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GREEN'S RELATIONS FOR REGULAR ELEMENTS OF 
SEMIGROUPS OF ENDOMORPHISMS 

K. D. MAGILL, JR. AND S. SUBBIAH 

This paper is dedicated to Alfred H. Clifford on the occasion of his 
65th birthday. 

1. Introduction. X is a set and End X is a semigroup, under composition, 
of functions, which map X into X. We characterize those elements of End X 
which are regular and then we completely determine Green's relations for 
these elements. The conditions we place on End X are sufficiently mild to 
permit such semigroups as S(X), the semigroup of all continuous self maps 
of a topological space X and L(V), the semigroup of all linear transformations 
on a vector space V, to be regarded as special cases. 

In order to give some idea of the kind of results we obtain, we discuss the 
situation for S(X). First of all, we show that an element/ in S(X) is regular 
if and only if its range is a retract and it maps some subspace of X homeo-
morphically onto its range. It then follows from this that those spaces X for 
which the semigroup S(X) is regular, are rather exceptional. For example 
S(X) is never regular if X is completely regular, Hausdorff and contains an 
arc. If X is a noncompact O-dimensional metric space, then S(X) is regular 
if and only if X is discrete. Of course, when X is discrete, S{X) is j u s t l y , 
the full transformation semigroup on X and the fact that this semigroup is 
regular was discovered by C. G. Doss [4]. For two regular elements of SÇX) 
we show: they are ££-related if and only if the decompositions on X induced 
by them are identical; they are ^-related if and only if their ranges coincide; 
they are «^-related if and only if their ranges are homeomorphic; and they 
are ^/-related if and only if the range of each contains a retract which is 
homeomorphic to the range of the other. By taking X to be discrete, we obtain 
as a special case, characterizations of Green's relations on the full transforma­
tion semigroup. These results were first obtained by D. D. Miller and C. G. 
Doss [4] and a nice account of them is given in [3]. 

Now, D. D. Miller and A. H. Clifford [7] proved some years ago that if 
one element in the i^-class is regular, then they are all regular. Such classes 
are called regular ^-classes. Our results allow us to completely determine the 
regular ^-classes of S(X) and we find that certain spaces are characterized 
within a huge class of spaces by the number of regular ^-classes their semi­
groups have. For example, if X is any completely regular Hausdorff space 
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GREEN'S RELATIONS 1485 

which contains an arc, then X is itself an arc if and only if S(X) has precisely 
two regular «^-classes. 

One further remark is in order. So far as we know, the only other attempt to 
systematically study Green's relations on S(X) has been made by F. A. Cezus 
in his doctoral dissertation [1]. The approach there is quite different than it 
is here and consequently, his results are of a different nature than ours. 

2. Some general results. The symbols Dom(f) and Ran(/) will be used 
to denote respectively the domain and range of a function / . Composition of 
functions will be denoted by simple juxtaposition. Furthermore f/A will 
denote the restriction of a function / to a subset A of its domain. 

Definition (2.1). By a A-structure on a nonempty set X, we mean any pair 
( ja/ ,^# ) where s/ is a family of subsets of X containing X itself and 

Jl = {Horn (4 , 5 ) : (A,B) 6 J / X J / ) 

where Horn (A, B) is a collection of functions with domains equal to A and 
ranges contained in B, and the following conditions are satisfied. 

(2.1.1) End X = Hom(X, X) is a semigroup under composition which con­
tains idx the identity map on X. 

(2.1.2) Ran( / ) £ stf for each / in End X. 

(2.1.3) If/ G End X and g G Horn (Ran ( / ) , B), then gf Ç End X. 

(2.1.4) Suppose/, g e EndX;A,B, €s/;f(B) CA,g(A) C B and suppose 
also that fg/A = idA and gf/B = id*. Then g/A Ç Uom(A,B) and 
f/B G Uom(ByA). 

We will refer to End X as the semigroup of the A-structure (J3^,~# ). 

Definition (2.2). A function/ in Ylom(Ay B) is a A-isomorphism if there 
exists a g in Hom(B, A) such that fg = idB and gf = idA. If Hom(A, B) 
contains a A-isomorphism, we say that A and B are A-isomorphic. 

Definition (2.3). A A-retract of X is any subset which is the range of an 
idempotent map in End X, 

We recall that an element a of a semigroup is regular if aba — a for some 
element b of the semigroup. Our first result characterizes the regular elements 
of semigroup End X of an arbitrary A-structure ( S$,.J( ) on X. 

THEOREM (2.4). Let End X be the semigroup of a A-structure (s/,<J£ ) on X. 
Then the following statements about a function f in End X are equivalent. 

