|e–(Rei� )
1

1–α iRei� | = |e–R
1

1–α e
i �1–α | · |i | · |R| · |ei� |

= R|e–R
1

1–α (cos( �1–α )+i sin( �1–α )|

= R|e–R
1

1–α cos( �1–α )||e–iR
1

1–α sin( �1–α )|

= R|e–R
1

1–α cos( �1–α )|

= R(e–R
1

1–α cos( �1–α )).
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Let f�(R) := R(e–R
1

1–α cos( �1–α )) denote this last expression. We now wish to evaluate

lim
R→∞

f�(R) = lim
R→∞

R

eR
1

1–α cos( �1–α )
.

Since � ∈ [ �2 (α – 1), 0] along the domain of integration, we have cos( �1–α ) ∈ (0, 1].
Therefore, both the numerator and the denominator off�(R) are real-valued functions
that go to infinity as R→ ∞. Because of this we can use l’Hôpital’s rule to find the
limit limR→∞ f�(R). The derivative of the numerator is simply 1, while the derivative
of the denominator is

d

dR
eR

1
1–α cos( �1–α ) =

cos( �1–α )
1 – α

ecos( �1–α )R
1

1–α R
α

1–α .

Letting R→ ∞, this denominator goes to infinity: we note that α
1–α ∈ (0,∞), so R

α
1–α

goes to infinity. In addition, �
1–α ∈ [– �2 , 0] for all � in the domain of integration, so

cos( �1–α ) ∈ [0, 1], so ecos( �1–α )R
1

1–α goes to infinity as well. As such, l’Hôpital’s rule
teaches us that the upper bound f�(R) for the absolute value of the integrand goes to
0 as R→ ∞.

Now we use the integral triangle inequality to find

lim
R→∞

∣∣∣∣∣
∫ 0

�
2 (α–1)

e–(Rei� )
1

1–α iRei�d�

∣∣∣∣∣ ≤ lim
R→∞

∫ 0

�
2 (α–1)

∣∣∣∣e–(Rei� )
1

1–α iRei�
∣∣∣∣ d�

≤ �
2

(1 – α) lim
R→∞

[
sup

�∈[ �2 (α–1),0]
f�(R)

]

= 0.

Because the absolute value of the integral goes to 0 as R grows infinitely large, the
integral itself also goes to 0. As such, we have proven that for any value α between zero
and one Laplace’s ‘mistake’ doesn’t matter, and we indeed have∫ ∞

0
e–t

1
1–α dt =

∫
l(α)
e–z

1
1–α dz, (3)

that is,

lim
R→∞

∫ R

0
e–t

1
1–α dt = lim

R→∞

∫
l(α,R)

e–z
1

1–α dz.

Therefore Laplace’s apparent oversight does not invalidate his findings. After the
substitution, he used some specific values of α to find some improper integrals. To do

this, he first wrote k :=
∫ ∞

0 e
–t

1
1–α dt, so that he could rewrite the original integral as∫ ∞

0 x
–αeixdx = i1–α

1–α k [22, p. 194]. For some values of α he already knew k, enabling
him to solve the original integral in these cases.

But what is i1–α? As i is a value on the unit circle in the complex plane, the value i1–α

will also be on this circle. For example, taking α = 1
2 , we have i1–α =

√
i = 1√

2
+ 1√

2
i .

For a general α we can write

i1–α = cos(φ) + i sin(φ)

https://doi.org/10.1017/S1755020323000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000163


10 BRAM PEL

for some φ which depends on α. To express φ in terms of α, we can use the fact
that (i1–α)

2
1–α = i2 =– 1 to see that (i1–α)

2
1–α = (cos(φ) + i sin(φ))

2
1–α = cos( 2φ

1–α ) +
i sin( 2φ

1–α ) =– 1. From this it follows that cos( 2φ
1–α ) = 	(– 1) =– 1, that is, 2φ

1–α =
(2r + 1)�. In other words, φ = (2r + 1)(1 – α) �2 for some r ∈ Z, while we also have
sin( 2φ

1–α ) = 
(– 1) = 0, so 2φ
1–α = j�, or in other words, φ = j(1 – α) �2 for some j ∈ Z.

This second condition imposes no further restriction since 2r + 1 is already an integer.
Therefore the values of φ that yield correct values for both the real and the imaginary
components of i1–α are φ = (2r + 1)(1 – α) �2 for r ∈ Z. Thus,

∫ ∞

0
x–αeixdx = i1–α k

1 – α

=
[
cos

(
(2r + 1)(1 – α)

�

2

)
+ i sin

(
(2r + 1)(1 – α)

�

2

)] k

1 – α
.

Noting that
∫ ∞

0 x
–αeixdx =

∫ ∞
0 x

–α(cos(x) + i sin(x))dx, Laplace found, by taking
real and imaginary components:∫ ∞

0
x–α cos(x)dx =

k

1 – α
cos

(
(2r + 1)(1 – α)

�

2

)
and (4)

∫ ∞

0
x–α sin(x)dx =

k

1 – α
sin

(
(2r + 1)(1 – α)

�

2

)
. (5)

Laplace wanted to find the improper integrals above for some specific values of α. For
these values he already knew k, but we are now left with the issue of choosing the right
value r ∈ Z. Laplace went about finding the proper choice ‘heuristically’: by analysing
the behaviour of these functions on the domains of integration, he could deduce what
value of r is right.

To start off his investigation of these integrals, Laplace claimed that∫ ∞

0
x–α sin(x)dx > 0

for all α < 2. Note that he did not merely take α < 1 as before: this is because he
needed the same to hold for 1 + α later on, with 0 < α < 1 as before. He demonstrated
the truth of his claim by proving that the integral is positive over the interval [0, 2�],
whereafter he asserted that this proof can be carried out analogously for the interval
[2n�, 2(n + 1)�] for all n ∈ N.

To show that
∫ ∞

0 x
–α sin(x)dx > 0, Laplace noted that the integrand is strictly

positive for x ∈ [0, �]. Comparing the integrals from x = 0 to x = � and x = � to
x = 2�, we notice that every positive value dx sin(x)

xα in the first interval corresponds to

a negative value dx sin(x+�)
(x+�)α =– dx sin(x)

(x+�)α in the second interval, which is clearly smaller
in absolute terms. Thus, summing corresponding values, the integral from 0 to 2� is
positive. Laplace stated that this argument can be continued for the integral from 0 to
infinity [22, p. 195], which is indeed not hard to see.

Next, Laplace noted that while
∫ ∞

0 x
–α sin(x) is positive, it is smaller than

the same integral taken from x = 0 to x = �. He motivated this by substituting
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x = � + x′; this gives
∫ ∞
�
x–α sin(x)dx =

∫ ∞
0 (x′ + �)–α sin(x′ + �)dx′ =–

∫ ∞
0 (x′ +

�)–α sin(x′)dx′, which is negative by virtue of the same reasoning applied above to
show that

∫ ∞
0 x

–α sin(x)dx is positive. Because the integral from x = � to x infinite is
negative, but the integral from x = 0 to x infinite is positive overall, we must have that∫ �

0
x–α sin(x)dx >

∫ ∞

0
x–α sin(x)dx >

∫ ∞

�

x–α sin(x)dx. (6)

Laplace then moved on to investigate the integral
∫ ∞

0 x
–α cos(x)dx. He noted

that
∫
x–α cos(x)dx = sin(x)

xα + α
∫ sin(x)
xα+1 dx, which can be derived directly using

integration by parts. He noted that by integrating over x ∈ [0,∞) this expression

becomes
∫ ∞

0 x
–α cos(x)dx = sin(x)

xα

∣∣∣x=∞

x=0
+ α

∫ ∞
0

sin(x)
xα+1 dx. Laplace stated that the term

sin(x)
xα

∣∣∣x=∞

x=0
is zero, but did not demonstrate this. Using l’Hôpital’s rule, we can see for

ourselves that

sin(x)
xα

∣∣∣∣
x=∞

x=0
= lim
x→∞

sin(x)
xα

– lim
x→0

sin(x)
xα

=– lim
x→0

cos(x)
αxα–1

= 0,

where we used the fact that α – 1 < 0. We have thus found that
∫ ∞

0 x
–α cos(x)dx =

α
∫ ∞

0
sin(x)
xα+1 dx = α

∫ ∞
0 sin(x)x–(α+1)dx. Now, because 1 + α < 2, Laplace was able to

use his previous result to conclude that this last integral must be positive and finite.
Consequently, the integral

∫ ∞
0 x

–α cos(x)dx is positive and finite as well.
As he did with the sine integral, Laplace showed that the significant positive part of

this entire integral occurs in the leftmost part of the domain: By substitutingx = �
2 + x′

into the integral
∫ ∞
�
2

cos(x)
xα dx, we get

∫ ∞

�
2

cos(x)
xα

dx =
∫ ∞

0

cos(x′ + �
2 )

(x′ + �
2 )α
dx′

=–
∫ ∞

0

sin(x′)
(x′ + �

2 )α
dx′

< 0,

but the integral from 0 to infinity is positive, so we must have∫ �
2

0

cos(x)
xα

dx >

∫ ∞

0

cos(x)
xα

dx >

∫ ∞

�
2

cos(x)
xα

dx. (7)

