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MOORE COHOMOLOGY AND CENTRAL TWISTED 
CROSSED PRODUCT C-ALGEBRAS 

JUDITH A. PACKER 

ABSTRACT. Let G be a locally compact second countable group, let X be a locally 
compact second countable Hausdorff space, and view C(X, T) as a trivial G-module. For 
G countable discrete abelian, we construct an isomorphism between the Moore coho-
mology group //"(G,C(X,T)) and the direct sum Ex\(Hn_x(G),Hl(f3X,Z)) 0 
C(X,H"(G, T)); here ffl ((3X, Z) denotes the first Cech cohomology group of the Stone-
Cech compactification of X, (3X, with integer coefficients. For more general locally 
compact second countable groups G, we discuss the relationship between the Moore 
group H2(G,C(X,T)), the set of exterior equivalence classes of element-wise inner 
actions of G on the stable continuous trace C*-algebra CQ(X) ® %^ and the equiv-
ariant Brauer group Br^A) of Crocker, Kumjian, Raeburn, and Williams. For count­
able discrete abelian G acting trivially on X, we construct an isomorphism BTG(X) = 
H3(X, Z) © ^P(X, §) 0 C(X, H2(G, T)); here !ti<P(X, Q) is the group of equivalence 
classes of principal G bundles over X first considered by Raeburn and Williams. 

0. Introduction. During the past decade, there has been a great deal of research by 
R. Hermann, I. Raeburn, J. Rosenberg, and D. Williams, and most recently, D. Crocker, 
A. Kumjian, Raeburn, and Williams, ([HR], [Ro], [RR], [RW 1], [CKRW]) concern­
ing the Moore cohomology groups H2 (G, C(X, T)), H\x (G, C(X, T)), and H3 (G, C(X, T)) 
and their relationship to operator algebras, where G is a locally compact second count­
able (hereafter, abbreviated l.c.s.c.) group, X is a l.c.s.c. Hausdorff space, and C(X, T) is 
viewed as a trivial G-module (here, as throughout the paper, if X and Y are topological 
spaces, C(X, Y) refers to the set of continuous functions on Staking values in Y; if Y is an 
abelian group, so is C(X, Y), under pointwise multiplication). In their very recent work, 
Crocker et al. have established an exact sequence relating IT (G, C(X, T)) for n = 2 and 
n = 3 to the subgroup of the equivariant Brauer group BrciX) consisting of exterior 
equivalence classes of actions of G on Co(X) ® 9£ which act trivially on the spectrum 
X. When G is abelian, the group H^G, C, (X, T)) has been related to the classifications 
of exterior equivalence classes of locally unitary and pointwise unitary G-actions on 
stable continuous trace C* -algebras with spectrum X, via work of J. Phillips and Rae­
burn [PhR 2], and D. Olesen and Raeburn [OR], respectively; most recently, this group 
has been used by L. Baggett and the author in the study of group C*-algebras of two-
step nilpotent groups [BP]. Indeed, Raeburn and Williams in [RW 1] have shown that 
//pt(G, C(X, T)) injects as a subgroup of!H!P(X, Q\ the group of equivalence classes of 
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principal ^-bundles overX, which plays a key role in the classification of exterior equiv­
alence classes of pointwise unitary (/-actions on the stable continuous trace C*-algebras 
with spectrum X mentioned above. For connected l.c.s.c. abelian groups G, Rosenberg 
in [Ro] had already shown this injection to be an isomorphism; for non-connected G, 
the subgroup of J$P(X, Q) corresponding to i/pt(G, C(X.T)) has also been character­
ized by Raeburn and Williams in [RW 1, Theorem 4.4]. However, the relationship for 
non-connected G is not as transparent as in the connected case, so that a further investi­
gation of this relationship, together with a more explicit description of #£ t(G, C(X, T)) 
and //"(G, C(X, T)) for all n E Z+ would be useful. In this note, we initiate this project 
for countable discrete abelian groups G, and discuss the connection between the struc­
ture of these cohomology groups with both central twisted crossed product C*-algebras 
of the form Co(X) x t a G, where i is the trivial action of G on CQ{X) and a is an element 
of the group of two-cocycles Z2[G, C(X, T)), and ordinary crossed products of the stable 
continuous trace C*-algebra Co(X) ® %^ by element-wise inner actions of G. 

Obviously the discrete case avoids many of the technical difficulties inherent in the 
definition of the Moore cohomology groups; these difficult technical points have led to 
new areas of interest as well as to many open problems. (See, e.g., [RW 1, proof of 
Proposition 3.4 and the remark after the proof of Theorem 4.5]). On the other hand, 
so much remains unknown about the structure of central twisted crossed product C*-
algebras by discrete groups, including a description of the topology on the primitive ideal 
spaces of such C* -algebras, that any information at all about the cohomology groups 
involved should be useful. It turns out that, at least when G is discrete, information is 
readily available by means of elementary group extension theory, and this information 
can be interpreted in a variety of ways of interest to C* -algebraists. 

To describe our main theorem on Moore cohomology, we recall that if G is a l.c.s.c. 
group and C(X, T) is viewed as a trivial G-module, there is an injection u'. H^x (G, C(X, T)) 
—• #"(G, C(XJ)). When in addition G is discrete, for each [a] G H"(G, C(X,lj) one 
can define a continuous map n*([o-]):X —» //"(G,I) by setting n*([cr])(jc) = [ex(o)], 
where for each x <E X, ^:Z"(G,C(X,T)) —• Z"(G,T) is the evaluation map. Then 
n * : / r ( G , C(XJj) —> CfclPiG,!)) is a homomorphism, and the main result of our 
first section is: 

THEOREM. Let G be a countable discrete abelian group acting trivially on the 
1. c. s. c. Hausdorff space X. Then there is a split short exact sequence 

0 —>H^t(G,C(XJj) - ^ /T(G,C(X,T) ) - ^ C(X9H"(GJj) —>0. 