(2.4.1) / is regular. 

(2.4.2) The range of f is a A-retract of X and there exists a A-retract A of X 
such that f/A is a A-isomorphism from A onto Ran ( / ) . 
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(2.4.3) The range of f is a A-retract of X and there exists a set A £ J / such 
that fIA is a A-isomorphism from A onto Ran ( / ) . 

Proof. We first show that (2.1.1) implies (2.1.2). S ince / is regular, there 
exists a function g in End X such that fgf = f. Then fg is idempotent and one 
easily shows that Ran(J) = Ran( /g) . Thus, the range of / is a A-retract of 
X. Furthermore, gf is also idempotent so that Ran(g/) is a A-retract of X. 
Now let y £ R a n ( / ) . Then y = f(x) for some x in X and 

fgiy) =fgf(pc) = f(x) = y. 

Thus the restriction of fg to Ran( / ) is the identity on R a n ( / ) . On the other 
hand, if y £ Ran (g/), then y = gf(x) for some x in X and we have 

gf(y) = gfgfW = gf(x) = y-

Thus, the restriction of gf to Ran(g/) is the identity on Ran(gf) so by (2.1.4), 
we have / / R a n (gf) £ Horn (Ran (gf), Ran ( / ) ) and 

g /Ran( / ) 6 Horn (Ran ( / ) , Ran (gf)). 

All this implies that / / R a n (gf) is a A-isomorphism from Ran(g/) onto R a n ( / ) . 
This verifies that (2.1.1) implies (2.1.2) and since it is evident that (2.1.2) 
implies (2.1.3), we need only show that (2.1.3) implies (2.1.1). Since R a n ( / ) 
is a A-retract of X, there exists an idempotent map v in End X such that 
Ran(y) = R a n ( / ) . Furthermore, since f/A is a A-isomorphism from A onto 
R a n ( / ) , there exists a / £ Horn (Ran ( / ) , A) so that t(f/A) is the identity 
on A and (f/A)t is the identity on R a n ( / ) . By condition (2.1.3), the function 
g = tv belongs to End X. One readily shows that fgf = f and the proof is 
complete. 

Now we characterize Green's relations for the regular elements of End X. 
These relations were introduced by J. A. Green [5] in 1951 and are discussed 
in detail in [3]. We recall them briefly. Two elements of an arbitrary semi­
group T are J*f-related if they both generate the same left ideal, ^-related if 
they both generate the same right ideal and ^ - re la ted if they both generate 
the same two-sided ideal. The r e l a t i o n e is defined to be the intersection of 
jSf and 3%. Furthermore, oêf and & commute so that ^f o ^? is also an equi­
valence relation which is denoted by Si. The five relations «Sf, ^?, J^7, S 
and f are Green's relations and we determine just what they are for regular 
elements of End X. Throughout the remainder, it will be assumed without 
specifically stating it that End X is the semigroup of some A-structure ( se,<Jé ) 
onX. 

Before we state our next result, we introduce some notation. For any 
function/ in End X, we let w(f) denote the decomposition of X induced b y / ; 
that is, 

T ( / ) = l / - ' W : y 6 Ran(/)}. 
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T H E O R E M (2.5). Two regular elements f and g of End X are J£-related if 
and only if ir(f) = ir(g) and they are 2%-related if and only if R a n ( / ) = 
Ran(g ) . Consequently, they are J^7-related if and only if ir(f) = ir(g) and 
R a n ( / ) = Ran(g) . 

Proof. Firs t suppose t ha t / and g are ^ - r e l a t e d . Then f = kg and g = hf 
for appropria te k and h in End X. The former implies t ha t w(g) refines TT( / ) 
and the lat ter implies t ha t w(f) refines ir(g). Thus , ir(f) = w(g). Suppose, 
conversely, t ha t w(f) = ir(g). We show t h a t / and g are ^£-related. First of 
all, since / and g are regular, there exist idempotents v and w such t ha t v is 
Jzf-related t o / a n d w is «if -related to g [3, p. 27]. By our previous observations, 
TT(V) = 7r(/) and 7r(w) = ir{g). Thus 7r(y) = TT(W) and this means t h a t for 
any x, y, 6 X , ZJ(X) = u(;y) if and only if w(x) = w(y). Since v is idempotent , 
v(v(x)) = v(x) for any x £ X and this implies t ha t w(v(x)) = w(x) . Similarly, 
z;(w(x)) = v(x). T h a t is, wz; = w and Î;Î£> = v which implies t ha t v and w are 
c^f-related. H e n c e / and g areo£f-related. 