With these results out of the way, Laplace returned to equations (4) and (5). He was
interested in the case where 1 – α is ‘infinitely small’, that is, he let α → 1 [22, p. 196].
Laplace stated that in this case, equation (5) gives∫ ∞

0

sin(x)
x
dx = (2r + 1)

�

2
k
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12 BRAM PEL

for some r ∈ Z. This isn’t immediately obvious, as Laplace did not explain
why limα→1

k
1–α sin((2r + 1)(1 – α) �2 ) = (2r + 1) �2k. This can be seen by applying

l’Hôpital’s rule:

lim
α→1

k

1 – α
sin

(
(2r + 1)(1 – α)

�

2

)
=

(
lim
α→1
k

)
lim
α→1

sin((2r + 1)(1 – α) �2 )
1 – α

=
(

lim
α→1
k

)
lim
α→1

–
(2r + 1) �2 cos((2r + 1)(1 – α) �2 )

– 1

=
(

lim
α→1
k

)
(2r + 1)

�

2
,

which is our desired result, given that Laplace simply wrote k = limα→1 k. Now, to

derive the value of k when α → 1, we consider the integrand of k =
∫ ∞

0 e
–t

1
1–α dt. As

α → 1, we have 1
1–α → ∞, so depending on the value of t we can determine the value

of the integrand for every point on the domain of integration. To see this, notice that

for t ∈ [0, 1) we have limα→1 e
–t

1
1–α = 1, and for t ∈ (1,∞) we have limα→1 e

–t
1

1–α = 0.
For t = 1 the integrand is always equal to e–1, but this is inconsequential to the value of
the integral as it’s just one point in the domain with no continuous neighbourhood. As
such, we see that the integrand of k becomes a sort of step function as α → 1, starting
with value 1 and dropping to 0 after t = 1; we thus have limα→1 k = 1.

It is worth stopping here to consider what this reasoning tells us about Laplace’s
thinking. The outlined approach follows Laplace’s article closely, thus showing that he
indeed did not think of k as an integral along a diagonal ray in the complex plane, but
as an integral along the positive real axis. Indeed, to evaluate it he only considers values
of t on the real line. Now that we know definitively that Laplace did not transform his
domain, we can wonder why he made this mistake and if he was aware of it: we will
return to these questions later on.

Laplace then substituted the value he deduced for k to find that
∫ ∞

0
sin(x)
x dx =

(2r + 1) �2 for some r ∈ Z. Next, he used the upper bounds (6) he had derived previously
to determine the correct choice of r. He noted that∫ ∞

0

sin(x)
x
dx <

∫ �

0

sin(x)
x
dx

<

∫ �

0

x

x
dx

= �,

where he used the fact that sin(x) < x on (0, �]. Therefore (2r + 1) �2 ∈ [0, �], so the

only choice for r that makes sense is r = 0. Laplace had thus found that
∫ ∞

0
sin(x)
x dx =

�
2 , which is indeed correct.

Laplace noted that we then also find
∫ ∞

0
cos(x)
x to be infinite, ‘as expected’ [22, p.

196]. This can be seen by filling in r = 0 in equation (4); letting α → 1, the integral
diverges.

He continued by considering α = 1
2 . In this case, we have k =

∫ ∞
0 e

–t2dt. Laplace
noted [22, p. 196] that he already considered this integral in a publication from 1782,
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wherein he derived that
∫ ∞

0 e
–t2dt = 1

2

√
� [21, p. 223]. Filling in these values for k and

α in equations (4) and (5), we get∫ ∞

0

cos(x)√
x
dx =

√
� cos

(
(2r + 1)�

4

)
,∫ ∞

0

sin(x)√
x
dx =

√
� sin

(
(2r + 1)�

4

)
.

We have seen earlier that both of these integrals should be positive, so we want both
the sine and cosine of (2r+1)�

4 to be positive. This only happens when (2r+1)�
4 ∈ [0, �2 ],

or in the same interval but shifted by 2�, that is, when (again) r = 0 or when r is a
multiple of 4. In this case, we have

cos
(

(2r + 1)�
4

)
= sin

(
(2r + 1)�

4

)
=

1√
2
,

so ∫ ∞

0

cos(x)√
x
dx =

∫ ∞

0

sin(x)√
x
dx =

√
�

2
.

Here, Laplace referred to a work by the Italian mathematician Lorenzo Mascheroni,
wherein Mascheroni found that

∫ ∞
0

cos(x)√
x
dx =

√
2� [27, p. 57]. Laplace thus rejected

these findings, and easily demonstrated why Mascheroni’s result could not be true.
Using (7), he noted that ∫ ∞

0

cos(x)√
x
dx <

∫ �
2

0

cos(x)√
x
dx

<

∫ �
2

0

dx√
x

= [2
√
x]
x= �2
x=0

=
√

2�,

so Mascheroni indeed overestimated the integral. In this case, Laplace’s ‘passage from
the real to the imaginary’ is arguably more successful than the usual strictly real
methods used by earlier mathematicians like Mascheroni.

Before we move on to the next section, it’s worth stopping to discuss whether it is
possible that Laplace did know about his ‘oversight’. The article suggests that Laplace
either didn’t recognise the shakiness of his argument, or that he simply didn’t care.
We have already seen that he did intend for (2) to mean integration along R+. This
suggests a few potential explanations for Laplace’s thinking.

First, we could suppose that Laplace legitimately believed that the domain of
integration does not change. Historically, one could argue that this makes sense. It is
probable that Laplace was aware of the geometric interpretation of complex numbers
in the plane, as discussion of this notion can be found in the work of Wessel and
more notably Argand [15]. However, it is unlikely that Laplace thought about his
domain transformation in such a geometric sense, involving line integrals; rather, it is
apparent that he thought about integration in terms of intervals defined by bounds,
not along lines in some space. He only ever discussed transformation of integration
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domains by stating the new endpoints—in Laplace’s words, integrals are always taken
‘from x = a to x = b’. Therefore, the substitution he used would not seem to him to
transform the integral along one dimension into a multi-dimensional line integral: it
was some years before Cauchy published his work on integration between imaginary
limits [9]. If we view the complex unit i as just another constant, it makes sense
to assume that i [0,∞) = [0,∞), as this is actually true for any non-negative real
constant.

Alternatively, one could hypothesise that Laplace should have at least hesitated
to believe that the transformation is as straightforward as he claimed in his finalised
work. In his time it would not be possible to just check his results using a computer, but
there were numerical methods for the approximation of integrals. It is conceivable that
Laplace may have carried out some manual computation to approximate the results he
should be getting. Seeing how his approximations match up with the values he finds
later on, this could have reaffirmed Laplace’s trust in the shaky methods he was using,
prompting him to just write the methods off as correct.

A final hypothesis is that Laplace was fully aware of the necessary complex
transformation, but he deemed it obvious enough to leave unexplained why the domain
of integration doesn’t matter. This seems unlikely, as we have shown earlier that simple
intuitive arguments of rotational invariance do not work here. We had to employ theory
which would be developed by Cauchy some years after Laplace’s publication, which
seems a bit out of reach for Laplace, and definitely not obvious enough to leave out of
his written proof. Of course, it is possible that Laplace found another approach which
does not rely on Cauchy’s integral theorem, but we would expect this method to be
explained in the article, seeing how thorough he was in the rest of the work.

The phrasing used in the text does not help us much. After performing the
transformation, in the usual matter-of-fact style that is common in both nineteenth
century as well as present-day mathematics, Laplace merely wrote that ‘by taking the
first integral from x = 0 to x infinite; the second integral should be taken from t = 0
to t infinite’ [22, p. 194], the brevity of which suggests that he did not think about the
domain change at all.

As such, there is no evidence to suggest that Laplace was aware of his mistake: he
evidently deemed his incomplete proof to be perfectly valid. Fortunately, we have seen
that his results were still correct.

§3. Poisson’s Sur les intégrales définies. A lot of Poisson’s work was published
in response to publications by others, something for which he has been criticised
as having ‘no ideas of his own’ [10, p. 483]. According to the same biography,
Poisson’s contributions to mathematics have thus been characterised [10, p. 490] by his
development of established theory through his talent for calculation: we will see this
talent for calculation amply displayed in this section.

In Poisson’s article Sur les intégrales définies, he gave justifications for the integrals
computed by Laplace in [22], but he insisted on using strictly real methods, or ‘direct
proofs’ [30, p. 243]. Rather than addressing the mistake we found—which he did not
seem to notice either—Poisson objected to the fact that Laplace used complex numbers
in the first place, deeming this method ‘indirect’. Poisson’s alternative proof is long and
pretty tedious, involving more trigonometry, more coordinate transformations and
more other integrals along the way, but it does achieve what Poisson set out to do:
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to prove the same results as Laplace, without ever resorting to the use of complex
numbers.