HenceHn(G,C(XJ))^H^t(G,C(XJ))eC(X,Hn(GJ)). m 

We have already noted how Raeburn and Williams have identified #pt(G, C(X,T)) 
with the group of equivalence classes of characteristic principal G-bundles over X. On 
the other hand, as shown by H. Smith [Sm 2], it is clear that //pt(G, C(X,J)) corre­
sponds to the group of equivalence classes of abelian group extensions of G by the Polish 
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group C(X, T), £ab(^5 C(X, T)). Smith also showed that this last group is isomorphic to 
^(Gjfi^C/MfjZ)), where /^represents the Stone-Cech compactification of X. Since 
standard results from group extension theory (cf. [Br, p. 127, Exercise 5]) show that 
£ab(G,,4) = Ext(G,y4), where A is an arbitrary trivial G-module and "Ext" represents 
the standard Ext group familiar from algebraic topology and homological algebra, we 
obtain generalizations of the above results for arbitrary positive integer n in the follow­
ing corollary of the theorem above: 

COROLLARY. Let Gbea countable discrete abelian group, let X be a 1. c. s. c. Haus-
dorjf space, and view C(X, T) as a trivial G module. Then 

H"(G,C(XJj) * Ext{Hn^(G),Hl(fiX,T)) 0 C(X,H"(GJJ). m 

Thus when X is a compact metric space, so that Hl (X, Z) is countable, H" (G, C(X, T)) 

is easily computed; for example, if G = Zm, then //£(Zm,C(X,T)) = {0} and 

H2(zm,c(xj)) ^e27"1)/2[C(y,T)]/. 
In our second section, we discuss the group structure on the set of exterior equivalence 

classes of element-wise inner actions of G on Co(X) ® %^ viewed as a subgroup of 
the equivariant Brauer group BTG(X), where now G is allowed to be an arbitrary l.c.s.c. 
group, and 9£ represents the C*-algebra of compact operators on a separable infinite 
dimensional Hilbert space. It is folklore that the group so constructed is isomorphic to 
H2 (G, C(X, T)), where C(X, T) is again viewed as a trivial G-module (see, for example 
[CKRW]), but we feel it helpful to discuss this relationship in more detail than in previous 
references, and to point out that the crossed products of CQ{X) ® %^ by the element-wise 
inner actions of G are precisely those which are strongly Morita equivalent to central 
twisted crossed product C*-algebras of the form Co(X) xLi(T G. Finally, we use results 
from our first section to discuss the interrelationship between pointwise unitary actions 
of G on Co(X)<g> %j> element-wise inner actions of G on Co(X)<g> !̂ C, and the Moore groups 
tipt(G, C(X9 T)) and H2(G, C(X, T)), and prove that for G countable discrete abelian, the 
group of exterior equivalence classes of actions of G on Co(X)(& %, which fix the spectrum 
pointwise is generated by the classes of element-wise inner actions of G and pointwise 
unitary actions of G on Co(X) ® %^. This gives a short exact sequence of abelian groups 
involving 9tP(X, Q\ C(X,H2(G, I ) ) , and a subgroup of BrG(X) which is related to the 
exact sequence of Crocker, Kumjian, Raeburn, and Williams involving the equivariant 
Brauer group mentioned earlier. 

We thank Jon Berrick, Larry Baggett and Iain Raeburn for useful conversations on 
this topic. 

1. Moore cohomology for discrete abelian groups taking on values in a trivial 
module. We first recall the necessary definitions. Let G be a l.c.s.c. group acting triv­
ially on the l.c.s.c. Hausdorff spaceX, hence acting trivially on the Polish group C(X, T), 
given the topology of uniform convergence on compact sets. Let C"(G, C(X,T)) be 
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the abelian group (under pointwise multiplication) of normalized Borel «-cochains on 
G taking values in C(XJ)9 i.e. C*(G9C(X9T)) = {Borel maps f:Gn -> C(XJ) s.t. 

/fei &) - 1 if some g / - 1}. Let d:C"(G,C(XJ)) -> C*+1 (G, C{X9 T)) be the 
usual coboundary operator, /.e. 

(5/)fei,...,gw+i)=/fe2,...,g«+i)/feig2,...,g«+ir1 x . . . 
x / ( g i , . . . , g l l g ^ ) ( - 1 7 ( g i , - . . , g - ) ( - i r I -

Let Z" (G, C(X, T)) be the kernel of 5, and let Bn(G, C(X, T)) C Z"(G, C(Jf, T)) be the 

image of 5: C""1 (G, C(X, T)) -> C"(G9 C(X,T)). 

Let Z"(G,C(X,T)) and 2? W (G,C(X,T)) denote the equivalence classes of 
Z?(p9 C(X, T)) and Bn (G, C(X, T)) respectively obtained by identifying cocycles which 
are equal almost everywhere on Gn with respect to Haar measure. Then Z"(G, C(X9 J)) 
under the topology of convergence in measure is a Polish topological group, and 
5"(G,C(Jf,T)) is the continuous image of a Polish group, and a result of C. Moore 
[M3] shows that Z" (G, C(X9 T)) /Bn (G, C(X, T)) ^ Z" (G, C(X, T)) / £ " (G, C(X, T)) = 
//"(G, C(X, T)) is a topological group which is HausdorfT exactly when 2f(G, C(Z, T)) 
is closed. For notational purposes, given a cocycle a G Z"(G, C(X,T)), let [a] denote 
its cohomology class in H" (G, C(X, T)). If X is a point, C(X9 T) = T, and we obtain the 
usual cohomology groups for G, //"(G, T) = ZT{G9 J)/Bn(G, T); for n = 2 this gives the 
standard multiplier group for G, //2(G, T). For discrete G there is no distinction between 
7? and Z" or Bn and #n , and the topologies involved are the topologies of pointwise con­
vergence; in this case, Bn (G, C(X9 T)) is closed in Z" (G, C(Jf, T)) SO that H" (G, C(X, T)) 
is always HausdorfT. For each x e X, define ex: Z"(G, C(X, T)) —> Z"(G, T) by ^(a) = 
cr(. , . . . , . )(x). Then we define 

Z£t(G, C(X91)) = {cr G F(G9 C(X9T)) : efo) G ^W(G,T),Vx G * } , 

and we define %X(G9C(XJJ) to be the image of Z£(G,C(JSf,T)) in Z"(G,C(X,T)) 
(again, there is no distinction for G discrete). It is clear that Bn{G9 C(X,T)) C 
Z£ t(G,C(XJ)); this containment is proper in general. We write H^x(G9C(X9lj) = 

^G9C{XJ)) JBn{G9C(XJ))'9 see the articles of Rosenberg [Ro] and Raeburn and 
Williams [RW 1] mentioned above for more details on this group in the case n = 2. 
As in the introduction, let h:H%t(G9C(X9TJ) —> #"(G,C(X,T)) be the injection map 
andletn*://"(G,C(X,T)) -> C(X91P(G9T)) be defined by n*([a])(jt) = [ex(a)]. 

THEOREM 1.1. Let Gbea countable discrete abelian group, letXbe a 1. c. s. c. Haus-
dorff space, and view C(X, T) as a trivial G-module. Then there is a split short exact 
sequence 

(1.2) 0—>H^{G9C(X9J)) -±+IP(G9C(X9TJ) - ^ C(X,//"(G,T)) — • 0. • 
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PROOF. It is clear that /* is an injection. Therefore it is sufficient to prove that 
kern* = im/* and construct a monomorphism 9*:C(X9H

n(G,T)) —> //"(G,C(Jir,T)) 
which is a cross section for n*. 