Now suppose t ha t / and g are ^ - r e l a t e d . Then / = gk and g = fh for 
appropr ia te & and /̂  in End X. I t follows immediately from this t ha t R a n ( / ) = 
Ran(g ) . Suppose, conversely t ha t R a n ( / ) = Ran(g) . S i n c e / a n d g are regular, 
there exist idempotents v and w ^ - r e l a t e d to / and g respectively. Then 
Ran (y) = Ran(î£/) and since v and w are idempotent , we immediately get 
v = wv and w = vw. T h u s v and w are ^ - r e l a t e d and it follows t h a t / and g 
are ^ - r e l a t e d . 

Remarks. For arbi t rary elements of End X , the conditions given above are 
necessary bu t not sufficient. We will defer discussing any specific examples 
until the section where we deal with semigroups of continuous functions. 

T H E O R E M (2.6). Two regular elements f and g of End X are 3>-related if and 
only if R a n ( / ) is /^-isomorphic to Ran(g) . 

Proof. Suppose first t h a t there exists a A-isomorphism t from R a n ( / ) onto 
Ran(g ) . We show t h a t / and g are i^-related. Since they are regular, there 
exist idempotents v and w such t h a t / is ^ - r e l a t e d to v and g is ^ - r e l a t e d to w. 
By the previous theorem, R a n ( / ) = Ran(y) and Ran(g) = Ran (w) . Since 
3% C ^ , we need only show tha t v and w are i^-related in order to conclude 
t h a t / and g are ^ - r e l a t e d . Since £ is injective, v(x) = v(y) if and only if 
tv(x) = tv(y). T h u s ir{v) = ir(tv) which, according to the previous result, 
means t h a t v and tv are J?f-related. Since t maps Ran(y) onto Ran(w/), we have 
R a n ( ^ ) = /(Ran(z;)) = Ran(w) . Thus , by Theorem (2.5), tv and w are 
^ - r e l a t e d . All this implies t h a t i; and w, and h e n c e / and g are ^ - r e l a t e d . 

Now suppose t h a t / and g are ^ - r e l a t e d . We must show t h a t R a n ( / ) and 
Ran(g) are A-isomorphic. Again, we choose idempotents v and w which are 
^ - r e l a t e d to / and g respectively. By Theorem (2.5), R a n ( / ) = Ran(z;) and 
Ran(g) = Ran (w) . Since 2ft C 2iï, v and w are «^-related and we use this fact 
to show t h a t Ran(y) and Ran(w) are A-isomorphic. Since 2$ = jSf o ^ , 
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there exists an element p of End X such that v and p are ^£-related while p 
and w are ^-related. Then p = tv and v = kp for appropriate £, & in End X. 
Moreover, it follows from Theorem (2.5) that Ran(^) = Ran(w). We show 
that the restriction of t to Ran(y) is a A-isomorphism onto Ran (J?) = Ran(w). 
We have 

p — tv = tkp 

which implies that the restriction of tk to Ran(w) = Ran(^) is the identity 
on Ran(w). Moreover, for any x in Ran(z;), we have 

kt(x) = ktv(x) = kp(x) = v(x) = x. 

Thus, the restriction of kt to Ran(y) is the identity map on Ran(^). Since 
t maps Ran(y) into Ran(w) and k maps Ran(w) into Ran(y), it follows that 
t/Ra.n(v) is a A-isomorphism from Ran(y) onto Ran(w). Since Ran(/) = 
Ran(^) and Ran(g) = Ran(z£;), we conclude that Ran( / ) and Ran(g) are 
A-isomorphic. 

As we mentioned previously, if one element in a i2?-class is regular, then 
all of the elements in that i^-class are regular and such ^-classes are referred 
to as regular .^-classes. Theorems (2.4) and (2.6) together allow us to describe 
quite simply the regular ^-classes of End X. This is the content of the next 
theorem. 

THEOREM (2.7). Let A be any A-retract of X and let DA consist of all those 
functions f in End X such that Ran (/) is a A-retract of X which is A-isomorphic 
to A and the restriction of f to some B in s$ is a A-isomorphism onto Ran (/) . 
Then D A is a regular 2)-class of End X and all regular ^-classes are obtained 
in exactly this manner. 

Proof. We show first that DA is a regular i^-class. Since A is a A-retract, 
there exists an idempotent v in End X such that A = Ran(u). Let D(v) 
denote the i^-class to which v belongs. We show that DA = D(v). Choose 
any / in DA. By Theorem (2.4), / is regular and this fact, together with 
Theorem (2.6) implies t h a t / belongs to D(v). Now suppose that g £ D(v). 
Then g is regular and by Theorem (2.6), Ran(g) is A-isomorphic to 
Ran(y) = A. It now follows from Theorem (2.4) that g £ DA. Thus, DA = 
D(v) which proves that DA is a regular ^-class. 