Laplace had previously found that∫ ∞

0
x–α cos(x)dx =

k

1 – α
cos

(
(2r + 1)(1 – α)

�

2

)
, (4)∫ ∞

0
x–α sin(x)dx =

k

1 – α
sin

(
(2r + 1)(1 – α)

�

2

)
, (5)

where k =
∫ ∞

0 e
–t

1
1–α ,α ∈ (0, 1), and r ∈ Z. From this, he had found values for the two

integrals by choosing proper values of r, where he chose r to fit the expected behaviour
of the functions involved. It turned out that r should be chosen to be zero for the
values of α that Laplace considered. All the complex number reasoning happens in the
derivation of these two identities (4) and (5), and all the work afterwards uses ordinary
real methods. As such, Poisson was interested in finding ‘direct proofs’ of the identities
above. Because r = 0 in the rest of Laplace’s proof, Poisson would derive the identities
with this value of r, yielding the following identities:∫ ∞

0
x–α cos(x)dx =

k

1 – α
cos

(
(1 – α)

�

2

)

=
k

1 – α
cos

(�
2

– α
�

2

)
=
k

1 – α
sin

(α�
2

)
, (8)

∫ ∞

0
x–α sin(x)dx =

k

1 – α
sin

(
(1 – α)

�

2

)

=
k

1 – α
sin

(�
2

– α
�

2

)
=
k

1 – α
cos

(α�
2

)
. (9)

However, before proving these identities, Poisson had to lay some groundwork. He
stated that ‘in order to bring together under a single point of view what has so far been
found to be most general about definite integrals, we shall begin by dealing with those
which contain exponentials’ [30, p. 244]. He considered the integral7

∫ ∞
0 e

–xnxp–1dx
wherein p and n are positive integers. For his purposes, Poisson considered n to be a
given quantity, whereafter he wanted to know what happens when p changes. To reflect
this, he considered the value of this integral φ as a function of p:

φ(p) :=
∫ ∞

0
e–xnxp–1dx, (10)

whereafter he continued his investigation of this function φ. Using integration by parts,
he rewrote

7 Poisson used an interesting notation for infinity. Where Laplace wrote ‘x infinite’ to denote
that x goes to infinity, Poisson wrote x = 1

0 .
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φ(p) =
∫ ∞

0
e–xnxp–1dx

=
1
p
e–xnxp

∣∣∣x=∞

x=0
+
n

p

∫ ∞

0
e–xnxp+n–1dx.

Poisson claimed that the first term vanishes when evaluated at the specified endpoints.

It’s easy to see that 1
p e

–xnxp
∣∣∣
x=0

= 0, and we can see that 1
p e

–xnxp
∣∣∣
x→∞

= 0 by

repeated application of l’Hôpital’s rule. To simplify some steps, we use the fact that
e–xn < e–x for all x > 1.

1
p
e–xnxp

∣∣∣∣
x→∞

=
1
p

lim
x→∞

xp

exn

≤ 1
p

lim
x→∞

xp

ex

=
1
p

lim
x→∞

pxp–1

ex

=
1
p

lim
x→∞

p(p – 1)xp–2

ex

...

=
1
p

lim
x→∞

p!
ex

= 0.

Because 1
p e

–xnxp is non-negative for any x ∈ [0,∞), we then have

0 ≤ lim
x→∞

1
p
e–xnxp ≤ 0,

so limx→∞
1
p e

–xnxp = 0. We have thus found the following expression for φ(p):

φ(p) =
n

p

∫ ∞

0
e–xnxp+n–1dx

=
n

p
φ(p + n). (11)

Poisson noted that for any p > n, he could repeatedly subtract n from p; let’s say
m ∈ Z times, until we are left with a number r smaller than n. Using a different
notation, we can writep ≡ r(mod n), orp = mn + r. The equality (11) then teaches us
that φ(r) = n

r φ(r + n) = n
r (

n
r+n φ(r + 2n)) = ··· = nm

r(r+n)...(r+(m–1)n)φ(r +mn), or that

φ(p) = r(r+n)...(r+(m–1)n)
nm φ(r). As such, for any p > n we can find φ(p) from φ(r) where

r is the remainder of p after division by n, that is, a number smaller than n. As Poisson
noted, the scope of our investigation of φ is now significantly smaller: we only have to
find the values of φ(p) for p ≤ n.
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It turns out that φ(n) is readily found. Substituting p = n into the definition (10)
of φ, Poisson claimed that8

φ(n) =
∫ ∞

0
e–xnxn–1dx

=
1
n
e–xn

∣∣∣x=∞

x=0
.

Now, the only values of p left to consider when investigating φ(p) are those for which
p < n. Poisson continued his investigation using double integrals. He introduced a new
value q and takes its φ-value φ(q) =

∫ ∞
0 e

–ynyq–1dy, wherein he used y as a dummy
variable instead of x as in equation (10) to distinguish between φ(p) and φ(q). He
notes that

φ(p)φ(q) =
∫ ∞

0
e–xnxp–1dx

∫ ∞

0
e–ynyq–1dy

=
∫∫
V

e–(xn+yn)xp–1yq–1dxdy,

where V denotes the first quadrant of R2, that is, V := [0,∞) × [0,∞). Poisson then
substituted y = xz, which gives dy = xdz. He stated that this substitution is well-
defined because ‘integration relative to y supposes that x is held constant’ [30, p. 245],
which ensures that y = xz is still uniquely defined when integrating y even though
x is a variable quantity. Because x and y are both positive on the entire domain of
integration,9 we have z ∈ [0,∞) as well:

φ(p)φ(q) =
∫∫

[0,∞)×[0,∞)
e–(xn+yn)xp–1yq–1dxdy

=
∫∫
V

e–(xn+(xz)n)xp–1(xz)q–1dx(xdz)

=
∫∫
V

e–xn(1+zn)xp+q–1zq–1dxdz.

Next, we perform another change of variables. Let x = t(1 + zn)– 1
n , which gives dx =

dt(1 + zn)– 1
n , with t ∈ [0,∞). Then

8 There is a typo here in the antiderivative of e–xnxn–1. The antiderivative 1
n e

–xn is incorrect:

using the chain rule we see that ddx
1
n e

–xn =– e–xnxn–1. As such, the correct antiderivative

is – 1
n e

–xn . Poisson knew the correct anti-derivative, it seems, because he goes on to state
that ‘because of the limits x = 0 and x infinite, we have φ(n) = 1

n ’ [30, p. 245]. However,
if we would evaluate the expression for φ(n) as the text suggests it, we would find φ(n) =

limx→∞
[

1
n e

–xn
]

–
[

1
n e

–xn
]
x=0

=– 1
n ; if we use the correct antiderivative – 1

n e
–xn , we indeed

get

φ(n) =
1
n
. (12)

It is thus probable that Poisson did find the correct antiderivative in his own notes, but that
he or some editor missed a minus sign when writing the article.

9 Of course, x = 0 at the left end of the domain, but we can equivalently take the domain to
be (0,∞).
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φ(p)φ(q) =
∫∫
V

e–xn(1+zn)xp+q–1zq–1dxdz

=
∫∫
V

e
–
(

t
n√1+zn

)n
(1+zn)

(
t

n
√

1 + zn

)p+q–1

zq–1
(

dt
n
√

1 + zn

)
dz

=
∫∫
V

e–tn tp+q–1zq–1(1 + zn)– p+q
n dtdz.

This last double integral can be rewritten as the product of two integrals, yielding the
following identity:

φ(p)φ(q) =
∫∫
V

e–tn tp+q–1zq–1(1 + zn)– p+q
n dtdz

=
∫ ∞

0
e–tn tp+q–1dt

∫ ∞

0

zq–1

(1 + zn)
p+q
n

dz

= φ(p + q)
∫ ∞

0

zq–1

(1 + zn)
p+q
n

dz, (13)

so the product of φ-values φ(p)φ(q) can be deduced from the φ-value of the sum
p + q, provided that we can solve the integral

∫ ∞
0

zq–1

(1+zn)
p+q
n
dz. To solve this integral,

Poisson made yet another substitution, letting 1 + zn = 1
1–xn . This gives z = x

1–xn and
dz = dx

(1–xn) n
√

1–xn
, and for z ∈ [0,∞) we have x ∈ (0, 1). With this substitution, we find

a new integral that depends on p and q, for which Poisson introduced the notation(
q

p

)
, which was first used by Euler [30, p. 246]:

∫ ∞

0

zq–1

(1 + zn)
p+q
n

dz =
∫ 1

0

xq–1

(1 – xn)
q–1
n

(1 – xn)
p+q
n (1 – xn)– n+1

n dx

=
∫ 1

0
xq–1(1 – xn)

1–q+p+q–n–1
n dx

=
∫ 1

0

xq–1

n
√

(1 – xn)n–p
dx (14)

=:
(
q

p

)
.