Suppose that [a] G im/* so that o G Z£t(G, C(XJ)). Then n*([a])(x) = [ex(a)] = 
[a(. , . . . , . )(x)]Hn(GJ) = [1]//*(GJ), for all x G X, so that n*([cr]) = lqxjF(G,D), and 
|>] G kern*. Conversely, if [a] G IP(G, C(X,T)) belongs to kern*, then [ex(a)] = 
[a(. , . . . , . )W]//"(G,T) = l//w(G,T)? Vx G X But this means precisely that o G 
2%t(G, C(X, T)), SO that [a] G //£t(G, C(X, T)), and ker* = im /*. 

We now construct 0*. Since G is discrete abelian, by Item 2, p. 82 of [Ml], the sort 
exact sequence below splits: 

(1.3) 0 —>Bn(GJ) —>ZT(GJ) —>H"(GJ) —> 0, 

i.e., there is a monomorphism 0: //"(G, T) —• Z"(G, T) splitting the sequence. Fixing any 
such 0 define 0: C(X9 #"(G, T)) - » 2 " (G, C(X, T)) by 

0.4) («(/Xgi,...,g-)]W = fl(/](x))(glf... 

and define 0*: C(X,//"(G,T)) -> /^(G,C(X,T)) by 0*(/) = [0(/)]. One easily checks 
that 0* is a monomorphism which is a cross-section to n*, so that n* is a surjective and 
the sequence (1.2) is split exact, as desired. • 

We note that for non-discrete G, there would be several potential problems if one 
attempted to carry through the above proof: firstly, the sequence (1.3) need not split, and 
indeed H"(G9 T) need not be Hausdorff for n > 2, and secondly, there is no clear way to 
map C(X, Zn(G9 T)) into Zn (G, C(X, T)), as noted in the remarks preceding Lemma 3.5 
of[RWl]. 

For discrete abelian G, one can alternatively calculate / / " (GjC^T)) by using the 
universal coefficient theorem stated in [Br, p. 60, Exercise III.I.3]. Since C(X,J) is a 
trivial G-module, there is a split short exact sequence 
(1.5) 

0 —» Ext(//„_i (G), C(X, T)) —»H"(G, C(X, T)) —> Hom(//„(G), C(X, T)) — • 0 

(here H„(G) refers to ordinary homology with integer coefficients), and since G is dis­

crete, Hom(H„(G), C(X, T)) e< c(x,Hom(Hn(G)j)^J a C(^,/f(G,T)). Thus this ver­

sion of the universal coefficient theorem becomes 

(1.6) 0 —• Ext(#„_, (G), C(X, T)) —• //"(G, C(X, T)) —• C(X, ff(G, T)) —» 0 

which is almost the same as sequence (1.2). We now want to clarify the relationship 
between Ext(#„_,(G), C(X, T)) and H$t(G, C(X, T)). Recall that Ext(tf„_,(G), C(Z, T)) 
refers to the Ext group as defined in [V, p. 91], i.e. given a free resolution of i/„_i(G) 

(1.7) o — > * - ^ F - ^ t f . _ , ( G ) . — 0 , 
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we take the dual sequence 

(1.8) 0 —> Hom(//„_i(G), C(X, T)) -^-> Hom(F, C(X, T)) - ^ Hom(#, C(X, T)) 

and define Ext(//w_i(G), C(X,T)) to be cokera*. Since Hn-\(G), F and R are discrete 
abelian groups, by means of Pontryagin duality the left-exact sequence (1.8) can be writ­
ten as 

(1.9) 0 — C(X9iC-\iG)) - ^ C(X,F) ^> C(X,R) 

which can alternatively be written 

(1.10) 0 — • C(X9H
n~\GJ)) -^ C(X,F) - ^ C(X,#). 

We now recall from cohomology theory 

(1.11) B"-\GJ) C F~\GJ) ^ C"-\GJ) -?-+ Bn(GJ) 

which gives us via elementary group theory a short exact sequence 

(1.12) 0 —>Hn-\GJ)^^-\GJ)/Bn-\GJ)-^Bn{GJ) — • 0. 

Since G is discrete, C"~l(G9J) c a n ^ e identified with a countable product of tori, and 
thus any quotient of this group also is a countable product of tori. Therefore, the dual 
groups of C"_1 (G, J)/Bn~l(G, T) and Bn(G9 T) are free abelian groups, and taking F and 
R to be these respective dual groups, the Pontryagin dual of exact sequence (1.12) gives 
a free resolution for Hn-\(G). With respect to this resolution, sequence (1.10) becomes 
(1.13) 

0 — • C(X9IT-\G9T)) -^-> C(X,Cl-l(GJ)/Bn-\GJ)) - ^ C(X,Bn(GJ)), 

where /?*(/)(x) = i(f(xj) and <**(/)(*) = 3(/(JC)), J C G I , i, 8, as in (1.12). We finally 
reproduce here the observation of Moore [Ml] that since G is discrete we have a topo­
logical splitting 

C"-\GJ) = ^ ~ 1 ( ( J , T ) / # , " ~ 1 ( G I , T ) x ^ ( G , ! ) 

so that 

C ^ r - ^ G J ) ) has a splitting as Ct^C 1 " 1 / ^"" 1 ) x Q X , ^ " 1 ) 

(suppressing the (G, T) for ease of notation). 
Therefore any element of Ext(//„_i(G), QX,T)) can be identified with [a;] G 

C(X,£"(G,T))/im(a*) for some a; G C ^ t f ^ G , ! ) ) = Z£t(G,C(X,T)) and ima* 

where a*: C(AT, C"-1(G,T)/5 , ,-1(G,T)) ~* £"(<?, C(AT,T)). We now note that because 
a: C1"^(G,!) —• Bn(GJ) is the zero map on the subgroup Bn~l(GJ) and because of 
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the splitting of C(X9(?~X(G9 T)) mentioned above, im a* can be identified with the im­

age of the extended coboundary map a*:C(X,C"_1(G,T)) -* C(X,Bn(GJ)), which 

again because G is discrete can be written as d*:C"~l (G, C(X,T)) —* Bn(G9 C(X, T)). 

Consequently an element of Ext(//„_i(G),C(X,T)) can be identified with 

M G ^ t(G,C(X,T))/5w(G,C(X,T)) = /^ t(G,C(X,T)). Therefore we have 

constructed an explicit isomorphism between Ext(H„-\(G), C(X,T)) and 

Z£(G, C(X, JJ)/Bn(G, C(X, T)) = #£t(G, C(Jf, T)), as desired. 

Using this isomorphism we deduce: 

COROLLARY 1.2. IfXis a 1. c. s. c. Hausdorffspace and C(X, I ) is viewed as a trivial 

G module for a countable discrete abelian group G, then #"(<?, C(Af,T)) S* 

Ext(Hn-i(G)9fr(pX,7)) ®C(X9H*{G9T)). 