On the other hand, let D be any regular i^-class. We must show that 
D = DA for an appropriate A-retract A. Since D is regular it contains an 
idempotent v so that D = D(v). Let A = Ran(z;). By previous considerations, 
DA is a regular i^-class and Theorems (2.4) and (2.6) together imply that 
D(v) C DA. Thus DA — D{v) = D and the proof is complete. 

Remark. Suppose we define two A-retracts to be equivalent if they are 
A-isomorphic. Theorems (2.6) and (2.7) tell us, among other things, that there 
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are exactly as many regular «^-classes of End X as there are equivalence 
classes of A-retracts. 

THEOREM (2.8). Two regular elements of End X are J? -related if and only if 
the range of each contains a A-retract which is A-isomorphic to the range of the 
other. 

Proof. Let / and g be regular elements of End X. Then there exist idem-
potents v and w which are ^-related t o / and g respectively. By Theorem (2.4), 
Ran(y) = Ran(/) and Ran{w) = Ran(g) so we show that Ran (A) contains 
a A-retract which is A-isomorphic to Ran{w). First of all, S% C ^ s o it follows 
that v and w are ^/-related. Thus, v = hwk for appropriate h and k in End X. 
It is immediate since v is idempotent that the restriction of h(wk) to Ran(z;) 
is the identity map on Ran (A). NOW, let y be any element of Ran{wkv). Then 
y = wk (x) for some x in Ran (v) and we get 

(wk)h(y) = wkhwk(x) = wkv(x) = wk(x) = y. 

Thus, the restriction of (wk)h to Ran{wkv) is the identity on Ran{wkv). Let 
t = {wk)/Ran{v). Since wk maps Ran(z/) into Ran{wkv) and h maps Ran{wkv) 
into Ran {v), it follows from condition (2.1.4) that t £ Horn (Ran (v), Ran{wkv)) 
and, in fact, the previous observations allow us to conclude that t is a A-iso-
morphism from Ran(y) onto Ran{wkv). It is evident that Ran{wkv) C Ran(w). 
To see that Ran(w^) is a A-retract, consider the function tvh. It belongs to 
End X because of (2.1.3) and certainly, R a n ( ^ ) C Ran(wkv). Moreover, 
for y Ç Ran(wkv), we have y = wkv(x) for some x £ X and hence 

y = wkv(x) = tv(x) = tvv(x) = tvh(wk(x)). 

This means y G Ran {tvh) and we conclude that Ran( /^ ) = Ran{wkv). Now 
we show that tvh is idempotent. Any y G Ran{tvh) is of the form wkv{x) for 
an appropriate x in X. Thus, 

tvh{y) = tvhwkv{x) = wkvhwkv{x) = wkvvv{x) = wkv{x) = y. 

That is, the restriction of tvh to its range is the identity map so we conclude 
that tvh is idempotent and hence that Ran{wkv) = Ran {tvh) is a A-retract. 
In a similar manner, one shows that Ran(z/) contains a A-retract which is 
A-isomorphic to Ran{w). 

Now suppose / and g are regular elements such that the range of each 
contains a A-retract which is A-isomorphic to the range of the other. Again, 
we choose idempotents v and w in End X which are £?-related to / and g 
respectively and, again, we have Ran(z/) = Ran(/) and Ran{w) = Ran(g). 
Then Ran(p) contains a A-retract A which is A-isomorphic to Ran{w). Let t 
be any idempotent in End X with Ran {t) = A and let h be any A-isomorphism 
from A onto Ran {w). Then there exists a k in Horn (Ran {w), A ) such that hk 
is the identity on Ran{w) and kh is the identity on A. Then, by (2.1.3), both 
ht and kw belong to End X. Since v, as well as t, is the identity on A, one 
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readily verifies t h a t w = (ht)v(kw). In a similar manner , one produces two 
functions p and q in End X such t h a t v = pwq. Thus , v and w are ^ / - r e l a t ed 
and this implies t h a t / and g are ^ - r e l a t e d . 

T h e next several sections will be devoted to applying the results of this 
section. W e consider first semigroups of cont inuous functions. 

3. Green ' s r e l a t i o n s for regular e l e m e n t s of S(X). Le t X be any topo­
logical space and define a A-structure on X , by taking s/ to be all n o n e m p t y 
subspaces of X and Horn {A, B) {A, B £ se) to be all cont inuous functions 
from A into B. Then End X is jus t S(X), the semigroup of all cont inuous 
self maps of X. A-retracts are, of course, jus t re t rac ts in the usual topological 
sense and A-isomorphisms are jus t homeomorphisms. Wi th all this in mind, 
the results of the previous section t ransla te immediately into the following 
theorems. 