Using this notation, equation (13) becomes

φ(p)φ(q) = φ(p + q)
(
q

p

)
. (13)

Note that because φ(p + q) = φ(q + p) and φ(p)φ(q) = φ(q)φ(p), we have
(
q

p

)
=(

p

q

)
. For some particular values of q and p, we can find

(
q

p

)
. If we take for example

p = n and q arbitrary, we have
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(
q

p

)
=

(q
n

)

=
∫ 1

0

xq–1

n
√

(1 – xn)n–n
dx

=
∫ 1

0
xq–1dx

=
[

1
q
xq

]x=1

x=0

=
1
q
, (15)

and if we take p + q = n, or p = n – q, we find(
q

p

)
=

∫ 1

0

xq–1

n
√

(1 – xn)n–p
dx

=
∫ ∞

0

zq–1

(1 + zn)
p+q
n

dz

=
∫ ∞

0

zq–1

(1 + zn)
(n–q)+q
n

dz

=
∫ ∞

0

zq–1

1 + zn
dz,

where we reversed the transformation used to obtain (14). Poisson did not solve this
last integral himself, but instead cited Lacroix [20, p. 411] who had found the value of
this integral to be ∫ ∞

0

zq–1

1 + zn
dz =

�

n sin( q�n )
, (16)

so (
q

n – q

)
=

�

n sin( q�n )
. (17)

Combining equations (12), (13) and (17),

φ(p)φ(n – p) = φ(p + n – p)
(
p

n – p

)

= φ(n)
�

n sin(p�n )

=
�

n2 sin(p�n )
, (18)

where we used the fact that (n – p) + p = n, enabling us to apply equation (17).
Poisson spent some more time discussing how to find values of φ, but these results

were not used in the derivation of Laplace’s equations. Therefore we will not go into
these parts of the article, instead of moving on to the first introduction of integrals
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involving sines and cosines. Poisson introduced another function of p for one such
integral:

�(p) :=
∫ ∞

0
xp–1 cos(a + xn)dx, (19)

wherein n ∈ N is a given positive integer, while a ∈ R is a given real constant. Next,
he multiplied �(p) by φ(n – p) to get

φ(n – p)�(p) =
∫ ∞

0
e–ynyn–p–1dy

∫ ∞

0
xp–1 cos(a + xn)dx

=
∫∫
V

e–ynyn–p–1xp–1 cos(a + xn)dxdy,

wherein we again let V denote [0,∞) × [0,∞). Poisson performed a change of variables
by substituting y = xz, which yields dy = xdz. The domain of integration for z is still
[0,∞):

φ(n – p)�(p) =
∫∫
V

e–(xz)n (xz)n–p–1xp–1 cos(a + xn)dx(xdz)

=
∫∫
V

e–xnzn zn–p–1xn–1 cos(a + xn)dxdz. (20)

Poisson approached this expression by ‘first integrating relative to x’ [30, p. 249]. He
evaluated the integral

∫
e–xnznxn–1 cos(a + xn)dx, which we will denote by I. Using

integration by parts twice, he found

I =
1
n
e–xnzn sin(a + xn)

+ zn
∫
e–xnznxn–1 sin(a + xn)dx,

=
1
n
e–xnzn sin(a + xn) –

zn

n
e–xnzn cos(a + xn)

– z2n
∫
e–xnznxn–1 cos(a + xn)dx,

=
1
n
e–xnzn sin(a + xn) –

zn

n
e–xnzn cos(a + xn) – z2nI,

and since this last integral equals the one we started with, solving for I gives

I =
∫
e–xnznxn–1 cos(a + xn)dx =

e–xnzn

n(1 + z2n)

(
sin(a + xn) – zn cos(a + xn)) .

We can then evaluate the definite integral∫ ∞

0
e–xnznxn–1 cos(a + xn)dx = lim

x→∞

e–xnzn

n(1 + z2n)

(
sin(a + xn) – zn cos(a + xn))

– lim
x→0

e–xnzn

n(1 + z2n)

(
sin(a + xn) – zn cos(a + xn))

= 0 –
1

n(1 + z2n)
(sin(a) – zn cos(a))

=
zn cos(a) – sin(a)
n(1 + z2n)

.
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Substituting this back into the original double integral (20), we find

φ(n – p)�(p) =
∫∫
V

e–xnzn zn–p–1xn–1 cos(a + xn)dxdz

=
∫ ∞

0
zn–p–1

(∫ ∞

0
e–xnznxn–1 cos(a + xn)dx

)
dz

=
∫ ∞

0
zn–p–1

(
zn cos(a) – sin(a)
n(1 + z2n)

)
dz

=
cos(a)
n

∫ ∞

0

z2n–p–1

1 + z2n dz –
sin(a)
n

∫ ∞

0

zn–p–1

1 + z2n dz,

which we can rewrite using equation (16):

φ(n – p)�(p) =
cos(a)
n

∫ ∞

0

z2n–p–1

1 + z2n dz –
sin(a)
n

∫ ∞

0

zn–p–1

1 + z2n dz

=
cos(a)
n

· �

2n sin
(

(2n–p)�
2n

) –
sin(a)
n

· �

2n sin
(

(n–p)�
2n

)

=
cos(a)
n

· �

2n sin(p�2n )
–

sin(a)
n

· �

2n cos(p�2n )

=
�

2n2

(
cos(a)
sin(p�2n )

–
sin(a)

cos(p�2n )

)
.

Multiplying both sides by φ(p) and applying equation (18), Poisson found that

φ(p)φ(n – p)�(p) =
�φ(p)

2n2

(
cos(a)
sin(p�2n )

–
sin(a)

cos(p�2n )

)
,

�

n2 sin(p�n )
�(p) =

�φ(p)
2n2

(
cos(a)
sin(p�2n )

–
sin(a)

cos(p�2n )

)
,

�(p) = φ(p) sin
(p�
n

) (
cos(a)

2 sin(p�2n )
–

sin(a)
2 cos(p�2n )

)
.

By a trigonometric sum formula, we have sin
(p�
n

)
= 2 cos

(p�
2n

)
sin

(p�
2n

)
, so

�(p) = φ(p) sin
(p�
n

) (
cos(a)

2 sin(p�2n )
–

sin(a)
2 cos(p�2n )

)

= φ(p)
(

2 cos
(p�

2n

)
sin

(p�
2n

)) (
cos(a)

2 sin(p�2n )
–

sin(a)
2 cos(p�2n )

)

= φ(p)
(

cos(a) cos
(p�

2n

)
– sin(a) sin

(p�
2n

))
. (21)
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Using the trigonometric difference formula cos(α + �) = cos(α) cos(�) – sin(α) sin(�),
Poisson also derived another expression for �(p) from its definition (19):

�(p) =
∫ ∞

0
xp–1 cos(a + xn)dx

=
∫ ∞

0
xp–1 [

cos(a) cos(xn) – sin(a) sin(xn)
]
dx

= cos(a)
∫ ∞

0
xp–1 cos(xn)dx – sin(a)

∫ ∞

0
xp–1 sin(xn)dx. (22)

Now, Poisson claimed that by ‘equating on both sides the terms that contain cos(a)
and those that contain sin(a)’ [30, p. 251], we can combine equations (21) and (22) to
get ∫ ∞

0
xp–1 cos(xn)dx = cos

(p�
2n

)
φ(p)

= cos
(p�

2n

) ∫ ∞

0
e–ynyp–1dy, (23)∫ ∞

0
xp–1 sin(xn)dx = sin

(p�
2n

)
φ(p)

= sin
(p�

2n

) ∫ ∞

0
e–ynyp–1dy. (24)

‘Equating terms on both sides’ boils down to claiming that cos(a)α + sin(a)� =
cos(a)� + sin(a)	 implies α = � and � = 	. This is generally not true for fixed a,
but a is arbitrary in the definition of �(p), enabling us to deduce the result. By setting
a = 0 we have cos(a) = 1 and sin(a) = 0, so we must have α = �, and setting a = �

2
we have cos(a) = 0 and sin(a) = 1 so we get � = 	.10 Poisson’s argument thus checks
out, so equations (23) and (24) are valid.

Next, Poisson substituted x = z
1
n , dx = 1

n z
1
n –1dz, y = t

1
p and dy = 1

p t
1
p –1dt into

equation (23) to obtain∫ ∞

0
xp–1 cos(xn)dx = cos

(p�
2n

) ∫ ∞

0
e–ynyp–1dy,

∫ ∞

0
(z

1
n )p–1 cos((z

1
n )n)(

1
n
z

1
n –1dz) = cos

(p�
2n

) ∫ ∞

0
e–(t

1
p )n (t

1
p )p–1 1

p
t

1
p –1dt,

1
n

∫ ∞

0
z
p
n –1 cos(z)dz =

cos
(p�

2n

)
p

∫ ∞

0
e–t

n
p
dt, (25)

and by performing the same substitutions in equation (24), we get

1
n

∫ ∞

0
z
p
n –1 sin(z)dz =

sin
(p�

2n

)
p

∫ ∞

0
e–t

n
p
dt. (26)

10 In more abstract terms, we used the fact that the sine and cosine functions are linearly
independent in function space; for linearly independent vectors �v, �w it is true thatα�v + � �w =
��v + 	 �w implies α = � and � = 	.
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Finally, Poisson derived Laplace’s results (8) and (9) by letting α = 1 – np , which gives

p = n(1 – α), n = p
1–α and 1

1–α = n
p . Substituting this into (25), we get

1
n

∫ ∞

0
z
p
n –1 cos(z)dz =

cos
(p�

2n

)
p

∫ ∞

0
e–t

n
p
dt,∫ ∞

0
z–(1– pn ) cos(z)dz =

n

p
cos

(
n(1 – α)�

2n

) ∫ ∞

0
e–t

1
1–α dt,∫ ∞

0
z–α cos(z)dz =

1
1 – α

cos
(�

2
–
α�

2

) ∫ ∞

0
e–t

1
1–α dt,∫ ∞

0
z–α cos(z)dz =

k

1 – α
sin

(α�
2

)
, (27)

wherein we let k :=
∫ ∞

0 e
–t

1
1–α dt as before. Similarly, by substituting α = 1 – pn into

equation (26), we get ∫ ∞

0
z–α sin(z)dz =

k

1 – α
cos

(α�
2

)
. (28)