PROOF. AS a result of the remarks following the proof of Theorem 1.1, all that re­
mains to show is that Ext(Hn-i(G)9H

l(flX9 Z)) ^ Ext(//„_i(G), C(X, T)). This follows 

from the isomorphisms C(X, T) ^ CG&T, I ) ^ Hl(J3X, Z)0Exp (2m(C(l3X, R)) ) , where 

^Xis the Stone-Cech compactification ofX, and//1 (J3X, Z) is the first integral Cech coho-

mology of (3X. The final isomorphism follows from group theory, since 

is a divisible subgroup of the abelian group C(J3X,J). 

Basic properties of the Ext functor then show us that Ext(//w_i(G),C(X,T)) = 

Ext(HH-i(G)9S
i(l3X9Z)) 0 Extf//w_1(G),Exp(27r/(C(/3X,R)))l <* Ext(//W_!(G), 

Hl(J3X,ZJ), as desired. • 

REMARK 1.3. When « = 2, //„_i(G) = //i(G) = G, and we obtain the isomor­
phism //2t(G,C(X,T)) 9* Ext(G,#(/3Jf,Z)) <* ^ ( G ^ O & ^ Z ) ) (where £ * ( 4 5 ) 
represents the group of equivalence classes of abelian group extensions of A by B) first 
obtained by H. Smith in [Sm 2, Theorem 3]. • 

COROLLARY 1.4. IfXis a 1. c. s. c. Hausdorff space and C(X, T) is viewed as a trivial 
Zm-module,thenH%t(Z

m,C(XJj) = {0} so that H" (Zm, C{XJ)) 2* C(X,Hn(ZmJ)) ^ 

C(X, TO) = n g * * [C(X, J)]it m>n. m 

PROOF. Zm andHn-{(Z
m) are free abelian so that /^ t(Zm , C(^,T)) ^ Ext(//„_1(Z

m), 

C(X,T))~{0}. 

Combining the above corollaries we obtain 

COROLLARY 1.5. If either the countable discrete abelian group G is a finitely gen­
erated free abelian group or the 1. c. s. c. Hausdorff space X is such that Hl (J3X, Z) is 
divisible, thenHn(G,C(XJ)) ^ C(X,//"(G,T)). • 

PROOF. Under either of the above hypotheses Ext(//„_i (G), Hl (J3X, Z)) = {0}. • 
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2. Applications of Moore cohomology to central twisted crossed product C*-
algebras and crossed products of continuous trace C*-algebras. It was shown 
by S. Hurder, D. Olesen, Raeburn and Rosenberg that any twisted transformation 
group C*-algebra Co(X) xa,a G arising from a separable twisted topological dynamical 
system (X, a, cr, G) is stably isomorphic to an ordinary C* -crossed product of the form 
[Co(X) (g) JQ x^ G ([HORR, Proposition 3.1]; here, as in the sequel, %^ represents the 
C*-algebra of compact operators on a separable, infinite-dimensional Hilbert space 9{). 
Indeed, the systems (Co(X), a, a, G) and (Co(X) (g> %i, /3,1, G) are stably exterior equiv­
alent in a sense that we will make precise shortly, and thus the following converse ques­
tion comes to mind: which ordinary C*-dynamical systems (CQ(X) <8) ^C, /?, G) are stably 
exterior equivalent to twisted C*-dynamical systems arising from twisted topological dy­
namical systems as above? Here we discuss this question in the case where the induced 
action /3 of G on X = Prim(Co(X) (g) 9Q (and hence the action a of G on X) is the triv­
ial identity action, and relate this problem to the Moore group //2(G, C(X,I)), and the 
equivariant Brauer group BTG(X) of [CKRW]. Some of what we discuss here is already 
implicit in the literature (particularly in [Ro, Section 2] and in [CKRW]), but, as in our 
first section, we feel it will be helpful to make these relationships explicit. 

Let (Co(X) (8 ^C, /3, G) be a C*-dynamical system. If (3g acts trivially on the spectrum 
X of C0(X) <8> 9£ Vg G G, then by results of C. Lance [La] and G. Elliott [El], (3g G 
AutCb(X)(Co(X) <8> 3Q), i.e. /3g is 7r-inner, VTT G Prim(C0(X) <8 %)\ Vg G G. In order 
for such a system to be stably exterior equivalent to a system arising from a twisted 
topological dynamical system, even more must be true. 

DEFINITION 2.1. Let (.#, a, a, G) and (#, /?, r, G) be two twisted C*-dynamical sys­
tems as defined in [PR]. We say that the two systems are stably exterior equivalent if 
(J% ® 30 a ® id, a (g> 1, G) is exterior equivalent in the sense of [PR, Definition 3.1] to 
0B(8)3C,/3(8>id,T(8>l,G). • 

It is easy to check that a twisted system of the form (Co(X), L, cr, G) arising from a 
twisted topological dynamical system with trivial G action i is stably exterior equivalent 
to a system of the form (Co(X) ® ^C,/J, 1, G) with trivial twist if and only if there is a 
Borel map V: G —• «fW(C0(A) ® 1£) = C(X, <£/) (where U = the group of unitary 
operators Zl(9{) is given the strong operator topology which coincides with the weak 
operator topology on U{9{)) such that 

(2.1) (i)/3g = AdFg ygGG 

(so that each /3g is an inner automorphism, and not just 7r-inner) 

(2.2) (ii) Vglg2(x) = o(gug2)(x)Vgx(x)Vg2{x) Vg,,g2 S G, V* £ Jf. 

/.e. for each x G X the P s provide a projective representation of G on i ^ with multiplier 

<r(-, •)(*)• • 
It is equally evident that given a C*-dynamical system (Co(X) (8 ^C,/3, G) and a 

Borel map K: G —* C(X, <£/) satisfying condition (i) alone, then the fact that J3: G —> 
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Aut(CoCY) 0 ^C) is a homomorphism implies that there exists o e Z2[G, C(X, T)) such 
that (C0(X) 0 ^C, /?, 1, G) is stably exterior equivalent to (C0(I), L, O, G). For future ref­
erence, note that the cocycle a associated to an element-wise inner action /? of G on 
Co(X) 0 % (*•£•> a n action /J such that /3g is inner Vg E G) is not unique; however the 
class [a]eH2(G,C(XJj) is unique and we denote it by [op~\. We therefore have proved: 

PROPOSITION 2.2. Let G be a I c. s. c. group, let Xbe a I. c. s. c. Hausdorff space, 

and view C(X,T) as a trivial G-module. A O-dynamical system (CQ(X) 0 ^0/3, G) is 

stably exterior equivalent to a twisted system of the form (Co(X), L,CT9G) for some a € 
Z2 (G, C(X, T)) if and only iffig is inner Vg E G. m 

Thus the study of untwisted G-actions on Co(X) 0 ^ which are stably exterior equiv­
alent to actions of the form (Co(X), L, a, G) amounts to the study of element-wise inner 
actions of G on C0(X) 0 %. 