T H E O R E M (3.1). Let X be any topological space. Then the following statements 
about an element f in S(X) are equivalent. 

(3.1.1) / is regular. 

(3.1.2) The range of f is a retract of X and it maps some retract of X homeo-
morphically onto its range. 

(3.1.3) The range of f is a retract of X and it maps some sub space of X homeo-
morphically onto its range. 

T H E O R E M (3.2). Let X be an arbitrary topological space. Then two regular 
elements f and g of S(X) are J£-related if and only if w(f) = ir(g) and they are 
M-related if and only if R a n ( / ) = Ran(g ) . Consequently they are 3f-related 
if and only if both ir(f) = 7r(g) and R a n ( / ) = Ran (g ) . They are Q)-related 
if and only if R a n ( / ) and Ran(g) are homeomorphic and they are J* -related 
if and only if the range of each contains a retract which is homeomorphic to the 
range of the other. 

T H E O R E M (3.3) Let X be any topological space, let A be any retract of X and 
let DA consist of all those functions f such that R a n ( / ) is a retract of X which is 
homeomorphic to A, and f maps some subspace of X homeomorphically onto 
R a n ( / ) . Then DA is a regular 2)-class ofS(X) and all regular Q)-classes of S(X) 
are obtained in exactly this manner. 

Now we derive two corollaries from Theorem (3.1) which indicate t h a t 
S(X) is rarely regular. 

COROLLARY (3.4). Let X be a completely regular Hausdorff space which 
contains an arc. Then S(X) is not regular. 

Proof. There is no loss of generali ty if we assume t h a t the closed interval / 
is a subspace of X. L e t / be any function in S(X) which maps X onto I and 
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let g be any continuous function mapping I onto I which is not injective on 
any nondegenerate subinterval of I. For example, any continuous nowhere 
differentiable function mapping I onto I will suffice. Then gf belongs to S(X). 
Its range is I but it cannot be regular since it does not map any subspace of X 
homeomorphically onto I. In fact, it is not injective on any nondegenerate 
connected subset. 

COROLLARY (3.5). Let X be a noncompact ^-dimensional metric space. Then 
S(X) is regular if and only if X is discrete. 

Proof. If X is discrete S(X) is the full transformation semigroup and as we 
have noted previously, C. G. Doss [4] proved that it is regular. This also follows 
easily from Theorem (3.1). To get the subspace required in (3.1.3), simply 
choose a point from the pre-image of each point in the range of the function. 

Now, assume X is not discrete. Since it is a noncompact O-dimensional 
metric space, it is the union of a countably infinité family {An}n=i of mutually 
disjoint nonempty subspaces which are both open and closed. Moreover, 
since X is not discrete, it has a limit point p and since it is first countable, 
there exists a sequence {aw}JJLi of points, all different from p, which converges 
to p. Define f(x) = an for x G An. Then / £ S(X) but / is not regular since 
Ran(/) is not closed and hence cannot be a retract of X since 5 is Hausdorff. 

There are examples of nondiscrete X for which S(X) is regular. H. deGroot 
[6] has proven the existence of 2C connected one-dimensional subspaces of the 
plane such that the only continuous maps from any one of these spaces into 
any other are the constant maps and the only continuous selfmaps of these 
spaces are the constant maps and the identity maps. Thus, for any such space 
X, S(X) is just a left zero semigroup with identity which, of course, is regular. 

Now we look a bit more at Green's relations on S(X). It is well-known 
that the two relations Qf and f agree on the full transformation semigroup. 
The following result shows that this is more the exception than the rule for 
semigroups of the form S(X). 

THEOREM (3.6). Let X be any completely regular Hausdorff space which contains 
an arc. Then the two relations 2 and f are distinct on S(X). 

Proof. We may assume that the closed unit interval I is actually a subspace 
of X. Since X is completely regular and Hausdorff, there exists a continuous 
function v mapping X onto I whose restriction to I is the identity mapping. 
L e t / be any continuous function mapping I onto I with the property that the 
restriction of/ to [0, J] is the identity a n d / maps [J, 1] onto itself but is not 
injective on any nondegenerate subinterval of [§, 1]. Then put g = fv. Since 
v is idempotent, we have gv = g which implies that g belongs to the principal 
ideal generated by v. Now let h be any element of S(X) which maps [0, 1] 
homeomorphically onto [0, J] and let k be any element of S(X) whose restric­
tion to [0, | ] is the inverse of h. Well known extension theorems imply the 
existence of such functions. It readily follows that v = kghv which implies 
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that v belongs to the principal ideal generated by g. Thus, v and g are^-rela ted. 
Since v is regular, we need only show g is not regular in order to conclude 
that they are not ^-related. With this in mind, we let A be any nondegenerate 
connected subset of X. If v(A) C [0, §], then 

g{A) = f(y{A)) =v(A) C P U ] . 