Apart from different variable names, Poisson had seemingly derived equations (8) and
(9) perfectly. However, there is one difference between the results derived by Laplace
and those derived by Poisson. When transforming his results to match those of Laplace,
Poisson let α = 1 – pn . This seems to work, since both n and p are arbitrarily chosen
positive integers, according to our definition (10). This enables us to find the result
for any rational α ∈ (0, 1). This can easily be verified: given any rational number
between 0 and 1, say ab with b, a ∈ N and b > a, we can let p = b – a and n = b to get
α = 1 – pn = b

b – b–ab = a
b . However, the expression 1 – np can only ever be a rational

number for any choice of p and n, while Laplace’s findings hold for any valueα ∈ (0, 1),
including irrational numbers. It is likely that Poisson did not worry about the irrational
cases, as his results seem easy to extend using a limit argument. In any case, in the rest
of Laplace’s article he only ever considered rational values of α, so for his purposes
the rational results suffice. It should, however, be noted that we can attribute some
epistemic benefit to Laplace’s proof over Poisson’s, in that Laplace’s proof derives a
more general partial result in at least this part of the proof—if we are willing to accept
Laplace’s methods, his proof brings stronger results. This apparent reduced generality
of Poisson’s proof could also be seen earlier, when Poisson reduced equations (4)
and (5) which Laplace had found to the less general equations (8) and (9). It seems
that Laplace arrived at these results more easily and naturally, while Poisson’s direct
methods required a longer and arguably more complicated proof to arrive at the same
conclusions.

As mentioned in the introduction, the case has been made that pure proofs are
generally more simple than impure proofs. We will soon discuss whether Poisson’s
proof is an example of a pure proof, but we can see already that ‘direct’ proofs in
Poisson’s sense are generally not simpler than indirect ones.

§4. The issue of directness. The two articles which we just discussed initiated an
exchange between Laplace and Poisson, where both authors continued to dwell on the
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use of complex substitutions and the issue of ‘directness’. We will now turn to this
discussion beyond the particular computations we have seen thus far.11

Laplace’s initial article from 1809 contains some brief comments on his choice of
method. Laplace explained that ‘when results are expressed in indeterminate quantities,
the generality of the notation embraces all cases, whether real or imaginary’ [22, p. 193].
By ‘indeterminate quantities’, Laplace meant variables: he thus seems to have used the
‘generality of analysis’ as a justification for his use of complex numbers [7, p. 96].
Citing an article from 1785 [21] wherein he had used another complex substitution
to solve different integrals, he then announced that in this article he would give some
new applications of this artifice remarquable, or ‘remarkable artifice’. His phrasing
here suggests that he was surprised by the usefulness of this ‘passage from the real to
the imaginary’, but he also seems to have expressed quite a bit of confidence in the
‘generality of analysis’. Though he may not have been sure about the exact scope of his
methods and possible circumstances under which they may break down, he did believe
in the correctness of his findings, while at the same time recognising that his approach
was at least unusual.

A year later Laplace would use the same technique to deduce other results,
commenting that they follow ‘very simply’ from the ‘reciprocal passage of the imaginary
to the real results’. He compared this passage to similar passages from the natural
numbers to the rationals which enabled some geometers to deduce theorems ‘by
induction’, that is to say, by generalisation [7, p. 96]. He notes that these methods
‘confirm the generality of analysis’, but only when used ‘with reserve’ [23, p. 304]. This
particular comment makes Laplace’s thoughts cloudy: he goes on about the ‘generality
of analysis’, while also warning that the passage should be used ‘with reserve’. Laplace
thus seems to proclaim the general validity of such methods, while also admitting that
cases do exist where we should refrain from using them.

Poisson was more explicitly opposed to the use of this ‘artifice’. His response to
Laplace’s use of it in 1809 was to propose a ‘direct’ method of proving the identities that
Laplace derived. For Poisson, ‘Laplace’s method was based on a “kind of induction,”
based on the “passage from the real to the imaginary quantities”’ [7, p. 97]. Rather
than accepting Laplace’s proof, Poisson proposed to derive the same results ‘directly’
[30, p. 243]. Poisson did not communicate a clear judgment of the worth of Laplace’s
proof by calling it ‘indirect’, but by publishing his (laborious) direct proof he did let
on that he deemed direct proof to be at least important enough to think and write
about.

In turn, Laplace published another article in 1811 wherein he also gives a direct
computation of an integral which he had computed by indirect methods earlier [25].
In another article from 1811 [24], Laplace again referred to some of his earlier results
obtained using imaginary substitutions, stating that he had obtained them through

11 We focused on these two articles in particular because they initiated the back-and-forth
between Laplace and Poisson, but we will also look at later articles to highlight other
relevant comments. I am indebted to a section from Hidden Harmony—Geometric Fantasies
by Umberto Bottazzini and Jeremy Gray [7, pp. 95–98] for the general direction of Laplace
and Poisson’s discussion, as well as for their translations: though I have checked the
original sources myself, I will use Bottazzini and Gray’s translations extensively in this
section.
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a ‘singular analogy based on the passage from the real to the imaginary’ [7, p. 97],
whereafter he again emphasised that these methods should be used with ‘great care
and discretion’. His confidence in the ‘generality of analysis’ seems to have weakened a
bit here: he even stated that this passage should be used as a ‘means of discovery’ and
that we still require a ‘direct proof’ of the results so obtained [7, p. 97]. Despite this,
Laplace went on to provide even more examples of these passages from the real to the
imaginary in the same article.

Summarising the latter 1811 article by Laplace, Poisson remarked that Laplace gave
more examples of the passage from the real to the imaginary, calling it an ‘inductive
method’ while again insisting on the need for more direct methods, such as the one he
would provide in a follow-up article in the same year [7, p. 97].

This process of using the passage from the real to the imaginary ‘with discretion’
continued for several years, where Laplace continued applying it to discover new
identities in order to then verify them directly, or to see Poisson verify them. Eventually
Poisson also admitted that these complex substitutions might be employed as a ‘means
of discovery’ in 1813, when he himself found some integrals using the method only to
insist on always verifying them ‘directly’ as well [7, p. 98].

As such, we see that both authors had their doubts about the use of complex
substitutions. Laplace seemed to appeal to the ‘generality of analysis’ to justify his
use of complex numbers, while also noting that the method should be used sparingly.
Poisson was a bit more conservative, responding to Laplace’s work with repeated
warnings against the use of these indirect methods and always providing direct proofs
instead.

Using our modern perspective, we saw that the careless application of these
substitutions can easily lead to mistakes like the one we saw in Laplace’s work. It should
be noted, however, that Poisson’s objection to Laplace’s proof does not necessarily arise
from a concern for correctness. He does not identify instances where Laplace applies
complex numbers incorrectly, but instead objects to the use of complex numbers in the
first place which he calls indirect in this context, not incorrect.

The discussion between the two raises some interesting questions. Why did Poisson
insist on the use of ‘direct’ methods, and what exactly qualifies a proof as ‘direct’?
Unfortunately Poisson did not pause to offer a reflective commentary on what makes
a proper proof: brief comments like the ones we discussed above are all we get.
Luckily, these questions about what methods belong in proofs and questions about
the validity of using methods which don’t belong come up more frequently, so we
can consult other sources on the matter. Today, we would identify this type of
methodological concern about using methods that are in some sense intrinsic to a
problem as a concern for mathematical purity. In the next section we will compare
Laplace and Poisson’s directness discussion to more recent discussions of mathematical
purity.

§5. Mathematical purity. As we have seen in the introduction, a concern for purity
of proof methods was shared by thinkers like Aristotle, Bolzano and Hilbert. We found
that Aristotle’s definition of purity relies on a division of the sciences, while Bolzano’s
definition relies on the categorisation of some branches of math as ‘more specialised’
than others, or ‘derived from analysis’. Neither of these definitions are completely
satisfactory for our case study, though they do give us some examples of how notions
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of purity were developed throughout history, as well as examples of the difficulties that
arise when trying to define such a nebulous concept.12

Below we will discuss first Detlefsen and Arana’s topical definition, which Arana
has stated to be an interpretation of Hilbert’s statement on purity [3, p. 29]. Second,
we will discuss Kahle and Pulcini’s operational definition, which was proposed as an
alternative to the topical definition. We will then compare them to our case study. Not
only will this contextualise our understanding of what Laplace and Poisson meant by
‘directness’, we will also see that the comparison reveals both the differences between
the two contemporary definitions as well as their intrinsic limits.