We now study the exterior equivalence classes of element-wise inner actions of G on 
Co(X) 0 %, Most of the following result can be deduced from the literature (see in par­
ticular [CKRW, Section 6.3]); additional related results are the classifications of exterior 
equivalence classes of locally unitary actions and pointwise unitary actions of abelian 
groups on stable continuous trace C*-algebras given in [PhR 2] and [OR], respectively. 
Thus we omit detailed proofs. 

THEOREM 2.3 [CRKW]. Let GbeaX. c. s. c. group, let Xbe a I c. s. c. Hausdorff 
space, and view C(X, I ) as a trivial G-module. Then the set of exterior equivalence 
classes of element-wise inner actions ofG on Co(X) 0 J^form an abelian group which 
is isomorphic to the Moore group H2 (G, C(X, T)). • 

PROOF. Denote the set of exterior equivalence classes of element-wise inner actions 
of G on Co(X) 0 %, by <EJ(X9 G). This set is endowed with a group structure as follows 
(note that this construction is similar to one given in a lemma of Echterhoff and Rosen­
berg [ER Lemma 4]): if a and /? are element-wise inner actions of G on Co(X) (8) ^C, 
define a new action a • /3 of G on Co(X) 0 ^C by letting the diagonal action a (8> ft of 
G on [Co(X) ® *K\ 0 [Co(X) 0 9Q induce an action a • /J of G on the balanced tensor 
product [Co(X)<S> ^C] ®c0(X)[Q)W® ^G- This last C*-algebra is canonically isomorphic 
to Co(X) 0 [̂ C 0 ^C] which is in turn isomorphic to Co(X) 0 9C, thus we can view a • f3 
as an action of G on Co(X) 0 ^C, which one easily checks is element-wise inner. One 
easily checks that it makes sense to define [a] • [/?] = [a • jS\ = [fi • a] = [/?] • [a] 
as an element of £7(X, G). The unit of *EJ(X, G) is the equivalence class of the trivial 
identity action. Given an element-wise inner action f3 of G on CoW 0 %^ find some 
a/3 G Z2(G,C(Z,T)) as in Proposition 2.2, and define [S]_1 by first finding a Borel 
map Vp:G -> C(X, *Z) with Vp(glg2)(x) = ^ fe 1 ,g 2 )W^fe 1 )WK^ 2 ) (x) , V* G Jf, 
Vgi,g2 € G (the construction given in [HORR, Proposition 3.1], which is basically just 
a parameterization over X of <r(-, )(x)-regular representations of G, will do nicely), and 
then setting [/3]_1 = [Ad Vp]. The unit, product, and inverse in our proposed group 
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*£J/(X, G) are now defined, and one easily checks that one can view *EJ(X, G) as the sub­
group im£ of the equivariant Brauer group of [CKRW], BXQ{X), corresponding to the 
trivial G action on X; here £ is the map in the exact sequence of [CRKW, 6.3], which is 
reproduced (in slightly modified form) in equation (2.4) for the reader's convenience. We 
now define t/;: <EI(X, G) -» / / 2 (G, C{X, T)) by V([/3]) = [a/?], [<rp] as in Proposition 2.2. 
Our previous computations have shown us that ijj is well-defined, and again one can eas­
ily check that V> is a group isomorphism which is the inverse of the map £ of [CKRW] 
mentioned above. • 

We now investigate the relevance of the above results to the study of pointwise uni­
tary actions of G on C0(X) ® %> Recall from [PhR 2] that an action /? of G on C0(X) ® 
9C is pointwise unitary if for each n G Prim(Co(X) ® 3C) = X there is a covariant 
representation (TT,U) of the C*-dynamical system (Co(X) 0 ^C,/3, G). Hence, for ev­
ery g G G the automorphism /Jg G Autcfe(X)(Co(^0 0 ^C) (it follows, of course, that 
the induced action of G on X is the identity action). By Proposition 2.2, in order that 
(Co(X) ® ^C,/3, G) be stably exterior equivalent to a twisted system of the form 
(Co(X), a, a, G), it is necessary and sufficient that (3g be inner for every g G G, in which 
case [cr] = [a^] G //2(G, C(Z,T)). Consequently, using the exact sequence of [PhR 1, 
Theorem 2.1] 

(2.3) 0 —> Inn(Co(*) ® <K) - ^ A u t a w ( C o W ® !£) - ^ tf2(X, Z) —> 0, 

in order that (Co(X)® ^ , /?, G) be stably exterior equivalent to a twisted system as above 
it is necessary and sufficient that r\(fig) = 0, Vg G G. From this we deduce: 

COROLLARY 2.4. Lef (Co W ® ^C, P, G) Z?e a pointwise unitary C*-dynamical sys­
tem, where G is a 1. c. s. c. group and X is a 1. c. s. c. Hausdorff space. In order that 
(CQ(X) (g) 9Q, ft, G) be stably exterior equivalent to a twisted C*-dynamical system of the 

form (Co(X), L, cr, G\ it is necessary and sufficient that r](j3g) = 0 G H2(X, Z), \/g G G, 
77 as zn (2.3/ /« this case i^([P]) G #pt(G, C(X, J)\ where t/> w the isomorphism of The­
orem 2.3. m 

PROOF. It only remains to prove the last statement. If r\{j3g) = 0 G Vg G G so that 
(3 is element-wise inner, we can define tK[/?]) = [0/3] as in Theorem 2.3, and since (3 is 
pointwise unitary, we see that [erg] G #p t(G, C(X, T)) by applying [Ro], Remark 1.2]. 

Of course, the above results are consistent with existing results in the literature. By 
work of Olesen and Raeburn [OR, Theorem 1.10] generalizing result of Phillips and 
Raeburn for locally unitary automorphism groups [PhR 2], if G is 1. c. s. c. abelian, there 
is a one-to-one correspondence between exterior equivalence classes of pointwise uni­
tary C*-dynamical systems (CQ(X) ® %, {3, G) and isomorphism classes of principal G-
bundles over X, denoted by J-(?P(X, §) in [RW 1] (if G is in addition compactly gen­
erated, all principal G-bundles are automatically locally trivial, by the standard results 
of R. Palais [Pa] and J. Rosenberg [Ro]; consequently all pointwise unitary actions of 
G are locally unitary). Raeburn and Williams have shown in [RW 1, Lemma 2.24] that 
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9£P{X, Q) forms a group, which for G compactly generated is just the Cech group 
Hl(X, Q). Our Corollary 2.4 shows that if a pointwise unitary C*-dynamical system 
(Co(X) ® ^C, /?, G) is in addition element-wise inner, and if G is 1. c. s. c. abelian, then it 
is stably exterior equivalent to a twisted system of the form (Co(X), L, a, G). Moreover 
[a] e //j;t(G, C(X, T)), and by [OR, Theorem 1.10], (C0(X)® %) *p G is stably isomor­
phic to the central twisted crossed product CQ{X) xLt(T G, which in turn is isomorphic to 
Co(E[(j]\ where E[a] is the principal G bundle over X associated to [a] as constructed in 
[Sm2], [Ro]and[RWl]. 