Iiv(A) H (i, 1] ^ 0, then g = fv is not injective on ^4. In either event, g does 
not map 4̂ homeomorphically onto / . Since Ran(g) = I, it follows from 
Theorem (3.1) that g is not regular and hence cannot be «^-related to v. 

It follows from the previous result that 2f a n d ^ / are distinct on both S (I) 
and S(R) (R denotes the space of real numbers), however, in both of these 
cases Of and J? restricted to the set of regular elements do coincide. That is, 
i f /and g are regular elements which belong to either S (I) or S(R), t hen / and g 
are ^-related if and only if they are ^/-related. This follows easily from 
Theorem (3.2). Actually, I and R are members of classes of spaces with this 
property and we consider them now in some more detail. 

Definition (3.7). An A-star is the space formed by identifying the left 
end-points of N copies of the half-open interval [0, 1). A closed A-star is the 
space formed by identifying the left end-points of N copies of the closed 
interval [0, 1]. 

A 1-star is homeomorphic to a half-open interval while a 2-star is, of course, 
homeomorphic to the space R of real numbers. Both the closed 1-star and the 
closed 2-star are homeomorphic to the closed unit interval. In the following 
discussion, VN will denote an A-star and WN will denote a closed A-star. In 
order to determine the regular .^-classes of S(VN) and S(WN), we need to 
examine the retracts of VN and WN respectively. First of all a retract of WN 

is either a point or is homeomorphic to WM for some M f^ N. Since W\ and Wi 
are homeomorphic, it follows that there are exactly N mutually nonhomeo-
morphic retracts of WN and hence, by Theorem (3.2), there are exactly N 
regular «^-classes of S(WN). Furthermore, since no two of these retracts are 
mutually embeddable in each other, it follows from that same theorem that 
any two regular functions of S(WN) which belong to the same ^ -class must 
also belong to the same i^-class. We collect these results and state them 
formally as 

THEOREM (3.8). The semigroup S(WN) (N ^ 2) has exactly N regular 
^-classes. Moreover, two regular elements of S(WN) are ^-related if and only if 
they are J? -related. 

It takes a bit more effort to count the retracts of VN. A retract of VN is 
either a point or is formed by taking m copies of [0, 1] and r copies of [0, 1) 
where m + r ^ N and identifying all left end points. One verifies, by indue-
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tion, that for N ^ 2, VN has exactly 

(n+ !)(» +2) 
2 J 

mutually nonhomeomorphic retracts. In this case also no two are mutually 
embeddable into each other as retracts. Thus, we appeal to Theorem (3.2) 
to get 

THEOREM (3.9). The semigroup S(VN) (N ^ 2) has exactly 

i(n+ l)(» + 2) - 2 

regular £&-classes. Moreover, two regular elements of S{VN) are 3?-related if 
and only if they are ̂  -related. 

The following two corollaries indicate how various spaces are characterized, 
to some extent, by the number of regular «^-classes their semigroups have. 

COROLLARY (3.10). Let X be any completely regular Hausdorff space which 
contains an arc. Then X is itself an arc if and only if S(X) has exactly two 
regular ^-classes. 

Proof. Take N = 2 in Theorem (3.8) and we get the fact that if X is an arc, 
then S(X) has exactly two regular ^-classes. Now suppose that S(X) has 
exactly two regular «^-classes. Take any point and arc in X. Then these two 
subspaces are nonhomeomorphic retracts of X. Since X is also a retract, it 
follows from Theorem (3.2) that X must be homeomorphic to the arc. 

COROLLARY (3.11). Let X be any space which contains a retract which is 
homeomorphic to the space R of real numbers. Then X is itself homeomorphic 
to R if and only if S(X) has exactly four regular ^-classes. 

Proof. We take N = 2 in Theorem (3.9) and conclude that S(R) has four 
distinct ^-classes. Suppose conversely that S(X) has exactly four regular 
^-classes. Since R is a retract of X, then every retract of R is also a retract 
of X. Now R has essentially (up to homeomorphism) four different retracts. 
Topologically, they are represented by a point, a closed interval, a half-open 
interval and R. Since X is a retract of itself, it follows from Theorem (3.2) 
and the fact that S(X) has only four regular ^-classes that X must be homeo­
morphic to one of the latter and the only possibility is that X is homeomorphic 
to i? . 