§6. Topical purity: Detlefsen and Arana. The 2011 article Purity of Methods by
Detlefsen and Arana formalises what they believe to be one of the central conceptions
of mathematical purity, which they call ‘topical purity’ [13, p. 2]. Along with their
definition, the authors build an argument for the epistemic virtue of topical proofs
over non-topical proofs. It is worth noting that Detlefsen and Arana do not warn
against the use of impure proof methods, they merely argue that pure proof methods
have benefits of their own. This is different from the views of Aristotle and Bolzano,
for example, who argue that purity of method is absolutely necessary for the validity of
(mathematical) reasoning. We have seen that Laplace and Poisson existed somewhere
in between the two extremes, by repeatedly emphasising the necessity of direct (or pure)
proofs, while also admitting that there is some use in impure proofs, at least as a tool
of discovery. Before we can follow Detlefsen and Arana’s reasoning on the epistemic
benefit of topical purity, we must understand their definition, which is rooted in their
view of how our understanding of a problem is determined.

Detlefsen and Arana state that ‘generally speaking, a purity constraint restricts
the resources that may be used to solve a problem to those which determine it’ [13,
p. 13]. They introduce the notion of ‘topically determining commitments’, that is,
the commitments that together determine what the content of a problem is to the
investigator. They elaborate by saying that ‘in mathematics, among those things which
determine contents are definitions, axioms concerning primitive terms, inferences, etc.’
[13, p. 13]. They define the set of topically determining commitments of a problem to
be the topic of said problem. As an example they refer to the ‘infinitude of primes’-
problem, which asks us to prove that there are infinitely many primes. They give a
complete list of what they believe to be the topic of the problem, which we won’t quote
in full here. It includes at least a definition of natural numbers and a definition of
primality: in order to ask whether or not there are infinitely many primes, we need to
understand what numbers are, as well as what it means for a number to be prime.

Using this notion of determining commitments, the authors give their definition of
topical purity. In their own words: ‘We say that a solution E of P is topically pure when
it draws only on such commitments as topically determine P ’.

This definition has a useful property: something interesting happens when for
whatever reason, we wish to retract one of our commitments. Because the topically pure
solution E only draws on commitments that topically determine P , any retraction of a

12 Of course, Aristotle, Bolzano and Hilbert weren’t the only people to discuss purity: other
notable figures who have touched on the subject include Archimedes, Leibniz, Gauss,
Dedekind, Frege, and many others. Michael Detlefsen provides a more complete account of
the ‘history of purity’ in [12].
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commitment that determines the contents of the solution E also leads to a retraction
of one of the commitments that topically determine P . As such, it is impossible for a
pure solution E to stop being a solution (through retraction of one of the necessary
commitments of E) to the problem P without dissolving said problem: If we drop one
of the topically determining commitments, the original problem ceases to exist as we
have previously understood it.

For a solution that is impure, we cannot say the same. It is possible that one of the
commitments that is necessary for the solution but which is not part of the topic of
the problem is retracted: in this case, the solution ceases to solve our problem, while
the problem remains in place.

In order to demonstrate their definition and the useful quality of a topically pure
proof, the authors return to the infinitude of primes problem, for which they compare
two alternative proofs by Euclid and Fürstenberg. Euclid’s proof merely uses the
definitions of natural numbers and primality, while Fürstenberg defines a topology on
the integers to then use topological properties to arrive at the result. Euclid’s proof is
topically pure, seeing as how it only draws on commitments that topically determine
the problem. Fürstenberg’s proof, however, is not topically pure: we could retract
our commitment to topological definitions. If we stop believing in the concept of a
topology, Fürstenberg’s proof is no longer a solution to our problem, but our problem
persists. If we drop our definition of natural numbers, prime numbers, division, or any
of the definitions used in Euclid’s proof, the proof stops working, but our problem
dissolves as well.

Now, this definition of topical purity seems to result in a pretty rigorous way of
identifying pure proofs. Rather than relying on a notion of genus like Aristotle, or
requiring a strict hierarchy of mathematics where some branches are derived from
others like Bolzano, Detlefsen and Arana give more or less precise instructions for
how to determine the purity of a proof. The only difficulty lies in determining the topic
of a problem, that is, the set of determining commitments.

Before we attempt to apply the topical definition to the case of Laplace and Poisson,
it should first be noted that Laplace and Poisson’s case has a slightly different setting.
Laplace starts out with an open question to which he seeks the answer through
computation, rather than a theorem which he seeks to prove. Of course it is easy
to reduce the question–answer case to a theorem–proof situation, by interpreting
Laplace’s work as a proof that the answer he found is indeed the answer to the question
posed: this reduction is always possible in this direction, though not vice versa. We can
view Poisson’s solution as precisely such a reduction, as Poisson seeks to confirm that
Laplace’s findings are correct through direct methods: the ‘theorem’ he seeks to prove
is then that Laplace’s findings were correct.

We are still left with the difficulty of listing the topically determining commitments of
a problem. Notwithstanding this difficulty, we can apply the definition of topical purity
to the case of Laplace and Poisson. In their example, Detlefsen and Arana composed an
exhaustive list of all the commitments necessary to understand the infinitude of primes
problem, including axioms for a successor function, ordering axioms, multiplication,
a definition of primality, et cetera: attempting to do the same for Laplace’s case is
both ambitious and unnecessary for our purposes. Without listing all commitments
necessary for understanding the problem, we can still note which commitments are not
necessary in that list. We have seen that Laplace’s proof uses a complex substitution,
which relies on a commitment to a definition of complex numbers. This commitment
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is clearly not necessary to the statement of the original problem, as we can define
integration of real functions without ever mentioning complex numbers.

As such, Laplace’s proof is not topically pure: if we were to retract our commitment
to a definition of complex numbers, Laplace’s proof falls apart, while our problem
persists. In fact, we have already seen this happen when we ran into the lack of domain
transformation after the substitution. Laplace’s proof relied on the commitment that
complex substitution can be treated similarly to real substitution, which leaves the
domain of integration unchanged. Though he may have believed this was correct, we
disagree: we had to check the argument using even more advanced mathematics. After
reading Cauchy’s work on complex integration, it is likely that Laplace would have
stopped believing in his solution because of the unfounded transformation step. Thus
retracting his commitment to this view of complex substitution, the proof falls apart
while the problem persists, which is precisely what Detlefsen and Arana argued to be
the main pitfall of impure proofs.

Now, Poisson’s proof looks a lot more pure. It only ever uses definitions of integration
and standard, real substitutions in order to arrive at the result. We might be tempted to
conclude that Poisson has given a topically pure proof, and that this topical definition
of purity really is a good formulation of the ideals according to which Poisson did
his work. Unfortunately, things are not that simple. The critical reader may note that
Poisson uses double integration in his proof, a definition of which is not at all required
to understand the original problem.

When we opt to define integration merely for functions of one variable, that is, we let∫ b
a

map functionsf : R → R to real values
∫ b
a
f(x)dx ∈ R, then double integrals lose

their meaning,13 as in those integrals the integrand would be a function f : R2 → R.
Writing the double integral as ‘single integration twice’ would then not work, as the
inner integral would be undefined. We can define integration of functions of one
variable perfectly well without generalising to more variables, so the commitment to a
definition of multiple integrals is strictly speaking not a determining commitment for
the problem. Therefore if we retract it Poisson’s proof does fall apart while our original
problem persists: this restricted definition of integration is enough to understand the
problem Poisson tries to solve.

Thus, perhaps surprisingly, Poisson’s proof is not topically pure either. While Poisson
considered his method to be ‘direct’ and obviously preferable to Laplace’s, he was
apparently not as strict as Detlefsen and Arana. A ‘direct’ proof as Poisson understood
it is therefore not the same thing as a topically pure proof. The ‘strictness’ of Detlefsen
and Arana’s definition can be seen as a limitation, as we might argue that intuitively
it seems like Poisson’s proof is perfectly valid and very much by-the-book in the sense
that it doesn’t seem to appeal to any grossly extraneous concepts.

This ‘strict’ or conservative quality of the definition has been scrutinised in other
cases as well, notably when applied to Euclid’s proof of the infinitude of primes,
Detlefsen and Arana’s original example of a topically pure proof. In an article from
2014 [1], Arana responded to the possible objection that according to their definition,
Euclid’s proof is actually not pure. The basis for this claim is that Euclid’s proof requires
the multiplication of numbers in one of its steps, while a notion of multiplication is not

13 Though this definition seems arbitrarily strict, it is not: repeated integration with respect
to one variable at a time does introduce some additional complexity, for instance, when we
want to switch the order of integration.
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strictly necessary to formulate the original problem. If for example we define primality
using the sieve of Eratosthenes, we don’t need a notion of multiplication to be asking
whether or not there are infinitely many primes. We don’t actually need to define
multiplication to understand the problem, even though it is the inverse operation of
division which seems quite central to a notion of primality.

In response to this objection, Arana gives a more fine-grained analysis of the topic
of the infinitude of primes problem. To deal with the objection he shows that we can
rewrite multiplication in terms of the successor function, which is more obviously
topical for the understanding of natural numbers. Unfortunately, this rewriting results
in a proof which is considerably longer than Euclid’s original formulation, and harder
to grasp quickly. Recall that Arana has elsewhere contested the claim that impure
proofs in general are simpler than pure proofs [2].