We mentioned in our introduction that Raeburn and Williams showed that this cor­
respondence between H2

X (G, C(X, T)) ad ̂ tP{X, Q) is a group monomorphism, and they 
have characterized the image of H^GXiXJ)) in #3>(X, Q) (as the so-called char­
acteristic principal G-bundles) in [RW 1, Theorem 4.4]. Intriguingly, the vanishing of 
cohomology classes r)([5g) in our Corollary 2.4 can easily be interpreted in terms of the 
Raeburn and Williams characterization by using [RW 1, Theorem 4.4 and Corollary 4.3]. 

We now concentrate on the case where G is countable discrete abelian, and note 
how some results from Section 1 can be used in this situation to relate //pt(G, C(X, I ) ) , 
?£P(X9 Q\ Hl(X, Q\ <EJ(X9 G), and the equivariant Brauer group BrG(X). Of course, 
for G discrete, BTG(X) coincides with one of Grothendieck's equivariant sheaf cohomol­
ogy groups [G], and there already is a spectral sequence to aid in their calculation, but 
there are still additional facts we can deduce in this situation. Recall from [CKRW] that 
if (X, G) is a second countable transformation group then BTG(X) is the set of Morita 
equivalence classes of C*-dynamical systems {[J?, a, G]} where J? is a separable con­
tinuous trace C*-algebra with spectrumX, a is an action of G on Jl whose induced action 
on Prim(J?) = X coincides with the original one, and where the group multiplication is 
given by the balanced tensor product [J2, a, G] • [% (3, G] = [A <8>c0(X) ®, a ® /3, G]. If G 
acts on X trivially, the Brauer group then becomes equivalence classes of C*-dynamical 
systems [J?, a, G] where the induced action of G on Prim(.#) = X is trivial. One de­
duces from [CKRW, 6.3] that in this case BTG(X) can be written as the direct sum of 
ker(F) 0 im(F) where the forgetful map F: Br̂ CY) —• fP(X, Z) is split surjective in the 
case of trivial G action. Thus im(F) = H3(X, Z) and ker(F) = {[C0(X) ® 3C, a, G], a 
induces a trivial G action on X}. The subgroup ker(F) (of which, in turn, £%¥, G) is 
subgroup) is described via a 5-term exact sequence in [CKRW, 6.3]; we observe now 
that an easy calculation involving equations (4.4) and (4.5) of [CKRW] show that in the 
case where either G or H(X, Z) is finitely generated the map d'2 between the final two 
groups in that sequence in fact maps into //pt(G, C(X, T)) C H3 (G, C(X, T)) SO that this 
sequence can be written 

0 — H2(G,C(XJj) - ^ ker(F)={[Co(^)®^;,a,G]} 

(2.4) ^ ^ ^ ^ 

Hom(G,H2(X9Ij) - ^ H^G, C(XJJ). 

Our intent now is to define ker(F) by (quite different) short exact sequence in the case 
where G is countable discrete abelian, which will in addition show us that ker(F) is 
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generated by the exterior equivalence classes of pointwise unitary and element-wise inner 
actions of G on C0(X) 0 %;. 

THEOREM 2.5. Let G be a countable discrete abelian group acting trivially on the 
1. c. s. c. Hausdorff spaceX. View ker(F) as the subgroup {[CQ(X)<8) %^9 a, G]}, a induces 
a trivial action ofG on X} of the equivariant Brauer group Br^X). Then there is a split 
short exact sequence 

(2.5) 0 — • MP(X, Q) - ^ ker(F) - ^ C(X, //2(G, T)) —> 0 

Consequently ker(F) is generated by the pointwise unitary actions and the element-wise 
inner actions ofG on CQ(X) 0 %. m 

PROOF. We first note that by [CKRW Lemma 3.1], Morita equivalence classes of 
G on CQ(X) 0 %, which induce the trivial action on X can be identified with exterior 
equivalence classes of actions of G on CQ{X) 0 %^ which induce the trivial action on 
X. Thus when we write [Co(X) 0 ^C,/3], without loss of generality our "[• • •]" refers 
to exterior equivalence class. We now define the map U- Let [E,p,X] denote an ele­
ment of 9~£P{X, Q\ that is, [E,p,X\ denotes the isomorphism class of a G-bundle over 
X in the sense of [RW1, Section 2]. Then by [OR, Corollary 1.11 and Proposition 1.13] 
we can associate a pointwise unitary C*-dynamical system (J3# = C$(X) 0 ^C, aE, G) 
with (Prim(J3£ xaE G),Res,Z) isomorphic to (E,p,X) as G-bundles, and furthermore, 
(J%E, aE, G) is exterior equivalent to (.%, aE<^ G) if and only if (E,p,X) is isomorphic to 
(E',p',X) as a G-bundle. Therefore we can define u([E9p,X]) = [fig, aEi G] and obtain a 
one-to-one map of9£P(X9 Q) into ker(F), which by standard calculations (as in [RW 1], 
[OR], [ER], and [CKRW]) is a group monomorphism; we omit details. We now define 
5*. The group Autcb(X)[Co(X) 0 9Q of all automorphisms of Co(X) 0 %^ which fix the 
spectrum X can be identified in the standard way with C(X9 Aut(KJ) = C(X, <PU(!H))9 

where (PU{!}{) is the quotient of the unitary group Zl(?{) by its center T Id, given the 
quotient topology of the strong or weak operator topologies, which coincide on Zl(?{). 
The exact sequence of groups 

0 — • Z{U{H)) — • U(9C) - ^ Aut(3Q —> 0 

(2.6) | | J) 
0 — • TId — U —> (PZL —> 0 

gives rise to the standard Bockstein sequence in low-dimensional cohomology which 
gives us the connecting map d: Hl (G, <2<U) —> H2(G, T). We note that Hl (G, 2*Zi) is a 
set, and not a group, so that we cannot use the standard proof of [M2, Proposition 25] 
to show that d is continuous. Though the continuity of d certainly must be known, we 
did not see a proof in the literature so we provide the short proof here. Recall that d 
is defined by choosing a Borel section c: *PU —» 11 and setting d(a) = [<ra], where 