Remarks. For arbitrary elements / and g of S(X), it is necessary that 
^(Z) = ^(g) f° r / a n d g to be ̂ £-related but it is not sufficient and similarly, 
it is necessary that Ran(/) = Ran(g) for/ and g to be ^-related but it is not 
sufficient. For an example of the former, take any Euclidean iV-space EN and 
let H e a continuous injection from EN into EN whose range is bounded. Then 
ir(h) = ir(i) where i is the identity but h is not ££-related to i. For if h and i 
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are «if-related, then i = kh for some k Ç S(EN) b u t this is a contradict ion 
since R a n ( M ) C &(cl(Ran &)) which is compact . More generally, i is not 
e£f-related or ^ - r e l a t e d , for t h a t ma t te r , to any element of S(EN) which is 
not a uni t . This follows from the fact t h a t the composition of two functions 
in S(EN) is a uni t if and only if each of the functions is a uni t and this is a 
consequence of Corollary (3.8) of [2]. Thus , i f / in S(EN) is injective bu t not 
surjective, then ir(f) = w(i) b u t / and i are not <if-related and if g G S(EN) 
is surjective bu t not injective, then Ran(g) = R a n ( i ) b u t g and i are not 
c^?-related. 

For still o ther examples where R a n ( / ) coincides with Ran(g) wi thout / 
and g being ^ - r e l a t e d , let X be any completely regular Hausdorff space 
which contains an arc. There is no harm in supposing t h a t the closed uni t 
interval I is actual ly a subspace of X. L e t / be any m a p from X onto I whose 
restrictions to I is the ident i ty m a p and let k be any cont inuous mapping 
from I onto I which is not injective on any nondegenerate subinterval . Let 
g = kf. T h e n Ran ( / ) = Ran(g) = I b u t / and g cannot possibly be ^ - r e l a t e d . 
Among other things, g is not injective on any nondegenerate connected subset 
and s i n c e / is, we cannot h a v e / = gh for any h in S(X). Of course, g is far from 
being a regular element. 

4. T h e s e m i g r o u p of c losed f u n c t i o n s o n a 7 \ space . A function from 
a topological space X into a topological space F is a closed function if f(A) is 
a closed subset of Y whenever A is closed in X. T h e family of all closed functions 
mapping X into X is a semigroup under composition and is denoted by T(X). 
We will assume throughout this section that X is a Tx space. In order to apply 
the results of Section 2 to get information about T(X), we define a A-structure 
on X as follows: S$ consists of all nonempty closed subsets of X and for 
A, B (z se, Horn (A, B) is jus t the family of all closed functions mapping A 
into B. T h e semigroup End X of this part icular A-structure is, of course, 
jus t T(X). Here, too, the A-isomorphisms are simply homeomorphisms. T h e 
A-retracts are precisely the nonempty closed subsets of X. Certainly, every 
A-retract is closed. T o see t h a t a nonempty closed subset A of X is a A-retract, 
choose a point a G A and define a function / by 

f(x) = x for x € A 

f(x) = a for x £ X — A. 

T h e n for a n y closed subset B of X, 

f(B) = f«B r\A)V {BC\(X - A))) = 

f(B H A) \Jf(B C\ (X - A)) = (BC\A) KJf(B H (X - A)). 

Now B C\ A is closed and f(B P\ (X — A)) is either e m p t y or a point . In 
either event , f(B) is closed since X is 7 \ . Thus , / is an idempoten t element of 
T(X) and since R a n ( / ) = A, we conclude t h a t 4̂ is a A-retract. In par t icular 

https://doi.org/10.4153/CJM-1974-144-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-144-x


GREEN'S RELATIONS 1495 

Ran (g) is a A-retract for each g G Y(X) and from Theorem (2.1), we immedi­
ately get 

T H E O R E M (4.1). An element f in Y(X) is regular if and only if it maps some 
closed subspace of X homeomorphically onto its range. 

As in the case for S(X), these semigroups are also rarely regular. In the 
proof of Corollary (3.4), we produced a function with the proper ty t h a t it 
does not map any subspace of X homeomorphically onto its range. Now, if X 
is taken to be compact , t ha t function is a closed function so we see t ha t if X 
is any compact Hausdorff space which contains an arc, then Y(X) is not 
regular. 

The theorems in Section 2 concerning Green's relations easily t ranslate into 
the following two results. 