Similarly to Poisson’s proof, most people would agree that Euclid’s proof is
elementary or pure based on intuition. In response to the objections against Euclid’s use
of addition and multiplication, Arana rewrote the original proof into a pure version,
thus confirming that Euclid’s original formulation is not pure according to his definition
of topical purity. We will return to the issue of rewriting proofs to arrive at a pure version
later on.

Intuitively, most would agree that the use of multiplication in a proof of the infinitude
of primes should not render a proof impure. The definition of topical purity seems
therefore to be too far removed from our intuitive understanding. To remedy this, we
might simply admit that multiplication is part of the topic of the infinitude of primes
problem, even though it is not strictly necessary for our understanding of the problem.
This context-dependent, liberal use of the topical definition can be extended to our
case study as well: If we admit that multiple integration is just a more general definition
of single-variable integration and that therefore it should be part of the topic of single-
variable problems, Poisson’s proof does not draw on non-topical commitments and is
thus topically pure in that context. In a more recent article, Arana commits to this
context-dependent, or agent-relative quality of the definition, saying that ‘the topic of
a theorem is agent-relative: it is the family of commitments that determine a particular
agent’s understanding of that theorem’ [3, p. 37].

However, when we stray from the black-and-white definition, we make room for more
debatable conclusions. In the same vein, we could pose that complex numbers are a
mere generalisation of the real numbers, and that we ought to consider them topical to
problems involving real numbers. This would make Laplace’s proof topically pure.14 We
can see that this agent-relative view permits a very liberal use of the topical definition,
allowing the definition to stretch and fit widely varying viewpoints depending on
context—context which can be readily chosen at an agent’s leisure.

As such, even though it might be tempting to opt for this context-dependent notion of
topical purity where we admit ourselves the luxury of manually determining the topic of
a problem while disregarding whether or not we actually need a commitment, this gives

14 Detlefsen and Arana propose Fürstenberg’s proof as their example of a topically impure
proof, but depending on context we might consider topological definitions to belong to the
topic of the infinitude of primes problem: in fact, Detlefsen and Arana mention that this view
was expressed by Colin McLarty in correspondence [13, p. 15]. McLarty thus aligns himself
with the Bourbakiste tradition of arithmetic research, a tradition to which Fürstenberg’s
work also belongs, which affords a central role to topology in arithmetic [13, pp. 15–16].
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rise to new issues. By manually deciding amongst ourselves on which commitments
to include in a problem’s topic, we reduce our notion of purity to a question of
consensus or agreement—this use of topical purity is in practice pretty close to simply
using our intuition, agreeing on the purity of a proof based on consensus. In the
same article mentioned before Arana grants that the difficulty of topic determination
remains, leaning into the agent-relative definition of topical purity: ‘We thus treat
topic determination for the time being in the naive way [...], doing so is consistent
with the way mathematicians have treated purity in practice’ [3, p. 29]. As noted, this
loose view of topical purity may be better adapted to account for the widely varying
intuitions about purity held by mathematicians in practice, but unfortunately it limits
its usefulness on its own in analysing individual cases like Laplace–Poisson.

The notion of topical purity does not completely pinpoint the issues that Poisson
and Laplace were discussing, at least not when we apply the definition as strictly
as Arana and Detlefsen originally define it. Neither of their proofs can definitively
be considered topically pure, so Poisson’s preference for ‘direct’ method does not
correspond directly to topical purity in Detlefsen and Arana’s sense. Adopting the
less strict agent-relative definition of topical purity, we could say that Poisson did
not deem complex substitution to belong to the topic of the problem, and thus
disapproved of Laplace’s proof because of its topical impurity. This, however, seems
like a mere reformulation, not giving much deeper insight into the reasons behind
Poisson’s objection.

The definition given by Detlefsen and Arana is probably the most fleshed out
definition of purity existing in the literature today, but there are cases where it is not
completely satisfactory, because the original formulation was too conservative or strict,
while the agent-relative interpretation is not strict enough. Though their definition
seems very rigorous, we still cannot completely accept it as the definitive notion of
mathematical purity, which illustrates just how nebulous purity is as a concept and
how hard it is to define.

We have objected to Detlefsen and Arana’s definition for our own reasons, but
objections based on different grounds have been made as well. In the next section
we turn to another article which objects to Detlefsen and Arana and proposes an
alternative definition of purity instead. We will consider whether this next definition
better matches what Poisson and Laplace were thinking about when they expressed
their preference for ‘direct’ proof.

§7. Operational purity: Kahle and Pulcini. This response to Detlefsen and Arana
was given by Reinhard Kahle and Gabriele Pulcini in their 2018 article Towards
an Operational View of Purity [19]. In the article, the authors highlight a problem
with Detlefsen and Arana’s definition of purity and propose their own alternative: a
definition of ‘operational purity’.

The authors’ issue with topical purity arises from cases where according to them,
topically impure proofs should instead be considered pure. They object to the infinitude
of primes example from Detlefsen and Arana’s paper where Fürstenberg’s topological
proof is labelled as impure by citing a brief paper by Idris Mercer [28]. Mercer rewrites
Fürstenberg’s proof whilst avoiding topological language, in order to show the ‘real
reason that Fürstenberg’s approach works’ [28, p. 355]. Recall that Arana also rewrote
Euclid’s proof in order to arrive at a topically pure version.
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To avoid topological language, Mercer divides the integers up into the same sets
that Fürstenberg used as a topology on the integers. Fürstenberg then used some
general properties of topologies to conclude that there must be infinitely many primes,
while Mercer proves that these same ‘topological’ properties hold for the sets that he
defined. By verifying these properties for these particular sets rather than drawing on
topological definitions, Mercer produces a topically pure proof of the infinitude of
primes, which is ‘essentially the same’ as Fürstenberg’s proof.

According to Kahle and Pulcini, this exposes a flaw in Detlefsen and Arana’s
definition of purity, as the ‘same’ proof may be considered either pure or impure
depending on how it is formulated. Regarding how to classify a proof � of a theorem
T as pure, they state that ‘testing purity is thus no longer a matter of confronting the
“content” of � with the “content” of T. Actually, one should be able to rule out the
possibility of rewriting the proof � into a more elementary version �′ whose “content”
does not outstrip the “content” of T any more’ [19, p. 7]. According to Kahle and
Pulcini, Fürstenberg’s proof is equivalent to Mercer’s ‘modulo useless roundabouts’ [19,
p. 8]; the use of topology is not essential to Fürstenberg’s argument, so by eliminating
this ‘useless roundabout’ we obtain Mercer’s pure proof, which the authors consider
‘equal’ to Fürstenberg’s.

In order to provide a definition of purity that avoids this problem, Kahle and Pulcini
define what they call the operational content and ontology of a theorem T or proof
�. They define the operational content of a theorem T (respectively �) as the set
of mathematical operations mentioned in T (respectively �). Given an operational
content, its ontology is defined as the smallest numerical domain (like N,Z,Q, et
cetera) which is closed under all operations in the operational content.

Using these definitions, Kahle and Pulcini then define operational purity. Given a
theorem T and a proof � of T, we call � operationally pure if the ontology of (the
operational content of) � is a subset of the ontology of (the operational content of15)
T. This notion of purity can be understood as follows: a proof of a theorem is pure
if the operations used in it are at most as ‘high-level’ as the operations mentioned
in the theorem, where by a ‘higher-level’ operation we mean an operation that is
only closed under ‘bigger’ number systems. For example, division is a ‘high-level’
operation compared to addition, since N is closed under addition while the smallest
number system closed under division is Q. Similarly, their definition allows us to
compare the ‘pureness’ of two proofs �, φ, rather than looking at their individual
purity; we can say that � is more pure than φ if the ontology of � is a subset of the
ontology of φ.

Kahle and Pulcini then apply their definition to Fürstenberg’s proof of the infinitude
of primes. To do this, they first consider the operational content of the infinitude
of primes problem, wherein they let IP denote the theorem that there are infinitely
many primes: ‘The definition of prime number relies on the division operation, so the
operational content of IP is {/}’.16 Therefore, according to [the definition of ontology],

15 For the sake of readability, we will abbreviate ‘the ontology of the operational content of the
proof/theorem’ by ‘the ontology of the proof/theorem’ from now on.

16 Recall that earlier we have seen that this is not necessarily so. We could formulate our
definition of primality using the sieve of Eratosthenes, in which case division would not be
part of the operational content of IP. In fact, there would be no operations left, according to
Kahle and Pulcini’s limited interpretation of operations.
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we get that [the ontology of IP] is Q [19, p. 9]. Now, if we carefully scan Fürstenberg’s
proof, which we denote by �F , we find that its operational content is {+, ·, –, /,∩,∪}.
Kahle and Pulcini then note that ‘since the inclusion of union and intersection in
any operational content do [sic.] not affect the underlying ontology,17 we get that the
ontology of �F is Q, and so the ontology of �F is a subset of the ontology of IP’ [19,
p. 9]. As such, Fürstenberg’s proof is operationally pure.