o-a(g\,g2) = c(a(gi))c(a(g2j)[c(a(gig2j)] , gugi G G (here we identify TId with 
T). Now suppose {ccn} is a sequence in Hl (G, <PCU) converging to ao, where Hl (G, (£CU) 
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is given the topology of pointwise convergence. Write Un(g) = c(an(g)), g G G; then 
an(g)(IO — Ad Un(g)(f(J, £ G %. Since (PU is given the quotient topology, to say that 
Ad Un(g) converges to Ad Uo(g) for fixed g in G means that there is a sequence {\„(g)} 
of complex numbers of modulus one such that Xn(g)Un(g) converges to Uo(g) in the 
strong operator topology. Then standard calculations show that for fixed g and h in G, if 
we write U'n = XnUn, aan(g,h)d(\„)(g,h)U'n(gh) = U'n(g)U'n(h) which converges in the 
strong operator topology to Uo(g)Uo(h) = (Tao(g,h)Uo(gh). Since we know that U'n(gh) 
converges to Uo(gh) in the strong operator topology we must have van(g,h)d(\n)(g,h) 
converging to crao(g, h) for fixed g,h G G, that is, [aan] converges to [aao] in //2(G, T), 
so that d:Hl(G,Fl[) —> H2(GJ) is continuous. Now an action of G on C0(X) ® % 
which fixes the spectrum is given by a homomorphism of G into C(X9 2*£i), that is, an 
element of//1 (G, C(X, <FU))9 which, since G is discrete and acts trivially on the spec-
trumX, can be written as C(X, Hl (G, <FU)). We therefore define d*: Hl (G, C(X, £*£/)) -» 
C(X,H2(G, T)) by d*(/3) = d(p(x)). It remains to show that im i, = kerd* and d* is sur-
jective. Suppose that [Co(X) <S> 9£,(3] G im i* so that /? is a pointwise unitary action of 
G on CoW <8> ^C Then the Mackey obstructions to implementing a over each x £ X 
all vanish, that is, [crp] G //pt(G, C(X,T)), [cr#] as in Proposition 2.2. But this means 
exactly that d*([C0(X) <8> 9C,P])(x) = d(p(xj) = [<rp(x)] = 1/*2(GJ), for every x G X. 
Thus imu C kerd*. Conversely, if [CoW ® 3C,/3] G kerd*, then [^(x)] = 1/^(G,T) 

for all x G X, so that [cr̂ ] G H2
t(G9 C(X,T)), /? is a pointwise unitary action of G 

on C0(X) ® 3C, and [C0(J0 ® XM € im4. Therefore i m i = kerd*. Finally, to 
show that 3* is split surjective, let </>*:C(X,//2(G,T)) —• ker(F) be the composition 
Co 0*, where <://2(G,C(X,T)) -* *EJQC9G) C ker(F) is the isomorphism of Theo­
rem 2.3 and [CKRW, 6.3] and 0*: C(X,H2(G, T)) — //2(G, C(X, T)) is the splitting map 
of Theorem 1.1 in the case n = 2. It is clear that </>* splits d*, and we therefore ob­
tain the desired result. The last statement in Theorem 2.5 follows from the isomorphism 
ker(F) ^ &<P(X, Q) 0 C(X, H2(G, T)), the fact that the map u identifies MP(X9 Q) with 
the group of exterior equivalence classes of pointwise unitary actions of G on CQ(X)® ^ , 
and the fact that ^ o ^ maps C(X, H2(X, T)) into £7(X, G). • 

COROLLARY 2.6. Let Gbea countable discrete abelian group acting trivially on the 
1. c. s. c. Hausdorff space X. Then the equivariant Brauer group BTG(X) is isomorphic 
to the direct sum H3(X,Z) 0 ?&(X, Q) 0 C(X,H2(G,TJ). If G is in addition finitely 
generated, this direct sum becomes ffi(X, Z) 0 Hl(X, Q) 0 C(X,H2(GJ)). 

PROOF. It is a consequence of [CKRW, 6.3] that BrGCY) = ffi(X, Z) 0 ker(F) (recall 
that H3(X, Z) is the image of F, and it is easy to see that [6] —->[The stable C* -algebra with 
spectrum X and Dixmier-Douady class [<$], trivial G-action] is a cross-section splitting 
F), and the result follows from Theorem 2.5 and the standard isomorphism fH&(X, Q) = 
Hl (X, Q) for finitely generated discrete abelian G. • 

REMARK 2.7. It is interesting to compare the equivariant Brauer group to the equiv­
ariant cohomology group HQ(X,S) introduced by Raeburn and Williams in [RW 2], 
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which roughly speaking, classifies up to Morita equivalence those C* -dynamical sys­
tems (J?, a, G) where J? is a continuous trace C* -algebra with spectrum X and the action 
a of G on A = X is equal to the given action) which are locally Morita equivalent to 
(Co(X), G). In [RW 2, Section 8.1], Raeburn and Williams prove that (under some mild 
technical conditions) for 1. c. s. c. abelian G acting trivially on the paracompact space 
X, H2

G(X,S) is isomorphic to H3(X, Z) 0 Hl(X9 Q\ By Theorem 2.5 and Corollary 2.6, 
we can conclude that for G a countable discrete finitely generated abelian group acting 
trivially on the 1. c. s. c. Hausdorff spaceX9 the Raeburn-Williams group H2

G(X, S) is iso­
morphic to BXG{X)/£ OOA C(X, H2(G, T)) j , where £ and 0* are the maps discussed in 
the proof of Theorem 2.5. • 

REMARK 2.8. In the case where G is discrete and finitely generated, one can easily 
use Theorem 2.5 together with the five-term exact sequence (2.4) of [CKRW, 6.3] to iden­
tify Range r\ = k e r ^ Q Hom(G,H2(X, Z)) in that sequence with the image of the obvi­
ous map;: Hl(X, Q) ^ Hl (X, Uom(G, T)) -> Hom(G,H2(X, Z)) * Hom(G,Hl(X9 Sj) 
given in terms of transition functions. If G is in addition torsion free (i.e. if G = Tn for 
some positive integer n) or if H1(J3X, Z) is divisible, Corollary 1.5 allows us to deduce 
that //pt(G, C(X,T)) = {0}, so that be the exact sequence (2.4), the map 77, hence the 
map 7, must be surjective. • 

REMARK 2.9. One can check that by Theorem 1.1,9tP(X9 Q) 0 C(X, H2(G, T)) can 
be defined as the quotient of?£P(X, Q)®H2 (G, C(X, T)) by the action of H^ (G, C(X, T)) 
viewed as a subgroup of both 9&(X, Q) and H2(G,C(XJ))) given by x • (y,z) = 
(y + x,z — x). Now this last quotient is defined whether or not G is discrete, and we 
conjecture that for arbitrary 1. c. s. c. abelian groups G, ker(F) will be equal to this quo­
tient, thus giving a related expression for BTG(X). m 