T H E O R E M (4.2). Two regular elements f and g of Y(X) are J£-related if and 
only if ir(f) = ir(g) and they are é%-related if and only if R a n ( / ) = Ran(g ) . 
Consequently, they are ffl-related if and only if both ir(f) = w(g) and R a n ( / ) = 
Ran(g ) . They are 3)-related if and only if R a n ( / ) and Ran(g) are homeo-
morphic and they are J? -related if and only if the range of each contains a closed 
subset homeomorphic to the range of the other. 

T H E O R E M (4.3). Let A be any closed subset of X and let DA consist of all 
those functions f in Y(X) with the property that f maps some closed subset of X 
homeomorphically onto R a n ( / ) . Then DA is a regular 3-class of Y(X) and each 
regular 2)-class of Y(X) is obtained in exactly this manner. 

Since closed subsets of a space X are, in general, more a b u n d a n t t han 
ret racts , we can expect Y(X) to usually have more regular «^-classes than 
S(X). For example, we have seen tha t S (I) (I is the closed uni t interval) has 
exactly two regular «^-classes. The si tuation is far different for Y(X). I t has 
an infinite number of ^ - c l a s se s . In particular, for each positive integer N, the 
set DN of functions in Y {I), whose range has N elements is a regular iS^-class. 

Y (I) also differs in another respect from S (I). We recall t h a t two regular 
elements in S(I) are ^ - r e l a t e d if and only if they are ^ - r e l a t e d . This is not 
the case for Y (I). Let A be any nondegenerate closed subinterval of I and 
let B be the union of any nondegenerate closed subinterval of I with a point 
not in t h a t subinterval . Let v be any idempotent map in Y {I) with Ran(^) = A 
and let w be any idempotent map in Y (I) with Ran(w) = B. Then v and w 
are regular and according to Theorem (4.2) they are ^ - r e l a t e d bu t not 
^ - r e l a t e d . 

5. The semigroup of linear transformations on a vector space. With 
possibly one exception, the results in this section are not new. They are s ta ted 
as problems in [3, p . 57]. Nevertheless we thought it might be instructive to 
show how they can be derived from the results of Section 2. 
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Let F be a vector space over a division ring and let L(V) denote the semi­
group under composition of all linear transformations on V. Define a A-struc-
ture on V as follows: se is the collection of all subspaces of V and for A, B in 
se', Horn (A, B) is just the collection of all linear transformations from A into B. 
The semigroup End V of this A-structure is, of course, just L(V) and it is 
easily seen that the A-isomorphisms are just the linear isomorphisms between 
subspaces of V. The A-retracts coincide with the subspaces of V. It is immediate 
that every A-retract is a subspace of V. To see the converse, let A be any 
subspace of V with basis A*. Extend i * to a basis V* of V. Choose any 
a G A* and let <p denote the linear transformation on F which is determined by 

(f{x) = x for x G A* 

<p(x) = a for x G B* — A*. 

Then ç is idempotent and Ran(<p) = A. Thus, A is a A-retract of V. Moreover, 
for any \f/ G L(V), we choose C* to be any basis for the subspace \//(V) of V. 
Then choose exactly one vector from each of the sets ^ - 1 (x ) , x G C* and 
denote the resulting set by E*. Then E* is a linearly independent set and \p 
maps the space £ , which is generated by E*, isomorphically onto yp(V). Thus, 
the following result is a consequence of Theorem (2.1). 

THEOREM (5.1). The semigroup of all linear transformations on any vector 
space is regular. 

Let us recall that for any two linear transformation <p, \p in L(V), Tr(<p) = 
ir{rp) if and only if their null spaces coincide and Ran(<p) is isomorphic to 
Ran(^) if and only if <p and \// have the same rank. In fact, any two vector 
spaces over the same division ring are isomorphic if and only if they have the 
same dimension. These observations, together with the results in Section 2 
result in the following two theorems. 

THEOREM (5.2). Let V be any vector space over a division ring. Then two 
elements <p and x// of L(V) are J£-related if and only if they have the same null 
space and they are 3%-related if and only if Ran(<£>) = Ran(^). Consequently, 
they are ffl-related if and only if they have the same null space and Ran(^) = 
Ran WO. 

THEOREM (5.3). Let V be any vector space over a division ring. Then the 
following statements are equivalent about two linear transformations <p and \(/ 
from L(V). 

(5.3.1) <p and \[/ are £$-related; 

(5.3.2) ip and \p are ̂  -related; 

(5.3.3) (p and \f/ have the same rank. 

As we mentioned previously, most of these results are stated as problems 
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in [3, p. 57]. The only result in this section which might possibly have escaped 
detection is contained in Theorem (5.3) and it is the fact that the two relations 
2f a n d ^ / coincide on L(V). 

In conclusion, we take the opportunity to thank the referee for the helpful 
comments and suggestions. 
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