Now, before we move on to applying operational purity to our case study, we
will discuss some objections to Kahle and Pulcini’s definition. First of all, adopting
operational purity rather than topical purity as your desired purity-definition comes at
the cost of sacrificing some generality: operational purity as Kahle and Pulcini define
it has no meaning when considering strictly geometrical theorems and their proofs,
as operations on number systems are not strictly required to formulate a geometric
theorem. Operational purity therefore has no meaning when we are interested in
theorems about mathematical objects which are not numerical. One could consider
a geometric equivalent, with for example linear, plane and solid ‘ontologies’, but this
is not proposed by the authors.

Additionally, the definition of operational purity relies on a limited (and arguably
arbitrary) interpretation of what an ‘operation’ is. From the article it seems like the
only operations which qualify as part of operational content are binary, arithmetical
operations like addition and subtraction, but no mention is made of, for example,
unary operations, or operations with input from one set and output in another. The
definitions of operational content, ontology and consequently operational purity do
not obviously generalise well to the more general notion of what an operation can be.
It might, but the authors do not explain how, so we are left with a very situational
definition of purity.

Finally, and perhaps most crucially, we could argue that the motivation for Kahle
and Pulcini’s definition is artificial. Their problem with the definition of topical purity
which prompted them to develop their own definition was that Fürstenberg’s proof was
considered impure, even though it could be rewritten to be pure, as Mercer showed.
However, this is only a problem if we insist on the idea that Fürstenberg’s proof
is equivalent to Mercer’s: We could just as easily accept that Fürstenberg’s proof is
impure while Mercer’s is not, since they are different proofs.

Mercer’s avoidance of topological language in his proof constitutes a change in the
formulative resources he employs which makes his proof different from Fürstenberg’s
in at least a formulative sense. Detlefsen and Arana spend some time setting up
a framework for what exactly constitutes a problem, wherein they separate the
formulative resources used in representing a problem to us from the content of the
problem, such that the formulative resources at least partially determine the identity
of a problem [13, p. 9]. In the same vein it seems reasonable to assume that the
formulative resources employed in a proof are also part of its identity. As such, Kahle

17 This casual statement is not explained further by the authors. It is not entirely clear why
any number system is closed under union and intersection, because it is unclear what the
union or intersection of two numbers is unless we choose to define numbers as a set-theoretic
construction. Of course, the power sets of all number systems are closed under union and
intersection: for example, the union or intersection of two sets of natural numbers is obviously
a set of natural numbers as well (or the empty set).
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and Pulcini’s criticism that the definition of topical purity distinguishes between the
purity of ‘different versions of the same proof’ is rendered artificial when we consider
that the very framework behind topical purity deems a different formulation of a proof
to be a different proof altogether. If Mercer’s and Fürstenberg’s proofs are not the
same proof, then the fact that Mercer’s is considered pure while Fürstenberg’s is not is
no longer contradictory.

All that being said, the notion of operational purity is still useful because of how
easily applicable it is. Verifying topical purity requires a lengthy analysis of what
commitments determine the topic of a theorem or problem, a task for which we
do not have a general procedure. Scanning for operations is easy, and comparing
ontologies is just as straight-forward, which makes determining the operational purity
of a proof almost trivial. Additionally, operational purity has the added functionality
of quantifying purity by a sort of ‘metric’, where we can say that one proof is more or
less pure than another, divided by discrete steps of subsequent number systems: this
is a bit more subtle than simply qualifying proofs binarily as either pure or impure.
Recall that we objected to the strictness of the topical definition of purity earlier—in
some cases, the nuance of the ‘metric’ of operational purity might be preferable to the
black and white view of topical purity.

Kahle and Pulcini’s definition has another interesting property. When determining
the operational purity of a proof, we compare its ontology with the problem’s, but
the possibility of comparing purity among different proofs merely has us compare the
ontologies of the proofs. Interestingly, this does not require us to refer to the theorem’s
ontology at all: the comparative purity of two proofs can apparently be determined
independently of the theorem which they prove.

Taking this one step further, we can take two proofs of different theorems and argue
that one is more operationally pure than another, purely based on the operations used
in both proofs. This is probably merely an anomaly as it is likely that the authors
only had purity comparison in mind for two proofs of the same theorem, but what’s
interesting about this is that it illustrates the problem-independent character of the
definition. It seems like the problem-independent hierarchy of ontologies is central
to the definition and significantly distinguishes it from, e.g., topical purity, which is
decidedly more dependent on context.

Next, let’s apply Kahle and Pulcini’s definition to our case study. Their definition
is particularly suitable to the issue of complex substitutions as the authors have also
included a section on complex numbers. They consider addition and multiplication of
complex numbers to be a higher-level operation than addition and multiplication of
real numbers. To illustrate the difference, they consider the isomorphism of (C,+, ·)
and (R2,⊕,�), where ⊕ denotes component-wise addition and � is given by (a, b) �
(c, d ) = (ac – bd, ad + bc). Though component-wise addition can be seen as a logical
extension of addition on R to R2, the authors state that ‘� is not supposed [to]
come automatically with the operations defined on R’ [19, p. 10]. As such, complex
multiplication is external to real analysis. Formally, for a theorem T of real analysis,
Kahle and Pulcini would say that � is not part of the operational content of T and
‘based on the above isomorphism, [the ontology of] {⊕,�} is not just R2 but, indeed,
C’ [19, p. 10].

Now, checking Laplace and Poisson’s proofs for operational purity is simple. A
careful scan of the proof teaches us that the only operations used in Laplace’s proof
are {+, –, /, ·,⊕,�}. Meanwhile the operations used in Poisson’s proof are {+, –, /, ·}.
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As such, we see that the ontology of Poisson’s proof is Q,18 while the ontology of
Laplace’s proof is C, so the ontology of Poisson’s proof is a subset of the ontology of
Laplace’s: we see that Poisson’s proof is more pure operationally than Laplace’s. The
operations necessary to formulate the problem (in the way we defined it earlier when
discussing topical purity) are {+, –, /, ·}, so by again comparing ontologies we see that
Poisson’s proof is indeed operationally pure, while Laplace’s is not.

This definition of operational purity seems more in line with Poisson and Laplace’s
notion of ‘direct’ proof, at least because it calls Poisson’s direct proof pure and Laplace’s
indirect one impure: this is probably so by virtue of the specific case study. In the case
study, Poisson objects specifically to the use of a complex substitution, that is, he objects
to Laplace’s use of this foreign number system which comes with its own operations.
A definition of purity which ranks purity of proofs based on the number systems and
operations that show up in said proofs fits the discussion between Poisson and Laplace
particularly well.

Because this definition is so perfectly tailored to our case study, it’s hard to conclude
whether ‘operational purity’ is what Poisson meant by ‘direct’ method in general—it
is unlikely that it’s an exact match. However, one could argue that operational purity
as a notion is more akin to mathematical thought at the time than topical purity is.
The logical treatment of mathematics based on axiomatisation wherein we can list and
compare axioms and definitions used in theorems and their proofs, which is necessary
for application of the topical definition, was not common in Laplace and Poisson’s time,
and would not gain traction until the twentieth century. Of course, it is unlikely that
Poisson or Laplace would think of purity as explicitly as Kahle and Pulcini, or using
the same terms as them, but thinking of ‘pure’ or ‘direct’ proofs as proofs which do
not appeal to operations of a ‘higher ontology’ seems more in line with what Poisson,
Laplace and others at that time would think.

§8. Conclusion. The discussion between Laplace and Poisson offers some insight
into their own conceptions of mathematical purity, or directness, as well as into the
difficulty of defining what it means for a proof to be pure. Laplace and Poisson remained
wary of indirect proof, consistently seeking out direct alternatives, while still using
indirect proof as a ‘means of discovery’. All the while, neither one of the two offered a
clear formulation of what the actual problem is with indirect proof.

Our contemporary definitions could not satisfactorily explain directness, or what we
would now call purity, either. We have compared Detlefsen and Arana’s topical as well
as Kahle and Pulcini’s operational definition of purity to Laplace and Poisson’s notion
of directness: topical purity deems both Laplace’s and Poisson’s proofs impure, while
operational purity agrees with Poisson.

Unfortunately, even though the operational definition in the end agrees that Poisson’s
proof is pure, the definition has significant problems. In fact, both the operational and

18 This is perhaps surprising, because the notion of integration presupposes that the integrand
is a function of R, so perhaps the ontology of Poisson’s proof should be R. But in this case
we should consider multiple integration again, which supposes integration over R2, so the
ontology isR2. This would then render Poisson’s proof operationally impure when compared
to the problem’s ontology R. Kahle and Pulcini do not mention

∫
or

∫∫
as operations, so

we will stick to the direct application of their definition which yields Q as the ontology of
Poisson’s proof.
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the topical definitions reveal their problems when confronted with the Laplace–Poisson
case, with the topical definition being either too strict or not strict enough depending
on our interpretation, while the operational definition is too situational, arbitrarily
defined and arguably artificially motivated.

As such, we are left in the same situation as Laplace, Poisson and all mathematicians
that came before and have come since. Although we all have an intuitive understanding
of what constitutes a pure, direct, or elementary proof, we cannot properly define what
that means and are left to disagree on our personal preferences.
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