We now use our results to consider several examples, and relate these examples to 
the previous literature. For connected G, J. Rosenberg has shown in [Ro, Theorem 2.5] 
that the image of H2

t(G, C(X, T)) is all of Hl(X, Q\ by showing that any action of such a 
group G on a separable continuous trace C* -algebra which acts trivially on the spectrum 
Xmust be element-wise inner; certainly our Theorem 1.1 tells us that for discrete G, and, 
as shown in [RW1], for more general non-connected G, such an equality need not hold. 
In [RW1, Example 4.7] Raeburn and Williams had already provided a counterexample 
with G = R x Z. Our results in Section 1 show that there are many examples of discrete 
abelian G with H^(G, C(X, T)) ^ Hl (X, Q\ Taking G = Z", Corollary 1.2 shows that 
//2t(zw, C(X, T)) is always trivial for any 1. c. s. c. Hausdorff space X. On the other hand, 
the Bockstein long exact sequence in sheaf cohomology shows that (using the fact that 
R" is a fine sheaf) Hl(X, tn) = Hx(X, Sn) - H2(X, Zn) = 0?= 1 [H2(X, Z)],-. (Compare to 
the exact sequence (2.3) and consider Remark 2.8!!) Therefore by Corollary 1.4, Corol­
lary 2.6, and the above, if Z" acts trivially on the locally compact Hausdorff space X, 
then Brzn(^) = H3(X, Z) 0 e?= 1 (H

l(X, Z)). 0 ®?^l)/2[C(X, T)]z. All of the summands 
in this last group will certainly be non-trivial in general (e.g. consider X = Jm where 
m > 2). Therefore, in particular, for the group Zw, n > 2, and, one would expect, for a 
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wide variety of discrete abelian groups G containing Zn as a direct summand, it should be 
expected that in general, not all pointwise unitary C*-dynamical systems will be stably 
exterior equivalent to twisted abelian systems of the form (CQ(X), t, o, G). 

Using generalizations of the ideas presented above, together with the split short exact 
sequence of [PhR 1, Theorem 2.2], 

(2.7) 0 —-» Autcb(x)[C0(X) ®9Q —• Aut[C0(X) ® 9Q —> Homeo(J0 —> 0 

together with the equivariant Brauer group BTG(X) of [CKRW], it should be possible to 
approach the problem of characterizing which general C*-dynamical systems of the form 
(Co(AO<g> ̂ C, /?, G) are stably exterior equivalent to systems (Co(X), a, a, G) arising from 
twisted topological dynamical systems, where now the group G in question need not act 
trivially onX; work on this project is now in progress. 

NOTE ADDED IN REVISION. With help from a suggestion of Lawrence Baggett, we 
realized that the conclusion of Corollary 2.6 for finitely generated groups can more in­
formatively be written as: 

(2.8) BTG(X) s H2(X9JAGJ)) e H1 (X9H\GJ)) e ff{x9if{^jfj 

We now have a proof of equation (2.8) in the case where G is a compactly generated 
abelian Lie group acting trivially on the 1. c. s. c. Hausdorff spaceX Iain Raeburn has sug­
gested to us that equation (2.8) can be derived from a spectral sequence of Grothendieck, 
which in turn suggests that interesting results can be obtained even when G does not act 
trivially on X. Details will appear elsewhere. 

REFERENCES 

[BP] L. Baggett and J. Packer, The primitive ideal space of two-step nilpotent group C* -algebras, J. Funct. 
Anal, 124(1994), 389-426. 

[Br] K. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982. 
[CKRW] D. Crocker, A. Kumjian, I. Raeburn and D. Williams, An equivariant Brauer group and actions of 

groups on C*-algebras, submitted. 
[ER] S. Echterhoff and J. Rosenberg, Fine structure of the Mackey machine for actions of abelian groups with 

constant Mackey obstruction, Pacific J. Math., to appear. 
[E] G. Elliott, Ideal-preserving automorphisms ofpostliminary C* -algebras, Proc. Amer. Math. Soc. 27(1971), 

107-109. 
[G] A. Grothendieck, Sur quelquespoints d'algebre homologique, Tohoku Math. J. 9(1957), 119-221. 
[HR] R. Herman and J. Rosenberg, Norm-close group actions on C*-algebras, J. Operator Theory 6(1981), 

25-37. 
[HORR] S. Hurder, D. Olesen, I. Raeburn and J. Rosenberg, The Connes spectrum for actions of abelian 

groups on continuous trace C*-algebras, Ergodic Theory Dynamical Systems 6(1986), 541-560. 
[L] E. C. Lance, Automorphisms of certain operator algebras, Amer. J. Math. 91(1969), 785-806. 
[Ml] C. Moore, Extensions and low dimensional cohomology theory of locally compact groups, II, Trans. 

Amer. Math. Soc. 113(1964), 64-86. 
[M2] , Group extensions and cohomology for locally compact groups, III, Trans. Amer. Math. Soc. 

221(1976), 35-58. 
[OR] D. Olesen and I. Raeburn, Pointwise unitary automorphism groups, J. Funct. Anal. 93(1990), 278-309. 
[PR] J. Packer and I. Raeburn, Twisted crossed products of C*-algebras, Math. Proc. Cambridge Philos. Soc. 

106(1989), 293-311. 

https://doi.org/10.4153/CJM-1996-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-007-6


174 JUDITH A. PACKER 

[P] R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73(1961), 295-
323. 

[PhR 1] J. Phillips and I. Raeburn, Automorphisms of C-algebras and second Cech cohomology, Indiana 
Univ. Math. J. 29(1990), 799-822. 

[PhR 2] , Crossed products by locally unitary automorphism groups and principal bundles, J. Operator 
Theory 11(1984), 215-241. 

[RR] I. Raeburn and J. Rosenberg, Crossed products of continuous trace C*-algebras by smooth actions, Trans. 
Amer. Math. Soc. 305(1988), 1-45. 

[RW 1] I. Raeburn and D. Williams, Moore cohomology, principal bundles, and actions of groups on C*-
algebras, Indiana Univ. Math. J. 40(1991), 707-740. 

[RW 2] , Dixmier-Douady classes of dynamical systems and crossed products, Canad. J. Math., 45 
(1993) 1032-1066. 

[Ro] J. Rosenberg, Some results on cohomology with Borel cochains, with applications to groups actions on 
operator algebras. In: Advances on Invariant Subspaces and Other Results, Operator Theory, Adv. Appl. 
17, Birkhauser, Basel, Boston, 1986, 301-330. 

[Sm 1] H. Smith, Commutative twisted group algebras, Trans. Amer. Math. Soc. 197(1974), 315-326. 
[Sm 2] , Characteristic principal bundles, Trans. Amer. Math. Soc. 211(1975), 365-375. 
[Sm 3] , Central twisted group algebras, Trans. Amer. Math. Soc. 238(1978), 309-320. 
[V] J. Vick, Homology Theory, Academic Press, New York, San Francisco, London, 1973. 

Department of Mathematics 

National University of Singapore 

Kent Ridge 

Singapore 0511 

https://doi.org/10.4153/CJM-1996-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-007-6

